-
Notifications
You must be signed in to change notification settings - Fork 627
/
Copy pathrun_hyper.py
128 lines (117 loc) · 4.46 KB
/
run_hyper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
# @Time : 2020/7/24 15:57
# @Author : Shanlei Mu
# @Email : [email protected]
# @File : run_hyper.py
# UPDATE:
# @Time : 2020/8/20 21:17, 2020/8/29, 2022/7/13, 2022/7/18
# @Author : Zihan Lin, Yupeng Hou, Gaowei Zhang, Lei Wang
import argparse
import os
import numpy as np
from recbole.trainer import HyperTuning
from recbole.quick_start import objective_function
import ray
from ray import tune
from ray.tune.schedulers import ASHAScheduler
import math
def hyperopt_tune(args):
# plz set algo='exhaustive' to use exhaustive search, in this case, max_evals is auto set
# in other case, max_evals needs to be set manually
config_file_list = (
args.config_files.strip().split(" ") if args.config_files else None
)
hp = HyperTuning(
objective_function,
algo="exhaustive",
early_stop=10,
max_evals=100,
params_file=args.params_file,
fixed_config_file_list=config_file_list,
display_file=args.display_file,
)
hp.run()
hp.export_result(output_file=args.output_file)
print("best params: ", hp.best_params)
print("best result: ")
print(hp.params2result[hp.params2str(hp.best_params)])
def ray_tune(args):
config_file_list = (
args.config_files.strip().split(" ") if args.config_files else None
)
config_file_list = (
[os.path.join(os.getcwd(), file) for file in config_file_list]
if args.config_files
else None
)
params_file = (
os.path.join(os.getcwd(), args.params_file) if args.params_file else None
)
ray.init()
tune.register_trainable("train_func", objective_function)
config = {}
with open(params_file, "r") as fp:
for line in fp:
para_list = line.strip().split(" ")
if len(para_list) < 3:
continue
para_name, para_type, para_value = (
para_list[0],
para_list[1],
"".join(para_list[2:]),
)
if para_type == "choice":
para_value = eval(para_value)
config[para_name] = tune.choice(para_value)
elif para_type == "uniform":
low, high = para_value.strip().split(",")
config[para_name] = tune.uniform(float(low), float(high))
elif para_type == "quniform":
low, high, q = para_value.strip().split(",")
config[para_name] = tune.quniform(float(low), float(high), float(q))
elif para_type == "loguniform":
low, high = para_value.strip().split(",")
config[para_name] = tune.loguniform(
math.exp(float(low)), math.exp(float(high))
)
else:
raise ValueError("Illegal param type [{}]".format(para_type))
# choose different schedulers to use different tuning optimization algorithms
# For details, please refer to Ray's official website https://docs.ray.io
scheduler = ASHAScheduler(
metric="recall@10", mode="max", max_t=10, grace_period=1, reduction_factor=2
)
local_dir = "./ray_log"
result = tune.run(
tune.with_parameters(objective_function, config_file_list=config_file_list),
config=config,
num_samples=5,
log_to_file=args.output_file,
scheduler=scheduler,
local_dir=local_dir,
resources_per_trial={"gpu": 1},
)
best_trial = result.get_best_trial("recall@10", "max", "last")
print("best params: ", best_trial.config)
print("best result: ", best_trial.last_result)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config_files", type=str, default=None, help="fixed config files"
)
parser.add_argument("--params_file", type=str, default=None, help="parameters file")
parser.add_argument(
"--output_file", type=str, default="hyper_example.result", help="output file"
)
parser.add_argument(
"--display_file", type=str, default=None, help="visualization file"
)
parser.add_argument("--tool", type=str, default="Hyperopt", help="tuning tool")
args, _ = parser.parse_known_args()
if args.tool == "Hyperopt":
hyperopt_tune(args)
elif args.tool == "Ray":
ray_tune(args)
else:
raise ValueError(f"The tool [{args.tool}] should in ['Hyperopt', 'Ray']")