forked from baaivision/EVA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet_real.py
54 lines (46 loc) · 2.09 KB
/
imagenet_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# --------------------------------------------------------
# EVA-02: A Visual Representation for Neon Genesis
# Github source: https://github.com/baaivision/EVA/EVA02
# Copyright (c) 2023 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Yuxin Fang
#
# Based on EVA: Exploring the Limits of Masked Visual Representation Learning at Scale (https://arxiv.org/abs/2211.07636)
# https://github.com/baaivision/EVA/tree/master/EVA-01
# --------------------------------------------------------'
""" Real labels evaluator for ImageNet
Paper: `Are we done with ImageNet?` - https://arxiv.org/abs/2006.07159
Based on Numpy example at https://github.com/google-research/reassessed-imagenet
Hacked together by / Copyright 2020 Ross Wightman
"""
import os
import json
import numpy as np
class RealLabelsImagenet:
def __init__(self, filenames, real_json='real.json', topk=(1, 5)):
with open(real_json) as real_labels:
real_labels = json.load(real_labels)
real_labels = {f'ILSVRC2012_val_{i + 1:08d}.JPEG': labels for i, labels in enumerate(real_labels)}
self.real_labels = real_labels
self.filenames = filenames
assert len(self.filenames) == len(self.real_labels)
self.topk = topk
self.is_correct = {k: [] for k in topk}
self.sample_idx = 0
def add_result(self, output):
maxk = max(self.topk)
_, pred_batch = output.topk(maxk, 1, True, True)
pred_batch = pred_batch.cpu().numpy()
for pred in pred_batch:
filename = self.filenames[self.sample_idx]
filename = os.path.basename(filename)
if self.real_labels[filename]:
for k in self.topk:
self.is_correct[k].append(
any([p in self.real_labels[filename] for p in pred[:k]]))
self.sample_idx += 1
def get_accuracy(self, k=None):
if k is None:
return {k: float(np.mean(self.is_correct[k] for k in self.topk))}
else:
return float(np.mean(self.is_correct[k])) * 100