-
Notifications
You must be signed in to change notification settings - Fork 2
/
serial_chase_exercise.py
98 lines (81 loc) · 2.86 KB
/
serial_chase_exercise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import math
import matplotlib.pyplot as plt
def distance(a, b):
return math.sqrt((b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2)
# Initialize the Position
a = (10, 10)
b = (30, 10)
c = (30, 30)
d = (10, 30)
target = (30, 50)
# Initialize the velocities
va = 35
vb = 25
vc = 15
vd = 10
# Initialize the time and time increment
time = 0
delt = 0.001
# Create empty lists to store the positions
path_a = [a]
path_b = [b]
path_c = [c]
path_d = [d]
print(" t A B C D")
print("--------------------------------------------------------------------------")
while True:
# Calculate the distances between the objects
distance_AB = distance(a, b)
distance_BC = distance(b, c)
distance_CD = distance(c, d)
distance_DC = distance(d, target)
# Update the positions of the objects
a = (a[0] + va * delt * (b[0] - a[0]) / distance_AB, a[1] + va * delt * (b[1] - a[1]) / distance_AB)
b = (b[0] - vb * delt * (b[0] - c[0]) / distance_BC, b[1] + vb * delt * (c[1] - b[1]) / distance_BC)
c = (c[0] - vc * delt * (c[0] - d[0]) / distance_CD, c[1] - vc * delt * (c[1] - d[1]) / distance_CD)
d = (d[0] + vd * delt * (target[0] - d[0]) / distance_DC, d[1] + vd * delt * (target[1] - d[1]) / distance_DC)
# Append the positions to the path lists
path_a.append(a)
path_b.append(b)
path_c.append(c)
path_d.append(d)
print(f"{time:.3f} {a[0]:.3f}, {a[1]:.3f} {b[0]:.3f}, {b[1]:.3f} {c[0]:.3f}, {c[1]:.3f} {d[0]:.3f}, {d[1]:.3f}")
# Check if any of the objects have been hit
if distance_AB < 0.005:
print("A hits B")
break
elif distance_BC < 0.005:
print("B hits C")
break
elif distance_CD < 0.005:
print("C hits D")
break
elif distance_DC < 0.005:
print("D hits A")
break
# Increase the time
time += delt
# Extract x and y coordinates from the path lists
path_a_x, path_a_y = zip(*path_a)
path_b_x, path_b_y = zip(*path_b)
path_c_x, path_c_y = zip(*path_c)
path_d_x, path_d_y = zip(*path_d)
# Plot the paths
plt.plot(path_a_x, path_a_y, label='A')
plt.plot(path_b_x, path_b_y, label='B')
plt.plot(path_c_x, path_c_y, label='C')
plt.plot(path_d_x, path_d_y, label='D')
plt.scatter(path_a_x[0], path_a_y[0], color='red', marker='o', label='Start')
plt.scatter(path_a_x[-1], path_a_y[-1], color='green', marker='o', label='End')
plt.scatter(path_b_x[0], path_b_y[0], color='red', marker='o')
plt.scatter(path_b_x[-1], path_b_y[-1], color='green', marker='o')
plt.scatter(path_c_x[0], path_c_y[0], color='red', marker='o')
plt.scatter(path_c_x[-1], path_c_y[-1], color='green', marker='o')
plt.scatter(path_d_x[0], path_d_y[0], color='red', marker='o')
plt.scatter(path_d_x[-1], path_d_y[-1], color='green', marker='o')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Object Paths')
plt.legend()
plt.grid(True)
plt.show()