forked from karottc/sgi-stl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stl_slist.h
1048 lines (877 loc) · 31.5 KB
/
stl_slist.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_SLIST_H
#define __SGI_STL_INTERNAL_SLIST_H
#include <concept_checks.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
struct _Slist_node_base
{
_Slist_node_base* _M_next;
};
inline _Slist_node_base*
__slist_make_link(_Slist_node_base* __prev_node,
_Slist_node_base* __new_node)
{
__new_node->_M_next = __prev_node->_M_next;
__prev_node->_M_next = __new_node;
return __new_node;
}
inline _Slist_node_base*
__slist_previous(_Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
inline const _Slist_node_base*
__slist_previous(const _Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
inline void __slist_splice_after(_Slist_node_base* __pos,
_Slist_node_base* __before_first,
_Slist_node_base* __before_last)
{
if (__pos != __before_first && __pos != __before_last) {
_Slist_node_base* __first = __before_first->_M_next;
_Slist_node_base* __after = __pos->_M_next;
__before_first->_M_next = __before_last->_M_next;
__pos->_M_next = __first;
__before_last->_M_next = __after;
}
}
inline void
__slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
{
_Slist_node_base* __before_last = __slist_previous(__head, 0);
if (__before_last != __head) {
_Slist_node_base* __after = __pos->_M_next;
__pos->_M_next = __head->_M_next;
__head->_M_next = 0;
__before_last->_M_next = __after;
}
}
inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
{
_Slist_node_base* __result = __node;
__node = __node->_M_next;
__result->_M_next = 0;
while(__node) {
_Slist_node_base* __next = __node->_M_next;
__node->_M_next = __result;
__result = __node;
__node = __next;
}
return __result;
}
inline size_t __slist_size(_Slist_node_base* __node)
{
size_t __result = 0;
for ( ; __node != 0; __node = __node->_M_next)
++__result;
return __result;
}
template <class _Tp>
struct _Slist_node : public _Slist_node_base
{
_Tp _M_data;
};
struct _Slist_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef forward_iterator_tag iterator_category;
_Slist_node_base* _M_node;
_Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
void _M_incr() { _M_node = _M_node->_M_next; }
bool operator==(const _Slist_iterator_base& __x) const {
return _M_node == __x._M_node;
}
bool operator!=(const _Slist_iterator_base& __x) const {
return _M_node != __x._M_node;
}
};
template <class _Tp, class _Ref, class _Ptr>
struct _Slist_iterator : public _Slist_iterator_base
{
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self;
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _Slist_node<_Tp> _Node;
_Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
_Slist_iterator() : _Slist_iterator_base(0) {}
_Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
reference operator*() const { return ((_Node*) _M_node)->_M_data; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
_Self& operator++()
{
_M_incr();
return *this;
}
_Self operator++(int)
{
_Self __tmp = *this;
_M_incr();
return __tmp;
}
};
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline ptrdiff_t* distance_type(const _Slist_iterator_base&) {
return 0;
}
inline forward_iterator_tag iterator_category(const _Slist_iterator_base&) {
return forward_iterator_tag();
}
template <class _Tp, class _Ref, class _Ptr>
inline _Tp* value_type(const _Slist_iterator<_Tp, _Ref, _Ptr>&) {
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// Base class that encapsulates details of allocators. Three cases:
// an ordinary standard-conforming allocator, a standard-conforming
// allocator with no non-static data, and an SGI-style allocator.
// This complexity is necessary only because we're worrying about backward
// compatibility and because we want to avoid wasting storage on an
// allocator instance if it isn't necessary.
#ifdef __STL_USE_STD_ALLOCATORS
// Base for general standard-conforming allocators.
template <class _Tp, class _Allocator, bool _IsStatic>
class _Slist_alloc_base {
public:
typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
_Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {}
protected:
_Slist_node<_Tp>* _M_get_node()
{ return _M_node_allocator.allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p)
{ _M_node_allocator.deallocate(__p, 1); }
protected:
typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type
_M_node_allocator;
_Slist_node_base _M_head;
};
// Specialization for instanceless allocators.
template <class _Tp, class _Allocator>
class _Slist_alloc_base<_Tp,_Allocator, true> {
public:
typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Slist_alloc_base(const allocator_type&) {}
protected:
typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type
_Alloc_type;
_Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
protected:
_Slist_node_base _M_head;
};
template <class _Tp, class _Alloc>
struct _Slist_base
: public _Slist_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Slist_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Slist_base(const allocator_type& __a)
: _Base(__a) { this->_M_head._M_next = 0; }
~_Slist_base() { _M_erase_after(&this->_M_head, 0); }
protected:
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next;
destroy(&__next->_M_data);
_M_put_node(__next);
return __next_next;
}
_Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
struct _Slist_base {
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Slist_base(const allocator_type&) { _M_head._M_next = 0; }
~_Slist_base() { _M_erase_after(&_M_head, 0); }
protected:
typedef simple_alloc<_Slist_node<_Tp>, _Alloc> _Alloc_type;
_Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next;
destroy(&__next->_M_data);
_M_put_node(__next);
return __next_next;
}
_Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
protected:
_Slist_node_base _M_head;
};
#endif /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
_Slist_node_base*
_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
_Slist_node_base* __last_node) {
_Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
while (__cur != __last_node) {
_Slist_node<_Tp>* __tmp = __cur;
__cur = (_Slist_node<_Tp>*) __cur->_M_next;
destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
__before_first->_M_next = __last_node;
return __last_node;
}
template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class slist : private _Slist_base<_Tp,_Alloc>
{
// requirements:
__STL_CLASS_REQUIRES(_Tp, _Assignable);
private:
typedef _Slist_base<_Tp,_Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
private:
typedef _Slist_node<_Tp> _Node;
typedef _Slist_node_base _Node_base;
typedef _Slist_iterator_base _Iterator_base;
_Node* _M_create_node(const value_type& __x) {
_Node* __node = this->_M_get_node();
__STL_TRY {
construct(&__node->_M_data, __x);
__node->_M_next = 0;
}
__STL_UNWIND(this->_M_put_node(__node));
return __node;
}
_Node* _M_create_node() {
_Node* __node = this->_M_get_node();
__STL_TRY {
construct(&__node->_M_data);
__node->_M_next = 0;
}
__STL_UNWIND(this->_M_put_node(__node));
return __node;
}
public:
explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
slist(size_type __n, const value_type& __x,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_fill(&this->_M_head, __n, __x); }
explicit slist(size_type __n) : _Base(allocator_type())
{ _M_insert_after_fill(&this->_M_head, __n, value_type()); }
#ifdef __STL_MEMBER_TEMPLATES
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InputIterator>
slist(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); }
#else /* __STL_MEMBER_TEMPLATES */
slist(const_iterator __first, const_iterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); }
slist(const value_type* __first, const value_type* __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
slist(const slist& __x) : _Base(__x.get_allocator())
{ _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
slist& operator= (const slist& __x);
~slist() {}
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void assign(size_type __n, const _Tp& __val)
{ _M_fill_assign(__n, __val); }
void _M_fill_assign(size_type __n, const _Tp& __val);
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
const_iterator begin() const
{ return const_iterator((_Node*)this->_M_head._M_next);}
iterator end() { return iterator(0); }
const_iterator end() const { return const_iterator(0); }
// Experimental new feature: before_begin() returns a
// non-dereferenceable iterator that, when incremented, yields
// begin(). This iterator may be used as the argument to
// insert_after, erase_after, etc. Note that even for an empty
// slist, before_begin() is not the same iterator as end(). It
// is always necessary to increment before_begin() at least once to
// obtain end().
iterator before_begin() { return iterator((_Node*) &this->_M_head); }
const_iterator before_begin() const
{ return const_iterator((_Node*) &this->_M_head); }
size_type size() const { return __slist_size(this->_M_head._M_next); }
size_type max_size() const { return size_type(-1); }
bool empty() const { return this->_M_head._M_next == 0; }
void swap(slist& __x)
{ __STD::swap(this->_M_head._M_next, __x._M_head._M_next); }
public:
reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
const_reference front() const
{ return ((_Node*) this->_M_head._M_next)->_M_data; }
void push_front(const value_type& __x) {
__slist_make_link(&this->_M_head, _M_create_node(__x));
}
void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
void pop_front() {
_Node* __node = (_Node*) this->_M_head._M_next;
this->_M_head._M_next = __node->_M_next;
destroy(&__node->_M_data);
this->_M_put_node(__node);
}
iterator previous(const_iterator __pos) {
return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
}
const_iterator previous(const_iterator __pos) const {
return const_iterator((_Node*) __slist_previous(&this->_M_head,
__pos._M_node));
}
private:
_Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
}
_Node* _M_insert_after(_Node_base* __pos) {
return (_Node*) (__slist_make_link(__pos, _M_create_node()));
}
void _M_insert_after_fill(_Node_base* __pos,
size_type __n, const value_type& __x) {
for (size_type __i = 0; __i < __n; ++__i)
__pos = __slist_make_link(__pos, _M_create_node(__x));
}
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last) {
typedef typename _Is_integer<_InIter>::_Integral _Integral;
_M_insert_after_range(__pos, __first, __last, _Integral());
}
template <class _Integer>
void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
__true_type) {
_M_insert_after_fill(__pos, __n, __x);
}
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last,
__false_type) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
#else /* __STL_MEMBER_TEMPLATES */
void _M_insert_after_range(_Node_base* __pos,
const_iterator __first, const_iterator __last) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
void _M_insert_after_range(_Node_base* __pos,
const value_type* __first,
const value_type* __last) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator insert_after(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__pos._M_node, __x));
}
iterator insert_after(iterator __pos) {
return insert_after(__pos, value_type());
}
void insert_after(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__pos._M_node, __n, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InIter>
void insert_after(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
#else /* __STL_MEMBER_TEMPLATES */
void insert_after(iterator __pos,
const_iterator __first, const_iterator __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
void insert_after(iterator __pos,
const value_type* __first, const value_type* __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
iterator insert(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
__x));
}
iterator insert(iterator __pos) {
return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
value_type()));
}
void insert(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
__n, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InIter>
void insert(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
__first, __last);
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __pos, const_iterator __first, const_iterator __last) {
_M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
__first, __last);
}
void insert(iterator __pos, const value_type* __first,
const value_type* __last) {
_M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator erase_after(iterator __pos) {
return iterator((_Node*) this->_M_erase_after(__pos._M_node));
}
iterator erase_after(iterator __before_first, iterator __last) {
return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
__last._M_node));
}
iterator erase(iterator __pos) {
return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
__pos._M_node));
}
iterator erase(iterator __first, iterator __last) {
return (_Node*) this->_M_erase_after(
__slist_previous(&this->_M_head, __first._M_node), __last._M_node);
}
void resize(size_type new_size, const _Tp& __x);
void resize(size_type new_size) { resize(new_size, _Tp()); }
void clear() { this->_M_erase_after(&this->_M_head, 0); }
public:
// Moves the range [__before_first + 1, __before_last + 1) to *this,
// inserting it immediately after __pos. This is constant time.
void splice_after(iterator __pos,
iterator __before_first, iterator __before_last)
{
if (__before_first != __before_last)
__slist_splice_after(__pos._M_node, __before_first._M_node,
__before_last._M_node);
}
// Moves the element that follows __prev to *this, inserting it immediately
// after __pos. This is constant time.
void splice_after(iterator __pos, iterator __prev)
{
__slist_splice_after(__pos._M_node,
__prev._M_node, __prev._M_node->_M_next);
}
// Removes all of the elements from the list __x to *this, inserting
// them immediately after __pos. __x must not be *this. Complexity:
// linear in __x.size().
void splice_after(iterator __pos, slist& __x)
{
__slist_splice_after(__pos._M_node, &__x._M_head);
}
// Linear in distance(begin(), __pos), and linear in __x.size().
void splice(iterator __pos, slist& __x) {
if (__x._M_head._M_next)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
&__x._M_head, __slist_previous(&__x._M_head, 0));
}
// Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
void splice(iterator __pos, slist& __x, iterator __i) {
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __i._M_node),
__i._M_node);
}
// Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
// and in distance(__first, __last).
void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
{
if (__first != __last)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __first._M_node),
__slist_previous(__first._M_node, __last._M_node));
}
public:
void reverse() {
if (this->_M_head._M_next)
this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
}
void remove(const _Tp& __val);
void unique();
void merge(slist& __x);
void sort();
#ifdef __STL_MEMBER_TEMPLATES
template <class _Predicate>
void remove_if(_Predicate __pred);
template <class _BinaryPredicate>
void unique(_BinaryPredicate __pred);
template <class _StrictWeakOrdering>
void merge(slist&, _StrictWeakOrdering);
template <class _StrictWeakOrdering>
void sort(_StrictWeakOrdering __comp);
#endif /* __STL_MEMBER_TEMPLATES */
};
template <class _Tp, class _Alloc>
slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
{
if (&__x != this) {
_Node_base* __p1 = &this->_M_head;
_Node* __n1 = (_Node*) this->_M_head._M_next;
const _Node* __n2 = (const _Node*) __x._M_head._M_next;
while (__n1 && __n2) {
__n1->_M_data = __n2->_M_data;
__p1 = __n1;
__n1 = (_Node*) __n1->_M_next;
__n2 = (const _Node*) __n2->_M_next;
}
if (__n2 == 0)
this->_M_erase_after(__p1, 0);
else
_M_insert_after_range(__p1, const_iterator((_Node*)__n2),
const_iterator(0));
}
return *this;
}
template <class _Tp, class _Alloc>
void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
_Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next;
for ( ; __node != 0 && __n > 0 ; --__n) {
__node->_M_data = __val;
__prev = __node;
__node = (_Node*) __node->_M_next;
}
if (__n > 0)
_M_insert_after_fill(__prev, __n, __val);
else
this->_M_erase_after(__prev, 0);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc> template <class _InputIter>
void
slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
__false_type)
{
_Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next;
while (__node != 0 && __first != __last) {
__node->_M_data = *__first;
__prev = __node;
__node = (_Node*) __node->_M_next;
++__first;
}
if (__first != __last)
_M_insert_after_range(__prev, __first, __last);
else
this->_M_erase_after(__prev, 0);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Alloc>
inline bool
operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = _SL1.end();
const_iterator __end2 = _SL2.end();
const_iterator __i1 = _SL1.begin();
const_iterator __i2 = _SL2.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
template <class _Tp, class _Alloc>
inline bool
operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
return lexicographical_compare(_SL1.begin(), _SL1.end(),
_SL2.begin(), _SL2.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Alloc>
inline bool
operator!=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return !(_SL1 == _SL2);
}
template <class _Tp, class _Alloc>
inline bool
operator>(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return _SL2 < _SL1;
}
template <class _Tp, class _Alloc>
inline bool
operator<=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return !(_SL2 < _SL1);
}
template <class _Tp, class _Alloc>
inline bool
operator>=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return !(_SL1 < _SL2);
}
template <class _Tp, class _Alloc>
inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next != 0 && __len > 0) {
--__len;
__cur = __cur->_M_next;
}
if (__cur->_M_next)
this->_M_erase_after(__cur, 0);
else
_M_insert_after_fill(__cur, __len, __x);
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::remove(const _Tp& __val)
{
_Node_base* __cur = &this->_M_head;
while (__cur && __cur->_M_next) {
if (((_Node*) __cur->_M_next)->_M_data == __val)
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::unique()
{
_Node_base* __cur = this->_M_head._M_next;
if (__cur) {
while (__cur->_M_next) {
if (((_Node*)__cur)->_M_data ==
((_Node*)(__cur->_M_next))->_M_data)
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next) {
if (((_Node*) __x._M_head._M_next)->_M_data <
((_Node*) __n1->_M_next)->_M_data)
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::sort()
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]);
this->swap(__counter[__fill-1]);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc>
template <class _Predicate>
void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next) {
if (__pred(((_Node*) __cur->_M_next)->_M_data))
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
template <class _Tp, class _Alloc> template <class _BinaryPredicate>
void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
{
_Node* __cur = (_Node*) this->_M_head._M_next;
if (__cur) {
while (__cur->_M_next) {
if (__pred(((_Node*)__cur)->_M_data,
((_Node*)(__cur->_M_next))->_M_data))
this->_M_erase_after(__cur);
else
__cur = (_Node*) __cur->_M_next;
}
}
}
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
_StrictWeakOrdering __comp)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next) {
if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
((_Node*) __n1->_M_next)->_M_data))
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
this->swap(__counter[__fill-1]);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
// Specialization of insert_iterator so that insertions will be constant
// time rather than linear time.