Skip to content

Latest commit

 

History

History
107 lines (73 loc) · 2.52 KB

README.md

File metadata and controls

107 lines (73 loc) · 2.52 KB

Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection

This repository is the code for Frustum ConvNet with aiMotive dataset.

frustum-convnet-viz

Citation

The citation for the original paper (IROS 2019 paper [arXiv],[IEEEXplore]) is as follows:

@inproceedings{wang2019frustum,
    title={Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection},
    author={Wang, Zhixin and Jia, Kui},
    booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
    pages={1742--1749},
    year={2019},
    organization={IEEE}
}

Installation

You can create the envirionment with docker.

  • Environment
    • Ubuntu 22.04
    • CUDA 11.7
    • pytorch==1.13.0+cu117
    • RTX 3060

Clone the repository and build docker

git clone https://github.com/tier4/frustum-convnet.git
cd frustum-convnet
make build_docker
make run_docker

Compile extension

cd ops
bash clean.sh
bash make.sh

Download data

Download the aiMotive dataset from here and organize them as follows.

aimotive/data/train
├── highway
├── night
├── rain
├── urban

Convert aimotive to kitti format

cd frustum-convnet
python3 aimotive/adapter.py
python3 kitti/spliter.py

Download pre-trained model on aiMotive

If you don't install dvc, run pip install dvc[gdrive].

cd frustum-convnet_aiMotive
dvc pull

Training and visualization

Training

python3 kitti/prepare_data.py --gen_train --gen_val --gen_val_rgb_detection --gen_vis_rgb_detection

python3 train/train_net_det.py --cfg cfgs/det_aimotive.yaml OUTPUT_DIR output/aimotive_train
(nohup python3 train/train_net_det.py --cfg cfgs/det_aimotive.yaml OUTPUT_DIR output/aimotive_train > nohup-train.out & #remote)

Visualization

python3 visualization/make_dataset.py #for full length visualization

python visualization/visualization.py

Acknowledgements

The official Frustum ConvNet code is available here.

Part of the code was adapted from F-PointNets.

License

The official Frustum ConvNet is released under MIT license.