-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgrowth4D_NLCEQ.gms
executable file
·394 lines (314 loc) · 12.2 KB
/
growth4D_NLCEQ.gms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
*----------------------------------------------------------------------
* This program solves the 2-country RBC model using NLCEQ
*
* Authors: Yongyang Cai, University of Chicago and Hoover Institution
* Jevgenijs Steinbuks, The World Bank
*
* If using material from this code, the user should cite the following paper:
* Cai, Y., K.L. Judd, and J. Steinbuks (2016). A nonlinear certainty equivalent* approximation method for dynamic stochastic problems. Quantitative Economics (forthcoming).
*----------------------------------------------------------------------
scalars
beta0 discount rate /0.99/
alpha capital cost share /0.36/
delta capital stock depreciation /0.025/
rho persistence parameter for TFP growth /0.95/
phi adjustment cost parameter /0.5/
sigma standard deviation of the stochastic productivity level / 0.01 /
gamma intertemporal elasticity of substitution /0.5/
gammahat utility parameter
eta Frisch elasticity of labor supply /0.5/
etahat utility parameter
A technology parameter
B relative weight of consumption and leisure
;
A = (1 - beta0) / (alpha * beta0);
gammahat = 1-(1/gamma);
B = (1 - alpha) * (A ** gammahat);
etahat = 1+(1/eta);
set j agents /1*2/;
alias(j,j1);
parameter tau(j) Negishi weight;
tau(j) = 1/card(j);
*************************************************
* Step 1: Define the transformed deterministic problem
set t time /1*51/;
Parameters
beta(t) discount rate
theta(j,t) productivity shock
;
beta(t) = beta0**(ord(t) - 1);
theta(j,'1') = 1;
loop (t$(ord(t) lt card(t)),
theta(j,t+1) = theta(j,t)**rho;
);
Variables
obj objective criterion
u(j,t) utility
i(j,t) investment
;
Positive variables
k(j,t) capital stock
c(j,t) consumption
l(j,t) labor supply
y(j,t) output
;
Equations
obj1 Objective function
util(j,t) Utility function
output(j,t) Output
cap(j,t) Law of Motion for Capital Stock
bc(t) budget constraint
;
cap(j,t)$(ord(t) lt card(t)) ..
k(j,t+1) =e= (1-delta)*k(j,t) + i(j,t);
output(j,t)$(ord(t) lt card(t)) ..
y(j,t) =e= theta(j,t)*A*(k(j,t)**alpha) * (l(j,t)**(1-alpha));
bc(t)$(ord(t) lt card(t)) ..
sum(j, c(j,t) + i(j,t)) =e= sum(j, y(j,t) + delta * k(j,t)) - sum(j, (phi/2)*k(j,t)*sqr(i(j,t)/k(j,t)-delta));
util(j,t)$(ord(t) lt card(t)) ..
u(j,t) =e= (c(j,t)**gammahat)/gammahat - B * (l(j,t)**etahat)/etahat;
obj1 ..
obj =e= sum(j, tau(j) * sum(t$(ord(t) lt card(t)), beta(t)*u(j,t))) +
sum(j, tau(j) * sum(t$(ord(t)=card(t)), beta(t)*((( (A*(k(j,t)**alpha))**gammahat )/gammahat-B)/(1-beta0)))) ;
* Bound Constraints
k.lo(j,t) = 0.01;
k.up(j,t) = 100;
c.lo(j,t) = 0.001;
c.up(j,t) = 100;
l.lo(j,t) = 0.001;
l.up(j,t) = 100;
* Initial Guess
i.l(j,t) = delta;
k.l(j,t) = 1;
l.l(j,t) = 1;
y.l(j,t) = theta(j,t)*A*(k.l(j,t)**alpha)*(l.l(j,t)**(1-alpha));
c.l(j,t) = A;
u.l(j,t) =(c.l(j,t)**gammahat)/gammahat - B * (l.l(j,t)**etahat)/etahat;
obj.l = sum(j, tau(j) * sum(t$(ord(t) lt card(t)), beta(t)*u.l(j,t))) +
sum(j, tau(j) * sum(t$(ord(t)=card(t)), beta(t)*((((A*(k.l(j,t)**alpha))**gammahat)/gammahat-B)/(1-beta0))));
Option limrow=0,limcol=0,solprint=off;
OPTION ITERLIM = 500000;
OPTION RESLIM = 500000;
OPTION DOMLIM = 1000;
OPTION NLP= conopt;
option decimals = 7;
model busc /all/;
*******************************************************
* Step 2: Optimization step
set v1 grid space /1*5/;
alias(v1,v2,v3,v4,d1,d2,d3,d4);
* approximation domain
scalars
kmin lower bound of k / 0.5 /
kmax upper bound of k / 1.5 /
amin lower bound of theta / 0.5 /
amax upper bound of theta / 1.5 /
;
* Chebyshev parameters
parameters zk(v1)
za(v3)
extk
exta
extkmin
extamin
extkmax
extamax
dzk
dza
;
zk(v1) = - cos((2*ord(v1)-1)/(2*card(v1))*pi);
za(v3) = - cos((2*ord(v3)-1)/(2*card(v3))*pi);
extk = -(zk('1')+1)*(kmax-kmin)/2/zk('1');
exta = -(za('1')+1)*(amax-amin)/2/za('1');
extkmin = kmin - extk;
extamin = amin - exta;
extkmax = kmax + extk;
extamax = amax + exta;
dzk = 2/(extkmax-extkmin);
dza = 2/(extamax-extamin);
Parameters
kinit(v1) Grid: Capital Stock of Country
ainit(v3) Grid: Productivity of Country
;
kinit(v1) = extkmin + (1+zk(v1))/dzk;
ainit(v3) = extamin + (1+za(v3))/dza;
Parameters
solC(j,v1,v2,v3,v4) consumption
solI(j,v1,v2,v3,v4) investment
solL(j,v1,v2,v3,v4) labor supply
;
loop ((v1,v2,v3,v4),
k.fx('1','1') = kinit(v1);
k.fx('2','1') = kinit(v2);
theta('1','1') = ainit(v3);
theta('2','1') = ainit(v4);
loop (t$(ord(t) lt card(t)),
theta(j,t+1) = theta(j,t)**rho;
);
solve busc using nlp maximizing obj;
solC(j,v1,v2,v3,v4) = c.l(j,'1');
solI(j,v1,v2,v3,v4) = i.l(j,'1');
solL(j,v1,v2,v3,v4) = l.l(j,'1');
);
************************************************
* Step 3: Approximation step
parameters TTk(v1,d1)
TTa(v3,d3)
;
TTk(v1,'1') = 1;
TTk(v1,'2') = zk(v1);
loop(d1$(ord(d1)>=2 and ord(d1)<card(d1)),
TTk(v1,d1+1) = 2*zk(v1)*TTk(v1,d1) - TTk(v1,d1-1);
);
TTa(v3,'1') = 1;
TTa(v3,'2') = za(v3);
loop(d3$(ord(d3)>=2 and ord(d3)<card(d3)),
TTa(v3,d3+1) = 2*za(v3)*TTa(v3,d3) - TTa(v3,d3-1);
);
parameters
coefsC(j,d1,d2,d3,d4)
coefsI(j,d1,d2,d3,d4)
coefsL(j,d1,d2,d3,d4)
;
coefsC(j,d1,d2,d3,d4) = 0;
coefsC(j,d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3) =
16*sum((v1,v2,v3,v4), TTk(v1,d1)*TTk(v2,d2)*TTa(v3,d3)*TTa(v4,d4)*solC(j,v1,v2,v3,v4)) / (card(v1)*card(v2)*card(v3)*card(v4));
coefsC(j,'1',d2,d3,d4) = coefsC(j,'1',d2,d3,d4)/2;
coefsC(j,d1,'1',d3,d4) = coefsC(j,d1,'1',d3,d4)/2;
coefsC(j,d1,d2,'1',d4) = coefsC(j,d1,d2,'1',d4)/2;
coefsC(j,d1,d2,d3,'1') = coefsC(j,d1,d2,d3,'1')/2;
coefsI(j,d1,d2,d3,d4) = 0;
coefsI(j,d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3) =
16*sum((v1,v2,v3,v4), TTk(v1,d1)*TTk(v2,d2)*TTa(v3,d3)*TTa(v4,d4)*solI(j,v1,v2,v3,v4)) / (card(v1)*card(v2)*card(v3)*card(v4));
coefsI(j,'1',d2,d3,d4) = coefsI(j,'1',d2,d3,d4)/2;
coefsI(j,d1,'1',d3,d4) = coefsI(j,d1,'1',d3,d4)/2;
coefsI(j,d1,d2,'1',d4) = coefsI(j,d1,d2,'1',d4)/2;
coefsI(j,d1,d2,d3,'1') = coefsI(j,d1,d2,d3,'1')/2;
coefsL(j,d1,d2,d3,d4) = 0;
coefsL(j,d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3) =
16*sum((v1,v2,v3,v4), TTk(v1,d1)*TTk(v2,d2)*TTa(v3,d3)*TTa(v4,d4)*solL(j,v1,v2,v3,v4)) / (card(v1)*card(v2)*card(v3)*card(v4));
coefsL(j,'1',d2,d3,d4) = coefsL(j,'1',d2,d3,d4)/2;
coefsL(j,d1,'1',d3,d4) = coefsL(j,d1,'1',d3,d4)/2;
coefsL(j,d1,d2,'1',d4) = coefsL(j,d1,d2,'1',d4)/2;
coefsL(j,d1,d2,d3,'1') = coefsL(j,d1,d2,d3,'1')/2;
display coefsC, coefsI, coefsL;
*******************************************************
* Step 4: Error checking
set k1 /1*10000/;
set ii indices of Gaussian Hermite quadrature nodes /1*7/;
alias (ii, ii2);
parameter GHNodes(ii) Gaussian Hermite quadrature nodes;
GHNodes('1') = -2.651961356835233*sqrt(2.0);
GHNodes('2') = -1.673551628767471*sqrt(2.0);
GHNodes('3') = -0.8162878828589647*sqrt(2.0);
GHNodes('4') = 0;
GHNodes('5') = 0.8162878828589647*sqrt(2.0);
GHNodes('6') = 1.673551628767471*sqrt(2.0);
GHNodes('7') = 2.651961356835233*sqrt(2.0);
parameter GHWeights(ii) Gaussian Hermite quadrature weights;
GHWeights('1') = 0.0009717812450995192/sqrt(pi);
GHWeights('2') = 0.05451558281912703/sqrt(pi);
GHWeights('3') = 0.4256072526101278/sqrt(pi);
GHWeights('4') = 0.8102646175568073/sqrt(pi);
GHWeights('5') = 0.4256072526101278/sqrt(pi);
GHWeights('6') = 0.05451558281912703/sqrt(pi);
GHWeights('7') = 0.0009717812450995192/sqrt(pi);
parameter GHWeights2D(ii,ii2) Gaussian Hermite quadrature weights in 2D;
GHWeights2D(ii,ii2) = GHWeights(ii)* GHWeights(ii2);
parameter chol(j,j1) cholesky factorization of correlation matrix of (e1+e) and (e2+e);
chol(j,j1) = 0;
chol('1','1') = 1;
chol('2','1') = 0.5;
chol('2','2') = 0.866;
* error checking domain
scalars
kmin1 minimal capital / 0.7 /
kmax1 maximal capital / 1.3 /
amin1 minimal productivity / 0.7 /
amax1 maximal productivity / 1.3 /
;
Parameters
kk(j,k1) capital stock
aa(j,k1) Stochastic productivity
aap1(k1,ii) Stochastic realization of productivity shock
aap2(k1,ii,ii2) Stochastic realization of productivity shock
kpsol1(j,k1)
csol1(j,k1)
csol1p(j,k1,ii,ii2)
Isol1(j,k1)
Isol1p(j,k1,ii,ii2)
Lsol1(j,k1)
Lsol1p(j,k1,ii,ii2)
integrand(j,k1,ii,ii2)
;
kk(j,k1) = Uniform(kmin1, kmax1);
aa(j,k1) = Uniform(amin1, amax1);
* ln(theta_j^+) = rho*ln(theta_j) + sigma * (eps_j + eps)
aap1(k1,ii) = aa('1',k1)**rho * exp(sigma*sqrt(2)*GHNodes(ii));
aap2(k1,ii,ii2) = aa('2',k1)**rho * exp(sigma*sqrt(2)*(chol('2','1')*GHNodes(ii)+chol('2','2')*GHNodes(ii2)));
csol1(j,k1) = sum( (d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3), coefsC(j,d1,d2,d3,d4)*
cos((ord(d1)-1)*arccos(dzk*(kk('1',k1)-extkmin)-1)) *
cos((ord(d2)-1)*arccos(dzk*(kk('2',k1)-extkmin)-1)) *
cos((ord(d3)-1)*arccos(dza*(aa('1',k1)-extamin)-1)) *
cos((ord(d4)-1)*arccos(dza*(aa('2',k1)-extamin)-1)) );
Isol1(j,k1) = sum( (d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3), coefsI(j,d1,d2,d3,d4)*
cos((ord(d1)-1)*arccos(dzk*(kk('1',k1)-extkmin)-1)) *
cos((ord(d2)-1)*arccos(dzk*(kk('2',k1)-extkmin)-1)) *
cos((ord(d3)-1)*arccos(dza*(aa('1',k1)-extamin)-1)) *
cos((ord(d4)-1)*arccos(dza*(aa('2',k1)-extamin)-1)) );
Lsol1(j,k1) = sum( (d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3), coefsL(j,d1,d2,d3,d4)*
cos((ord(d1)-1)*arccos(dzk*(kk('1',k1)-extkmin)-1)) *
cos((ord(d2)-1)*arccos(dzk*(kk('2',k1)-extkmin)-1)) *
cos((ord(d3)-1)*arccos(dza*(aa('1',k1)-extamin)-1)) *
cos((ord(d4)-1)*arccos(dza*(aa('2',k1)-extamin)-1)) );
kpsol1(j,k1) = (1-delta)*kk(j,k1) + Isol1(j,k1);
csol1p(j,k1,ii,ii2) = sum( (d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3), coefsC(j,d1,d2,d3,d4)*
cos((ord(d1)-1)*arccos(dzk*(kpsol1('1',k1)-extkmin)-1)) *
cos((ord(d2)-1)*arccos(dzk*(kpsol1('2',k1)-extkmin)-1)) *
cos((ord(d3)-1)*arccos(dza*(aap1(k1,ii)-extamin)-1)) *
cos((ord(d4)-1)*arccos(dza*(aap2(k1,ii,ii2)-extamin)-1)) );
Isol1p(j,k1,ii,ii2) = sum( (d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3), coefsI(j,d1,d2,d3,d4)*
cos((ord(d1)-1)*arccos(dzk*(kpsol1('1',k1)-extkmin)-1)) *
cos((ord(d2)-1)*arccos(dzk*(kpsol1('2',k1)-extkmin)-1)) *
cos((ord(d3)-1)*arccos(dza*(aap1(k1,ii)-extamin)-1)) *
cos((ord(d4)-1)*arccos(dza*(aap2(k1,ii,ii2)-extamin)-1)) );
Lsol1p(j,k1,ii,ii2) = sum( (d1,d2,d3,d4)$(ord(d1)+ord(d2)+ord(d3)+ord(d4)<=card(d1)+3), coefsL(j,d1,d2,d3,d4)*
cos((ord(d1)-1)*arccos(dzk*(kpsol1('1',k1)-extkmin)-1)) *
cos((ord(d2)-1)*arccos(dzk*(kpsol1('2',k1)-extkmin)-1)) *
cos((ord(d3)-1)*arccos(dza*(aap1(k1,ii)-extamin)-1)) *
cos((ord(d4)-1)*arccos(dza*(aap2(k1,ii,ii2)-extamin)-1)) );
integrand('1',k1,ii,ii2) = csol1p('1',k1,ii,ii2)**(-1/gamma) *
( 1+(phi/2)*(Isol1p('1',k1,ii,ii2)/kpsol1('1',k1)-delta) * (2-delta+Isol1p('1',k1,ii,ii2)/kpsol1('1',k1)) +
aap1(k1,ii)*A*alpha * kpsol1('1',k1)**(alpha-1) * Lsol1p('1',k1,ii,ii2)**(1-alpha) );
integrand('2',k1,ii,ii2) = csol1p('2',k1,ii,ii2)**(-1/gamma) *
( 1+(phi/2)*(Isol1p('2',k1,ii,ii2)/kpsol1('2',k1)-delta) * (2-delta+Isol1p('2',k1,ii,ii2)/kpsol1('2',k1)) +
aap2(k1,ii,ii2)*A*alpha * kpsol1('2',k1)**(alpha-1) * Lsol1p('2',k1,ii,ii2)**(1-alpha) );
parameters
errs1(j,k1)
errs2(k1)
errs3(j,k1)
errs4(k1)
err1Linf
err2Linf
err3Linf
err4Linf
err1L1
err2L1
err3L1
err4L1
;
errs1(j,k1) = abs( ( beta0*sum((ii,ii2), GHWeights2D(ii,ii2)*integrand(j,k1,ii,ii2)) ) / ( csol1(j,k1)**(-1/gamma) * (1+phi*(Isol1(j,k1)/kk(j,k1)-delta)) ) - 1 );
err1Linf = smax((j,k1), errs1(j,k1));
err1L1 = sum((j,k1), errs1(j,k1)) / (card(j)*card(k1));
errs2(k1) = abs( csol1('2',k1)**(-1/gamma) / csol1('1',k1)**(-1/gamma) * (tau('2')/tau('1')) - 1 );
err2Linf = smax(k1, errs2(k1));
err2L1 = sum(k1, errs2(k1)) / card(k1);
errs3(j,k1) = abs( csol1(j,k1)**(-1/gamma) * aa(j,k1) * (A*(1-alpha) * kk(j,k1)**alpha * Lsol1(j,k1)**(-alpha)) / (-B*Lsol1(j,k1)**(1/eta)) + 1 );
err3Linf = smax((j,k1), errs3(j,k1));
err3L1 = sum((j,k1), errs3(j,k1)) / (card(j)*card(k1));
errs4(k1) = abs( sum(j, csol1(j,k1)+Isol1(j,k1)-delta*kk(j,k1)+(phi/2)*kk(j,k1)*sqr(Isol1(j,k1)/kk(j,k1)-delta)) / sum(j,aa(j,k1)*A*kk(j,k1)**alpha*Lsol1(j,k1)**(1-alpha)) - 1 );
err4Linf = smax(k1, errs4(k1));
err4L1 = sum(k1, errs4(k1)) / card(k1);
display err1Linf, err1L1, err2Linf, err2L1;
display err3Linf, err3L1, err4Linf, err4L1;