-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPRNs_RNA_prot_LCL.R
658 lines (492 loc) · 36 KB
/
PRNs_RNA_prot_LCL.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
library(ggplot2); library(data.table); library(perm); library(grid); library(egg)
#### Get Progulon associations ####
setwd("")
# Load the progulon data
prns <- fread("output_files/Progulons.csv.gz")
# Load connectivity data
connectivity <- fread("output_files/prn_connectivity.csv.gz")
# Find the minimum RF cut-off that will yield a significantly connected progulon
prns_con <- connectivity[ Connectivity_p_value < 0.05, .(target_cut_off = min(RF_cut_off)), Progulon_ID ]
# Assign proteins to progulons
for(i in prns_con$Progulon_ID){
target_RF_cutoff <- prns_con[ Progulon_ID == i, target_cut_off ] # Find progulon-specific RF score cut-off
prns[ Progulon_ID == i & Mean_RF_score <= target_RF_cutoff, prot_in_prn := "no" ] # Proteins below cut-off are not in progulon
prns[ Progulon_ID == i & Mean_RF_score > target_RF_cutoff, prot_in_prn := "yes" ] # Proteins above cut-off are in progulon
}
# Simplify protein IDs
prns[, SimpleID := gsub(";.+", "", Protein_IDs) ][, SimpleID := gsub("-.+", "", SimpleID)]
#### Load and prep the matched mRNA - protein input data for LCL cell lines ####
# Load the LCL dataset
df <- read.csv("input_files/BattleSILAC_PickrellRPKM.csv", stringsAsFactors = FALSE)
# Keep only proteins which are in our progulon analysis
df <- df[ df$Majority.protein.IDs %in% unique(prns$SimpleID) ,]
# Get the mRNA and protein ratios
rownames(df) <- df[, "Majority.protein.IDs"]
RPKM <- df[, grep("RPKM_", colnames(df))]
SILAC <- df[, grep("SILAC_", colnames(df))]
# Transpose the matrixes and sweep out row-medians to avoid artificial correlations
tRPKM <- t(RPKM)
RPKM_people_medians <- apply(tRPKM, 1, median, na.rm=TRUE)
tRPKM_mn <- sweep(tRPKM, 1, RPKM_people_medians, FUN="-")
tSILAC <- t(SILAC)
SILAC_people_medians <- apply(tSILAC, 1, median, na.rm=TRUE)
tSILAC_mn <- sweep(tSILAC, 1, SILAC_people_medians, FUN="-")
# Restrict also the PRNS dataset to the mRNAs / proteins detected here
prns <- prns[ SimpleID %in% df$Majority.protein.IDs ]
#### Get all possible pairwise mRNA - mRNA correlations in this dataset ####
RNA_RNA_cor <- cor(tRPKM_mn, use = "pairwise.complete.obs", method = "spearman") # All pairwise combinations
RNA_RNA_cor <- as.data.table( melt( RNA_RNA_cor )) # Convert it to a long data table
RNA_RNA_cor <- RNA_RNA_cor[, .( Gene_1 = as.character(Var1), # Re-name
Gene_2 = as.character(Var2),
RNA_RNA_rho = value ) ]
RNA_RNA_cor <- RNA_RNA_cor[ Gene_1 >= Gene_2 ] # Remove duplicate pairs (keep self-comparisons)
#### Get all possible pairwise protein - protein correlations in this dataset ####
pro_pro_cor <- cor(tSILAC_mn, use = "pairwise.complete.obs", method = "spearman") # All pairwise combinations
pro_pro_cor <- as.data.table( melt( pro_pro_cor )) # Convert it to a long data table
pro_pro_cor <- pro_pro_cor[, .( Gene_1 = as.character(Var1), # Re-name
Gene_2 = as.character(Var2),
pro_pro_rho = value ) ]
pro_pro_cor <- pro_pro_cor[ Gene_1 >= Gene_2 ] # Remove duplicate pairs (keep self-comparisons)
#### Get all possible pairwise mRNA - protein correlations in this dataset ####
# Modify column names to include data type
RNA_pro_cor <- cor(tRPKM_mn, tSILAC_mn, use = "pairwise.complete.obs", method = "spearman") # All pairwise combinations
RNA_pro_cor <- as.data.table( melt( RNA_pro_cor )) # Convert it to a long data table
RNA_pro_cor <- RNA_pro_cor[, .( Gene_1 = as.character(Var1), # Re-name
Gene_2 = as.character(Var2),
RNA_pro_rho = value ) ]
RNA_pro_cor <- RNA_pro_cor[ Gene_1 >= Gene_2 ] # Remove duplicate pairs (keep self-comparisons)
#### Merge all pairwise correlations into one table ####
setkey( RNA_RNA_cor , Gene_1 , Gene_2 )
setkey( pro_pro_cor , Gene_1 , Gene_2 )
setkey( RNA_pro_cor , Gene_1 , Gene_2 )
DT <- merge(RNA_RNA_cor, pro_pro_cor)
DT <- merge(DT, RNA_pro_cor)
# Clear workspace
rm( list = ls()[! ls() %in% c("DT", "prns", "tRPKM_mn", "tSILAC_mn")] )
#### Assess distribution of ratios ####
DT[ Gene_1 != Gene_2 , lapply(.SD, median), .SDcols = grep("_rho", names(DT))] # Output across gene medians
DT[ Gene_1 == Gene_2 , lapply(.SD, median), .SDcols = grep("_rho", names(DT))] # Output within gene medians
# Plot across gene distribution
pH1 <- ggplot( DT[ Gene_1 != Gene_2 ])+
geom_histogram( aes(RNA_RNA_rho), binwidth = 0.05, boundary = 0.025, fill = NA, colour = "#00A0BB", size = 0.25)+
geom_histogram( aes(pro_pro_rho), binwidth = 0.05, boundary = 0.025, fill = NA, colour = "#EC008C", size = 0.25)+
xlim(-1,1)+
xlab("Spearman's correlation coefficient")+
ylab("Number of gene pairs")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", strip.background = element_blank(),
strip.text = element_text(size = 6), axis.ticks = element_line(size = 0.25))
# Plot within gene distribution
pH2<- ggplot( DT[ Gene_1 == Gene_2 ] )+
geom_histogram( aes(RNA_pro_rho), binwidth = 0.05, boundary = 0.025, fill = "grey80")+
geom_vline( xintercept = DT[ Gene_1 == Gene_2 , median(RNA_pro_rho) ], size = 0.25, linetype = "dashed")+
annotate("text", x = 0.6, y = 400, size = 2.5,
label = paste("median =", round( DT[ Gene_1 == Gene_2 , median(RNA_pro_rho) ] , 2 )))+
xlim(-1,1)+
xlab("mRNA - protein correlation [rho]")+
ylab("Number of gene pairs")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", strip.background = element_blank(),
strip.text = element_text(size = 6), axis.ticks = element_line(size = 0.25))
# Combine and output plot
pH <- ggarrange(pH1, pH2, nrow = 1)
ggsave("output_files/LCL_histograms_new.pdf", pH, width = 14, height = 4.9, units = "cm")
#### Get pairwise correlations for each progulon ####
DT_prn <- data.table() # Initialise the result table: This will be long-format table with pairwise rhos assigned to progulons.
# Within-gene comparisons removed from RNA-RNA and Pro-Pro pairs, across-gene comparisons removed from the RNA-Pro pairs
for(i in unique(prns$Progulon_ID)){ # Loop through all progulons
# These are the proteins belonging to the current progulon
progulon_proteins <- prns[ Progulon_ID == i & prot_in_prn == "yes" , SimpleID ]
# Get the protein (gene) pairs relevant for the current progulon
temp_prn_DT <- DT[ Gene_1 %in% progulon_proteins & Gene_2 %in% progulon_proteins ]
# These are the across-gene-pair values
across_gene <- temp_prn_DT[ Gene_1 != Gene_2 ]
# These are the same-gene pairs
within_gene <- temp_prn_DT[ Gene_1 == Gene_2 ]
# Combine into one long-format table
temp_DT1 <- melt( across_gene[, .(RNA_RNA_rho, pro_pro_rho) ] , measure.vars = c("RNA_RNA_rho", "pro_pro_rho"))
temp_DT2 <- melt( within_gene[, .(RNA_pro_rho) ] , measure.vars = c("RNA_pro_rho"))
temp_DT <- rbind( temp_DT1, temp_DT2 )
temp_DT[, Progulon_ID := i ]
# Merge
DT_prn <- rbind(DT_prn, temp_DT)
# Display progess
print(i)
}
# Rename the columns
colnames(DT_prn) <- c("cor_type", "rho", "Progulon_ID")
# Create a summary table
DT_summary <- DT_prn[, .(median_prn_rho = median(rho)), by = .(cor_type, Progulon_ID) ]
DT_summary <- dcast(DT_summary, Progulon_ID ~ cor_type , value.var = "median_prn_rho")
DT_summary <- DT_summary[, .(Progulon_ID, med_RNA_RNA_rho = RNA_RNA_rho, med_pro_pro_rho = pro_pro_rho, med_RNA_pro_rho = RNA_pro_rho) ]
#### Statistical significance #1: Protein vs mRNA coexpression of each progulon ####
# For each progulon, I want to calculate if the extent of coexpression is stronger on protein than mRNA level
# I use an independent Mann Whitney U test. Remember that some gene pairs are assigend to multiple progulons.
RNAvsPROsign <- data.table() # Initialise result table
for(i in unique(DT_prn$Progulon_ID)){
temp_RNA <- DT_prn[ Progulon_ID == i & cor_type == "RNA_RNA_rho" , rho ]
temp_pro <- DT_prn[ Progulon_ID == i & cor_type == "pro_pro_rho" , rho ]
temp_pvalue <- wilcox.test(temp_pro, temp_RNA)$p.value
temp_dt <- data.table( Progulon_ID = i, p_PCORvsRCOR = temp_pvalue)
RNAvsPROsign <- rbind( RNAvsPROsign, temp_dt )
print(i)
}
# Append p-values to summary table
DT_summary <- merge(DT_summary, RNAvsPROsign, by = "Progulon_ID")
#### Statistical significance #2: mRNA to protein correlation of progulon-specific genes ####
# This is a different question: There is some correlation between the mRNA and the protein expression values of each gene
# Do genes assigned to different progulon differ in how strongly their RNA and protein expression values are correlated?
# Because of the different sizes and distributions involved I'm using a permutation test for this one
# Create the universe
all_RNA_pro <- DT[ Gene_1 == Gene_2, .(Gene_1, Gene_2, RNA_pro_rho) ] # These are all within-gene RNA-to-protein correlations
# For each progulon, test the potential shift in mean correlation between the genes that belong to this progulon
# and the remaining genes in the "universe"
RNAtoPROsign <- data.table() # Initialise result table
for(i in unique(prns$Progulon_ID)){ # Loop through all progulons
progulon_proteins <- prns[ Progulon_ID == i & prot_in_prn == "yes" , SimpleID ] # These are the proteins belonging to the current progulon
prn_cors <- all_RNA_pro[ Gene_1 %in% progulon_proteins , RNA_pro_rho ] # RNA-to-protein correlations of the current progulon genes
remaining_cors <- all_RNA_pro[ !Gene_1 %in% progulon_proteins , RNA_pro_rho ] # and of the remaining genes in the universe
temp_pvalue <- permTS(prn_cors, remaining_cors, alternative = "two.sided", # Calcule p-values by permutation
method = "exact.mc", control = permControl(nmc = 10000, # Using 10000 Monte Carlo replications
setSEED = FALSE, tsmethod = "abs"))$p.value
temp_dt <- data.table( Progulon_ID = i, p_RNAtoPRO = temp_pvalue)
RNAtoPROsign <- rbind( RNAtoPROsign, temp_dt )
print(i)
}
# Append p-values to summary table
DT_summary <- merge(DT_summary, RNAtoPROsign, by = "Progulon_ID")
#### Prepare progulon annotation and plotting order ####
# Load the prn-prn correlations
cor_combis <- fread("output_files/ProgulonCor.csv.gz")
# Load the manual prn annotations
prn_annot <- fread("input_files/Progulon_annotation.csv")
# Expand data to be able to get a complete matrix, i.e. append duplicates
cor_combis <- rbind(cor_combis[, .(PRN_A, PRN_B, RHO)],
cor_combis[, .(PRN_B = PRN_A, PRN_A = PRN_B, RHO)])
# Append functional annotation
cor_combis[, Function_1 := prn_annot[ match( cor_combis[, PRN_A], prn_annot[, Progulon_ID] ), Progulon_name ]]
cor_combis[, Function_2 := prn_annot[ match( cor_combis[, PRN_B], prn_annot[, Progulon_ID] ), Progulon_name ]]
# Cast into a correlation matrix
cor_mat <- dcast( cor_combis, Function_1 ~ Function_2, value.var = "RHO" )
my_rownames <- cor_mat[, Function_1]
cor_mat[, Function_1 := NULL ]
cor_mat <- as.data.frame( cor_mat )
rownames(cor_mat) <- my_rownames
# Group progulons by correlation
my_dist <- as.dist( (1-cor_mat)/2 )
my_dist[ is.na(my_dist) ] <- 0
my_clust <- hclust(my_dist)
new_prn_order <- rownames(cor_mat)[ my_clust$order ]
# Append the progulon annotation to the data
DT_prn[, prn_function := prn_annot[ match( DT_prn$Progulon_ID , prn_annot$Progulon_ID ), Progulon_name ]]
DT_summary[, prn_function := prn_annot[ match( DT_summary$Progulon_ID , prn_annot$Progulon_ID ), Progulon_name ]]
# Rearrange progulons (via factor levels) in clustered order
DT_prn[, prn_function := factor(prn_function, levels = new_prn_order )]
DT_summary[, prn_function := factor(prn_function, levels = new_prn_order )]
# Clear workspace
rm( list = ls()[! ls() %in% c("DT", "prns", "DT_prn", "DT_summary", "tRPKM_mn", "tSILAC_mn")] )
#### Plot 1: Example histograms ####
# Get the relevant subset of the data
plot_dt1 <- DT_prn[ cor_type != "RNA_pro_rho" & Progulon_ID %in% c("P25", "P29") ]
plot_dt1[, prn_function := factor(prn_function, levels = c("Ribosome", "DNA replication"))]
# Create a separate data.table for the medians
dt1_medians <- plot_dt1[, median(rho), .(cor_type, prn_function) ]
# Create a separate data.table for the number of gene pairs
dt1_N_pairs <- plot_dt1[, .N, .(cor_type, prn_function) ]
# Create the plot
p1 <- ggplot( plot_dt1 , aes(x = rho, fill = cor_type ))+
facet_wrap(~prn_function, nrow = 2)+
geom_vline( data = dt1_medians, aes( xintercept = V1, colour = cor_type ),
linetype = "dotted", size = 0.25)+
geom_histogram(position = "identity", alpha = 0.7, binwidth = 0.05, center = 0.025)+
geom_text( data = dt1_N_pairs, aes( label = N , x = -0.5, y = 300), size = 2)+
scale_fill_manual( values = c("#00A0BB", "#EC008C"))+
scale_colour_manual( values = c("#00A0BB", "#EC008C"))+
scale_x_continuous( limits = c(-1,1))+
xlab("Gene coexpression\n[rho]")+
ylab("Number of gene pairs")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", strip.background = element_blank(),
strip.text = element_text(size = 6), axis.ticks = element_line(size = 0.25))
p1
ggsave("output_files/Example_histograms_new.pdf", p1,
width = 3.3, height = 6, units = "cm")
#### Plot 2: mRNA-mRNA vs protein-protein scatterplot ####
sigrhoest <- DT_summary[, cor.test(med_RNA_RNA_rho, med_pro_pro_rho, method = "spearman" )$estimate ]
sigrhopva <- DT_summary[, cor.test(med_RNA_RNA_rho, med_pro_pro_rho, method = "spearman" )$p.value ]
sigRHOest <- DT_summary[, cor.test(med_RNA_RNA_rho, med_pro_pro_rho, method = "spearman")$estimate ]
sigRHOpva <- DT_summary[, cor.test(med_RNA_RNA_rho, med_pro_pro_rho, method = "spearman")$p.value ]
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
sigRHO <- paste("rho", round(sigRHOest, 2), ", p value", signif(sigRHOpva, 2))
p2 <- ggplot(DT_summary, aes(x = med_RNA_RNA_rho, y = med_pro_pro_rho))+
geom_point( alpha = 0.5, size = 1 )+
geom_smooth( method = "lm", size = 0.25, colour = "orange", se = FALSE, fullrange = TRUE)+
#annotate(geom = "segment", x = 0, y = 0, xend = 0.8, yend = 0.8, linetype = "dashed", size = 0.25)+
geom_text(data = DT_summary[ Progulon_ID %in% c("P04","P05","P25", "P11", "P31", "P29", "P21", "P09", "P23")],
aes(label = prn_function), size = 2, colour = "blue", hjust = -0.1)+
scale_x_continuous( limits = c(0,0.8), expand = c(0,0), breaks = seq(0,1,0.2))+
scale_y_continuous( limits = c(0,0.8), expand = c(0,0), breaks = seq(0,1,0.2))+
annotate(geom = "text", x = 0.02, y = 0.7, size = 2, hjust = 0, label = sigrho )+
annotate(geom = "text", x = 0.02, y = 0.6, size = 2, hjust = 0, label = sigRHO )+
xlab("median mRNA coexpression [rho]")+
ylab("median protein coexpression [rho]")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p2
ggsave("output_files/RNARNAvsProPro_scatter_updated.pdf", p2,
width = 4.9, height = 4.9, units = "cm")
#### Plot 3: mRNA-to-protein boxplot for subset of progulons ####
# Define and order a subset of progulons for plotting
plotting_subset <- DT_prn[ cor_type == "RNA_pro_rho" & Progulon_ID %in% c("P25", "P11", "P31", "P29", "P21", "P09", "P23") ]
plotting_subset[, prn_subset_function := factor(prn_function, levels = c("Ribosome","Proteasome, 26S non-ATPase", "Nucleosome", "DNA replication",
"Exosome", "ATP Synthase", "Coatomer"))]
p3 <- ggplot( plotting_subset, aes(x = prn_subset_function, y = rho ))+
geom_boxplot(size = 0.25, outlier.fill = "white", outlier.shape = 21, outlier.stroke = 0.25, outlier.size = 0.5)+
geom_hline( yintercept = DT_prn[ cor_type == "RNA_pro_rho" , median(rho), prn_function ][, mean(V1) ], linetype = "dashed", size = 0.25, colour = "grey50")+
scale_y_continuous( limits = c(-0.4,1), expand = c(0,0), breaks = seq(-1,1,0.2))+
ylab("mRNA to protein correlation [rho]")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(size = 0.25, colour = "black"),
axis.title.y = element_text(size = 6), axis.title.x = element_blank(),
axis.text = element_text(size = 5, colour = "black"), legend.position = "none",
axis.ticks.x = element_blank(), axis.ticks.y = element_line(size = 0.25))
p3
ggsave("output_files/RNAtoPro_Subset_boxplot_new.pdf", p3,
width = 4, height = 4.8, units = "cm")
#### Plot 4: mRNA-to-protein boxplot for all progulons ####
p4 <- ggplot( DT_prn[ cor_type == "RNA_pro_rho" ], aes(x = prn_function, y = rho ))+
geom_boxplot(size = 0.25, outlier.fill = "white", outlier.shape = 21, outlier.stroke = 0.25, outlier.size = 0.5)+
geom_hline( yintercept = DT_prn[ cor_type == "RNA_pro_rho" , median(rho), prn_function ][, mean(V1) ], linetype = "dashed", size = 0.25, colour = "grey50")+
scale_y_continuous( limits = c(-0.5,1), expand = c(0,0), breaks = seq(-1,1,0.2))+
ylab("mRNA to protein correlation [rho]")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(size = 0.25, colour = "black"),
axis.title.y = element_text(size = 7), axis.title.x = element_blank(),
axis.text.y = element_text(size = 7, colour = "black"), axis.text.x = element_text(size = 7, colour = "black", angle = 90, hjust = 1),
legend.position = "none", axis.ticks.x = element_blank(), axis.ticks.y = element_line(size = 0.25))
p4
ggsave("output_files/RNAtoPro_boxplot_new.pdf", p4,
width = 18, height = 10, units = "cm")
# Clear workspace
rm( list = ls()[! ls() %in% c("DT", "prns", "DT_prn", "DT_summary", "tRPKM_mn", "tSILAC_mn", "p2")] )
#### Is coexpression dependent on the scale of expression variation? ####
# It is often assumed that large gene expression changes - typical of induced or tissue-specific genes -
# are driven by transcriptional changes, whereas smaller changes - typical of housekeeping genes - may be
# the result of post-transcriptional changes. Here I want to measure if the scale of the expression changes
# determines how well mRNA changes correlate with protein changes, or mRNA-mRNA and protein-protein
# Instead of standard variation I use a more robust measure of scale, the median absolute deviation (MAD)
# Determine mRNA and protein expression variation per gene
mRNA_mad <- apply( tRPKM_mn, 2, mad, na.rm = TRUE )
mRNA_mad <- data.table( Gene = names(mRNA_mad), mRNA_mad = mRNA_mad)
prot_mad <- apply( tSILAC_mn, 2, mad, na.rm = TRUE )
prot_mad <- data.table( Gene = names(prot_mad), prot_mad = prot_mad)
gene_mad <- merge( mRNA_mad, prot_mad )
# Calculate the median MADs per progulon
prn_mad <- data.table() # Initialise result table
for(i in unique(prns$Progulon_ID)){
temp_genes <- prns[ Progulon_ID == i & prot_in_prn == "yes" , SimpleID ]
temp_med_mRNA_mad <- gene_mad[ Gene %in% temp_genes , .(med_mRNA_mad = median(mRNA_mad)) ]
temp_med_prot_mad <- gene_mad[ Gene %in% temp_genes , .(med_prot_mad = median(prot_mad)) ]
prn_mad <- rbind(prn_mad, data.table( Progulon_ID = i, temp_med_mRNA_mad, temp_med_prot_mad))
}
# Append results to the summary table
DT_summary <- merge(DT_summary, prn_mad, by = "Progulon_ID")
#### Write out (prototype of) the supplementary table ####
fwrite( DT_summary , "output_files/Rna_Pro_PRN_LCL.csv" )
DT_summary <- fread("output_files/Rna_Pro_PRN_LCL.csv")
#### Plot 5: scale of mRNA expression variation vs scale of protein variation, scatterplot ####
# This shows that progulons with large mRNA expression variation will generally also have
# larger protein expression variation
# NOTE: Because the nucleosome progulon is a clear outlier here, I will calculate significance and linear fits
# WITHOUT the NUCLEOSOME progulon (but still show the progulon in the scatterplot and explain in figure legend)
# Calculate significance of correlation and turn into plot labels
sigrhoest <- DT_summary[ , cor.test(med_mRNA_mad, med_prot_mad, method = "spearman" )$estimate ]
sigrhopva <- DT_summary[ , cor.test(med_mRNA_mad, med_prot_mad, method = "spearman" )$p.value ]
sigrhoest <- DT_summary[ , cor.test(med_mRNA_mad, med_prot_mad, method = "spearman")$estimate ]
sigrhopva <- DT_summary[ , cor.test(med_mRNA_mad, med_prot_mad, method = "spearman")$p.value ]
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
# Make the plot
p5 <- ggplot(DT_summary, aes(x = med_mRNA_mad, y = med_prot_mad))+
geom_smooth( data = DT_summary[], method = "lm", size = 0.25, colour = "orange")+
geom_smooth( method = "lm", size = 0.25, colour = "red", se = FALSE )+ # Keep this here just as a reminder that the other linear fit does not take into account PRN29
geom_point( alpha = 0.5, size = 1 )+
geom_text(data = DT_summary[ Progulon_ID %in% c("P04","P05","P25", "P09", "P31")], aes(label = prn_function), size = 2, colour = "blue", hjust = -0.1)+
scale_x_continuous( limits = c(0.2,0.85), expand = c(0,0), breaks = seq(0,1,0.2))+
scale_y_continuous( limits = c(0,0.8), expand = c(0,0), breaks = seq(0,1,0.2))+
xlab("Scale of mRNA expression variation [median MAD]")+
ylab("Scale of protein expression variation [median MAD]")+
annotate(geom = "text", x = 0.3, y = 0.8, size = 2, hjust = 0, label = sigrho )+
annotate(geom = "text", x = 0.3, y = 0.7, size = 2, hjust = 0, label = sigrho )+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p5
ggsave("output_files/Scale_RNAvsPro_new.pdf", p5,
width = 4.5, height = 4.5, units = "cm")
#### Plot 6: scale of (protein) expression variation vs mRNA-to-protein correlation, scatterplot ####
# This shows that progulons with larger expression variation tend to have a stronger mRNA-based regulatory component
# Calculate significance of correlation and turn into plot labels
sigrhoest <- DT_summary[, cor.test(med_RNA_pro_rho, med_prot_mad, method = "spearman" )$estimate ]
sigrhopva <- DT_summary[, cor.test(med_RNA_pro_rho, med_prot_mad, method = "spearman" )$p.value ]
sigrhoest <- DT_summary[, cor.test(med_RNA_pro_rho, med_prot_mad, method = "spearman")$estimate ]
sigrhopva <- DT_summary[, cor.test(med_RNA_pro_rho, med_prot_mad, method = "spearman")$p.value ]
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
# Make the plot
p6 <- ggplot(DT_summary, aes(x = med_RNA_pro_rho, y = med_prot_mad))+
geom_smooth( method = "lm", size = 0.25, colour = "orange")+
geom_point( alpha = 0.5, size = 1 )+
geom_text(data = DT_summary[ Progulon_ID %in% c("P25", "P09", "P26","P23","P04","P05")],
aes(label = prn_function), size = 2, colour = "blue", hjust = -0.1)+
scale_x_continuous( limits = c(-0.05,0.31), expand = c(0,0), breaks = seq(-0.05,1,0.05))+
scale_y_continuous( limits = c(0,0.6), expand = c(0,0), breaks = seq(0,1,0.2))+
xlab("mRNA-to-protein correlation [median rho]")+
ylab("Scale of protein expression variation [median MAD]")+
annotate(geom = "text", x = 0.0, y = 0.5, size = 2, hjust = 0, label = sigrho )+
annotate(geom = "text", x = 0.0, y = 0.4, size = 2, hjust = 0, label = sigrho )+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p6
ggsave("output_files/Scale_RNAtoPro_new.pdf", p6,
width = 4.5, height = 4.5, units = "cm")
#### Plot 7: scale of mRNA expression variation vs mRNA-to-mRNA correlation, scatterplot ####
# This shows that progulons with large mRNA expression variation do not necessarily have better mRNA-to-mRNA coordination
# For example, several progulons have larger expression changes than the ribosome but weaker mRNA-mRNA correlation. This
# would suggest that mRNA-mRNA coordination is independent of the scale of expression changes, but perhaps dependent on
# biological function (see protein synthesis and degradation related progulons)
# Calculate significance of correlation and turn into plot labels
sigrhoest <- DT_summary[, cor.test(med_RNA_RNA_rho, med_mRNA_mad, method = "spearman" )$estimate ]
sigrhopva <- DT_summary[, cor.test(med_RNA_RNA_rho, med_mRNA_mad, method = "spearman" )$p.value ]
sigrhoest <- DT_summary[, cor.test(med_RNA_RNA_rho, med_mRNA_mad, method = "spearman")$estimate ]
sigrhopva <- DT_summary[, cor.test(med_RNA_RNA_rho, med_mRNA_mad, method = "spearman")$p.value ]
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
# Make the plot
p7 <- ggplot(DT_summary, aes(x = med_RNA_RNA_rho, y = med_mRNA_mad))+
geom_point( alpha = 0.5, size = 1 )+
geom_text(data = DT_summary[ Progulon_ID %in% c("P25", "P11", "P31", "P29", "P21", "P09", "P23","P04","P05")],
aes(label = prn_function), size = 2, colour = "blue", hjust = -0.1)+
scale_x_continuous( limits = c(0,0.7), expand = c(0,0), breaks = seq(0,1,0.2))+
scale_y_continuous( limits = c(0.2,0.9), expand = c(0,0), breaks = seq(0,1,0.2))+
xlab("median mRNA coexpression [rho]")+
ylab("Scale of mRNA expression variation [median MAD]")+
annotate(geom = "text", x = 0.1, y = 0.8, size = 2, hjust = 0, label = sigrho )+
annotate(geom = "text", x = 0.1, y = 0.7, size = 2, hjust = 0, label = sigrho )+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p7
ggsave("output_files/Scale_RNAtoRNA_new.pdf", p7,
width = 4.5, height = 4.5, units = "cm")
#### Plot 8: scale of protein expression variation vs protein-to-protein correlation, scatterplot ####
# This shows that progulons with larger protein expression variation do not necessarily have better protein-to-protein coordination
# Calculate significance of correlation and turn into plot labels
sigrhoest <- DT_summary[, cor.test(med_pro_pro_rho, med_prot_mad, method = "spearman" )$estimate ]
sigrhopva <- DT_summary[, cor.test(med_pro_pro_rho, med_prot_mad, method = "spearman" )$p.value ]
sigrhoest <- DT_summary[, cor.test(med_pro_pro_rho, med_prot_mad, method = "spearman")$estimate ]
sigrhopva <- DT_summary[, cor.test(med_pro_pro_rho, med_prot_mad, method = "spearman")$p.value ]
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
sigrho <- paste("rho", round(sigrhoest, 2), ", p value", signif(sigrhopva, 2))
# Make the plot
p8 <- ggplot(DT_summary, aes(x = med_pro_pro_rho, y = med_prot_mad))+
geom_point( alpha = 0.5, size = 1 )+
geom_text(data = DT_summary[ Progulon_ID %in% c("P25", "P11", "P31", "P29", "P21", "P09", "P23","P26","P04","P05")],
aes(label = prn_function), size = 2, colour = "blue", hjust = -0.1)+
scale_x_continuous( limits = c(0,0.9), expand = c(0,0), breaks = seq(0,1,0.2))+
scale_y_continuous( limits = c(0,0.61), expand = c(0,0), breaks = seq(0,1,0.2))+
xlab("median protein coexpression [rho]")+
ylab("Scale of protein expression variation [median MAD]")+
annotate(geom = "text", x = 0.1, y = 0.55, size = 2, hjust = 0, label = sigrho )+
annotate(geom = "text", x = 0.1, y = 0.45, size = 2, hjust = 0, label = sigrho )+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p8
ggsave("output_files/Scale_ProToPro_new.pdf", p8,
width = 4.5, height = 4.5, units = "cm")
#### Plot 9: Composite scale-related plots ####
# To output a properly aligned plot grid, combine the gtables first
g5 <- ggplotGrob(p5)
g6 <- ggplotGrob(p6)
g7 <- ggplotGrob(p7)
g8 <- ggplotGrob(p8)
g <- cbind( rbind(g5, g6, size = "first"), rbind(g7, g8, size = "first"), size = "first")
grid.newpage()
grid.draw(g)
ggsave("output_files/LCL_Scale_composite_new.pdf", g,
width = 6.7, height = 6.5, units = "cm")
#### Plot 10: Volcano plot showing progulon regulation ####
p10 <- ggplot(DT_summary, aes(x = med_RNA_pro_rho, y = -log10(p_RNAtoPRO)))+
geom_point( alpha = 0.5, size = 1 )+
geom_vline( xintercept = DT[ Gene_1 == Gene_2 , median(RNA_pro_rho) ], size = 0.25, linetype = "dashed")+
geom_text(data = DT_summary[ order(med_RNA_pro_rho) ][ Progulon_ID %in% c("P04","P05","P25", "P27", "P15", "P07", "P26") ],
aes(label = prn_function), size = 2, colour = "blue", hjust = 1, angle = 90)+
scale_x_continuous( limits = c(-0.1,0.35), expand = c(0,0), breaks = seq(-0.1,1,0.1))+
xlab("mRNA to protein correlation [rho]")+
ylab("-log10 p-value")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p10
ggsave("output_files/LCL_volcano_new.pdf", p10,
width = 4.9, height = 4.9, units = "cm")
#### Plot 11: mRNA-mRNA vs mRNA-to-protein correlation per progulon ####
sigrho_11 <- paste("rho", round( DT_summary[, cor.test(med_RNA_RNA_rho, med_RNA_pro_rho, method = "spearman")$estimate ], 2),
", p value", signif(DT_summary[, cor.test(med_RNA_RNA_rho, med_RNA_pro_rho, method = "spearman")$p.value ], 2))
p11 <- ggplot(DT_summary, aes(x = med_RNA_RNA_rho, y = med_RNA_pro_rho))+
geom_point( alpha = 0.5, size = 1 )+
geom_smooth( method = "lm", size = 0.25, colour = "orange", se = FALSE, fullrange = TRUE)+
annotate(geom = "text", x = 0.1, y = 0.25, size = 2, hjust = 0, label = sigrho_11 )+
geom_text(data = DT_summary[ order(med_RNA_pro_rho) ][Progulon_ID %in% c("P25", "P04","P05", "P31", "P29", "P26", "P09", "P14")],
aes(label = prn_function), size = 2, colour = "blue", hjust = 1, angle = 90)+
scale_x_continuous( limits = c(0,0.65), expand = c(0,0), breaks = seq(0,1,0.2))+
scale_y_continuous( limits = c(-0.11,0.31), expand = c(0,0), breaks = seq(-0.1,1,0.1))+
ylab("mRNA to protein correlation [rho]")+
xlab("mRNA coexpression [rho]")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p11
ggsave("output_files/LCL_RNARNAvsmRNAPro_new.pdf", p11,
width = 4.9, height = 4.9, units = "cm")
#### Plot 12: pro-pro vs mRNA-to-protein correlation per progulon ####
sigrho_12 <- paste("rho", round( DT_summary[, cor.test(med_pro_pro_rho, med_RNA_pro_rho, method = "spearman")$estimate ], 2),
", p value", signif(DT_summary[, cor.test(med_pro_pro_rho, med_RNA_pro_rho, method = "spearman")$p.value ], 2))
p12 <- ggplot(DT_summary, aes(x = med_pro_pro_rho, y = med_RNA_pro_rho))+
geom_point( alpha = 0.5, size = 1 )+
geom_smooth( method = "lm", size = 0.25, colour = "orange", se = FALSE, fullrange = TRUE)+
annotate(geom = "text", x = 0.5, y = 0.25, size = 2, hjust = 0, label = sigrho_12 )+
geom_text(data = DT_summary[ order(med_RNA_pro_rho) ][Progulon_ID %in% c("P25", "P04","P05", "P31", "P29", "P26", "P09", "P14")],
aes(label = prn_function), size = 2, colour = "blue", hjust = 1, angle = 90)+
scale_x_continuous( limits = c(0,0.81), expand = c(0,0), breaks = seq(0,1,0.2))+
scale_y_continuous( limits = c(-0.11,0.31), expand = c(0,0), breaks = seq(0,1,0.1))+
ylab("mRNA to protein correlation [rho]")+
xlab("protein coexpression [rho]")+
theme(plot.background = element_blank(), panel.background = element_rect(fill=NA, colour="black", size = 0.25),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.title = element_text(size = 6), axis.text = element_text(size = 5, colour = "black"),
legend.position = "none", axis.ticks = element_line(size = 0.25))
p12
ggsave("output_files/LCL_propro_vsmRNAPro_new.pdf", p12,
width = 4.9, height = 4.9, units = "cm")
#### Combined plot ####
# Output combined plot to create manuscript figure
combined_p <- ggarrange(p10, p2, p11, p12, nrow = 2)
ggsave("output_files/LCL_combined_plot_new.pdf", combined_p,
width = 8.8, height = 8.8, units = "cm")