-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_benign.py
37 lines (35 loc) · 1.26 KB
/
train_benign.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from core.utils.utility import *
from torch.utils.data import Dataset
import torchvision
if __name__ == "__main__":
schedule = {
"device": "GPU",
"CUDA_VISIBLE_DEVICES": "0",
"GPU_num": 1,
"benign_training": True,
"batch_size": 128,
"num_workers": 16,
"lr": 0.1,
"momentum": 0.9,
"weight_decay": 5e-4,
"gamma": 0.1,
"schedule": [150, 180],
"model_type": "resnet50",
"epochs": 200,
"log_iteration_interval": 100,
"test_epoch_interval": 20,
"save_epoch_interval": 50,
"save_dir": "benign_models",
"experiment_name": "train_benign_DatasetFolder-CIFAR10_resnet18",
}
# for i in range(5):
# dataset = torchvision.datasets.DatasetFolder
# trainset, testset = makeDataLoaders(os.path.join("/output/TRAINSUB/","SET"+str(i)) ,"../input0/cifar10/cifar10/test")
# make_benign_model(trainset, schedule, testset)
root_path = "../input0/cifar10/cifar10/"
trainset_folder = "train"
dataset = torchvision.datasets.DatasetFolder
trainset, testset = makeDataLoaders(
os.path.join(root_path, trainset_folder), "../input0/cifar10/cifar10/test"
)
make_benign_model(trainset, schedule, testset)