-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_search_sanas.py
381 lines (310 loc) · 14.9 KB
/
train_search_sanas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os, time, glob
import logging
import argparse
import numpy as np
# import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from betty.engine import Engine
from betty.configs import Config, EngineConfig
from betty.problems import ImplicitProblem
# from model_search import Network, Architecture
# from model_search_pcdarts import Network, Architecture
import utils
from resnet import *
import copy
import sys
import math
import unittest
parser = argparse.ArgumentParser("cifar")
parser.add_argument( "--data", type=str, default="../data", help="location of the data corpus")
# parser.add_argument("--batchsz", type=int, default=64, help="batch size")
parser.add_argument("--batchsz", type=int, default=192, help="batch size")
parser.add_argument("--warmup", type=int, default=10, help="num of training warmup epochs")
parser.add_argument('--darts_type', type=str, default='PCDARTS', help='[DARTS, PCDARTS]')
parser.add_argument('--dataset', type=str, default='cifar100', help='[cifar10, cifar100]')
# parser.add_argument("--lr", type=float, default=0.025, help="init learning rate")
# parser.add_argument("--lr_min", type=float, default=0.001, help="min learning rate")
parser.add_argument("--lr", type=float, default=0.1, help="init learning rate")
parser.add_argument("--lr_min", type=float, default=0.0, help="min learning rate")
parser.add_argument("--momentum", type=float, default=0.9, help="momentum")
parser.add_argument("--wd", type=float, default=3e-4, help="weight decay")
parser.add_argument("--report_freq", type=int, default=100, help="report frequency")
parser.add_argument("--gpu", type=int, default=0, help="gpu device id")
parser.add_argument("--epochs", type=int, default=50, help="num of training epochs")
parser.add_argument("--init_ch", type=int, default=16, help="num of init channels")
parser.add_argument("--layers", type=int, default=8, help="total number of layers")
parser.add_argument("--cutout", action="store_true", default=False, help="use cutout")
parser.add_argument("--cutout_len", type=int, default=16, help="cutout length")
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument("--drop_path_prob", type=float, default=0.3, help="drop path probability")
parser.add_argument("--train_portion", type=float, default=0.5, help="portion of training/val splitting")
# parser.add_argument("--arch_lr", type=float, default=3e-4, help="learning rate for arch encoding")
# parser.add_argument("--arch_wd", type=float, default=1e-3, help="weight decay for arch encoding")
parser.add_argument("--arch_lr", type=float, default=6e-4, help="learning rate for arch encoding")
parser.add_argument("--arch_wd", type=float, default=1e-3, help="weight decay for arch encoding")
parser.add_argument("--arch_steps", type=int, default=4, help="architecture steps")
parser.add_argument("--unroll_steps", type=int, default=1, help="unrolling steps")
parser.add_argument("--lam", type=float, help="lambda", default=1)
parser.add_argument("--gamma", type=float, help="gamma", default=1)
args = parser.parse_args()
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log_lease.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device("cuda:0")
if args.dataset == "cifar10":
CIFAR_CLASS = 10
train_transform, valid_transform = utils.data_transforms_cifar10(args)
train_data = dset.CIFAR10(
root=args.data, train=True, download=True, transform=train_transform
)
valid_data = dset.CIFAR10(
root=args.data, train=False, download=True, transform=valid_transform
)
elif args.dataset == "cifar100":
CIFAR_CLASS = 100
train_transform, valid_transform = utils.data_transforms_cifar100(args)
train_data = dset.CIFAR100(
root=args.data, train=True, download=True, transform=train_transform
)
valid_data = dset.CIFAR100(
root=args.data, train=False, download=True, transform=valid_transform
)
test_queue = torch.utils.data.DataLoader(
valid_data, batch_size=args.batchsz, shuffle=False, pin_memory=True, num_workers=2
)
num_train = len(train_data) # 50000
indices = list(range(num_train))
split = int(np.floor(args.train_portion * num_train))
warmup = args.warmup
if args.darts_type == 'DARTS':
from model_search import Network, Architecture
elif args.darts_type == 'PCDARTS':
from model_search_pcdarts import Network, Architecture
report_freq = int(num_train * args.train_portion // args.batchsz + 1)
train_iters = int(args.epochs* (num_train * args.train_portion // args.batchsz + 1)* args.unroll_steps)
rand=True
num_steps=7
epsilon=8/255.
step_size=2 / 255.
class Outer(ImplicitProblem):
def forward(self):
return self.module()
def training_step(self, batch):
x, target = batch
x, target = x.to(device), target.to(device, non_blocking=True)
alphas = self.forward()
loss1 = self.inner1.module.loss(x, alphas, target)
loss2 = self.inner2.module.loss(x,alphas, target)
# for (n1, p1), (n2, p2) in zip(self.inner1.module.named_parameters(),self.inner2.module.named_parameters()):
# print(n1,n2)
loss = loss2 + args.lam * loss1
assert not math.isnan(loss)
# epoch = int(int(self.count)//(num_train * args.train_portion // args.batchsz))
# epoch = epoch // args.unroll_steps
# epoch = int(int(self.count)//(num_train * args.train_portion // args.batchsz))
# epoch = epoch // args.unroll_steps
epoch = int(self.count*(args.batchsz+1)*args.unroll_steps//(num_train * args.train_portion))
print(f"Epoch: {epoch} || step: {self.count} || loss: {loss.item()}")
# if self.count % 50 == 0:
# print(f"step {self.count} || loss: {loss.item()}")
return loss
def configure_train_data_loader(self):
valid_queue = torch.utils.data.DataLoader(
train_data,
batch_size=args.batchsz,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:]),
pin_memory=True,
num_workers=2,
)
return valid_queue
def configure_module(self):
return Architecture(steps=args.arch_steps).to(device)
def configure_optimizer(self):
optimizer = optim.Adam(
self.module.parameters(),
lr=args.arch_lr,
betas=(0.5, 0.999),
weight_decay=args.arch_wd,
)
return optimizer
class Inner2(ImplicitProblem):
def forward(self, pert_inp, alphas):
return self.module(pert_inp, alphas)
def training_step(self, batch):
x, target = batch
x, target = x.to(device), target.to(device, non_blocking=True)
alphas = self.outer()
# self.module = copy.deepcopy(self.inner1.module)
# model = self.inner1.module
pert_inp = self.attack(alphas,x,target)
##############################################################################
# w2 = self.forward(pert_inp,alphas)
##############################################################################
# loss = self.inner1.module.loss(pert_inp, alphas,target)
# loss1 = self.inner1.module.loss(x, alphas, target)
loss1 = self.inner1.module.loss(pert_inp, alphas, target)
loss2 = self.module.loss(pert_inp,alphas, target)
loss = loss2 + args.gamma * loss1
# loss = self.module.loss(pert_inp, alphas,target)
return loss
def attack(self,alphas,x,target):
# cost = nn.CrossEntropyLoss()
# alphas = self.outer()
x_purt = x.clone().detach()
target = target.clone().detach()
if rand:
x_purt = x_purt + torch.zeros_like(x_purt).uniform_(-epsilon, epsilon)
for i in range(num_steps):
x_purt.requires_grad_()
with torch.enable_grad():
# ##############################################################################
# # logits = self.inner1(x_purt, alphas)
logits = self.inner1.module(x_purt, alphas)
# ##############################################################################
loss1 = F.cross_entropy(logits, target, reduction="none")
loss1 = torch.mean(loss1)
# loss1 = self.inner1.module.loss(x_purt, alphas,target)
# x_purt.requires_grad = True
# logits = model_attack(x_purt, alphas)
# loss1 = cost(logits, target)
# print(loss1)
grad = torch.autograd.grad(loss1, [x_purt])[0]
x_purt = x_purt.detach() + step_size * torch.sign(grad.detach())
delta = torch.clamp(x_purt - x, min=-epsilon, max=epsilon)
# self.delta = nn.Parameter(torch.clamp(x_purt - x, min=-epsilon, max=epsilon), requires_grad=True).to(device)
x_purt = torch.clamp(x + delta, min=0, max=1).detach()
# pert_inp = torch.mul(x, torch.round(torch.abs(delta) * 255/8 + 0.499))
# pert_inp = torch.mul(x, torch.abs(delta)+1)
pert_inp = torch.mul(x, delta)
# pert_inp = torch.mul(x, torch.abs(delta))
return pert_inp
def configure_train_data_loader(self):
train_queue = torch.utils.data.DataLoader(
train_data,
batch_size=args.batchsz,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=True,
num_workers=2,
)
return train_queue
# def configure_module(self):
# criterion_audience = nn.CrossEntropyLoss().to(device)
# return ResNet(criterion_audience).to(device)
def configure_module(self):
criterion = nn.CrossEntropyLoss().to(device)
return Network(args.init_ch, CIFAR_CLASS, args.layers, criterion, steps=args.arch_steps).to(device)
def configure_optimizer(self):
optimizer = optim.SGD(
self.module.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.wd,
)
return optimizer
def configure_scheduler(self):
scheduler = optim.lr_scheduler.CosineAnnealingLR(
self.optimizer, float(train_iters // args.unroll_steps), eta_min=args.lr_min
)
return scheduler
class Inner1(ImplicitProblem):
def forward(self, x, alphas):
return self.module(x, alphas)
def training_step(self, batch):
x, target = batch
x, target = x.to(device), target.to(device, non_blocking=True)
alphas = self.outer()
loss = self.module.loss(x, alphas, target)
return loss
def configure_train_data_loader(self):
train_queue = torch.utils.data.DataLoader(
train_data,
batch_size=args.batchsz,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=True,
num_workers=2,
)
return train_queue
def configure_module(self):
criterion = nn.CrossEntropyLoss().to(device)
return Network(
args.init_ch, CIFAR_CLASS, args.layers, criterion, steps=args.arch_steps
).to(device)
def configure_optimizer(self):
optimizer = optim.SGD(
self.module.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.wd,
)
return optimizer
def configure_scheduler(self):
scheduler = optim.lr_scheduler.CosineAnnealingLR(
self.optimizer, float(train_iters // args.unroll_steps), eta_min=args.lr_min
)
return scheduler
class NASEngine(Engine):
@torch.no_grad()
def validation(self):
corrects = 0
total = 0
for x, target in test_queue:
x, target = x.to(device), target.to(device, non_blocking=True)
alphas = self.outer()
_, correct = self.inner1.module.loss(x, alphas, target, acc=True)
corrects += correct
total += x.size(0)
acc = corrects / total
logging.info('[*] Valid Acc.: %f', acc)
print("[*] Valid Acc.:", acc)
alphas = self.outer()
logging.info('genotype = %s', self.inner1.module.genotype(alphas))
torch.save({"genotype": self.inner1.module.genotype(alphas)}, "genotype.t7")
criterion = nn.CrossEntropyLoss().to(device)
# model_pert = Network(args.init_ch, 10, args.layers, criterion, steps=args.arch_steps).to(device)
# outer_config = Config(retain_graph=True, first_order=True,log_step=1, fp16=True)
# inner2_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True, fp16=True)
# inner1_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True, fp16=True)
outer_config = Config(retain_graph=True, first_order=True, log_step=1)
inner2_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True)
inner1_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True)
engine_config = EngineConfig(valid_step=report_freq,train_iters=train_iters,roll_back=True,)
outer = Outer(name="outer", config=outer_config, device=device)
inner1 = Inner1(name="inner1", config=inner1_config, device=device)
inner2 = Inner2(name="inner2", config=inner2_config, device=device)
problems = [outer, inner2, inner1]
# l2u = {inner1: [inner2], inner2: [outer], inner1:[outer]}
# u2l = {outer: [inner1],outer:[inner2]}
# l2u = {inner1: [inner2,outer], inner1: [outer], inner2: [outer]}
# l2u = {inner1: [inner2,outer], inner2: [outer]}
# u2l = {outer: [inner1,inner2]}
# u2l = {outer: [inner2,inner1],outer: [inner1]}
# l2u = {inner1: [outer], inner1: [inner2], inner2: [outer], inner1: [inner2,outer]}
l2u = {inner1: [inner2,outer], inner2: [outer]}
u2l = {outer: [inner2,inner1]}
# problems = [outer, inner1]
# l2u = {inner1: [outer]}
# u2l = {outer: [inner1]}
# problems = [outer, inner2, perturb, inner1]
# l2u = {inner1: [inner2, perturb,outer], perturb: [inner2, outer], inner2: [outer]}
# u2l = {outer: [inner2, perturb,inner1]}
# u2l = {outer: [inner1], inner2: [inner1]}
# u2l = {outer: [inner1]}
# l2u = {inner1: [AttackPGD, inner2, outer], AttackPGD:[inner2, outer], inner2: [outer]}
# u2l = {outer: [inner2,AttackPGD, inner1]}
# u2l = {outer: [inner1], outer: [inner2, inner1]}
# u2l = {outer: [inner2], inner2:[inner1], outer: [inner1]}
# u2l = {outer: [inner2, inner1], inner2: [inner1]}
dependencies = {"l2u": l2u, "u2l": u2l}
engine = NASEngine(config=engine_config, problems=problems, dependencies=dependencies)
engine.run()