-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFileCombiner.py
503 lines (465 loc) · 27.7 KB
/
FileCombiner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#
# Object for combining FITS files using different algorithms
#
from itertools import groupby
from typing import Callable
import numpy
import mean_shift as ms
# from sklearn.cluster import MeanShift Replaced by Matt Nedrich mean_shift.py file
import MasterMakerExceptions
from Console import Console
from Constants import Constants
from DataModel import DataModel
from FileDescriptor import FileDescriptor
from ImageMath import ImageMath
from RmFitsUtil import RmFitsUtil
from SessionController import SessionController
from SharedUtils import SharedUtils
class FileCombiner:
def __init__(self, session_controller: SessionController,
file_moved_callback: Callable[[str], None]):
"""
Initialize this object
:param session_controller: Controller the parent uses to control this subtask
:param file_moved_callback: Callback method to inform that we have moved a processed file
"""
self.callback_method = file_moved_callback
self._session_controller = session_controller
# Process one set of files. Output to the given path, if provided. If not provided, prompt the user for it.
def original_non_grouped_processing(self, selected_files: [FileDescriptor],
data_model: DataModel,
output_file: str,
console: Console):
"""
Process one set of files to a single output file.
Output to the given path, if provided. If not provided, prompt the user for it.
:param selected_files: List of descriptions of files to be combined
:param data_model: Data model that gives combination method and other options
:param output_file: Path for the combined output file
:param console: Re-directable console output object
"""
console.push_level()
console.message("Using single-file processing", +1)
# We'll use the first file in the list as a sample for things like image size
assert len(selected_files) > 0
# Confirm that these are all bias frames, and can be combined (same binning and dimensions)
if FileCombiner.all_compatible_sizes(selected_files):
self.check_cancellation()
if data_model.get_ignore_file_type() or FileCombiner.all_of_type(selected_files,
FileDescriptor.FILE_TYPE_BIAS):
# Get (most common) filter name in the set
# Since these are bias frames, the filter is meaningless, but we need the value
# for the shared "create file" routine
filter_name = SharedUtils.most_common_filter_name(selected_files)
# Do the combination
self.combine_files(selected_files, data_model, filter_name, output_file, console)
self.check_cancellation()
# Files are combined. Put away the inputs?
substituted_folder_name = SharedUtils.substitute_date_time_filter_in_string(
data_model.get_disposition_subfolder_name())
self.handle_input_files_disposition(data_model.get_input_file_disposition(),
substituted_folder_name,
selected_files, console)
else:
raise MasterMakerExceptions.NotAllBiasFrames
else:
raise MasterMakerExceptions.IncompatibleSizes
console.message("Combining complete", 0)
console.pop_level()
def process_groups(self, data_model: DataModel,
selected_files: [FileDescriptor],
output_directory: str,
console: Console):
"""
Process the given selected files in groups by size, exposure, or temperature (or any combination)
Exceptions thrown:
NoGroupOutputDirectory Output directory does not exist and unable to create it
:param data_model: Data model specifying options for the current run
:param selected_files: List of descriptions of files to be grouped then processed
:param output_directory: Directory to contain output files from processed groups
:param console: Re-directable console output object
"""
console.push_level()
self.check_cancellation()
temperature_bandwidth = data_model.get_temperature_group_bandwidth()
disposition_folder = data_model.get_disposition_subfolder_name()
substituted_folder_name = SharedUtils.substitute_date_time_filter_in_string(disposition_folder)
console.message("Process groups into output directory: " + output_directory, +1)
if not SharedUtils.ensure_directory_exists(output_directory):
raise MasterMakerExceptions.NoGroupOutputDirectory(output_directory)
minimum_group_size = data_model.get_minimum_group_size() \
if data_model.get_ignore_groups_fewer_than() else 0
# Process size groups, or all sizes if not grouping
groups_by_size = self.get_groups_by_size(selected_files, data_model.get_group_by_size())
grouping_by_size = data_model.get_group_by_size()
grouping_by_temperature = data_model.get_group_by_temperature()
for size_group in groups_by_size:
console.push_level()
self.check_cancellation()
# Message about this group only if this grouping was requested
if len(size_group) < minimum_group_size:
if grouping_by_size:
console.message(f"Ignoring one size group: {len(size_group)} "
f"files {size_group[0].get_size_key()}", +1)
else:
if grouping_by_size:
console.message(f"Processing one size group: {len(size_group)} "
f"files {size_group[0].get_size_key()}", +1)
# Within this size group, process temperature groups, or all temperatures if not grouping
groups_by_temperature = \
self.get_groups_by_temperature(size_group,
data_model.get_group_by_temperature(),
temperature_bandwidth)
for temperature_group in groups_by_temperature:
console.push_level()
self.check_cancellation()
(mean_exposure, mean_temperature) = ImageMath.mean_exposure_and_temperature(temperature_group)
if len(temperature_group) < minimum_group_size:
if grouping_by_temperature:
console.message(f"Ignoring one temperature group: {len(temperature_group)} "
f"files with mean temperature {mean_temperature:.1f}", +1)
else:
if grouping_by_temperature:
console.message(f"Processing one temperature group: {len(temperature_group)} "
f"files with mean temperature {mean_temperature:.1f} "
f"({temperature_bandwidth} bandwidth)", +1)
# Now we have a list of descriptors, grouped as appropriate, to process
self.process_one_group(data_model, temperature_group,
output_directory,
data_model.get_master_combine_method(),
substituted_folder_name,
console)
console.pop_level()
console.pop_level()
console.message("Group combining complete", 0)
console.pop_level()
def process_one_group(self,
data_model: DataModel,
descriptor_list: [FileDescriptor],
output_directory: str,
combine_method: int,
disposition_folder_name,
console: Console):
"""
Process one group of files, output to the given directory
Exceptions thrown:
NotAllFlatFrames The given files are not all flat frames
IncompatibleSizes The given files are not all the same dimensions
:param data_model: Data model giving options for current run
:param descriptor_list: List of all the files in one group, for processing
:param output_directory: Path to directory to receive the output file
:param combine_method: Code saying how these files should be combined
:param disposition_folder_name: If files to be moved after processing, name of receiving folder
:param console: Re-directable console output object
"""
assert len(descriptor_list) > 0
sample_file: FileDescriptor = descriptor_list[0]
console.push_level()
self.describe_group(data_model, len(descriptor_list), sample_file, console)
# Make up a file name for this group's output, into the given directory
file_name = SharedUtils.get_file_name_portion(combine_method, sample_file,
data_model.get_sigma_clip_threshold(),
data_model.get_min_max_number_clipped_per_end())
output_file = f"{output_directory}/{file_name}"
# Confirm that these are all bias frames, and can be combined (same binning and dimensions)
if self.all_compatible_sizes(descriptor_list):
if data_model.get_ignore_file_type() \
or FileCombiner.all_of_type(descriptor_list, FileDescriptor.FILE_TYPE_BIAS):
# Get (most common) filter name in the set
# Since these are bias frames, the filter is meaningless, but we need the value
# for the shared "create file" routine
filter_name = SharedUtils.most_common_filter_name(descriptor_list)
# Do the combination
self.combine_files(descriptor_list, data_model, filter_name,
output_file, console)
self.check_cancellation()
# Files are combined. Put away the inputs?
# Return list of any that were moved, in case the UI needs to be adjusted
self.handle_input_files_disposition(data_model.get_input_file_disposition(),
disposition_folder_name,
descriptor_list, console)
else:
raise MasterMakerExceptions.NotAllBiasFrames
else:
raise MasterMakerExceptions.IncompatibleSizes
console.pop_level()
def handle_input_files_disposition(self,
disposition_type: int,
sub_folder_name: str,
descriptors: [FileDescriptor],
console: Console):
"""
Move the given files if the given disposition type requests it.
Return a list of any files that were moved so the UI can be adjusted if necessary
:param disposition_type: Code for what to do with file after processing
:param sub_folder_name: Where to put file if we're moving it
:param descriptors: List of files for potential processing
:param console: Redirectable console output option
"""
if disposition_type == Constants.INPUT_DISPOSITION_NOTHING:
# User doesn't want us to do anything with the input files
return
else:
assert (disposition_type == Constants.INPUT_DISPOSITION_SUBFOLDER)
console.message("Moving processed files to " + sub_folder_name, 0)
# User wants us to move the input files into a sub-folder
for descriptor in descriptors:
self.check_cancellation()
if SharedUtils.dispose_one_file_to_sub_folder(descriptor, sub_folder_name):
# Successfully moved the file; tell the user interface
self.callback_method(descriptor.get_absolute_path())
@classmethod
def all_of_type(cls, selected_files: [FileDescriptor], type_code: int):
"""
Determine if all the files in the list are of the given type
:param selected_files: List of files to be checked
:param type_code: Type code files are to be tested against
:return: True if all files in list are of given type
"""
for descriptor in selected_files:
if descriptor.get_type() != type_code:
return False
return True
@classmethod
def all_compatible_sizes(cls, selected_files: [FileDescriptor]):
"""
Confirm that the given list of files are combinable by being compatible sizes
This means their x,y dimensions are the same and their binning is the same
:param selected_files: List of files (FileDescriptors) to be checked for combinability
:return: True if all files are compatible
"""
if len(selected_files) == 0:
return True
(x_dimension, y_dimension) = selected_files[0].get_dimensions()
binning = selected_files[0].get_binning()
for descriptor in selected_files:
(this_x, this_y) = descriptor.get_dimensions()
if this_x != x_dimension or this_y != y_dimension or descriptor.get_binning() != binning:
return False
return True
def all_same_filter(self, selected_files: [FileDescriptor]) -> bool:
"""
Determine if all files in list use the same filter
:param selected_files: List of FileDescriptors of files to be tested
:return: True if all use the same filter
"""
if len(selected_files) == 0:
return True
filter_name = selected_files[0].get_filter_name()
for descriptor in selected_files:
if descriptor.get_filter_name() != filter_name:
return False
return True
@classmethod
def validate_file_dimensions(cls, descriptors: [FileDescriptor]) -> bool:
"""
Determine if the dimensions of all the supplied files are the same.
All selected files must be the same size and the same binning.
Include the precalibration bias or dark file in this test if that method is selected.
:param descriptors: Files to be checked for compatibility
:param data_model: Data model gives precalibration type and file if needed
:return: True if all files are the same size and binning, so compatible
"""
# Get list of paths of selected files
if len(descriptors) > 0:
# Get binning and dimension of first to use as a reference
assert len(descriptors) > 0
reference_file: FileDescriptor = descriptors[0]
reference_binning = reference_file.get_binning()
reference_x_size = reference_file.get_x_dimension()
reference_y_size = reference_file.get_y_dimension()
# Check all files in the list against these specifications
descriptor: FileDescriptor
for descriptor in descriptors:
if descriptor.get_binning() != reference_binning:
return False
if descriptor.get_x_dimension() != reference_x_size:
return False
if descriptor.get_y_dimension() != reference_y_size:
return False
return True
def get_groups_by_size(self, selected_files: [FileDescriptor], is_grouped: bool) -> [[FileDescriptor]]:
"""
Given list of file descriptors, return a list of lists, where each outer list is all the
file descriptors with the same size (dimensions and binning). If "is_grouped" is False,
just return all the files in one group.
:param selected_files: List of files to be grouped
:param is_grouped: Flag whether size grouping is to be performed
:return: List of lists - one outer list per size group
"""
if is_grouped:
descriptors_sorted = sorted(selected_files, key=FileDescriptor.get_size_key)
descriptors_grouped = groupby(descriptors_sorted, FileDescriptor.get_size_key)
result: [[FileDescriptor]] = []
for key, sub_group in descriptors_grouped:
sub_list = list(sub_group)
result.append(sub_list)
return result
else:
return [selected_files] # One group with all the files
def get_groups_by_temperature(self,
selected_files: [FileDescriptor],
is_grouped: bool,
bandwidth: float) -> [[FileDescriptor]]:
"""
Given list of file descriptors, return a list of lists, where each outer list is all the
file descriptors with the same temperature within a given tolerance
Note that, because of the "tolerance" comparison, this is a clustering analysis, not
a simple python "groupby", which assumes the values are exact.
:param selected_files: List of files to be grouped
:param is_grouped: Flag whether size grouping is to be performed
:param bandwidth: Bandwidth of sensitivity of clustering algorithm
:return: List of lists - one outer list per temperature group
"""
if is_grouped:
# We'll get the indices of the temperature clusters, then use those indices
# on the file descriptors
result_array: [[FileDescriptor]] = []
temperatures: [float] = [file.get_temperature() for file in selected_files]
data_to_cluster = numpy.array(temperatures).reshape(-1, 1)
mean_shifter = ms.MeanShift()
mean_shift_result = mean_shifter.cluster(data_to_cluster, kernel_bandwidth=bandwidth)
arbitrary_cluster_labels = mean_shift_result.cluster_ids
# cluster_labels is an array of integers, with each "cluster" having the same integer label
unique_labels = numpy.unique(arbitrary_cluster_labels)
# So if we gather the unique label values, that is gathering the clusters
for label in unique_labels:
# Flag the items in this cluster
cluster_membership: [bool] = arbitrary_cluster_labels == label
# Get the indices of the items in this cluster
member_indices: [int] = numpy.where(cluster_membership)[0].tolist()
# Get the descriptors in this cluster and add to the output array
this_cluster_descriptors: [FileDescriptor] = [selected_files[i] for i in member_indices]
result_array.append(this_cluster_descriptors)
# The groups array is in arbitrary order - determined by the clustering algorithm
# We'd like to have it in a predictable order. Sort by first temperature in each group
result_array.sort(key=lambda g: g[0].get_temperature())
return result_array
else:
return [selected_files] # One group with all the files
# Following is the original version of this method, that used the sklearn.cluster package
# version of MeanShift. I stopped using this, and used the Matt Nedrich version of mean_shift
# instead, because I couldn't get the sklearn-based system to package to a Windows executable
# with pyinstaller. There is a known problem with sklearn and pyinstaller - it has hidden dependencies
# with a multiprocessing windows dll that don't resolve properly.
# def get_groups_by_temperature(self,
# selected_files: [FileDescriptor],
# is_grouped: bool,
# bandwidth: float) -> [[FileDescriptor]]:
# if is_grouped:
# # We'll get the indices of the temperature clusters, then use those indices
# # on the file descriptors
# result_array: [[FileDescriptor]] = []
# temperatures: [float] = [file.get_temperature() for file in selected_files]
# data_to_cluster = numpy.array(temperatures).reshape(-1, 1)
# mean_shift = MeanShift(bandwidth=bandwidth)
# mean_shift.fit(data_to_cluster)
# arbitrary_cluster_labels = mean_shift.labels_
# # cluster_labels is an array of integers, with each "cluster" having the same integer label
# unique_labels = numpy.unique(arbitrary_cluster_labels)
# # So if we gather the unique label values, that is gathering the clusters
# for label in unique_labels:
# # Flag the items in this cluster
# cluster_membership: [bool] = arbitrary_cluster_labels == label
# # Get the indices of the items in this cluster
# member_indices: [int] = numpy.where(cluster_membership)[0].tolist()
# # Get the descriptors in this cluster and add to the output array
# this_cluster_descriptors: [FileDescriptor] = [selected_files[i] for i in member_indices]
# result_array.append(this_cluster_descriptors)
#
# # The groups array is in arbitrary order - determined by the clustering algorithm
# # We'd like to have it in a predictable order. Sort by first temperature in each group
# result_array.sort(key=lambda g: g[0].get_temperature())
# return result_array
#
# else:
# return [selected_files] # One group with all the files
def combine_files(self, input_files: [FileDescriptor],
data_model: DataModel,
filter_name: str,
output_path: str,
console: Console):
"""
Combine the given files, output to the given output file using the combination
method defined in the data model.
:param input_files: List of files to be combined
:param data_model: Data model with options for this run
:param filter_name: Human-readable filter name (for output file name and FITS comment)
:param output_path: Path for output fiel to be created
:param console: Redirectable console output object
"""
console.push_level()
substituted_file_name = SharedUtils.substitute_date_time_filter_in_string(output_path)
file_names = [d.get_absolute_path() for d in input_files]
combine_method = data_model.get_master_combine_method()
# Get info about any precalibration that is to be done
assert len(input_files) > 0
binning: int = input_files[0].get_binning()
(mean_exposure, mean_temperature) = ImageMath.mean_exposure_and_temperature(input_files)
if combine_method == Constants.COMBINE_MEAN:
mean_data = ImageMath.combine_mean(file_names, console, self._session_controller)
self.check_cancellation()
RmFitsUtil.create_combined_fits_file(substituted_file_name, mean_data,
FileDescriptor.FILE_TYPE_BIAS,
"Bias Frame",
mean_exposure, mean_temperature, filter_name, binning,
"Master Bias MEAN combined")
elif combine_method == Constants.COMBINE_MEDIAN:
median_data = ImageMath.combine_median(file_names, console, self._session_controller)
self.check_cancellation()
RmFitsUtil.create_combined_fits_file(substituted_file_name, median_data,
FileDescriptor.FILE_TYPE_BIAS,
"Bias Frame",
mean_exposure, mean_temperature, filter_name, binning,
"Master Bias MEDIAN combined")
elif combine_method == Constants.COMBINE_MINMAX:
number_dropped_points = data_model.get_min_max_number_clipped_per_end()
min_max_clipped_mean = ImageMath.combine_min_max_clip(file_names, number_dropped_points,
console, self._session_controller)
self.check_cancellation()
assert min_max_clipped_mean is not None
RmFitsUtil.create_combined_fits_file(substituted_file_name, min_max_clipped_mean,
FileDescriptor.FILE_TYPE_BIAS,
"Bias Frame",
mean_exposure, mean_temperature, filter_name, binning,
f"Master Bias Min/Max Clipped "
f"(drop {number_dropped_points}) Mean combined")
else:
assert combine_method == Constants.COMBINE_SIGMA_CLIP
sigma_threshold = data_model.get_sigma_clip_threshold()
sigma_clipped_mean = ImageMath.combine_sigma_clip(file_names, sigma_threshold,
console, self._session_controller)
self.check_cancellation()
assert sigma_clipped_mean is not None
RmFitsUtil.create_combined_fits_file(substituted_file_name, sigma_clipped_mean,
FileDescriptor.FILE_TYPE_BIAS,
"Bias Frame",
mean_exposure, mean_temperature, filter_name, binning,
f"Master Bias Sigma Clipped "
f"(threshold {sigma_threshold}) Mean combined")
console.pop_level()
def describe_group(self, data_model: DataModel, number_files: int, sample_file: FileDescriptor, console: Console):
"""
Display, on the console, a descriptive text string for the group being processed, using a given sample file
:param data_model: Data model giving the processing options
:param number_files: Number of files in the group being processed
:param sample_file: Sample file, representative of the characterstics of files in the group
:param console: Redirectable output console
"""
binning = sample_file.get_binning()
temperature = sample_file.get_temperature()
processing_message = ""
if data_model.get_group_by_size():
processing_message += f"binned {binning} x {binning}"
if data_model.get_group_by_temperature():
if len(processing_message) > 0:
processing_message += ","
processing_message += f" at {temperature} degrees."
console.message(f"Processing {number_files} files {processing_message}", +1)
def check_cancellation(self):
"""
Check back with the parent of this subtask to see if we have been cancelled.
Raise a "cancelled" exception if so.
"""
if self._session_controller.thread_cancelled():
raise MasterMakerExceptions.SessionCancelled