From 6bf0a5c79d08189d41aad6ddf38f1008be984864 Mon Sep 17 00:00:00 2001 From: Cyberhan123 <255542417@qq.com> Date: Fri, 1 Dec 2023 22:54:27 +0800 Subject: [PATCH] support gguf load file --- rwkv_model_loading.inc | 450 ++++++++++++++++++++++++----------------- 1 file changed, 265 insertions(+), 185 deletions(-) diff --git a/rwkv_model_loading.inc b/rwkv_model_loading.inc index fef0ea92..f77b14eb 100644 --- a/rwkv_model_loading.inc +++ b/rwkv_model_loading.inc @@ -1,212 +1,292 @@ struct rwkv_layer { - struct ggml_tensor * ln1_weight; - struct ggml_tensor * ln1_bias; - - // RWKV, also called "attention" by the author. - struct ggml_tensor * att_time_mix_k; - struct ggml_tensor * att_time_mix_v; - struct ggml_tensor * att_time_mix_r; - // Removed in RWKV v5.2; set to NULL for this and newer models. - struct ggml_tensor * att_time_first; - struct ggml_tensor * att_time_decay; - struct ggml_tensor * att_key; - struct ggml_tensor * att_value; - struct ggml_tensor * att_receptance; - struct ggml_tensor * att_output; - - // Added in RWKV v5.1; set to NULL for earlier models (v4). - struct ggml_tensor * att_ln_x_weight; - struct ggml_tensor * att_ln_x_bias; - - // Added in RWKV v5.2; set to NULL for earlier models (v4, v5.1). - struct ggml_tensor * att_time_faaaa; - struct ggml_tensor * att_time_mix_g; - struct ggml_tensor * att_gate; - - struct ggml_tensor * ln2_weight; - struct ggml_tensor * ln2_bias; - - // FFN. - struct ggml_tensor * ffn_time_mix_k; - struct ggml_tensor * ffn_time_mix_r; - struct ggml_tensor * ffn_key; - struct ggml_tensor * ffn_value; - struct ggml_tensor * ffn_receptance; + struct ggml_tensor* ln1_weight; + struct ggml_tensor* ln1_bias; + + // RWKV, also called "attention" by the author. + struct ggml_tensor* att_time_mix_k; + struct ggml_tensor* att_time_mix_v; + struct ggml_tensor* att_time_mix_r; + // Removed in RWKV v5.2; set to NULL for this and newer models. + struct ggml_tensor* att_time_first; + struct ggml_tensor* att_time_decay; + struct ggml_tensor* att_key; + struct ggml_tensor* att_value; + struct ggml_tensor* att_receptance; + struct ggml_tensor* att_output; + + // Added in RWKV v5.1; set to NULL for earlier models (v4). + struct ggml_tensor* att_ln_x_weight; + struct ggml_tensor* att_ln_x_bias; + + // Added in RWKV v5.2; set to NULL for earlier models (v4, v5.1). + struct ggml_tensor* att_time_faaaa; + struct ggml_tensor* att_time_mix_g; + struct ggml_tensor* att_gate; + + struct ggml_tensor* ln2_weight; + struct ggml_tensor* ln2_bias; + + // FFN. + struct ggml_tensor* ffn_time_mix_k; + struct ggml_tensor* ffn_time_mix_r; + struct ggml_tensor* ffn_key; + struct ggml_tensor* ffn_value; + struct ggml_tensor* ffn_receptance; }; // The model holds all parameter tensors and the ggml context containing them. // Each tensor has data and can be used in computations happening in other contexts. struct rwkv_model { - // This context holds all parameter tensors. - // It must not be used for computations. - struct ggml_context * ggml_ctx; + // This context holds all parameter tensors. + // It must not be used for computations. + struct ggml_context* ggml_ctx; - struct rwkv_file_header header; - uint32_t arch_version_major; - uint32_t arch_version_minor; - // Added in RWKV v5.1; set to 0 for earlier models (v4). - int64_t head_count; - int64_t head_size; + struct rwkv_file_header header; + uint32_t arch_version_major; + uint32_t arch_version_minor; + ggml_type data_type; + // Added in RWKV v5.1; set to 0 for earlier models (v4). + int64_t head_count; + int64_t head_size; - struct ggml_tensor * emb; + struct ggml_tensor* emb; - struct ggml_tensor * ln0_weight; - struct ggml_tensor * ln0_bias; + struct ggml_tensor* ln0_weight; + struct ggml_tensor* ln0_bias; - std::unique_ptr layers; + std::unique_ptr layers; - struct ggml_tensor * ln_out_weight; - struct ggml_tensor * ln_out_bias; + struct ggml_tensor* ln_out_weight; + struct ggml_tensor* ln_out_bias; - struct ggml_tensor * head; + struct ggml_tensor* head; - // How many layers were offloaded to the GPU. - // Model head is counted as an additional layer, - // so the max value for this field is n_layers + 1. - size_t offloaded_layer_count; + // How many layers were offloaded to the GPU. + // Model head is counted as an additional layer, + // so the max value for this field is n_layers + 1. + size_t offloaded_layer_count; - // How many RWKV contexts reference this model. - int reference_count; + // How many RWKV contexts reference this model. + int reference_count; }; struct rwkv_file { - FILE * file; + FILE* file; - rwkv_file(FILE * file): file(file) {} + rwkv_file(FILE* file) : file(file) {} - ~rwkv_file() { - if (file) { - fclose(file); - } - } + ~rwkv_file() { + if (file) { + fclose(file); + } + } }; // https://stackoverflow.com/a/6458689 template -static bool rwkv_set_params(struct rwkv_model & model, F callback) { - RWKV_ENSURE_OR_FALSE(callback("emb.weight", model.emb)); - RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.weight", model.ln0_weight)); - RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.bias", model.ln0_bias)); - - uint32_t n_layer = model.header.n_layer; - std::unique_ptr layers(new(std::nothrow) struct rwkv_layer[n_layer]()); - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, layers.get(), "Failed to allocate model layers"); - model.layers = std::move(layers); - - for (uint32_t i = 0; i < n_layer; i++) { - char buffer[128]; - size_t offset = sprintf(buffer, "blocks.%" PRId32 ".", i); - - rwkv_layer & layer = model.layers[i]; - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.weight"), buffer), layer.ln1_weight)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.bias"), buffer), layer.ln1_bias)); - - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_k"), buffer), layer.att_time_mix_k)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_v"), buffer), layer.att_time_mix_v)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_r"), buffer), layer.att_time_mix_r)); - - if (model.arch_version_major >= 5 && model.arch_version_minor >= 2) { - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_faaaa"), buffer), layer.att_time_faaaa)); - } else { - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_first"), buffer), layer.att_time_first)); - } - - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_decay"), buffer), layer.att_time_decay)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.key.weight"), buffer), layer.att_key)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.value.weight"), buffer), layer.att_value)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.receptance.weight"), buffer), layer.att_receptance)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.output.weight"), buffer), layer.att_output)); - - if (model.arch_version_major >= 5) { - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.ln_x.weight"), buffer), layer.att_ln_x_weight)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.ln_x.bias"), buffer), layer.att_ln_x_bias)); - - if (model.arch_version_minor >= 2) { - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_g"), buffer), layer.att_time_mix_g)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.gate.weight"), buffer), layer.att_gate)); - } - } - - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.weight"), buffer), layer.ln2_weight)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.bias"), buffer), layer.ln2_bias)); - - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_k"), buffer), layer.ffn_time_mix_k)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_r"), buffer), layer.ffn_time_mix_r)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.key.weight"), buffer), layer.ffn_key)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.value.weight"), buffer), layer.ffn_value)); - RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.receptance.weight"), buffer), layer.ffn_receptance)); - } - - RWKV_ENSURE_OR_FALSE(callback("ln_out.weight", model.ln_out_weight)); - RWKV_ENSURE_OR_FALSE(callback("ln_out.bias", model.ln_out_bias)); - RWKV_ENSURE_OR_FALSE(callback("head.weight", model.head)); - - return true; +static bool rwkv_set_params(struct rwkv_model& model, F callback) { + RWKV_ENSURE_OR_FALSE(callback("emb.weight", model.emb)); + RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.weight", model.ln0_weight)); + RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.bias", model.ln0_bias)); + + uint32_t n_layer = model.header.n_layer; + std::unique_ptr layers(new(std::nothrow) struct rwkv_layer[n_layer]()); + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, layers.get(), "Failed to allocate model layers"); + model.layers = std::move(layers); + + for (uint32_t i = 0; i < n_layer; i++) { + char buffer[128]; + size_t offset = sprintf(buffer, "blocks.%" PRId32 ".", i); + + rwkv_layer& layer = model.layers[i]; + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.weight"), buffer), layer.ln1_weight)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.bias"), buffer), layer.ln1_bias)); + + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_k"), buffer), layer.att_time_mix_k)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_v"), buffer), layer.att_time_mix_v)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_r"), buffer), layer.att_time_mix_r)); + + if (model.arch_version_major >= 5 && model.arch_version_minor >= 2) { + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_faaaa"), buffer), layer.att_time_faaaa)); + } + else { + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_first"), buffer), layer.att_time_first)); + } + + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_decay"), buffer), layer.att_time_decay)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.key.weight"), buffer), layer.att_key)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.value.weight"), buffer), layer.att_value)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.receptance.weight"), buffer), layer.att_receptance)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.output.weight"), buffer), layer.att_output)); + + if (model.arch_version_major >= 5) { + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.ln_x.weight"), buffer), layer.att_ln_x_weight)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.ln_x.bias"), buffer), layer.att_ln_x_bias)); + + if (model.arch_version_minor >= 2) { + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_g"), buffer), layer.att_time_mix_g)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.gate.weight"), buffer), layer.att_gate)); + } + } + + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.weight"), buffer), layer.ln2_weight)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.bias"), buffer), layer.ln2_bias)); + + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_k"), buffer), layer.ffn_time_mix_k)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_r"), buffer), layer.ffn_time_mix_r)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.key.weight"), buffer), layer.ffn_key)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.value.weight"), buffer), layer.ffn_value)); + RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.receptance.weight"), buffer), layer.ffn_receptance)); + } + + RWKV_ENSURE_OR_FALSE(callback("ln_out.weight", model.ln_out_weight)); + RWKV_ENSURE_OR_FALSE(callback("ln_out.bias", model.ln_out_bias)); + RWKV_ENSURE_OR_FALSE(callback("head.weight", model.head)); + + return true; } // Creates a ggml context and loads all parameter tensors from a model file. -static bool rwkv_load_model_from_file(const char * file_path, struct rwkv_model & model) { - struct stat file_stat; - - std::unordered_map parameters; - - rwkv_file file(fopen(file_path, "rb")); - - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, file.file, "Failed to open file %s", file_path); - // Be very careful when changing this code. It must support files larger than 2 GB by using 64-bit functions to get the file length. - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_STAT, fstat(fileno(file.file), &file_stat) == 0, "Failed to stat file %s", file_path); - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE, rwkv_fread_file_header(file.file, model.header), "Invalid file header"); - - model.ggml_ctx = rwkv_init_ggml_context( - // ggml tensors must be aligned; assuming here that overhead of parameter headers, included in the file size, will account for that. - file_stat.st_size + rwkv_ggml_overhead(), - false - ); - - std::string name; - - struct ggml_tensor * tensor; - - while ((size_t) ftell(file.file) < (size_t) file_stat.st_size) { - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_ggml_tensor(file.file, model.ggml_ctx, name, tensor), "Failed to read a model parameter"); - - parameters[std::move(name)] = tensor; - } - - model.arch_version_major = 4; - model.arch_version_minor = 0; - - if (parameters.find("blocks.0.att.ln_x.weight") != parameters.end()) { - model.arch_version_major = 5; - - if (parameters.find("blocks.0.att.gate.weight") != parameters.end()) { - model.arch_version_minor = 2; - } else { - model.arch_version_minor = 1; - } - } - - std::unordered_map & parameters_ref = parameters; - RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_PARAM_MISSING, rwkv_set_params( - model, - [&](const char * key, struct ggml_tensor *& dest) { - struct ggml_tensor * tensor = parameters_ref[key]; - RWKV_ENSURE_OR_FALSE_MSG(tensor, "Model parameter %s not found", key); - dest = tensor; - return true; - } - )); - - if (model.arch_version_major >= 5) { - model.head_count = model.layers[0].att_time_decay->ne[2]; - model.head_size = model.layers[0].ln1_weight->ne[0] / model.head_count; - } - - // Verify order of dimensions. - struct ggml_tensor * emb = model.emb; - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims); - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[0] == model.header.n_embed, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[0]); - RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[1] == model.header.n_vocab, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[1]); - - return true; +static bool rwkv_load_model_from_file(const char* file_path, struct rwkv_model& model) { + std::string file_ext; + std::string path = std::string(file_path); + size_t dot_index = path.rfind('.'); + if (dot_index != std::string::npos && dot_index != path.length() - 1) + { + file_ext = path.substr(dot_index + 1); + } + if (file_ext == "bin") + { + return rwkv_load_ggml_model_from_file(file_path, model); + } + if (file_ext == "gguf") + { + return rwkv_load_gguf_model_from_file(file_path, model); + } + + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE, false, "Failed to Infer file type", file_path); + + return false; } + +static bool rwkv_load_ggml_model_from_file(const char* file_path, struct rwkv_model& model) { + struct stat file_stat; + + std::unordered_map parameters; + + rwkv_file file(fopen(file_path, "rb")); + + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, file.file, "Failed to open file %s", file_path); + // Be very careful when changing this code. It must support files larger than 2 GB by using 64-bit functions to get the file length. + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_STAT, fstat(fileno(file.file), &file_stat) == 0, "Failed to stat file %s", file_path); + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE, rwkv_fread_file_header(file.file, model.header), "Invalid file header"); + + model.ggml_ctx = rwkv_init_ggml_context( + // ggml tensors must be aligned; assuming here that overhead of parameter headers, included in the file size, will account for that. + file_stat.st_size + rwkv_ggml_overhead(), + false + ); + + std::string name; + + struct ggml_tensor* tensor; + + while ((size_t)ftell(file.file) < (size_t)file_stat.st_size) { + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_ggml_tensor(file.file, model.ggml_ctx, name, tensor), "Failed to read a model parameter"); + + parameters[std::move(name)] = tensor; + } + + model.arch_version_major = 4; + model.arch_version_minor = 0; + + if (parameters.find("blocks.0.att.ln_x.weight") != parameters.end()) { + model.arch_version_major = 5; + + if (parameters.find("blocks.0.att.gate.weight") != parameters.end()) { + model.arch_version_minor = 2; + } + else { + model.arch_version_minor = 1; + } + } + + std::unordered_map& parameters_ref = parameters; + RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_PARAM_MISSING, rwkv_set_params( + model, + [&](const char* key, struct ggml_tensor*& dest) { + struct ggml_tensor* tensor = parameters_ref[key]; + RWKV_ENSURE_OR_FALSE_MSG(tensor, "Model parameter %s not found", key); + dest = tensor; + return true; + } + )); + + if (model.arch_version_major >= 5) { + model.head_count = model.layers[0].att_time_decay->ne[2]; + model.head_size = model.layers[0].ln1_weight->ne[0] / model.head_count; + } + + // Verify order of dimensions. + struct ggml_tensor* emb = model.emb; + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims); + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[0] == model.header.n_embed, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[0]); + RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[1] == model.header.n_vocab, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[1]); + + return true; +} + +enum RwkvVersion { + VERSION_Unkown, + VERSION_4_0, + VERSION_5_1, + VERSION_5_2, +}; + + +static bool rwkv_load_gguf_model_from_file(const char* file_path, struct rwkv_model& model) { + struct stat file_stat; + + ggml_context* ctx_meta = nullptr; + gguf_context* ctx_gguf = gguf_init_from_file(file_path, { true, &ctx_meta }); + + RwkvVersion version = VERSION_Unkown; + + int n_kv = gguf_get_n_kv(ctx_gguf); + int n_tensors = gguf_get_n_tensors(ctx_gguf); + + for (int i = 0; i < n_kv; i++) { + const char* name = gguf_get_key(ctx_gguf, i); + const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); + } + + { + int nidx = gguf_find_key(ctx_gguf, "rwkv.model.name"); + int vidx = gguf_find_key(ctx_gguf, "rwkv.model.version"); + if (vidx >= 0 && nidx >= 0) { + version = (RwkvVersion)gguf_get_val_i8(ctx_gguf, vidx); + + switch (version) + { + case VERSION_4_0: + model.arch_version_major = 4; + model.arch_version_minor = 0; + break; + case VERSION_5_1: + model.arch_version_major = 5; + model.arch_version_minor = 1; + case VERSION_5_2: + model.arch_version_major = 5; + model.arch_version_minor = 2; + } + } + } + + { + int idx = gguf_find_key(ctx_gguf, "rwkv.model.dtype"); + if (idx >= 0) { + model.data_type = (ggml_type)gguf_get_val_i32(ctx_gguf, idx); + } + } + +} \ No newline at end of file