From 6a8505343b424f3a6231a739131a591ebe09e6e6 Mon Sep 17 00:00:00 2001 From: HoangMHNguyen Date: Thu, 12 Dec 2024 15:29:21 +0100 Subject: [PATCH 1/4] add offline inference --- .../Hierarchical Gaussian Filter.ipynb | 3233 ++++++++++++----- 1 file changed, 2314 insertions(+), 919 deletions(-) diff --git a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb index d7b1f0b03..da159ae42 100644 --- a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb +++ b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb @@ -17,7 +17,567 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m project at `~/.julia/dev/RxInfer/examples`\n" + "\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m project at `~/RxInfer.jl/examples`\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m registry at `~/.julia/registries/General.toml`\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m InvertedIndices ──── v1.3.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m GR_jll ───────────── v0.73.9+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ZipFile ──────────── v0.10.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Fontconfig_jll ───── v2.15.0+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Accessors ────────── v0.1.39\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m HTTP ─────────────── v1.10.14\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Highlights ───────── v0.5.3\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m EpollShim_jll ────── v0.0.20230411+1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m SentinelArrays ───── v1.4.8\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m CodecInflate64 ───── v0.1.3\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ZipArchives ──────── v2.4.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m InputBuffers ─────── v1.0.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m StatsModels ──────── v0.7.4\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Expat_jll ────────── v2.6.4+1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m HarfBuzz_jll ─────── v8.5.0+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Atomix ───────────── v1.0.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m KernelAbstractions ─ v0.9.31\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m YAML ─────────────── v0.4.12\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Glib_jll ─────────── v2.82.2+1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m StructArrays ─────── v0.6.21\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m XLSX ─────────────── v0.10.4\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m GR ───────────────── v0.73.9\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/RxInfer.jl/examples/Project.toml`\n", + " \u001b[90m[b4ee3484] \u001b[39m\u001b[92m+ BayesBase v1.5.0\u001b[39m\n", + " \u001b[90m[6e4b80f9] \u001b[39m\u001b[92m+ BenchmarkTools v1.5.0\u001b[39m\n", + " \u001b[90m[336ed68f] \u001b[39m\u001b[92m+ CSV v0.10.15\u001b[39m\n", + " \u001b[90m[a93c6f00] \u001b[39m\u001b[92m+ DataFrames v1.7.0\u001b[39m\n", + " \u001b[90m[31c24e10] \u001b[39m\u001b[92m+ Distributions v0.25.113\u001b[39m\n", + " \u001b[90m[62312e5e] \u001b[39m\u001b[92m+ ExponentialFamily v1.6.0\u001b[39m\n", + "\u001b[32m⌃\u001b[39m \u001b[90m[587475ba] \u001b[39m\u001b[92m+ Flux v0.14.25\u001b[39m\n", + " \u001b[90m[38e38edf] \u001b[39m\u001b[92m+ GLM v1.9.0\u001b[39m\n", + " \u001b[90m[b3f8163a] \u001b[39m\u001b[92m+ GraphPPL v4.4.1\u001b[39m\n", + " \u001b[90m[34004b35] \u001b[39m\u001b[92m+ HypergeometricFunctions v0.3.25\u001b[39m\n", + " \u001b[90m[7073ff75] \u001b[39m\u001b[92m+ IJulia v1.26.0\u001b[39m\n", + " \u001b[90m[4138dd39] \u001b[39m\u001b[92m+ JLD v0.13.5\u001b[39m\n", + " \u001b[90m[b964fa9f] \u001b[39m\u001b[92m+ LaTeXStrings v1.4.0\u001b[39m\n", + " \u001b[90m[429524aa] \u001b[39m\u001b[92m+ Optim v1.10.0\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[3bd65402] \u001b[39m\u001b[92m+ Optimisers v0.3.4\u001b[39m\n", + " \u001b[90m[d96e819e] \u001b[39m\u001b[92m+ Parameters v0.12.3\u001b[39m\n", + " \u001b[90m[91a5bcdd] \u001b[39m\u001b[92m+ Plots v1.40.9\u001b[39m\n", + " \u001b[90m[92933f4c] \u001b[39m\u001b[92m+ ProgressMeter v1.10.2\u001b[39m\n", + " \u001b[90m[a194aa59] \u001b[39m\u001b[92m+ ReactiveMP v4.4.5\u001b[39m\n", + " \u001b[90m[37e2e3b7] \u001b[39m\u001b[92m+ ReverseDiff v1.15.3\u001b[39m\n", + " \u001b[90m[df971d30] \u001b[39m\u001b[92m+ Rocket v1.8.1\u001b[39m\n", + " \u001b[90m[86711068] \u001b[39m\u001b[92m+ RxInfer v3.8.0\u001b[39m\n", + " \u001b[90m[276daf66] \u001b[39m\u001b[92m+ SpecialFunctions v2.5.0\u001b[39m\n", + " \u001b[90m[860ef19b] \u001b[39m\u001b[92m+ StableRNGs v1.0.2\u001b[39m\n", + " \u001b[90m[4c63d2b9] \u001b[39m\u001b[92m+ StatsFuns v1.3.2\u001b[39m\n", + " \u001b[90m[f3b207a7] \u001b[39m\u001b[92m+ StatsPlots v0.15.7\u001b[39m\n", + " \u001b[90m[44d3d7a6] \u001b[39m\u001b[92m+ Weave v0.10.12\u001b[39m\n", + " \u001b[90m[fdbf4ff8] \u001b[39m\u001b[92m+ XLSX v0.10.4\u001b[39m\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/RxInfer.jl/examples/Manifest.toml`\n", + " \u001b[90m[621f4979] \u001b[39m\u001b[92m+ AbstractFFTs v1.5.0\u001b[39m\n", + " \u001b[90m[7d9f7c33] \u001b[39m\u001b[92m+ Accessors v0.1.39\u001b[39m\n", + " \u001b[90m[79e6a3ab] \u001b[39m\u001b[92m+ Adapt v4.1.1\u001b[39m\n", + " \u001b[90m[66dad0bd] \u001b[39m\u001b[92m+ AliasTables v1.1.3\u001b[39m\n", + " \u001b[90m[dce04be8] \u001b[39m\u001b[92m+ ArgCheck v2.4.0\u001b[39m\n", + " \u001b[90m[ec485272] \u001b[39m\u001b[92m+ ArnoldiMethod v0.4.0\u001b[39m\n", + " \u001b[90m[7d9fca2a] \u001b[39m\u001b[92m+ Arpack v0.5.4\u001b[39m\n", + " \u001b[90m[4fba245c] \u001b[39m\u001b[92m+ ArrayInterface v7.17.1\u001b[39m\n", + " \u001b[90m[4c555306] \u001b[39m\u001b[92m+ ArrayLayouts v1.11.0\u001b[39m\n", + " \u001b[90m[a9b6321e] \u001b[39m\u001b[92m+ Atomix v1.0.1\u001b[39m\n", + " \u001b[90m[13072b0f] \u001b[39m\u001b[92m+ AxisAlgorithms v1.1.0\u001b[39m\n", + " \u001b[90m[198e06fe] \u001b[39m\u001b[92m+ BangBang v0.4.3\u001b[39m\n", + " \u001b[90m[9718e550] \u001b[39m\u001b[92m+ Baselet v0.1.1\u001b[39m\n", + " \u001b[90m[b4ee3484] \u001b[39m\u001b[92m+ BayesBase v1.5.0\u001b[39m\n", + " \u001b[90m[6e4b80f9] \u001b[39m\u001b[92m+ BenchmarkTools v1.5.0\u001b[39m\n", + " \u001b[90m[d1d4a3ce] \u001b[39m\u001b[92m+ BitFlags v0.1.9\u001b[39m\n", + " \u001b[90m[0f2f92aa] \u001b[39m\u001b[92m+ BitSetTuples v1.1.5\u001b[39m\n", + " \u001b[90m[62783981] \u001b[39m\u001b[92m+ BitTwiddlingConvenienceFunctions v0.1.6\u001b[39m\n", + " \u001b[90m[a74b3585] \u001b[39m\u001b[92m+ Blosc v0.7.3\u001b[39m\n", + " \u001b[90m[fa961155] \u001b[39m\u001b[92m+ CEnum v0.5.0\u001b[39m\n", + " \u001b[90m[2a0fbf3d] \u001b[39m\u001b[92m+ CPUSummary v0.2.6\u001b[39m\n", + " \u001b[90m[336ed68f] \u001b[39m\u001b[92m+ CSV v0.10.15\u001b[39m\n", + " \u001b[90m[082447d4] \u001b[39m\u001b[92m+ ChainRules v1.72.1\u001b[39m\n", + " \u001b[90m[d360d2e6] \u001b[39m\u001b[92m+ ChainRulesCore v1.25.0\u001b[39m\n", + " \u001b[90m[fb6a15b2] \u001b[39m\u001b[92m+ CloseOpenIntervals v0.1.13\u001b[39m\n", + " \u001b[90m[aaaa29a8] \u001b[39m\u001b[92m+ Clustering v0.15.7\u001b[39m\n", + " \u001b[90m[6309b1aa] \u001b[39m\u001b[92m+ CodecInflate64 v0.1.3\u001b[39m\n", + " \u001b[90m[944b1d66] \u001b[39m\u001b[92m+ CodecZlib v0.7.6\u001b[39m\n", + " \u001b[90m[35d6a980] \u001b[39m\u001b[92m+ ColorSchemes v3.27.1\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[3da002f7] \u001b[39m\u001b[92m+ ColorTypes v0.11.5\u001b[39m\n", + "\u001b[32m⌃\u001b[39m \u001b[90m[c3611d14] \u001b[39m\u001b[92m+ ColorVectorSpace v0.10.0\u001b[39m\n", + "\u001b[32m⌃\u001b[39m \u001b[90m[5ae59095] \u001b[39m\u001b[92m+ Colors v0.12.11\u001b[39m\n", + " \u001b[90m[861a8166] \u001b[39m\u001b[92m+ Combinatorics v1.0.2\u001b[39m\n", + " \u001b[90m[bbf7d656] \u001b[39m\u001b[92m+ CommonSubexpressions v0.3.1\u001b[39m\n", + " \u001b[90m[f70d9fcc] \u001b[39m\u001b[92m+ CommonWorldInvalidations v1.0.0\u001b[39m\n", + " \u001b[90m[34da2185] \u001b[39m\u001b[92m+ Compat v4.16.0\u001b[39m\n", + " \u001b[90m[b152e2b5] \u001b[39m\u001b[92m+ CompositeTypes v0.1.4\u001b[39m\n", + " \u001b[90m[a33af91c] \u001b[39m\u001b[92m+ CompositionsBase v0.1.2\u001b[39m\n", + " \u001b[90m[f0e56b4a] \u001b[39m\u001b[92m+ ConcurrentUtilities v2.4.2\u001b[39m\n", + " \u001b[90m[8f4d0f93] \u001b[39m\u001b[92m+ Conda v1.10.2\u001b[39m\n", + " \u001b[90m[187b0558] \u001b[39m\u001b[92m+ ConstructionBase v1.5.8\u001b[39m\n", + " \u001b[90m[6add18c4] \u001b[39m\u001b[92m+ ContextVariablesX v0.1.3\u001b[39m\n", + " \u001b[90m[d38c429a] \u001b[39m\u001b[92m+ Contour v0.6.3\u001b[39m\n", + " \u001b[90m[adafc99b] \u001b[39m\u001b[92m+ CpuId v0.3.1\u001b[39m\n", + " \u001b[90m[a8cc5b0e] \u001b[39m\u001b[92m+ Crayons v4.1.1\u001b[39m\n", + " \u001b[90m[9a962f9c] \u001b[39m\u001b[92m+ DataAPI v1.16.0\u001b[39m\n", + " \u001b[90m[a93c6f00] \u001b[39m\u001b[92m+ DataFrames v1.7.0\u001b[39m\n", + " \u001b[90m[864edb3b] \u001b[39m\u001b[92m+ DataStructures v0.18.20\u001b[39m\n", + " \u001b[90m[e2d170a0] \u001b[39m\u001b[92m+ DataValueInterfaces v1.0.0\u001b[39m\n", + " \u001b[90m[244e2a9f] \u001b[39m\u001b[92m+ DefineSingletons v0.1.2\u001b[39m\n", + " \u001b[90m[8bb1440f] \u001b[39m\u001b[92m+ DelimitedFiles v1.9.1\u001b[39m\n", + " \u001b[90m[85a47980] \u001b[39m\u001b[92m+ Dictionaries v0.4.3\u001b[39m\n", + " \u001b[90m[163ba53b] \u001b[39m\u001b[92m+ DiffResults v1.1.0\u001b[39m\n", + " \u001b[90m[b552c78f] \u001b[39m\u001b[92m+ DiffRules v1.15.1\u001b[39m\n", + " \u001b[90m[b4f34e82] \u001b[39m\u001b[92m+ Distances v0.10.12\u001b[39m\n", + " \u001b[90m[31c24e10] \u001b[39m\u001b[92m+ Distributions v0.25.113\u001b[39m\n", + " \u001b[90m[ffbed154] \u001b[39m\u001b[92m+ DocStringExtensions v0.9.3\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[cc6bae93] \u001b[39m\u001b[92m+ DomainIntegrals v0.4.6\u001b[39m\n", + " \u001b[90m[5b8099bc] \u001b[39m\u001b[92m+ DomainSets v0.7.14\u001b[39m\n", + " \u001b[90m[460bff9d] \u001b[39m\u001b[92m+ ExceptionUnwrapping v0.1.11\u001b[39m\n", + " \u001b[90m[62312e5e] \u001b[39m\u001b[92m+ ExponentialFamily v1.6.0\u001b[39m\n", + " \u001b[90m[8f5d6c58] \u001b[39m\u001b[92m+ EzXML v1.2.0\u001b[39m\n", + " \u001b[90m[c87230d0] \u001b[39m\u001b[92m+ FFMPEG v0.4.2\u001b[39m\n", + " \u001b[90m[7a1cc6ca] \u001b[39m\u001b[92m+ FFTW v1.8.0\u001b[39m\n", + " \u001b[90m[cc61a311] \u001b[39m\u001b[92m+ FLoops v0.2.2\u001b[39m\n", + " \u001b[90m[b9860ae5] \u001b[39m\u001b[92m+ FLoopsBase v0.1.1\u001b[39m\n", + " \u001b[90m[2d5283b6] \u001b[39m\u001b[92m+ FastCholesky v1.3.1\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[442a2c76] \u001b[39m\u001b[92m+ FastGaussQuadrature v0.5.1\u001b[39m\n", + " \u001b[90m[5789e2e9] \u001b[39m\u001b[92m+ FileIO v1.16.6\u001b[39m\n", + " \u001b[90m[48062228] \u001b[39m\u001b[92m+ FilePathsBase v0.9.22\u001b[39m\n", + " \u001b[90m[1a297f60] \u001b[39m\u001b[92m+ FillArrays v1.13.0\u001b[39m\n", + " \u001b[90m[6a86dc24] \u001b[39m\u001b[92m+ FiniteDiff v2.26.2\u001b[39m\n", + " \u001b[90m[4130a065] \u001b[39m\u001b[92m+ FixedArguments v0.1.1\u001b[39m\n", + " \u001b[90m[53c48c17] \u001b[39m\u001b[92m+ FixedPointNumbers v0.8.5\u001b[39m\n", + "\u001b[32m⌃\u001b[39m \u001b[90m[587475ba] \u001b[39m\u001b[92m+ Flux v0.14.25\u001b[39m\n", + " \u001b[90m[1fa38f19] \u001b[39m\u001b[92m+ Format v1.3.7\u001b[39m\n", + " \u001b[90m[f6369f11] \u001b[39m\u001b[92m+ ForwardDiff v0.10.38\u001b[39m\n", + " \u001b[90m[069b7b12] \u001b[39m\u001b[92m+ FunctionWrappers v1.1.3\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[d9f16b24] \u001b[39m\u001b[92m+ Functors v0.4.12\u001b[39m\n", + " \u001b[90m[38e38edf] \u001b[39m\u001b[92m+ GLM v1.9.0\u001b[39m\n", + " \u001b[90m[0c68f7d7] \u001b[39m\u001b[92m+ GPUArrays v11.1.0\u001b[39m\n", + " \u001b[90m[46192b85] \u001b[39m\u001b[92m+ GPUArraysCore v0.2.0\u001b[39m\n", + " \u001b[90m[28b8d3ca] \u001b[39m\u001b[92m+ GR v0.73.9\u001b[39m\n", + " \u001b[90m[d54b0c1a] \u001b[39m\u001b[92m+ GaussQuadrature v0.5.8\u001b[39m\n", + " \u001b[90m[b3f8163a] \u001b[39m\u001b[92m+ GraphPPL v4.4.1\u001b[39m\n", + " \u001b[90m[86223c79] \u001b[39m\u001b[92m+ Graphs v1.12.0\u001b[39m\n", + " \u001b[90m[42e2da0e] \u001b[39m\u001b[92m+ Grisu v1.0.2\u001b[39m\n", + " \u001b[90m[c8ec2601] \u001b[39m\u001b[92m+ H5Zblosc v0.1.2\u001b[39m\n", + " \u001b[90m[19dc6840] \u001b[39m\u001b[92m+ HCubature v1.7.0\u001b[39m\n", + " \u001b[90m[f67ccb44] \u001b[39m\u001b[92m+ HDF5 v0.17.2\u001b[39m\n", + " \u001b[90m[cd3eb016] \u001b[39m\u001b[92m+ HTTP v1.10.14\u001b[39m\n", + " \u001b[90m[eafb193a] \u001b[39m\u001b[92m+ Highlights v0.5.3\u001b[39m\n", + " \u001b[90m[3e5b6fbb] \u001b[39m\u001b[92m+ HostCPUFeatures v0.1.17\u001b[39m\n", + " \u001b[90m[34004b35] \u001b[39m\u001b[92m+ HypergeometricFunctions v0.3.25\u001b[39m\n", + " \u001b[90m[7073ff75] \u001b[39m\u001b[92m+ IJulia v1.26.0\u001b[39m\n", + " \u001b[90m[7869d1d1] \u001b[39m\u001b[92m+ IRTools v0.4.14\u001b[39m\n", + " \u001b[90m[615f187c] \u001b[39m\u001b[92m+ IfElse v0.1.1\u001b[39m\n", + " \u001b[90m[313cdc1a] \u001b[39m\u001b[92m+ Indexing v1.1.1\u001b[39m\n", + " \u001b[90m[d25df0c9] \u001b[39m\u001b[92m+ Inflate v0.1.5\u001b[39m\n", + " \u001b[90m[22cec73e] \u001b[39m\u001b[92m+ InitialValues v0.3.1\u001b[39m\n", + " \u001b[90m[842dd82b] \u001b[39m\u001b[92m+ InlineStrings v1.4.2\u001b[39m\n", + " \u001b[90m[0c81fc1b] \u001b[39m\u001b[92m+ InputBuffers v1.0.0\u001b[39m\n", + " \u001b[90m[a98d9a8b] \u001b[39m\u001b[92m+ Interpolations v0.15.1\u001b[39m\n", + " \u001b[90m[8197267c] \u001b[39m\u001b[92m+ IntervalSets v0.7.10\u001b[39m\n", + " \u001b[90m[3587e190] \u001b[39m\u001b[92m+ InverseFunctions v0.1.17\u001b[39m\n", + " \u001b[90m[41ab1584] \u001b[39m\u001b[92m+ InvertedIndices v1.3.1\u001b[39m\n", + " \u001b[90m[92d709cd] \u001b[39m\u001b[92m+ IrrationalConstants v0.2.2\u001b[39m\n", + " \u001b[90m[82899510] \u001b[39m\u001b[92m+ IteratorInterfaceExtensions v1.0.0\u001b[39m\n", + " \u001b[90m[4138dd39] \u001b[39m\u001b[92m+ JLD v0.13.5\u001b[39m\n", + " \u001b[90m[033835bb] \u001b[39m\u001b[92m+ JLD2 v0.5.10\u001b[39m\n", + " \u001b[90m[1019f520] \u001b[39m\u001b[92m+ JLFzf v0.1.9\u001b[39m\n", + " \u001b[90m[692b3bcd] \u001b[39m\u001b[92m+ JLLWrappers v1.6.1\u001b[39m\n", + " \u001b[90m[682c06a0] \u001b[39m\u001b[92m+ JSON v0.21.4\u001b[39m\n", + " \u001b[90m[b14d175d] \u001b[39m\u001b[92m+ JuliaVariables v0.2.4\u001b[39m\n", + " \u001b[90m[63c18a36] \u001b[39m\u001b[92m+ KernelAbstractions v0.9.31\u001b[39m\n", + " \u001b[90m[5ab0869b] \u001b[39m\u001b[92m+ KernelDensity v0.6.9\u001b[39m\n", + " \u001b[90m[929cbde3] \u001b[39m\u001b[92m+ LLVM v9.1.3\u001b[39m\n", + " \u001b[90m[b964fa9f] \u001b[39m\u001b[92m+ LaTeXStrings v1.4.0\u001b[39m\n", + " \u001b[90m[23fbe1c1] \u001b[39m\u001b[92m+ Latexify v0.16.5\u001b[39m\n", + " \u001b[90m[10f19ff3] \u001b[39m\u001b[92m+ LayoutPointers v0.1.17\u001b[39m\n", + " \u001b[90m[5078a376] \u001b[39m\u001b[92m+ LazyArrays v2.3.1\u001b[39m\n", + " \u001b[90m[d3d80556] \u001b[39m\u001b[92m+ LineSearches v7.3.0\u001b[39m\n", + " \u001b[90m[2ab3a3ac] \u001b[39m\u001b[92m+ LogExpFunctions v0.3.29\u001b[39m\n", + " \u001b[90m[e6f89c97] \u001b[39m\u001b[92m+ LoggingExtras v1.1.0\u001b[39m\n", + " \u001b[90m[bdcacae8] \u001b[39m\u001b[92m+ LoopVectorization v0.12.171\u001b[39m\n", + "\u001b[32m⌃\u001b[39m \u001b[90m[7e8f7934] \u001b[39m\u001b[92m+ MLDataDevices v1.5.3\u001b[39m\n", + " \u001b[90m[d8e11817] \u001b[39m\u001b[92m+ MLStyle v0.4.17\u001b[39m\n", + " \u001b[90m[f1d291b0] \u001b[39m\u001b[92m+ MLUtils v0.4.4\u001b[39m\n", + " \u001b[90m[3da0fdf6] \u001b[39m\u001b[92m+ MPIPreferences v0.1.11\u001b[39m\n", + " \u001b[90m[1914dd2f] \u001b[39m\u001b[92m+ MacroTools v0.5.13\u001b[39m\n", + " \u001b[90m[d125e4d3] \u001b[39m\u001b[92m+ ManualMemory v0.1.8\u001b[39m\n", + " \u001b[90m[41f81499] \u001b[39m\u001b[92m+ MatrixCorrectionTools v1.2.0\u001b[39m\n", + " \u001b[90m[739be429] \u001b[39m\u001b[92m+ MbedTLS v1.1.9\u001b[39m\n", + " \u001b[90m[442fdcdd] \u001b[39m\u001b[92m+ Measures v0.3.2\u001b[39m\n", + " \u001b[90m[fa8bd995] \u001b[39m\u001b[92m+ MetaGraphsNext v0.7.1\u001b[39m\n", + " \u001b[90m[128add7d] \u001b[39m\u001b[92m+ MicroCollections v0.2.0\u001b[39m\n", + " \u001b[90m[e1d29d7a] \u001b[39m\u001b[92m+ Missings v1.2.0\u001b[39m\n", + " \u001b[90m[6f286f6a] \u001b[39m\u001b[92m+ MultivariateStats v0.10.3\u001b[39m\n", + " \u001b[90m[ffc61752] \u001b[39m\u001b[92m+ Mustache v1.0.20\u001b[39m\n", + " \u001b[90m[d41bc354] \u001b[39m\u001b[92m+ NLSolversBase v7.8.3\u001b[39m\n", + " \u001b[90m[872c559c] \u001b[39m\u001b[92m+ NNlib v0.9.26\u001b[39m\n", + " \u001b[90m[77ba4419] \u001b[39m\u001b[92m+ NaNMath v1.0.2\u001b[39m\n", + " \u001b[90m[71a1bf82] \u001b[39m\u001b[92m+ NameResolution v0.1.5\u001b[39m\n", + " \u001b[90m[d9ec5142] \u001b[39m\u001b[92m+ NamedTupleTools v0.14.3\u001b[39m\n", + " \u001b[90m[b8a86587] \u001b[39m\u001b[92m+ NearestNeighbors v0.4.21\u001b[39m\n", + " \u001b[90m[510215fc] \u001b[39m\u001b[92m+ Observables v0.5.5\u001b[39m\n", + " \u001b[90m[6fe1bfb0] \u001b[39m\u001b[92m+ OffsetArrays v1.14.2\u001b[39m\n", + " \u001b[90m[0b1bfda6] \u001b[39m\u001b[92m+ OneHotArrays v0.2.6\u001b[39m\n", + " \u001b[90m[4d8831e6] \u001b[39m\u001b[92m+ OpenSSL v1.4.3\u001b[39m\n", + " \u001b[90m[429524aa] \u001b[39m\u001b[92m+ Optim v1.10.0\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[3bd65402] \u001b[39m\u001b[92m+ Optimisers v0.3.4\u001b[39m\n", + " \u001b[90m[bac558e1] \u001b[39m\u001b[92m+ OrderedCollections v1.7.0\u001b[39m\n", + " \u001b[90m[90014a1f] \u001b[39m\u001b[92m+ PDMats v0.11.31\u001b[39m\n", + " \u001b[90m[d96e819e] \u001b[39m\u001b[92m+ Parameters v0.12.3\u001b[39m\n", + " \u001b[90m[69de0a69] \u001b[39m\u001b[92m+ Parsers v2.8.1\u001b[39m\n", + " \u001b[90m[b98c9c47] \u001b[39m\u001b[92m+ Pipe v1.3.0\u001b[39m\n", + " \u001b[90m[ccf2f8ad] \u001b[39m\u001b[92m+ PlotThemes v3.3.0\u001b[39m\n", + " \u001b[90m[995b91a9] \u001b[39m\u001b[92m+ PlotUtils v1.4.3\u001b[39m\n", + " \u001b[90m[91a5bcdd] \u001b[39m\u001b[92m+ Plots v1.40.9\u001b[39m\n", + " \u001b[90m[1d0040c9] \u001b[39m\u001b[92m+ PolyesterWeave v0.2.2\u001b[39m\n", + " \u001b[90m[2dfb63ee] \u001b[39m\u001b[92m+ PooledArrays v1.4.3\u001b[39m\n", + " \u001b[90m[85a6dd25] \u001b[39m\u001b[92m+ PositiveFactorizations v0.2.4\u001b[39m\n", + " \u001b[90m[aea7be01] \u001b[39m\u001b[92m+ PrecompileTools v1.2.1\u001b[39m\n", + " \u001b[90m[21216c6a] \u001b[39m\u001b[92m+ Preferences v1.4.3\u001b[39m\n", + " \u001b[90m[8162dcfd] \u001b[39m\u001b[92m+ PrettyPrint v0.2.0\u001b[39m\n", + " \u001b[90m[08abe8d2] \u001b[39m\u001b[92m+ PrettyTables v2.4.0\u001b[39m\n", + " \u001b[90m[33c8b6b6] \u001b[39m\u001b[92m+ ProgressLogging v0.1.4\u001b[39m\n", + " \u001b[90m[92933f4c] \u001b[39m\u001b[92m+ ProgressMeter v1.10.2\u001b[39m\n", + " \u001b[90m[43287f4e] \u001b[39m\u001b[92m+ PtrArrays v1.2.1\u001b[39m\n", + " \u001b[90m[1fd47b50] \u001b[39m\u001b[92m+ QuadGK v2.11.1\u001b[39m\n", + " \u001b[90m[c84ed2f1] \u001b[39m\u001b[92m+ Ratios v0.4.5\u001b[39m\n", + " \u001b[90m[a194aa59] \u001b[39m\u001b[92m+ ReactiveMP v4.4.5\u001b[39m\n", + " \u001b[90m[c1ae055f] \u001b[39m\u001b[92m+ RealDot v0.1.0\u001b[39m\n", + " \u001b[90m[3cdcf5f2] \u001b[39m\u001b[92m+ RecipesBase v1.3.4\u001b[39m\n", + " \u001b[90m[01d81517] \u001b[39m\u001b[92m+ RecipesPipeline v0.6.12\u001b[39m\n", + " \u001b[90m[189a3867] \u001b[39m\u001b[92m+ Reexport v1.2.2\u001b[39m\n", + " \u001b[90m[05181044] \u001b[39m\u001b[92m+ RelocatableFolders v1.0.1\u001b[39m\n", + " \u001b[90m[ae029012] \u001b[39m\u001b[92m+ Requires v1.3.0\u001b[39m\n", + " \u001b[90m[37e2e3b7] \u001b[39m\u001b[92m+ ReverseDiff v1.15.3\u001b[39m\n", + " \u001b[90m[79098fc4] \u001b[39m\u001b[92m+ Rmath v0.8.0\u001b[39m\n", + " \u001b[90m[df971d30] \u001b[39m\u001b[92m+ Rocket v1.8.1\u001b[39m\n", + " \u001b[90m[86711068] \u001b[39m\u001b[92m+ RxInfer v3.8.0\u001b[39m\n", + " \u001b[90m[94e857df] \u001b[39m\u001b[92m+ SIMDTypes v0.1.0\u001b[39m\n", + " \u001b[90m[476501e8] \u001b[39m\u001b[92m+ SLEEFPirates v0.6.43\u001b[39m\n", + " \u001b[90m[6c6a2e73] \u001b[39m\u001b[92m+ Scratch v1.2.1\u001b[39m\n", + " \u001b[90m[91c51154] \u001b[39m\u001b[92m+ SentinelArrays v1.4.8\u001b[39m\n", + " \u001b[90m[efcf1570] \u001b[39m\u001b[92m+ Setfield v1.1.1\u001b[39m\n", + " \u001b[90m[1277b4bf] \u001b[39m\u001b[92m+ ShiftedArrays v2.0.0\u001b[39m\n", + " \u001b[90m[605ecd9f] \u001b[39m\u001b[92m+ ShowCases v0.1.0\u001b[39m\n", + " \u001b[90m[992d4aef] \u001b[39m\u001b[92m+ Showoff v1.0.3\u001b[39m\n", + " \u001b[90m[777ac1f9] \u001b[39m\u001b[92m+ SimpleBufferStream v1.2.0\u001b[39m\n", + " \u001b[90m[699a6c99] \u001b[39m\u001b[92m+ SimpleTraits v0.9.4\u001b[39m\n", + " \u001b[90m[b85f4697] \u001b[39m\u001b[92m+ SoftGlobalScope v1.1.0\u001b[39m\n", + " \u001b[90m[a2af1166] \u001b[39m\u001b[92m+ SortingAlgorithms v1.2.1\u001b[39m\n", + " \u001b[90m[dc90abb0] \u001b[39m\u001b[92m+ SparseInverseSubset v0.1.2\u001b[39m\n", + " \u001b[90m[276daf66] \u001b[39m\u001b[92m+ SpecialFunctions v2.5.0\u001b[39m\n", + " \u001b[90m[171d559e] \u001b[39m\u001b[92m+ SplittablesBase v0.1.15\u001b[39m\n", + " \u001b[90m[860ef19b] \u001b[39m\u001b[92m+ StableRNGs v1.0.2\u001b[39m\n", + " \u001b[90m[aedffcd0] \u001b[39m\u001b[92m+ Static v1.1.1\u001b[39m\n", + " \u001b[90m[0d7ed370] \u001b[39m\u001b[92m+ StaticArrayInterface v1.8.0\u001b[39m\n", + " \u001b[90m[90137ffa] \u001b[39m\u001b[92m+ StaticArrays v1.9.8\u001b[39m\n", + " \u001b[90m[1e83bf80] \u001b[39m\u001b[92m+ StaticArraysCore v1.4.3\u001b[39m\n", + " \u001b[90m[10745b16] \u001b[39m\u001b[92m+ Statistics v1.11.1\u001b[39m\n", + " \u001b[90m[82ae8749] \u001b[39m\u001b[92m+ StatsAPI v1.7.0\u001b[39m\n", + " \u001b[90m[2913bbd2] \u001b[39m\u001b[92m+ StatsBase v0.34.3\u001b[39m\n", + " \u001b[90m[4c63d2b9] \u001b[39m\u001b[92m+ StatsFuns v1.3.2\u001b[39m\n", + " \u001b[90m[3eaba693] \u001b[39m\u001b[92m+ StatsModels v0.7.4\u001b[39m\n", + " \u001b[90m[f3b207a7] \u001b[39m\u001b[92m+ StatsPlots v0.15.7\u001b[39m\n", + " \u001b[90m[69024149] \u001b[39m\u001b[92m+ StringEncodings v0.3.7\u001b[39m\n", + " \u001b[90m[892a3eda] \u001b[39m\u001b[92m+ StringManipulation v0.4.0\u001b[39m\n", + "\u001b[32m⌃\u001b[39m \u001b[90m[09ab397b] \u001b[39m\u001b[92m+ StructArrays v0.6.21\u001b[39m\n", + " \u001b[90m[ab02a1b2] \u001b[39m\u001b[92m+ TableOperations v1.2.0\u001b[39m\n", + " \u001b[90m[3783bdb8] \u001b[39m\u001b[92m+ TableTraits v1.0.1\u001b[39m\n", + " \u001b[90m[bd369af6] \u001b[39m\u001b[92m+ Tables v1.12.0\u001b[39m\n", + " \u001b[90m[62fd8b95] \u001b[39m\u001b[92m+ TensorCore v0.1.1\u001b[39m\n", + " \u001b[90m[8290d209] \u001b[39m\u001b[92m+ ThreadingUtilities v0.5.2\u001b[39m\n", + " \u001b[90m[783c9a47] \u001b[39m\u001b[92m+ TinyHugeNumbers v1.0.2\u001b[39m\n", + " \u001b[90m[3bb67fe8] \u001b[39m\u001b[92m+ TranscodingStreams v0.11.3\u001b[39m\n", + " \u001b[90m[28d57a85] \u001b[39m\u001b[92m+ Transducers v0.4.84\u001b[39m\n", + " \u001b[90m[9d95972d] \u001b[39m\u001b[92m+ TupleTools v1.6.0\u001b[39m\n", + " \u001b[90m[5c2747f8] \u001b[39m\u001b[92m+ URIs v1.5.1\u001b[39m\n", + " \u001b[90m[3a884ed6] \u001b[39m\u001b[92m+ UnPack v1.0.2\u001b[39m\n", + " \u001b[90m[1cfade01] \u001b[39m\u001b[92m+ UnicodeFun v0.4.1\u001b[39m\n", + " \u001b[90m[1986cc42] \u001b[39m\u001b[92m+ Unitful v1.21.1\u001b[39m\n", + " \u001b[90m[45397f5d] \u001b[39m\u001b[92m+ UnitfulLatexify v1.6.4\u001b[39m\n", + " \u001b[90m[9602ed7d] \u001b[39m\u001b[92m+ Unrolled v0.1.5\u001b[39m\n", + " \u001b[90m[013be700] \u001b[39m\u001b[92m+ UnsafeAtomics v0.2.1\u001b[39m\n", + " \u001b[90m[41fe7b60] \u001b[39m\u001b[92m+ Unzip v0.2.0\u001b[39m\n", + " \u001b[90m[3d5dd08c] \u001b[39m\u001b[92m+ VectorizationBase v0.21.71\u001b[39m\n", + " \u001b[90m[81def892] \u001b[39m\u001b[92m+ VersionParsing v1.3.0\u001b[39m\n", + " \u001b[90m[ea10d353] \u001b[39m\u001b[92m+ WeakRefStrings v1.4.2\u001b[39m\n", + " \u001b[90m[44d3d7a6] \u001b[39m\u001b[92m+ Weave v0.10.12\u001b[39m\n", + " \u001b[90m[cc8bc4a8] \u001b[39m\u001b[92m+ Widgets v0.6.7\u001b[39m\n", + " \u001b[90m[efce3f68] \u001b[39m\u001b[92m+ WoodburyMatrices v1.0.0\u001b[39m\n", + " \u001b[90m[76eceee3] \u001b[39m\u001b[92m+ WorkerUtilities v1.6.1\u001b[39m\n", + " \u001b[90m[fdbf4ff8] \u001b[39m\u001b[92m+ XLSX v0.10.4\u001b[39m\n", + " \u001b[90m[ddb6d928] \u001b[39m\u001b[92m+ YAML v0.4.12\u001b[39m\n", + " \u001b[90m[c2297ded] \u001b[39m\u001b[92m+ ZMQ v1.4.0\u001b[39m\n", + " \u001b[90m[49080126] \u001b[39m\u001b[92m+ ZipArchives v2.4.0\u001b[39m\n", + " \u001b[90m[a5390f91] \u001b[39m\u001b[92m+ ZipFile v0.10.1\u001b[39m\n", + " \u001b[90m[e88e6eb3] \u001b[39m\u001b[92m+ Zygote v0.6.73\u001b[39m\n", + " \u001b[90m[700de1a5] \u001b[39m\u001b[92m+ ZygoteRules v0.2.5\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[68821587] \u001b[39m\u001b[92m+ Arpack_jll v3.5.1+1\u001b[39m\n", + " \u001b[90m[0b7ba130] \u001b[39m\u001b[92m+ Blosc_jll v1.21.6+0\u001b[39m\n", + " \u001b[90m[6e34b625] \u001b[39m\u001b[92m+ Bzip2_jll v1.0.8+2\u001b[39m\n", + " \u001b[90m[83423d85] \u001b[39m\u001b[92m+ Cairo_jll v1.18.2+1\u001b[39m\n", + " \u001b[90m[ee1fde0b] \u001b[39m\u001b[92m+ Dbus_jll v1.14.10+0\u001b[39m\n", + " \u001b[90m[2702e6a9] \u001b[39m\u001b[92m+ EpollShim_jll v0.0.20230411+1\u001b[39m\n", + " \u001b[90m[2e619515] \u001b[39m\u001b[92m+ Expat_jll v2.6.4+1\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[b22a6f82] \u001b[39m\u001b[92m+ FFMPEG_jll v4.4.4+1\u001b[39m\n", + " \u001b[90m[f5851436] \u001b[39m\u001b[92m+ FFTW_jll v3.3.10+1\u001b[39m\n", + " \u001b[90m[a3f928ae] \u001b[39m\u001b[92m+ Fontconfig_jll v2.15.0+0\u001b[39m\n", + " \u001b[90m[d7e528f0] \u001b[39m\u001b[92m+ FreeType2_jll v2.13.3+1\u001b[39m\n", + " \u001b[90m[559328eb] \u001b[39m\u001b[92m+ FriBidi_jll v1.0.14+0\u001b[39m\n", + " \u001b[90m[0656b61e] \u001b[39m\u001b[92m+ GLFW_jll v3.4.0+1\u001b[39m\n", + " \u001b[90m[d2c73de3] \u001b[39m\u001b[92m+ GR_jll v0.73.9+0\u001b[39m\n", + " \u001b[90m[78b55507] \u001b[39m\u001b[92m+ Gettext_jll v0.21.0+0\u001b[39m\n", + " \u001b[90m[7746bdde] \u001b[39m\u001b[92m+ Glib_jll v2.82.2+1\u001b[39m\n", + " \u001b[90m[3b182d85] \u001b[39m\u001b[92m+ Graphite2_jll v1.3.14+1\u001b[39m\n", + "\u001b[32m⌃\u001b[39m \u001b[90m[0234f1f7] \u001b[39m\u001b[92m+ HDF5_jll v1.14.2+1\u001b[39m\n", + " \u001b[90m[2e76f6c2] \u001b[39m\u001b[92m+ HarfBuzz_jll v8.5.0+0\u001b[39m\n", + " \u001b[90m[e33a78d0] \u001b[39m\u001b[92m+ Hwloc_jll v2.11.2+1\u001b[39m\n", + " \u001b[90m[1d5cc7b8] \u001b[39m\u001b[92m+ IntelOpenMP_jll v2024.2.1+0\u001b[39m\n", + " \u001b[90m[aacddb02] \u001b[39m\u001b[92m+ JpegTurbo_jll v3.0.4+0\u001b[39m\n", + " \u001b[90m[c1c5ebd0] \u001b[39m\u001b[92m+ LAME_jll v3.100.2+0\u001b[39m\n", + " \u001b[90m[88015f11] \u001b[39m\u001b[92m+ LERC_jll v4.0.0+0\u001b[39m\n", + " \u001b[90m[dad2f222] \u001b[39m\u001b[92m+ LLVMExtra_jll v0.0.34+0\u001b[39m\n", + " \u001b[90m[1d63c593] \u001b[39m\u001b[92m+ LLVMOpenMP_jll v18.1.7+0\u001b[39m\n", + " \u001b[90m[dd4b983a] \u001b[39m\u001b[92m+ LZO_jll v2.10.2+1\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[e9f186c6] \u001b[39m\u001b[92m+ Libffi_jll v3.2.2+1\u001b[39m\n", + " \u001b[90m[d4300ac3] \u001b[39m\u001b[92m+ Libgcrypt_jll v1.11.0+0\u001b[39m\n", + " \u001b[90m[7e76a0d4] \u001b[39m\u001b[92m+ Libglvnd_jll v1.7.0+0\u001b[39m\n", + " \u001b[90m[7add5ba3] \u001b[39m\u001b[92m+ Libgpg_error_jll v1.50.0+0\u001b[39m\n", + " \u001b[90m[94ce4f54] \u001b[39m\u001b[92m+ Libiconv_jll v1.17.0+1\u001b[39m\n", + " \u001b[90m[4b2f31a3] \u001b[39m\u001b[92m+ Libmount_jll v2.40.2+0\u001b[39m\n", + " \u001b[90m[89763e89] \u001b[39m\u001b[92m+ Libtiff_jll v4.7.0+0\u001b[39m\n", + " \u001b[90m[38a345b3] \u001b[39m\u001b[92m+ Libuuid_jll v2.40.2+0\u001b[39m\n", + " \u001b[90m[5ced341a] \u001b[39m\u001b[92m+ Lz4_jll v1.10.0+1\u001b[39m\n", + " \u001b[90m[856f044c] \u001b[39m\u001b[92m+ MKL_jll v2024.2.0+0\u001b[39m\n", + " \u001b[90m[7cb0a576] \u001b[39m\u001b[92m+ MPICH_jll v4.2.3+0\u001b[39m\n", + " \u001b[90m[f1f71cc9] \u001b[39m\u001b[92m+ MPItrampoline_jll v5.5.1+0\u001b[39m\n", + " \u001b[90m[9237b28f] \u001b[39m\u001b[92m+ MicrosoftMPI_jll v10.1.4+3\u001b[39m\n", + " \u001b[90m[e7412a2a] \u001b[39m\u001b[92m+ Ogg_jll v1.3.5+1\u001b[39m\n", + " \u001b[90m[fe0851c0] \u001b[39m\u001b[92m+ OpenMPI_jll v5.0.6+0\u001b[39m\n", + " \u001b[90m[458c3c95] \u001b[39m\u001b[92m+ OpenSSL_jll v3.0.15+1\u001b[39m\n", + " \u001b[90m[efe28fd5] \u001b[39m\u001b[92m+ OpenSpecFun_jll v0.5.5+0\u001b[39m\n", + " \u001b[90m[91d4177d] \u001b[39m\u001b[92m+ Opus_jll v1.3.3+0\u001b[39m\n", + " \u001b[90m[36c8627f] \u001b[39m\u001b[92m+ Pango_jll v1.54.1+0\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[30392449] \u001b[39m\u001b[92m+ Pixman_jll v0.43.4+0\u001b[39m\n", + " \u001b[90m[c0090381] \u001b[39m\u001b[92m+ Qt6Base_jll v6.7.1+1\u001b[39m\n", + " \u001b[90m[629bc702] \u001b[39m\u001b[92m+ Qt6Declarative_jll v6.7.1+2\u001b[39m\n", + " \u001b[90m[ce943373] \u001b[39m\u001b[92m+ Qt6ShaderTools_jll v6.7.1+1\u001b[39m\n", + " \u001b[90m[e99dba38] \u001b[39m\u001b[92m+ Qt6Wayland_jll v6.7.1+1\u001b[39m\n", + " \u001b[90m[f50d1b31] \u001b[39m\u001b[92m+ Rmath_jll v0.5.1+0\u001b[39m\n", + " \u001b[90m[a44049a8] \u001b[39m\u001b[92m+ Vulkan_Loader_jll v1.3.243+0\u001b[39m\n", + " \u001b[90m[a2964d1f] \u001b[39m\u001b[92m+ Wayland_jll v1.21.0+1\u001b[39m\n", + " \u001b[90m[2381bf8a] \u001b[39m\u001b[92m+ Wayland_protocols_jll v1.31.0+0\u001b[39m\n", + " \u001b[90m[02c8fc9c] \u001b[39m\u001b[92m+ XML2_jll v2.13.5+0\u001b[39m\n", + " \u001b[90m[aed1982a] \u001b[39m\u001b[92m+ XSLT_jll v1.1.42+0\u001b[39m\n", + " \u001b[90m[ffd25f8a] \u001b[39m\u001b[92m+ XZ_jll v5.6.3+0\u001b[39m\n", + " \u001b[90m[f67eecfb] \u001b[39m\u001b[92m+ Xorg_libICE_jll v1.1.1+0\u001b[39m\n", + " \u001b[90m[c834827a] \u001b[39m\u001b[92m+ Xorg_libSM_jll v1.2.4+0\u001b[39m\n", + " \u001b[90m[4f6342f7] \u001b[39m\u001b[92m+ Xorg_libX11_jll v1.8.6+1\u001b[39m\n", + " \u001b[90m[0c0b7dd1] \u001b[39m\u001b[92m+ Xorg_libXau_jll v1.0.11+1\u001b[39m\n", + " \u001b[90m[935fb764] \u001b[39m\u001b[92m+ Xorg_libXcursor_jll v1.2.0+4\u001b[39m\n", + " \u001b[90m[a3789734] \u001b[39m\u001b[92m+ Xorg_libXdmcp_jll v1.1.4+1\u001b[39m\n", + " \u001b[90m[1082639a] \u001b[39m\u001b[92m+ Xorg_libXext_jll v1.3.6+1\u001b[39m\n", + " \u001b[90m[d091e8ba] \u001b[39m\u001b[92m+ Xorg_libXfixes_jll v5.0.3+4\u001b[39m\n", + " \u001b[90m[a51aa0fd] \u001b[39m\u001b[92m+ Xorg_libXi_jll v1.7.10+4\u001b[39m\n", + " \u001b[90m[d1454406] \u001b[39m\u001b[92m+ Xorg_libXinerama_jll v1.1.4+4\u001b[39m\n", + " \u001b[90m[ec84b674] \u001b[39m\u001b[92m+ Xorg_libXrandr_jll v1.5.2+4\u001b[39m\n", + " \u001b[90m[ea2f1a96] \u001b[39m\u001b[92m+ Xorg_libXrender_jll v0.9.11+0\u001b[39m\n", + " \u001b[90m[14d82f49] \u001b[39m\u001b[92m+ Xorg_libpthread_stubs_jll v0.1.1+1\u001b[39m\n", + " \u001b[90m[c7cfdc94] \u001b[39m\u001b[92m+ Xorg_libxcb_jll v1.17.0+1\u001b[39m\n", + " \u001b[90m[cc61e674] \u001b[39m\u001b[92m+ Xorg_libxkbfile_jll v1.1.2+0\u001b[39m\n", + " \u001b[90m[e920d4aa] \u001b[39m\u001b[92m+ Xorg_xcb_util_cursor_jll v0.1.4+0\u001b[39m\n", + " \u001b[90m[12413925] \u001b[39m\u001b[92m+ Xorg_xcb_util_image_jll v0.4.0+1\u001b[39m\n", + " \u001b[90m[2def613f] \u001b[39m\u001b[92m+ Xorg_xcb_util_jll v0.4.0+1\u001b[39m\n", + " \u001b[90m[975044d2] \u001b[39m\u001b[92m+ Xorg_xcb_util_keysyms_jll v0.4.0+1\u001b[39m\n", + " \u001b[90m[0d47668e] \u001b[39m\u001b[92m+ Xorg_xcb_util_renderutil_jll v0.3.9+1\u001b[39m\n", + " \u001b[90m[c22f9ab0] \u001b[39m\u001b[92m+ Xorg_xcb_util_wm_jll v0.4.1+1\u001b[39m\n", + " \u001b[90m[35661453] \u001b[39m\u001b[92m+ Xorg_xkbcomp_jll v1.4.6+0\u001b[39m\n", + " \u001b[90m[33bec58e] \u001b[39m\u001b[92m+ Xorg_xkeyboard_config_jll v2.39.0+0\u001b[39m\n", + " \u001b[90m[c5fb5394] \u001b[39m\u001b[92m+ Xorg_xtrans_jll v1.5.0+1\u001b[39m\n", + " \u001b[90m[8f1865be] \u001b[39m\u001b[92m+ ZeroMQ_jll v4.3.5+1\u001b[39m\n", + " \u001b[90m[3161d3a3] \u001b[39m\u001b[92m+ Zstd_jll v1.5.6+1\u001b[39m\n", + " \u001b[90m[35ca27e7] \u001b[39m\u001b[92m+ eudev_jll v3.2.9+0\u001b[39m\n", + " \u001b[90m[214eeab7] \u001b[39m\u001b[92m+ fzf_jll v0.56.3+0\u001b[39m\n", + " \u001b[90m[1a1c6b14] \u001b[39m\u001b[92m+ gperf_jll v3.1.1+1\u001b[39m\n", + " \u001b[90m[477f73a3] \u001b[39m\u001b[92m+ libaec_jll v1.1.2+0\u001b[39m\n", + " \u001b[90m[a4ae2306] \u001b[39m\u001b[92m+ libaom_jll v3.9.0+0\u001b[39m\n", + " \u001b[90m[0ac62f75] \u001b[39m\u001b[92m+ libass_jll v0.15.2+0\u001b[39m\n", + " \u001b[90m[1183f4f0] \u001b[39m\u001b[92m+ libdecor_jll v0.2.2+0\u001b[39m\n", + " \u001b[90m[2db6ffa8] \u001b[39m\u001b[92m+ libevdev_jll v1.11.0+0\u001b[39m\n", + " \u001b[90m[f638f0a6] \u001b[39m\u001b[92m+ libfdk_aac_jll v2.0.3+0\u001b[39m\n", + " \u001b[90m[36db933b] \u001b[39m\u001b[92m+ libinput_jll v1.18.0+0\u001b[39m\n", + " \u001b[90m[b53b4c65] \u001b[39m\u001b[92m+ libpng_jll v1.6.44+0\u001b[39m\n", + " \u001b[90m[a9144af2] \u001b[39m\u001b[92m+ libsodium_jll v1.0.20+1\u001b[39m\n", + " \u001b[90m[f27f6e37] \u001b[39m\u001b[92m+ libvorbis_jll v1.3.7+2\u001b[39m\n", + " \u001b[90m[009596ad] \u001b[39m\u001b[92m+ mtdev_jll v1.1.6+0\u001b[39m\n", + " \u001b[90m[1317d2d5] \u001b[39m\u001b[92m+ oneTBB_jll v2021.12.0+0\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[1270edf5] \u001b[39m\u001b[92m+ x264_jll v2021.5.5+0\u001b[39m\n", + "\u001b[33m⌅\u001b[39m \u001b[90m[dfaa095f] \u001b[39m\u001b[92m+ x265_jll v3.5.0+0\u001b[39m\n", + " \u001b[90m[d8fb68d0] \u001b[39m\u001b[92m+ xkbcommon_jll v1.4.1+1\u001b[39m\n", + " \u001b[90m[0dad84c5] \u001b[39m\u001b[92m+ ArgTools v1.1.2\u001b[39m\n", + " \u001b[90m[56f22d72] \u001b[39m\u001b[92m+ Artifacts v1.11.0\u001b[39m\n", + " \u001b[90m[2a0f44e3] \u001b[39m\u001b[92m+ Base64 v1.11.0\u001b[39m\n", + " \u001b[90m[ade2ca70] \u001b[39m\u001b[92m+ Dates v1.11.0\u001b[39m\n", + " \u001b[90m[8ba89e20] \u001b[39m\u001b[92m+ Distributed v1.11.0\u001b[39m\n", + " \u001b[90m[f43a241f] \u001b[39m\u001b[92m+ Downloads v1.6.0\u001b[39m\n", + " \u001b[90m[7b1f6079] \u001b[39m\u001b[92m+ FileWatching v1.11.0\u001b[39m\n", + " \u001b[90m[9fa8497b] \u001b[39m\u001b[92m+ Future v1.11.0\u001b[39m\n", + " \u001b[90m[b77e0a4c] \u001b[39m\u001b[92m+ InteractiveUtils v1.11.0\u001b[39m\n", + " \u001b[90m[4af54fe1] \u001b[39m\u001b[92m+ LazyArtifacts v1.11.0\u001b[39m\n", + " \u001b[90m[b27032c2] \u001b[39m\u001b[92m+ LibCURL v0.6.4\u001b[39m\n", + " \u001b[90m[76f85450] \u001b[39m\u001b[92m+ LibGit2 v1.11.0\u001b[39m\n", + " \u001b[90m[8f399da3] \u001b[39m\u001b[92m+ Libdl v1.11.0\u001b[39m\n", + " \u001b[90m[37e2e46d] \u001b[39m\u001b[92m+ LinearAlgebra v1.11.0\u001b[39m\n", + " \u001b[90m[56ddb016] \u001b[39m\u001b[92m+ Logging v1.11.0\u001b[39m\n", + " \u001b[90m[d6f4376e] \u001b[39m\u001b[92m+ Markdown v1.11.0\u001b[39m\n", + " \u001b[90m[a63ad114] \u001b[39m\u001b[92m+ Mmap v1.11.0\u001b[39m\n", + " \u001b[90m[ca575930] \u001b[39m\u001b[92m+ NetworkOptions v1.2.0\u001b[39m\n", + " \u001b[90m[44cfe95a] \u001b[39m\u001b[92m+ Pkg v1.11.0\u001b[39m\n", + " \u001b[90m[de0858da] \u001b[39m\u001b[92m+ Printf v1.11.0\u001b[39m\n", + " \u001b[90m[9abbd945] \u001b[39m\u001b[92m+ Profile v1.11.0\u001b[39m\n", + " \u001b[90m[3fa0cd96] \u001b[39m\u001b[92m+ REPL v1.11.0\u001b[39m\n", + " \u001b[90m[9a3f8284] \u001b[39m\u001b[92m+ Random v1.11.0\u001b[39m\n", + " \u001b[90m[ea8e919c] \u001b[39m\u001b[92m+ SHA v0.7.0\u001b[39m\n", + " \u001b[90m[9e88b42a] \u001b[39m\u001b[92m+ Serialization v1.11.0\u001b[39m\n", + " \u001b[90m[1a1011a3] \u001b[39m\u001b[92m+ SharedArrays v1.11.0\u001b[39m\n", + " \u001b[90m[6462fe0b] \u001b[39m\u001b[92m+ Sockets v1.11.0\u001b[39m\n", + " \u001b[90m[2f01184e] \u001b[39m\u001b[92m+ SparseArrays v1.11.0\u001b[39m\n", + " \u001b[90m[f489334b] \u001b[39m\u001b[92m+ StyledStrings v1.11.0\u001b[39m\n", + " \u001b[90m[4607b0f0] \u001b[39m\u001b[92m+ SuiteSparse\u001b[39m\n", + " \u001b[90m[fa267f1f] \u001b[39m\u001b[92m+ TOML v1.0.3\u001b[39m\n", + " \u001b[90m[a4e569a6] \u001b[39m\u001b[92m+ Tar v1.10.0\u001b[39m\n", + " \u001b[90m[8dfed614] \u001b[39m\u001b[92m+ Test v1.11.0\u001b[39m\n", + " \u001b[90m[cf7118a7] \u001b[39m\u001b[92m+ UUIDs v1.11.0\u001b[39m\n", + " \u001b[90m[4ec0a83e] \u001b[39m\u001b[92m+ Unicode v1.11.0\u001b[39m\n", + " \u001b[90m[e66e0078] \u001b[39m\u001b[92m+ CompilerSupportLibraries_jll v1.1.1+0\u001b[39m\n", + " \u001b[90m[deac9b47] \u001b[39m\u001b[92m+ LibCURL_jll v8.6.0+0\u001b[39m\n", + " \u001b[90m[e37daf67] \u001b[39m\u001b[92m+ LibGit2_jll v1.7.2+0\u001b[39m\n", + " \u001b[90m[29816b5a] \u001b[39m\u001b[92m+ LibSSH2_jll v1.11.0+1\u001b[39m\n", + " \u001b[90m[c8ffd9c3] \u001b[39m\u001b[92m+ MbedTLS_jll v2.28.6+0\u001b[39m\n", + " \u001b[90m[14a3606d] \u001b[39m\u001b[92m+ MozillaCACerts_jll v2023.12.12\u001b[39m\n", + " \u001b[90m[4536629a] \u001b[39m\u001b[92m+ OpenBLAS_jll v0.3.27+1\u001b[39m\n", + " \u001b[90m[05823500] \u001b[39m\u001b[92m+ OpenLibm_jll v0.8.1+2\u001b[39m\n", + " \u001b[90m[efcefdf7] \u001b[39m\u001b[92m+ PCRE2_jll v10.42.0+1\u001b[39m\n", + " \u001b[90m[bea87d4a] \u001b[39m\u001b[92m+ SuiteSparse_jll v7.7.0+0\u001b[39m\n", + " \u001b[90m[83775a58] \u001b[39m\u001b[92m+ Zlib_jll v1.2.13+1\u001b[39m\n", + " \u001b[90m[8e850b90] \u001b[39m\u001b[92m+ libblastrampoline_jll v5.11.0+0\u001b[39m\n", + " \u001b[90m[8e850ede] \u001b[39m\u001b[92m+ nghttp2_jll v1.59.0+0\u001b[39m\n", + " \u001b[90m[3f19e933] \u001b[39m\u001b[92m+ p7zip_jll v17.4.0+2\u001b[39m\n", + "\u001b[36m\u001b[1m Info\u001b[22m\u001b[39m Packages marked with \u001b[32m⌃\u001b[39m and \u001b[33m⌅\u001b[39m have new versions available. Those with \u001b[32m⌃\u001b[39m may be upgradable, but those with \u001b[33m⌅\u001b[39m are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`\n", + "\u001b[92m\u001b[1mPrecompiling\u001b[22m\u001b[39m project...\n", + " 4354.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mInvertedIndices\u001b[39m\n", + " 3058.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mShiftedArrays\u001b[39m\n", + " 3049.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mAtomix\u001b[39m\n", + " 3045.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mInputBuffers\u001b[39m\n", + " 3021.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mCodecInflate64\u001b[39m\n", + " 2955.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mZipFile\u001b[39m\n", + " 2941.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mMustache\u001b[39m\n", + " 963.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mEpollShim_jll\u001b[39m\n", + " 972.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mLogExpFunctions → LogExpFunctionsInverseFunctionsExt\u001b[39m\n", + " 986.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mExpat_jll\u001b[39m\n", + " 1157.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mWidgets\u001b[39m\n", + " 1585.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mLogExpFunctions → LogExpFunctionsChainRulesCoreExt\u001b[39m\n", + " 3318.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mSentinelArrays\u001b[39m\n", + " 2797.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mStringEncodings\u001b[39m\n", + " 2804.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mEzXML\u001b[39m\n", + " 2238.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays\u001b[39m\n", + " 1782.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mGlib_jll\u001b[39m\n", + " 5849.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mHighlights\u001b[39m\n", + " 2774.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors\u001b[39m\n", + " 6943.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mInterpolations\u001b[39m\n", + " 4660.0 ms\u001b[32m ✓ \u001b[39mIJulia\n", + " 2421.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mFontconfig_jll\u001b[39m\n", + " 5386.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mH5Zblosc\u001b[39m\n", + " 4120.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mColorVectorSpace → SpecialFunctionsExt\u001b[39m\n", + " 4284.8 ms\u001b[32m ✓ \u001b[39mSpecialFunctions → SpecialFunctionsChainRulesCoreExt\n", + " 4698.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mClustering\u001b[39m\n", + " 3614.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mTableOperations\u001b[39m\n", + " 7374.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelAbstractions\u001b[39m\n", + " 8902.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mZipArchives\u001b[39m\n", + " 910.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysLinearAlgebraExt\u001b[39m\n", + " 15009.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mHTTP\u001b[39m\n", + " 2989.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mYAML\u001b[39m\n", + " 3017.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsIntervalSetsExt\u001b[39m\n", + " 3113.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsTestExt\u001b[39m\n", + " 2294.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsDatesExt\u001b[39m\n", + " 4117.6 ms\u001b[32m ✓ \u001b[39mStatsFuns → StatsFunsInverseFunctionsExt\n", + " 6434.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mInterpolations → InterpolationsUnitfulExt\u001b[39m\n", + " 4621.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mCairo_jll\u001b[39m\n", + " 4500.2 ms\u001b[32m ✓ \u001b[39mStatsFuns → StatsFunsChainRulesCoreExt\n", + " 4699.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mQt6Base_jll\u001b[39m\n", + " 2571.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelAbstractions → LinearAlgebraExt\u001b[39m\n", + " 2792.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysAdaptExt\u001b[39m\n", + " 5956.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysStaticArraysExt\u001b[39m\n", + " 14531.3 ms\u001b[32m ✓ \u001b[39mCSV\n", + " 4294.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysSparseArraysExt\u001b[39m\n", + " 6871.7 ms\u001b[32m ✓ \u001b[39mXLSX\n", + " 3846.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsStructArraysExt\u001b[39m\n", + " 1229.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsStaticArraysExt\u001b[39m\n", + " 1574.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsUnitfulExt\u001b[39m\n", + " 5023.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mFileIO → HTTPExt\u001b[39m\n", + " 4859.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mHarfBuzz_jll\u001b[39m\n", + " 4953.6 ms\u001b[32m ✓ \u001b[39mDistributions → DistributionsTestExt\n", + " 7020.2 ms\u001b[32m ✓ \u001b[39mDistributions → DistributionsChainRulesCoreExt\n", + " 10803.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mStatsModels\u001b[39m\n", + " 19591.8 ms\u001b[32m ✓ \u001b[39mReverseDiff\n", + " 12657.7 ms\u001b[32m ✓ \u001b[39mWeave\n", + " 7220.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mQt6ShaderTools_jll\u001b[39m\n", + " 6782.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelAbstractions → SparseArraysExt\u001b[39m\n", + " 1104.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang\u001b[39m\n", + " 4287.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysGPUArraysCoreExt\u001b[39m\n", + " 4944.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mlibass_jll\u001b[39m\n", + " 4774.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mPango_jll\u001b[39m\n", + " 32365.2 ms\u001b[32m ✓ \u001b[39mDataFrames\n", + " 6177.0 ms\u001b[32m ✓ \u001b[39mJLD\n", + " 5217.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mMultivariateStats\u001b[39m\n", + " 7332.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelDensity\u001b[39m\n", + " 3913.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesReverseDiffExt\u001b[39m\n", + " 3929.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mArrayInterface → ArrayInterfaceReverseDiffExt\u001b[39m\n", + " 3842.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mQt6Declarative_jll\u001b[39m\n", + " 5315.0 ms\u001b[32m ✓ \u001b[39mGLM\n", + " 632.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangChainRulesCoreExt\u001b[39m\n", + " 639.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangTablesExt\u001b[39m\n", + " 1963.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangStaticArraysExt\u001b[39m\n", + " 3458.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangStructArraysExt\u001b[39m\n", + " 3497.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mLatexify → DataFramesExt\u001b[39m\n", + " 7818.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mGPUArrays\u001b[39m\n", + " 4708.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mFFMPEG_jll\u001b[39m\n", + " 5447.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mChainRules\u001b[39m\n", + " 9637.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mNNlib\u001b[39m\n", + " 5803.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangDataFramesExt\u001b[39m\n", + " 2197.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mFFMPEG\u001b[39m\n", + " 2489.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesGPUArraysExt\u001b[39m\n", + " 2756.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mGR_jll\u001b[39m\n", + " 799.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mMicroCollections\u001b[39m\n", + " 2203.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mArrayInterface → ArrayInterfaceChainRulesExt\u001b[39m\n", + " 2186.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesChainRulesExt\u001b[39m\n", + " 2693.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mNNlib → NNlibForwardDiffExt\u001b[39m\n", + " 3767.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mNNlib → NNlibFFTWExt\u001b[39m\n", + " 3033.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers\u001b[39m\n", + " 1272.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mOneHotArrays\u001b[39m\n", + " 4369.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mGR\u001b[39m\n", + " 4136.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mLoopVectorization → ForwardDiffExt\u001b[39m\n", + " 3705.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers → TransducersLazyArraysExt\u001b[39m\n", + " 3398.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers → TransducersAdaptExt\u001b[39m\n", + " 3971.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers → TransducersDataFramesExt\u001b[39m\n", + " 3508.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesOneHotArraysExt\u001b[39m\n", + " 3065.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mFLoops\u001b[39m\n", + " 7541.0 ms\u001b[32m ✓ \u001b[39mReactiveMP → ReactiveMPOptimisersExt\n", + " 25047.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mZygote\u001b[39m\n", + " 13152.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLUtils\u001b[39m\n", + " 3710.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesZygoteExt\u001b[39m\n", + " 3833.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mZygote → ZygoteDistancesExt\u001b[39m\n", + " 3821.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mZygote → ZygoteColorsExt\u001b[39m\n", + " 4821.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesMLUtilsExt\u001b[39m\n", + " 13269.0 ms\u001b[32m ✓ \u001b[39mRxInfer\n", + " 8197.8 ms\u001b[32m ✓ \u001b[39mFlux\n", + " 46285.3 ms\u001b[32m ✓ \u001b[39mPlots\n", + " 3945.6 ms\u001b[32m ✓ \u001b[39mPlots → UnitfulExt\n", + " 3294.9 ms\u001b[32m ✓ \u001b[39mPlots → FileIOExt\n", + " 3546.0 ms\u001b[32m ✓ \u001b[39mPlots → IJuliaExt\n", + " 6700.8 ms\u001b[32m ✓ \u001b[39mStatsPlots\n", + " 111 dependencies successfully precompiled in 137 seconds. 372 already precompiled.\n" ] } ], @@ -119,7 +679,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 260, "metadata": {}, "outputs": [], "source": [ @@ -155,764 +715,764 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2Bb1fXHv9rbluS97TiOs/c0mWRCykqYZZc9SqBASQOU9QPCLlAKDWWF2aaBkELIIiF7T9txHO+9l/Z+vz+eoj1tWZLt+/nL77773j3Ss/TVuffccxgURYFAIBAIhKEKM9IGEAgEAoEQSYgQEoYWFEXdddddTz/9tN+ea9euve+++1Qqle9uX3zxxX333VdWVhYiA4Ogp6fn5MmTBw4cuHDhgkajCb8BBMLggAghYcDz7LPPcrnc5557zv2UWq3mcrk8Hs/WYrFYPv300w0bNvi97aZNm9atW6fT6Xx327Nnz7p165qamoI1uy+cPXt2yZIlMplsypQps2fPzs/Pj4mJmT59+j/+8Q9bn7q6unXr1u3fv793QxQWFq5bt66oqChEJvsnOTmZ4ROBQBA2YwhDCnakDSAQ+orJZDIajSaTyf0URVFGo9GxhcFgzJ8/PyMjI1zWhZ5Tp07NnTtXpVJNnDhx+fLl8fHxjY2N586d27Fjx+bNmx988EG6W1FR0X333ffAAw/Mnj27F6Ps2LHj8ccff/fdd8eOHRtS870yd+7crq4uj6fOnj3b2toql8vDYwlhqEGEkDC0YDKZu3fvjrQVfWLNmjUqlerhhx9+//33Hdvb29tPnjwZKav6zn/+8x+P7YcPH54/fz6Hw/n666/DbBJhiECEkDDkOHHiBJ/PHzNmjGOjVqv95ZdfqqqqEhMTly1blpCQ4PFas9m8c+fOc+fOSSSShQsX5uTkeBulu7t7586ddXV1XC532rRp06dPdzyrUqlKS0vlcnlOTk5TU9O2bds6Ojpyc3OXLVvG5/N9279v3z4Ajz32mEt7fHz8kiVL6L+rqqrKy8sBtLW1nThxgm7MyMhITEyk/66urj5x4kR9fT2DwcjPz58/f77jBHJJSUl9fT2Auro62+V5eXkxMTG2PqWlpQcOHGhvb09JSVm4cGFqaqqLPRqNZu/evTU1NVqtNj4+fsyYMRMnTmQwGL5fnQvNzc3XXnutXq//4IMP5s+fH9S1BEKgUATCAGf16tUA1qxZ435KqVS6/J/TM6h5eXmO3U6cOJGVlWX7UAgEgq+++mrGjBkA2trabN3q6+snT55s68ZkMl944YU777wTwJ49exxv+NZbb4nFYscP2rx581paWmwd6KW7m2+++Z///KejAg0fPryqqsr365VKpQBKSkp89LnpppvcP+zvvfcefdblRwCA9PT0ffv22S6fOHGi++Xbt2+nz3Z0dFx55ZWOp7hc7vPPP2+xWGx32LZtW3x8vMsdVqxY4fuluaDX6+l53dtvvz2oCwmEoCBCSBjw9FEI29vbk5KSGAzGk08+ef78+bKysueee47P59NOoU0IjUYjrYI33XTTqVOnqqurP/zwQ5FIRHtCjkL46quvAsjNzV2/fn1RUdHBgwfvuOMOADNmzDCZTHQfWgizsrJEItErr7xy+PDhnTt3Ll68GMBll13m+/UuWLCAVtZz585561NYWPjKK68AuOKKK3ZcpLa2lj47atSoN954Y/fu3RcuXDh06NCf//xnDocjl8tbW1vpDocPH77//vsBPPTQQ7bLOzo6KIrSarX0+7BixYqdO3eeP39+06ZNI0eOBPDOO+/Ql6tUKplMJhAI3nvvvZKSktra2gMHDrz11ltPPPGE75fmwt133w1g5syZOp0uqAsJhKAgQkgY8NBCmJaWNtMN24SkrbO7EK5ZswbA3Xff7XjPJ554gr7QJoT0AlVBQYHZbLZ1++yzz+huNiGsq6vjcDhJSUk2UaG58cYbAWzYsIE+tAVz/vTTT7Y+KpUqPj6eyWQqlUofr/fAgQM2dzMnJ+eWW2756KOP6uvrXbpt2bIFwAMPPODv/aMoinrppZcAvPXWW7aWt956C8C7777r0vONN94AcNtttzk2trS0SKVSmUymVqttr87lLQ2W9957D0BycrL7SyMQQgvZPkEYJLS1tRW7UVJS4vfCTZs2AXj88ccdG//0pz8xmUz3bi7tN998c3JysmO37777zmg03nfffS6rjA888AAAWpxsjB49evny5bZDkUh0ySWXWCyW6upqHwYXFBQUFRXddtttMpmsqqrqq6++uv/++zMyMpYvX97Y2Oj39XrkqquuAnD06FG/Pb/88ksAzzzzjGNjYmLidddd19XVdfjwYQD05G1hYaFare6dPfv373/iiSd4PN6mTZvS0tJ6dxMCIUBIsAxhkPDEE0+8/PLLLo0qlUoikfi4ymKxlJaW8vn8/Px8x/aUlJSkpCTH3YHnzp0DMGHCBMduHA5n7Nixzc3NtpZTp04BOHPmDO2n2lAoFABcFM5lUABJSUkAWlpafG9ayMrK+uKLL0wm09GjR48dO7Zt27bt27dv2bJl/vz5p06dEolEPq4FUFtbu3bt2n379jU0NDjuWGhvb/d9odFoLCoqYrPZn3zyicup0tJS2wscNWrUrFmzDh06lJWVtXz58gULFixdujQlJcX3zR3NW7FihcFg+Pjjj+mVWgKhXyFCSBjSaLVas9mckpLiHs2YmJjoKIR0ihn3aFKXFlpXdu3atXfvXpeeMpmMzXb6xAmFQpc+tLtpsVgCMZ7NZhcUFBQUFKxaterw4cMLFy4sKyv75ptv7rnnHh9XlZeXz5o1q7Ozc9asWcuWLZPJZCwWq7u7e+3atWaz2feISqWStm3dunXuZ2UyGX2WyWRu3br1xRdf/Pbbb9evX79+/XoGg7Fo0aIPPvggLy/P9xBarXblypVtbW2PPPIIvUZIIPQ3RAgJQxqBQMBiseiFQBctbGlpcTykl+VaW1tjY2Md21tbWx0PaQf0k08+ue666/rLaE/MnDnzxhtv/PTTT48fP+5bCF999dX29va//e1vq1atsjUeO3Zs7dq1fkcRi8V0hpe2tjYWi+WjZ0xMzJtvvvnGG28UFRX9+uuvX3311Y4dO5YtW1ZUVOQjQQxFUXfdddfx48dnz55NL0YSCGGArBEShjRMJnPUqFF6vb64uNixvb6+3kUI6blKeubThsFgKCwsdGyZNGkSgAMHDvSXxd6hNyDa9InD4QBwT7hz5swZAHTwjg3bZkEbXC4XgIuPyOVyx4wZo1arT58+HYhJDAZj3Lhxjz766NGjR2fMmFFZWenyBrrw+uuvf/vtt1lZWd9//z1tAIEQBogQEoY6K1asAEAHSdp4++23KecKZXS3t99+23Hecv369S4e4c0338zj8T777LMLFy64DERRVK+DRxz5/PPP9Xq9S2NbW9vmzZsBTJkyhW6hY0zoffGO0Nv7amtrbS0ajea1115z6UZvC6mrq3Npp7eCPPPMM+4Sa0tQTseOOp5iMpn08qe75TZ27Njx9NNPCwSCjRs3ektoQCD0B2RqlDDUeeyxxz755JPPP/9cLBb/4Q9/YLFYX3/99YcffpiUlOToFK5cuXLmzJmHDx9euXLlk08+KZPJfvnll2eeeSYzM9NRVDIyMl5//fVVq1YVFBQ88cQT06dPT0hIqKmpOX369BdffPHiiy963OoeFKtWrXryySevvfbaSy65JD09XaVSFRYW0jso8vPzf//739Pdhg0bJpfLd+zY8cc//jE/P5/L5V5yySVjxoxZsGDBtm3bbrvtttdee23kyJEXLlx44YUXXEJkAUyePJnFYn3yySdcLjcrK4vFYi1fvjwtLe2Pf/zjDz/8sHXr1jlz5jz44IOjRo0ymUzV1dU7d+7cuHEjvUT6448/vvDCC3fcccfkyZOzsrJUKtUPP/zw008/paenz5o1y+OL6ujouOGGG8xmc05OjscFSJqnn346MzOzj28ggeBKRDdvEAghoO+ZZYqKihyDOEQi0YYNG9wzy7S0tBQUFNi6sVis1157zWNmmfXr17unHBs9evShQ4foDrbMMi4G09vYbTlcPPLQQw+lp6e73JzFYl1zzTUNDQ2OPbdu3er4uujMMnq9/pprrnG8dsaMGfS2h/nz5zte/vHHHzuGetqsUqlU9957Lz31aoPL5dpSAWzfvp3eQeHIuHHjzp496+1FuTvQHjl+/LiPd4ZA6B0MilSoJwxwOjo6Ojs75XJ5XFycyymKosrLyxkMxvDhw22NZWVltJfj2NNgMOzevbu6ulouly9atEgmkzU0NOj1etoZsnWzWCwHDx48d+6cSCSaP39+WlpaW1ubUqlMTU11yRFqMBiOHDlSVlZGR6WOGjUqNzfXdlan0zU2NorFYlvyT5r29naFQpGSkuK35FBJSUlFRUVTUxNFUWlpaVOnTqXnHt3R6XTNzc0WiyU+Pt6WLPTs2bNnzpwxmUyjR4+ePn262Wyura3l8/nu+q1SqejpXxer2traDh482NTUJBKJ0tLSpkyZ4hhGZDabz549W1lZ2d7eLpfLhw8f7jvRqNFodJ+GdSctLc0xIx2BEBKIEBIIBAJhSEOCZQgEAoEwpCFCSCAQCIQhDRFCAoFAIAxpiBASCAQCYUhDhJBAIBAIQxoihAQCgUAY0hAhJBAIBMKQhgghgUAgEIY0RAgJBAKBMKQhQkggEAiEIU10CSFFUS+88EKAPQOs4k0YlLjXACIMHcjTH8qYzeaQZwaNrlyjJpNJIBAYjUa/PY1Go9lsdklzTBg6KJVKuhY8YQhCnv5QRqfTsdlsNjuUNQSjyyMkEAgEAiHMECEkEAgEwpCGCCEhomga0Pwr2g9H2g4CgeAFdTXK10XaiP4llNOsBELQbJ0KUSYMXbgioALlBAIh3Fz4O+o3Y/i9kbajHyEeISFymNQwKbDoN2jqQJEYYAIh+rAYUfUV1LUwaSJtSj9ChJAQOdTVEGaBJQAnFvrWSFtDIBDcaPwZMSMQOxo9xZE2pR8hQkiIHKoqiHMAQJQJdU2krSEQCG5UfoZhd0I6Dt2FkTalHyFCSIgc6mqIsgFAlE2EkECIRhq3IeNaSMehhwghgdAfqKshzgaIR0ggRCUmFZhscCSQjiceIYHQP6iqIKKnRrOgro20NQQCwRlDN7hSAJCOQ9fZSFvTjxAhJEQOdTVEWQAgzCIe4YDn+MOo/iagnpq6fjaFECKMCrBjAECQAliga4m0Qf0FEUJC5FBVk2CZwYO6FvWb/HfTd2BzLiiSNXsgYLzoEQKDe3aUCCEhQhgVsBjAiwfoqVEihAMcYzead/hXuI7DsBhh6AqLTYS+YXAQQvlktOyKqDX9CBFCQoSwRcoA4MoACsaeSNpD6COGblBmtB/x063tIADoO8NgEaGvGHvAibX+PeIRlK+DpsF62Pwr6n6IlF0hhwghIULYImVoyOzoQMfQjbSr0LTVT7f2Q2CwYCBCOBBw9AhFmRh+L84+az0seR1N2yJlV8ghQkiIELZNhDQkXmagY+xG9o1o9CmElAmdxxE3gwjhwMDQDY7Ufjh6NRp/QdcZ6FrRvGswzW+HRghLSkqWLl2am5t7/fXXNzY2und48sknF1/kzjvvDMmghIGN49QoyDLhAIcywaRF8hIoS2FUeO3WdRbCTIiHkanRgYGxB9xY+yEnBmOfxunVqN0AfiIRQicsFsuVV145d+7cvXv3JiQk3Hrrre59Tp48WVBQ8NRTTz311FP33HNP3wclDHg0DRCm2w+TL8XZZ3H4DhiVkbOJ0FsMPeDEgMkBPxm6Zq/d2g8hfhZ4cug7wmgcobe4eIQAht8HVTmKX8bwe4gQOrFz506NRrNmzZq0tLS1a9cePHjwwgUPJXXGjRu3aNGiRYsWFRQU9H1QwoBH2wRBqv0wYyWuKIe6Bg2bI2cTobfY4ux58dC1ee3WfggJBeDKydTowMBx+wQNk4Px/weLAVk3ECF0ori4ePLkyQwGA4BEIsnLyysu9pCn/OWXXy4oKLj33nsrKyv7PihhwKNtgiDFqYUXh7Sr0LbfeqiuRvOvMKnCbxohaGxRFfwE6Nu9duspgnQ8eHFECAcGBoeoURtZN+Cy0+ANqqnREBTmbW9vj4mJsR1KpdK2NtefhHfddVdqaiqHw/nyyy8LCgqKiori4+M93s1sNstkMtvhHXfc8dJLL7l3MxqNZrPZZCLbcgcqYl2TyiSByknnmOLJ/LJ1GpWKU/MZt+QFsPiG3EeMwx50v1ytVtO/vQjRAKunicuUaFUqHjPWoqg3qjz+fKFEijINM5VlEbLVrTrPfQKCPP3wINB1GMw8s4cnJYXZLDYqVEoFGOGOuNTpdGw2m80OVLz4fL7fziEQQqlUqlarbYcKhUIul7v0+f3vf0//UVBQcPDgwZ9++umOO+7weDcWi+XoMgqFQh6P596NFkI+n99H4wmRwdAFJlcsTXRtFxXgUIOYo0f9V5j9LYwKXsUnvPF/dr8BRVFisTgcphICoVMHQbxYLIY4FVDyPD4aTR24sSJpCrSpaFL05fGRpx8mzApBbCq8vdVskZhnATfG89l+g32REN4zBGI+bNiwkpIS+m+DwVBVVTVs2DBvnRkMhkwm02h8FTuWOeBRBQkDHpcFQhsMNuJmoOoLaOqRdCmSF6PtAMzasNtHCBJDl32N0NvUqOICJCMAkDXCAYPHqVEbXNmgmR0NgRAuX768o6Pjxx9/BPDhhx9mZmZOnjwZwM8///zxxx8DUCqV+/fvt1gsFEX9+9//Pnr06IIFC/o+LmEAo20CP9nzqcQ5KHwe2TeBwQInBrIJaN0XXuMIwWNUWL8xfQTLKMsgyQMALokaHSAYfQohb/D8oAmBEPL5/G+//fbhhx+Oj4//6KOPvvzyS7q9sLBw//79APR6/T333CMQCMRi8XPPPff111+PGjWq7+MSrHSdAWWJtBFBonOLlLGRMAdGJbJvsR6mLPWfrIQQcYwBBMsoLyBmBDCovkAHMxY9KDPYQq8dBpFHGJpp1sWLF9fV1anVapFIZGtcvXo1/Ud8fHxJSYnRaLRYLGSqM8RQZuyYjdy7MOVvkTYlGLxNjQJImIXRqyGbaD1MWYZDt4XNLkIvMXRfFLl46L14hIoLSJwHABwpjCpQZjBY4bOQECy+50UxqIQwlAE/jiroDofDISoYehSl4MnRshslb0TSjIO3oOa7IPprG716hEweJr5qP5RNgrqabKKIdmw7r3kBeIQMJrixg+Y7NKxY9OH7LLhvInSBCCEhWug6ibiZmLcZxa/CYoyMDcoy1HyHjqNBXOK+idAbDCa4cSQjV7Tjd0O9xQhNHcS51kMSL9M7Tj6O7QVhyr5kIEJIGCh0noR8MkRZkOShdW9kbCh5C3HT0F0UxCU+pkbdGUSft0GLzSPkxMBihFnn2kFdBUEamFzrIVdOftwEjaYONd9BOh6HbglHWIDvSBkMqg8mEcIBDi2EANKuQONPETBA14LaDZj6AXo8pBPyio+pUXdIbEX04ziNxnfYQWGLDlVcnBel4clhIIGjQVL0Mobfi5mfwdCFsg/7fTjiERIGCBS6TkNGC+Hv0BAJIWz4GamXQT4JJnUQchX41CgG1edtENL4C+D8pWmLl+kuxOYcVH4BAPU/Qj7NfhXxCINFU4+6/2Lk42ByMPXvKPo/X1U+QoJ7xm0XBtEHkwjhQEZZDq4UvDgAkE2AWQ/F+XDb0FME2QSAgdgxgc6OGhVgsMAOODPIIPq8DTYMXfhtOXQtTl+a9J56fRv2XoW8B3HmL2jeicYtGPUn+4Uk3WiwlH2E7JutH3bpeKRdjnNr+3dElxpM7gyiDyYRwoFM50nIp1w8YCBtOep/DLcN3UWIHQsA0rGBzo4G5Q6C/ryRL82oxNAFUGjaDosenIu/bOjA0cIXkH4VJq5F2hX4bTkmvuq04EQ8wqCw6FHxCfIcku6OexGl7/fvSiHxCAlRR933Hn4Adh63LhDS5NyO8o/Dvbm+pxjSsQCC8Ai1DUEKoXzQfN4GG/RzqdsITgxwMQs2Lx66VtRvQt4DADDhZYx8FDnOZUrJum9Q1P4X0nGIybe3CNPAkfgq/dh3AvIIB8lDHFxC2Lp3YFQ5V5Sg/ZCHdnWNVyUrX4fGLa6N9T8ieYn9MH4meHI0/hw6Q/1h6IRJba2vKx2LnsCEsO2Afb98IAyiH56DDUMXhGlo2g6uvWIM+Alo/AWcWGtmUV48Jr5ml0kasn0iKMo+woiHXBuFmf37dUc8woHKuddQ932kjQiAqq9w9jnXxuJXsHUaTv4J6irXU4YutB9E11mAAoD6TQDQcQwA4qY59cx/BKXv9YvNHukuQuwY63dcrL+p0bYD1u++hp+QdkUQo3BlZBotSjF0IW4muFKnb0xePJp3IP1qXxcKM6By+z8neETbhJ5zSL3ctV2UZRXCtgNQ14Z+XH07eJ6L5VmxZQga+AwuIVSWQVkeaSMCQFGKtn0wqZ0aW3aj4CvETbd+QVR+gSpr1lY0/A/Ji8CJgaoaqirsvQaVn6PmG2T/3vXOmdejuwjKsv5/DQAc5kUB8BMBJrRNXjsXvoDCF6FtgrIMCXOCGIVMjUYthi7w5Eha6BRnz0sAZfEjhPIp6D4Li76/DRwMNPwPqZeByXFtF2VZ9e/cWtR8E/pxfSQEpmEwwZHA2BP6ocPOwBdCkwZbJoCygDJBXR0+DegLygvgSNGy26lRXQNxNsQ5ViFs3o6il6wuYN1GZKyAbAK6z6D1N8in4vRqVH/rQQiZXCQvtBd572+sHuFFpOPQXei1s6ELFR+j8jOkLPXwqfbBIJqBGWzQs2epS8FPsjfyEiBMR9xUXxeyRYjJR+fJ/jZwMFD/I9Kv9NAuyoSmFgB6StB1NvTjapv9r+UPls9myIRQr9crFL72tVgslq6uLosl1KEcqnJ0n4WqAqpqMFhQRb1HSFmgLEfefU5FFSgLNHUQZkKUDXU1ACjLoGtB0w7oWtDyG9KugHQCus6g5TcMvxe5d0OYYV2DcUE+OXzfLz1Fdo8QAQhhwhwUPh/cvCgG1Zr8YMPQBa4M2Tdj5qf2xoQCLNjmuijoTvwstB/uV+sGAyYV2vYjZZmHU/QaoVkHdTW6Qy2ElAmGLvAS/HQjQujISy+9lJiYmJubO3/+/PZ2Dyl3d+/enZmZOXbs2KysrL17Q5oJjJ4L7T4LZRniZ0HbBIvBekrXGo1foOoa8OKRsRKNDkKoawZHChbf7hEqyzDmLzj/DvZcgVGPgxML2QR0nUbrb0iaj/Ev4NLtnu8vC6cQFlv3TtD4jpcxdGHCK2AJkXpZcKPwyNRotEILIRj23GkAmFzEjvZ/bfwszyFjBEeatiF+FjieqsDTa4TKCxDnQlXpIa1dX9C2gBcPhj+B4CVA1xrKcSNECITwyJEj7777bmFhYWtra0pKyl//+leXDiaT6bbbbnvzzTcbGhpef/31W265xWwO3fqqsgxMDrrOQFWOmFEQZkBVaT1V/HJYI0f88utCKM5bc/BLx8Gih6LUekpdA1EWAIhzoK6CrhVgYsQf0XEY0nEY+1cAkE1Ay6+gzJDkgcFyitNzRD4J3WfDsYJd8S+Ih4GfaG/x4RFSFhgVkE3AyhavlnuDEwujcuDVXBwKWIWwVxAhDISW35Cy1PMpeo2wpwSyCZAMh6IklOPqApgXBSC+OIM1wAmBEH755ZfXXXddZmYmg8F47LHHvvrqK5f5z927d1sslhtuuAHAjTfeaDKZfvvtt76Pa0VZjsT56D4DRRkkeZAMt8fL9BRD0xCygfoKhY7DqP8RilJI8gEg6wZUfGw9aRNCUTZU1VCWIWYE2CIs3o/p/7T2EQ8HZUHifD/jcGIhSOn3FDOqSpxeg5mfOzXGjoHivGcNNirAFoHBAjP4UlwMFjhiGLt7ZymhH+mLEIqHWUtSDFlUFf5zUCjLnLYPOsKVAhTaDyFmFKTjQ7xMGGDWC1HO4Ij+DYEQVlZW5udbH1V+fr5SqXSZHa2oqMjPz2cwGAAYDEZ+fn5lZaWHGznc0IZWq/UzvLIMmSvRdQbKMsTkQewohOegjRoh1LfDpEHDT1BesP5nj3gElZ9bY65sQihIgbEH3WcgyQOA2DFgXCyezGBCOh5JC/yPFYZlwhOrMOYvrjNgbDH4yZ4Dd/vyjQkSOBqt9PGxxs9E/ebQWTPQKP8X9l3rWj3t9Gpr+lYaZZn1q8Ajoiw0bUPsKEjHo/tMKG3TNoGf7L/bYPEIQ1Chvqenx1aSVywWA+ju7k5MtM+YKRQKoVBoOxSLxd3dXn/dm83mhQsX2g5XrFjxwgsvuHczGo1ms9lkMomUZdrYOQL9E+g8oWWmsniZzM5zepWKYewWaZss3HiNKipqujK7S/iSUYyus5RBqZcvNKtUgJyfsMhy7u+G3FW87nKLZJRRpQIgFGRY6n6xSCca3Cxnjn2HEuVQ/l4RVzSW0XrExIhjmBSm5N+F/LUwjN3Clr2aiZ+4W8IXjzI1HzMx01zamT2NfHZMr5+FkB2r626wwB6aqFar6Z9WhAgi1HXoTDxLbx8rM/fPgiPXGoyUMeuOoC4cHE+f31XC0jYbCt825to3ywsbt5l1Cn3MHACwGMTaRhUVDy/vMJ+bym7dpmFnMfg8bsMv2tB913EVNWDFuX8FucBkJPEVFR4/18yes+zG781xs82Ji0JlFY1Op2Oz2Wx2oOLF5/P9dg6BECYkJNiEjf7DUQXpDj099r0mXV1dLh0cYbFYVVX+fW1aCPlsCwxdwviRkI5Hx1Fh4hhYmtG+gyMWo+0MxLlMXROtzeGmfjNiR0My3N7S1QbpSMTmM+o3CRIngrZq3FPYcyV3/GoYGhB3NY9ulAxjtu9F7s1cd8vFMwIaPXkWDt7Cqfsa/GQMvzEkL8iJ6k1IvlQU6+khxk9i68vhbrlaD35c758FP07I0jnelqKoyDxZgiNmhVCaCl5vH4S4AIv38nbO4yXPcE0N4ZNB8vS1VZj2Ae/kY7yRd1uzaVMWqC4wWVwO/eoUpRCmi2O8+9yxuWhjCpMnwtCFU8W9eU80DTj5KMa/iJhRTu3mTtNWE2kAACAASURBVEjHefgKcoEzBpoaD+N2HMHhq5B5Hc4+jOXnPAf79Bb2RUJ4zxBMjY4dO/b48eP038ePH8/IyJBKpS4dzp49azAYABgMhsLCwnHjxvV9XABQlUM8DAwmZOMhygKTC8lw61bCnnNInAuTKjKbdsv/ieYdTi305GfaFWDxIcq0NsomgZ+Mll1Q10CYZW0U58Co8DUf4pe4qYgZgSUHYdYEVy/XN7pmnHwclAl1P3jdLi0d63lEMjU6CKFg6PFTss4vkuEY9SRK3gyRSQMICqpypF+JhDn27InqKnBi0VMMsxbwNy8KQJQJUTZYAghSAQt0LUFboSpH637smIfa/zq1B7hGyIsHZfRQEKq7EGlXYNo/kHo5zjwTtFVhJwRCeNddd/3yyy8bN24sLS199tln77//frr9gQce+PbbbwFMmzZtxIgRf/nLX6qqqlavXj1y5MjJkyf7vGXAKMutXpdsovU/RpQNbRPMOijOIXYM+Mm+cp30H7pWaOqdWtS1EGYh/Urk3Q8Gy96e/XtUfwN1rXWNEIAoG0CfhJATi0V7EDMKGStRtxFAaDZsHXsIVetx4lE0/4p0L3sBY0aj55yH9r4K4SDZrjSoMCrAFtrXsHtN7l1o2TU4Yi6CQFMPjhRsMRLnoO2AtbHnHGSTEDsGnSeAAIRQnAvpRaciZmRvQuT0nYifiekfoeITp/YA1whBx/e5PTvbN/PEtaj5LvpDokIghDk5ORs2bHjvvfeuvfbaJUuW/PnPf6bbY2Ji+Hw+/ffGjRvr6uqWL1/e0NCwcePGvg9qxfZ2Z92IyW8CAJODxLmo+RY95xA7GoLUyASO6ltdnz3tEfLiMfkdp/asG1D7XzC54EisLeIc8JNDM5lAC2Hpe9g+q69CUrcRPSW4/Cwaf0HcVHDlnrtJcqGu8hA4SoRw8NHHZ2qDI0HuXSh9NwS3GgBQ+F8eFKV2kUu4BO0HrSfpby3bxhJlmdPyijsZKzBrvfXvmHwoLgRtjqEDvDgkLUD7QaewnQC3TwAQZXtIj6yqgDgXALhyxORH/6+c0EyzLl26dOlS180ur732mu3vzMzM//znPyEZywllmTWTEycWsRcrhox+CscegkmJ2NEQpkHbGPpx/eLBI6yxz4g6IkhF/AynpNLyyci8NjRmxM+CvgMlr0OYAXVtn762zj6HaR9AkIL5W2DyvoTOEoCXAE2d1a+10ccvTZ58cOzbHVSESggB5P4Bvy7ClL+F5m5hprsIp57Egl/89wTQXQxlOZq2gsW3CqFsItTVMHSDK0XPOSQtAEuA2n8DgLLcc3I1Gwym/RezZASUpb46e0TfCa4cXBkkeeg4ioRLAAAUdC0QBOYRinOgqnZttLkoAPgJ0HvIshJVDPBcoyYlpBNcG5MuBScWhh6IMiPjERp7YNZ59gg9kn2r01YhcS6mvh8aSxhMTHod87dANsGalrB3UGaoKhA/CwBi8h2qAXvCtkzrCPEIBx8hFEJJHkxK6NtCc7cw07QVbfusaYH9d94GUSaadtg9QgYb8mlWF7CnGLGjET8TbTaPMOAlkph8a4IORQmUAbuGtEcIIGkBWnZZG/WdYIsC3fIryvHlEQLgxUf/kx3gQnjJd4if6aF9zBrIJgKMyHiEutaLAnzxs2FUwqL3WtNk2O2Y9UV/GZN9M6Tj+1q6TFMHXgJY/IA6S/I8bCUkQjj4oJ2Y0MCAbJJ182t30QAraNCyGyY1NI0AUPouuk776ty0DeNeQNs+dBfbRS7hErQdAGWBohQxoyDKgigDZ5+Drtnrr2d3bFOjRS+j4rNAr6I9QgBJl9rLAOiaA10ghKethLpWMLn2/w1eAnRECCNC+pVY+CsACFJDs6eesmD7LGsol190rRBlgS20Twhoav38QzumauwPRJl9Wq9WVUKS678bjWNyHxt9FEJxLjpP2LPIEqKBEHqEuJgFgrJg9xL8OAyFHnYPRyOUCW0HEDvG6oQVvYxdi70WxzZp0HEEGSsRk4/mnQ5CWID2A1DXgCe3xgrM24zqryHMDCIWSZwLTS0sBrTsDiJ81NABnhwAEueg87j1Ky7AkFEa9+QyqnKIHZY2eWRqNILQ0iIIkUeoqUX74UDTtehawU+EMMO+TKiugdDTAmHYEPXNI1RWQDws0M6SvNBPjcomInYsyj7s/R0IIUTXAnVNqIVwCjpPoPM4eHG4/CxK3vS1FB09dByHOAfxs6C8AG0jGAzM/xmHboeu2UPn1j2QTwZHguTFgMW+ihZfAMUF7JxnL2rGT8al2zHu2SAsYXIhTEfjL9A2BiGE+k5w4wCALUbsWHQcBQBNPQSpgd5BPAzqWtT9YG9RVjj9buaTqdGIIwzRGiE95xDgJgR9K/hJEKZDfdEJ87FAGB6EmU41rF2+ZTQNflJaqyrtM/5+EfeDRwhg4qsoftXDjiVC+Kn4Fw7dFmIhlE1G10nUb0balRCmQToOnadCdvP+oObfqNuIll1IWoCYEVBcQNdpSCcgbjpybkXJ29ZuulZ8n4Ta/8CoRMmbSF0OAClLIMqyrzVwYnB1LeZswKQ37PcXD0P2LcGZJMlH2UeQjvcswx6xeYQA4qZZt210nYJ0fKB34Ehw6TacegKnV1tbHBcIQTzCaECQGhqPUFkKXgI6AhNCXYvVI9Re9AhVlRBnh8CMXiPKsgfLdBzBqSedfsH9drnr9n8XVEF5hLlQV1t3UFj0KPsICMV6knQckhag+qs+3YQQEtR1aN2Lpm2hFEJJHvQdqPnGWq5SPhWdxwCgeWc0pc53oPY/OHgrzr+NpAWQjIDyArrOQDYRAEY+jspPrTXgSt9D3HScfBxbxiNmBPJXAUDiXCzc5XQ3BgtxM5zKXPeCmBFo3o7sm3rjEeKiUw6g43hQiX4QNwPLTqDhJ1z4O+AcMgqAF0/WCCMNWwwGG4Y+Fy5QXED2TYF6hNapUQePsHWPNeQyUghSoGu3rrEVv4Kk+ai9uJvF0I2eIntBKI8E5RGyBODFW5ck2w/j+MMwdMPQHYIvTflUKCv6ehNC39HUIWUZOk+EUggZTMgmwKRF3HQAiJuGjmMAhSP3oPrLkI0SQtQ1mLMRmTc4eYSyCQAgTEfGCpx5GoYulP8TU97F4v2Y9BqmfQgmBwDAcN1fFBJi8kFZkHkDdG2BRrEaOu0eoXwKOo6DMqH7LGSTghuaK8W8/6H4FZx/B4pSN4+QCGHEEab3aecAjfICUpbCYnTdHegRXSt4DmuEhk4oSiMshAwWBCnQ1KO7EB3HMPs/aN1n/X3QfhCUxU+8dVAeIRziZdoOgjKj8WewBSFIQSLKiP4UFUMCTT3G/RW8+FAKIQD5VKT9zloMNm4aOo+j8wS0DWjeGcpRQoW6FvIpmPYB2GKIh0FTi87jVo8QwPj/g7IMP41CylKIh0GUhczr+92kmFGIyYc4BxyJ09Zkb5jUAAMswcXLR0LXhLZDEGXa83sEjjgHC3eh+Vd0Hnfa9UH2EUYFCQX2sOBeoyhFTD7iZwTkFNo8Qvpbu2U3Emb3e1yoX+gynuffQv4q8BKQfCnqfwSAtgOQT/UQ3mKDnuHhxXnt4I4tXqb9IOSTUb8pNN+YQiKE0YGmDpIRWLAVCXNDedsxf8GEl61/S0ZA14bydRh+HzqOBhqwHTZMGphU4CdYD5k86yqMbUMwPxELtmP8Sxj/YvisSpyDhbsBgJ/sdZlQeQGFz1v9RUOn0+eawYJ0AsrXBTcv6kjMSMz/CVfVONXrZgnAYMGo7OU9w8IQEMKUZWjc2qc7mLXQtUCUjbiZAS0TukSNNu1AcogLkfQGUSY6T6B+M4bfAwCZ16PmOwBoO4DcO30lZwoqZJQmfhaatlmrho5Zg8atRAgHDyY1LHrw4iCfArbQf//A4SXYv0AZTMgno+IzDLsT0vH2bJxRgqYWokzAoRSUZARixzpNezCYGH5P0J+dPsGwbnvgJ3ldJmz4GcWv4Mi9oCzQd7jmSpRPQd1/IZ/aJyvcU2hFfbzMEBDC5IVoP9jLX5TV3+DI3VCWQTwMDBbkU9AVQPVLW9SotgEWPZp3RoUQCjNR8gYyrrH+66dfBWUpGv6HzhPIuhG6Zph1ni90iQELhMzr0LoPLbvBiUXaFQAVGiG0rnQa/fck9B+aegjSwzFQ3DSIMiGfjORFUTc76r4hKmaEdYEwGvAhhB3HMOVd9BSj8jNXjxCAfArMut57hN6I+uQyQ0AIObGQTUDr3t5c2/A/VH6Guh8gGQEAwnT/MagWI4wKcOVg8ZGxAj8Og0kN6djejB5aRJnQtSDvYglQlgDT/4mDN0MyHFw5RNmeK8uDjpQJ8lctW4TM63DsYcQXgMlFfEFohJDBgiApMsljg6L+Rxy9337YuhfFL3vvPRDQtdgjzjR1EGWEY9CMazH2rwCQtBD1P2Lv1dh/XTjGDQS1W4qM3Hsw4o8RssYNQRK0XqZGO44iaQGG3Y72g/a0MjbipoLJ9ZC3so/wQxQv07QVZ54OwX3cCJkQVlRU7Ny5s7HR85dUU1NT5UXq6sI+u5WyDE3bPJ8yqUGZvFxGoeU35D2I4lesU/+CAIo66dvAjbMu+Bd8jXk/Yvo/naZQIkXMSCTOgdyhAFbyYmRci6T5ABAzwmu8THchYkcHPdzwu6EoQUIBACQtsIdo95EBMTvasgsV/7KukrYdwJ4rUf1NpG3qG0Uvo/RiRmxNPYTh8giH3Q4A8TPBiYUgFarKcIwbCNapUQekY6PJI0z27BEaOqFvh2QEZJPQecqeaNRGzEhcuj3QZIqBw4uHrs9To92FOHQ7LnwAkzoUNjkRGiF88803CwoK3nvvvQkTJnz33XfuHW655ZaCgoLFixcvXrz4D3/4Q0gGDYKUpWja7vnUyT+h4lPPp3rOgS3ExNfAlVk9Qq4MZq3XKUQaeoHQhnyqn/zxYSNxLha5ucUzPrbu4ZV4F8LOE36ybHuEjgBMXggA+X+0B0H0kQEhhJ0nkDQf59aidQ/2rcDMz6CuCTScPTrRNqC70Pq3pg7CsHiENpgcLD2M0U9F0TpTxHNF+cbb1GjHMcingMGEdByUpdA2udVTYyBxXujtcdxB0bilN94hZcHeqzHlb4ifwWrx8mXeB0IghO3t7X/961937969efPmr7766k9/+pPR6GEV5+9//3tFRUVFRcWOHT73bvcHsglQV3v+HaFp8CoALbuQdCnYQszdhIxrAAAMp3AsyuyhGruLEEY5DJZ1eV8ywnO8jLEH2ibEjOzNzef9z/oDgi0O2XviuDszOqHM6D6LGZ+i/kfsvx6X/BsZ14AliP49xb7QNjkIYbg8Qhd48dEkhP6yB0cWH0JIr/+xBBAPQ+s++ybC/rXHIVjmzNNo3Rf0HXqKweQg6yZkrGQ2fB9a6xASIfz555/Hjh07evRoAEuWLLFYLAcPHnTv1traWlhYqFaH3qv1D4ONmFH2T7IjuhavRSNbdiP5UgCIn2lf4nKcHe08jr1Xe7ghPykENoeZmBGed1B0noJ0PBissBvkhej3CHtKIEiDKBNT3sP8LdaZZ5Fbhv6BhbYRqkrrT8nwe4Q0bBEoCiZNBIZ2x1t50SiB72WNsPOYPRBGNhntB0O2ZuEbW7AMZYaiNIgfNLpWa66PjiOImwEAGdcwW3aEfDtNCArz1tXVZWVZfxwxGIyMjIz6etdd5wwG4/333//oo4+qqqqee+65J554wtvdKIpyLOGbn58/btw4926WiwRoJEM6Hl2nKfl0AFCcZ/QUUxkrATD1raBMHu5jUjFb9lim/B3Opxj8ZGiaKIsFAKOnlKFtsFjMjkuADHUNhBlUwIZFC+I8Zs85i0EBttixmdFxHLLJ0fNyGIJ0NO+ignz64cT+jmXeCID+/2GIsqCqomR9i0qPGBRT14KYkZauQsRNZ2rqLfxUROLNZ/LiLdpWiDIj/PQpM1PbFKk3ISB4iUxdi/tbxOw4Zpn0rvV/UjqRUbWe4srC8OlmcOOha6MsFigrmGYtpWsNcFBG5Rdo/IW6dCej7RDiZlAWCzhxVOxENO+0ZFwV4OhMpn9/L1AhvPzyy90bH3rooeXLl+v1ejbbfh8ej6fVusr1999/HxMTA+D48ePz5s2bO3fu9OnTPQ5EUdS///1v2+G8efPy8jyUpjQajWazOUDjAbDFo5ntJw1pOu7xP7A6DzJ0zVrZArCFQl0rpe/S6RyX/Sh2+QecsrdMaSsMkMLpFLicRIuy1qTTAeB0neeYdXpFE+Uwz85VVFtix5t0PtcRoxEpN/VqxqE79dPWO+o6r/2YOXFR9LwcJjuRq67V6XR6vZ7D4TieYmgbmYqz5qRlkbKNhtt21CJx/Qfg8NLRXW5MiPTbaNIwNdWWmOBCnxiGDj5LaI6daGk/ZRKNF6hr9axEKhL/EnyO3KBstLAS3Z9+OGFo6/m8OJ3BAkT6gXqDkgj17Tqtxhq1BwBg6Jr5ZqOOlUh/pzFFo/mAnhJb+v9RMiHhalt1Oh2r/TQPMGtaDIENyu25wG7bp1M08toPGzLvok015v8fU5DACthsLpfrqFAeCVQIH330UfdGejo0OTn5yJEjtsa2trbUVNcSHrQKApg6deqsWbMOHz7sTQiZTObGjRv92kMLIZ8fcHRT4jQ0fs/mmNDyC66ux9YpQkYn2Gyw+AwwhCytNXrKqMCh26DvwKLd7NjRHt4dSTrMHVyhEAB01QAE6HJaMtE3QLbC2mFgMfMf2DFPWPcJ8h+xN/acZo1/NopeDjMPugahUGg2m4UuVtX9jBOPYcxfMP4lx89/uFGcxrCbXN8xaR56ijkRfxvrt6N4LZYGljLXhqECwjR23CRoSrlcCyiTIDbgGj2hRZDIZ6jg8em7QFlQ8w2yb+6XgG11G0TZfgyIOJwYIVvnVAy85wLkE+1mp8wEGPzYVIThhZgzYWgVCoXQVUCQwjZ1sQMcVFsNrlTQ+gM0tfyU6XRAgy5pKpvN9qttQRHovZYsWeLt1KxZs9asWaPT6fh8fkNDQ01NzZQpXoMMjUZjVVVVQkKCtw79hXQ8egrR8BMS54IjgTDdmvaFlwiOGKpK8OJg6MSuxYibgdkbLubGdUOQgvaLqq8sA1cGbSOkDpO3fmvwRi1MHqb9AwdusguhUQFtI2JHRdQsZ/iJMCo8B+72nMP4F9DyG7ZNw8S1SF7scKoYMSPDsdJJmdBdCLlbwmJxttdireFE14KeIlBmMFjoORforhhtIwQpkI5D4xY0/ITYyG2KDTxe5sSjuPA+khf3y4J9xIvJBIIgBapKJyHsOuO0wYMTi9y7wrTcK86FWQdVJXrOIXFeEGuEqgqMeAhFr0A+KQTJir0Tgh/OkydPnjZt2k033bRhw4abbrrp1ltvTUpKAvDcc8+tWLECQEtLyy233PLxxx9//vnny5cv53K5V10V6PRuyOBKwY3D+beRfjUAqxBqWyBIgngYVJUwqbBrMZIWYto/vKogAEGKPVhGVY7Eua41YtS1UR1X7Rv5JFh0UJy3HrYfhHxSFEXKAAADgjTPWdR7ipE4Dwt3YszTOHwnmn+1tlMm7JiLjmPhsE5VDX6iyzorAIiyoaoOhwG+0bXApIayHJQJ22cGmmVC2wRBKqTj0HUSJx7D1Pf62UrvBCiE599B236Ic/orUlfpXIE9Osm6CeffcWrpOuO6U37Gx+DEhMMYBhNpV6B+s/VDGuD2CYsBmkbkPQhDB+Jm9quBoZlB+uGHH6ZMmfK///1v5cqV//jHP+jG+fPnX3/99QBiY2OnTZt25MiRffv2XX755ceOHYvMrIJsArpOW3f10UJIR3iKh0Fdhdr/gp+CSa/7uQk/GbomANC3AUxIxzklOtF3gMnpTeL2aIFh/X+lqfwCWTdG1B5PSDwV/gUuujgMZKzA9I9x7H5raFnrfmsBkGChTKjdENwl3sp0iLKhiYKthNoWgIHuM+g6A6PSXorLz1WNEKRAkAIGB8PvtZZJigi8uICEsP5HTHoDoqz+SuulLEOMh8CF6CL/EbT85hQqb6sSFRHSr0T9D1BeQOKcQD1CdQ2EaeAnInkJkvphd6MDoXE2JRLJM88849K4YMEC+g8+n79q1aqQDNQnpBNg6AYvAQCE6eguAlcKXiJEOeg6ibYDyLnZ/00EKda4ZGUZJHkQpKL7rP3swJ0XtZF+FQpfwOg/w9CJpm2Y9mGkDXJDkgfFBUjmODVqG8Hk2ieCUi9D1TQUvoiJr6LhR3DlUAYvhKpKHL0PmcGk9fJWuJEtAksEXWuEt9boWiAdh64z0DYheRHqvseUd/17/Noma2aleZt7k1ohhPDi0VPsv5uqApLh4CVA19ovZqgGgkfIFmH0n1H4POZsBACzFpoaxERumSNpIfbfCF4CRNmBeuq2Ar/zf+pX0zAkco3ayP0DplycKxA4T412nUHrPqQu938TfiL07aAsUFwUQkePMMp3FwVC4jz0nIOuFdVfI/XyvpaV7w88bnl0X/Ga8g4qP0V3Ieo3Y8SDvfEItU0w9oAKIjjZV+FGcRRsJdQ1I2UJus6gbT+G3QFBSkBbm2mPEED8TF+rBmHAW2U7x11lZi307RBm9GM9WPpHcPQz/B40bbX+A3cXQTIiko+PxUfKYsSOAVsEIKA0ab1I999bhpIQirLsZZddpkY7jiJxTkDT5Qw2uDLo26Asg2Q4hGlOa4QDeoGQhslF5rXYNh3FryL3rkhb4wlJnodkQD3FiB3j1MJPwvgXsW8FQCHjWg9C6Leyj7YJlMWebDoQVJWQePnoRsMyoa4FKUvQfRqt+5AwG5nXBzT3S68RRgMe1wibtuOHdLuiqyohygaDCX5Cv6wR6tsBRnDlOSMFWwxBqvVXY/cZe9HgSDH8XmSuBAIu1UuEsN9xFEJRJhgsZKwI9Fo6XkZV7uQRnnkayjIPqXgHItPXYcEvmPSmNStKtGGr+uuIxxjI3HvAS0D6VZDkQVXp5NsZFdgxB4YuXwPRUVGGACp92/BRu1GU6TnGJ5zoWhA3A0YVWDyIspC6HC27/F9l8wgjjrsQ1m3E4TshGQ7VxWVj23waPxH6fpgaHSjuIE3sWGsaSPdImfCTsgzD7gQCrspke5T9z1AVQn4CTEpoasFPBJOLYXcgPeBAVn4yVBXoOgNJHvhJ0HfAqMD5t3H+nWjPQBg4MaOQ/fuoKJrhjigbuhbXHRTuHiEABhPz/odxz4MtBD/RaWZS2whQ6DzuayA6qWxQQuhtjRA+S8SFB5MGlBmcGMgmIGE2AIiyrJuIfEFB2xwtQsh1C5YpfgUzP0XqZXZv2+ZG8PrHIwzjt3MIkI5FTxEAdByJ8PquIwHW6VUSj7DfYUCQhu4ia/DCjH+5ZWH3jiAFB34P+WTIJoLBAj8B1d9Akoeaf6OneMBPjUY/DBZE2Uy1c0Ueb7vieHHgxAJATL7T7Cjt7fneU0H30QcshLoWsPheJ9h5if0VuxEgtiy4KcuQdiUAcCRgMGHs8XWVvgMcCZi8cFjoF3489B324NvO4zB0IXmxUypXm1D10xrhQPQIjT1QnEd85MJ9XeDF+/+NQlmgrg66EmpvGbJCCAjTYTGAF3xVhBEPYvFeFHxtXXkWpKLiY+TchuRF6Dk3GKZGox9JHlPjIIQuIaOeL3ETQrbYvxDyE4PwCH0vafCjRgjH/AVZN1gbBWl+Ch1Hz7woACYPLB6MCuth+cfIvRsMppMQ2p4CP5F4hFaPsHUf4mZEy68ZBLZGqKoEPwHsMG20G9pCyBb2Zs+ffKo1DzqNIA2dJ5G2HCMeBJMHfnIIbSR4RpLHVDlsJewuhNRfuhNXj7ARKUvR6U8IY8cEI4SVvn7ARo8QOiJMdc0I4YK2MVoiZWhss2pGJWo3WNecxNlQ11g72NcIE8gaISQjoK5F4xYkLYi0KQ4EskbY+hsS5obFGmCoC2FINnUJUiHOQcwoJM7Dol2RzHI5dIgZwVRX2A+7i5yy3Hm+JN8p1lTbhPhZMBvseYLcoYUw8KlRHyGj6LfYjcDxKISCND9CqI5Q0SVv2PbUN/6E+AKrtypMh7YZFiMsRmgaIMoGAK4chh5QphAbMCA2EdpgciAZjuqvo0wIA/AIm3dZq+CFhSH8rR0qIRTn2ANt4gtCcEOCXyR5TLWDR9hT5CFSxoXYMeg+aw8c1TZBmIq4afbZ0dJ3YTHY+5t1MGsgzg3CI/QRMgpb7Ebkkst49gj9TY1q6iCKKiG8GDha94M90pvBhiAZmnqoqyFMs65ZMFjgyaHvCOXo3UXgygbG3gkbsWMBCvJoKgHmf42QQstuJBEhDAMx+RDlhOA+Ix/DpDdCcB9C4MgmMzXVqPvBehiIRyhIgTAd7RcLL2gbwU9B3DTr7KiuBScecyrRrGsGPxm8ODePkPIaXaIo9eUrsPhgCYLblRhaPHuEqdD69AgjVYbXG7x46Nph1qF5hzVdIg29TOiygBfy5DKNPweUdiOqkI5DwuwIZ0Jwwa9H2HMObFE4I/CHsBAmL8Yl34TgPgxWv6ZFJ3iAK9VO+xZH70PncVBmKEr8e4QAUn9nLwFBe4Txs9C6BwBadgGU014CbRMEyeDJXT3Cuu+x/wa4Y1RCcQ5xPn93R3aZsHdTo9EmhHHTUfEvdut2yCY6hUfRiXta9zq5PvwE6NtAmUD1rfZs3Q84/RQANG5BqofKrFHNsDsw8bVIG+EM398aYUtY50UxpIWQMJAxx07E5Ddx8gmoKsFP8lDwwZ205WiwCWEj+ClIWoCec9A0oHknmFw3IUwB100I2/Z72M4PoG0v5NPAEvgyIAqFUJjmxyOMtjXCEQ+BJ+effhDp1zi104l7av9tD4jFxenoE3/C+bf7NGhPEUreRscRdJ2OrsW2QKBLaEUVfj3C5l3hnBdFqISwtbV169at33//vbcOFEVt2rRp7dq1mzdvpqhI5+AnDA6yfw91Faq+8h8yUGZlxwAAIABJREFUShM3HdomqGthVAIARwImF+lXoXYDmn9F2u+gdRZCfgq4ctep0baD0NR5CMFo3onkhX4MiGy8DJ1Z1wU/2ycoaOujSwjBwKz1FtlkZKx0ahZloXYDmHxIx9sb+YnQNqLmW//p9Hyja4UoE3tXIHEeWAEXAyd4gyuHxeBr9b39IBLmeD3bD4RACH/99decnJzHH3/81ltv9dbn0UcfffbZZ41G45o1ax5//PG+D0oggMFG3oMoeT3QUrEMFlIvQ+PP0Dkkz8y8AaXvgDIheZHVI1SUQlEKXTMEKa5To2YteorBlXtIyNL8K5IX+TEgsnvqPU+NJkHX5jWxuL4DLEHY9nIFCidWM3MzhGlOjaJsKEqc3EEAvATUfAe22M8+Gb/o2zBmDUAhbaAtEEYnDCbiZqD9kOez6mowOa7Pt58JgRDOnj27p6dn/fr13jo0NzevW7duy5Ytzz777JYtWz788MPW1ojGkRMGDcPvAYMZqEcIIP1K1P0AjcMm8eRLYdIiaSGE6VDXAUDpe9jzOyguQJACrgyGbvsKU8dxxI5BzEiHsBrKmrRWU+8/hVUEp0ZNGlBGa5IdRxhs8OKtlcXcibYFQh/QWyZcymfyE9BxFCMfhcXoJzjWN7pWiLKx6Ddke/2tTwiOhEu8uukdR8Nf8zIEQsjj8dhsX9Eiv/3228iRIzMyMgBkZmbm5+fv2bOn7+MSCODKMeNfSF4caP+Uy9BxFD2Fdo+QwUbeA8i8DsIM69So4hzYYtRugCAFDDbYInsqk/ZDSCiAOMcuhC17sCkTO+chcZ7/wn4RFEJtg9d98T52UETbAqEPRFmY9g9r3UQbvEQwmMi8DvJpfrII+UbfBn4iJCOizjkeuCRcgrb9nk9FQgjDEe7Y2NiYnGzPt5KcnNzQ4HV93mKxPPnkk7bD6dOnX3nlle7djEaj2WxmMKIyKzSh/9Hr9VwuFwCSV9DHgV3H4iQtYlz40JK0xGS7JH8NAIahg6OuM+j13O5i44I9nKO3GXmZlF7P5cqMqmZKJADAad1vzriBoSxlKMrpy9n1WzDySYtkFMTDLP5sYLJkLG2zMVBTQwlTUcPiJXscmsNLNiuqLeLx7qdYiioGL9UUCYN9Y3/6jmT+weXfgMHLYqdeaWTGsWInMVoPmRKW9W44rrbFyIylou99GMCIJ/E6T+m1CvfEb5y2w+bRz/r4NOn1erPZbDYHWiiUzWazWH5+pAYkhAcOHLjmmmvc2/ft25efn+/e7gKTyXQMkKEoyrdZMpnM9rdYLGYyPbit9D09niIMBZhMZu+ePpVxLfPQTci+3fVyfjzDrGXpGhiUmSEZblp4kEFX3+DKmaZuiskEKGbnEcvk9xiUkdG8jb6c2bLDPPldxM1CALMrDH4SQ98WkX9apq4JgjTPQwvSmLomePyU6RooUUYUfsoCffryieaC/zABxE1jlr3fyxdCWRjGbgY/gUGSRoUQXiwlGcHqOU3FzXJqp0zMnrNm+VQfD4t5kQCHCsRfCkgIZ8yYUVrqocB3bKzbkoMnUlNTm5rsiayamppSUrym8WUymWvWrAnktkwmk8OJpl2ihDDC4XB6+fQzrsAxIUucwXK/XJjGbt+F2NFOd+bFsc0KcDho3QN+MjsmG/rhqFzH5HCga4Gmlp1UEOhGUnEq9G2R+ac1tECczvQ4tCQb2mrXd6P+R0jyoGuAfIKHNyrSBP30k2bh6B0cDrs3lcX0beDEcLg+N8YQekHibHbnYSTPhVGJ829jzGoweegugSCdI/SVu8dsNrPZbN/rccESkKiy2WyZJ3xrckVFRXt7O4AFCxaUlZVVVVUBqKysLC8vX7BgoO3FIQwa2CKMehLyyR5OCdPRtN21nJMtcLRqPXJuAwDxMOsaYfMOJC0IIp1Cv64RWozoPOn1rLYRAi9heMmL7dsrrbcy4Oh92HctFKUDZo3QN7wEcGKcMgcFjq61NzVqCH5JWYLzb+Pss9g2DSWvo/0IAHQcjUi5qBA4+52dnddff/3q1av1ev3111//8MMP0+233Xbb559/DiAhIWHVqlXLli1bvXr1smXLHnvssbi4AZWsjzDIGPc8YkZ6aBeko/lXVyGk99SbNKjbhJybAUCQAmMPTBo0bkPK0iDG5cphUsJi7IPp3mnbhx2XoKfY81mN92AZ+SRY9Og5Z2+p+x7SsYifgc4Tg0QIQedgq+3Nhbo28IkQ9gOpy7FgK4wKjP0rht9vDSJt2WOtGh1eQuBdikSie++9F8BTTz0FQCCwziG8+eabthiZV199ddGiRcXFxR999NGll4Y1ZQCBECjCdBg6PQihvhP1mxA/82KNLQZEWWjaiqatmPhqEPdnMMGNg641NHuk2vaj7gdMfst6qDgPXgIO3oKlR8B0CyTRNnoflIH0q1G/yf7Cyz7CiIeRugyUGcL0EJgaDQhSe7mDQt8KfkKorSEAAGQTMeVdAGDxUPEZQKF5Byb8X/gNCYEQ8ni8RYs8bCWeNctpFXThwoULF/pLvUEgRBD6S98lbSlPjopPoW/D9H/aG8U5OHgLpn0YtE4kX4qKjzHueevhwZuR/4hTecvAad1rTZRKoyjFyEfRuhel72OUW84KH9snAKRfjVNPYswaAFCUQHkB6VeBycEsr5uDBx7C3gohmRoNAwmX4Mi96DoNrjScubZtkDgoAuEiwnRwpa6CkTgfGddg4W6kX21vjJuO0X/GsNuDHmLiWlz4u72KbOteVH3ZS2u7C+33AaAoRUw+ht9rTyxuh4K2yZcQJs6GugaaOgCo/xGZ10dXsYKQIEj1VXvSB7o24hH2O/xkcGU4/7fg1hpCBxFCAuEi0rFOakcjn4zxL7nOl4573u7VBYUwA/mPWEsZmDTQNqPuh17WRuguhL4dJpX1UFGKmJFImIPO4zDrnHrqO8AW+UqSyWAjZTGatgNA28GILNL0O32aGiUeYf+TcAmqv0bKkogMToSQQLiIOBczP+v3UUY8gsYtoCxQliEmH7w4dBz2f5ULFj3UVRAPszqFJg10LRBlgyNB7Bh72UUabaMvd5Am6VJrLSo6e87go9dCqGsDj3iE/U/CJWCwkDgvIoMTISQQwgtXCm4cVBVQlkGSh4yVqN0Y9E16SiAeBskIqxAqyyAeZs3xlrQALbudOvvYO2Ej6VK07IaiFGyxf9UciAhSrELYeRxN24K4kHiE4SFlKfJXBVRPrR8gQkgghB3ZBHSdgbIMMSOQsQL1m4K+Q3chYsdBlHVRCEvtaTaTFqDVWQg1DRD60zZxDlh8VPwLCZcEbcyAwOYRVn+LU08EcaGOCGFYEGVh0uuRGpwIIYEQdqQT/p+9+w5o6lwbAP5m74QEQggQ9pKNCIq4wVl33VqttbV6a1tte9tb269ql9fW2tYOW0etu3q1ap1URVwsAdlD9gx7JSE75/sjbRoBETUkAs/vr5w37znnOSTw8J7zDtSaiST3EcsTWfmjjkqkUz3eEVqzkFXAX8uyI4Ta8/8ZGWkTiZrvIU3HP5V70yJECAkmoMKfBuZ9UYQQkYFwJKRqRa2ZqL0ANSX3dke4NToIQCIEwOy4Qag1A0kKEcsLIRyi2CBFw+MdQZ8IDS3CdqMWIZGObEagmvP/VO5hNL0xwQSkkSGbAdoiRH83ClszkccaVPxLr3bRqZFGgsi8Po4MWBgkQgDMznBrlOWJEEJUAVLUPd4RWjORVWD3iRAh5PUayv/2n82Oql4N4beLQnSHx1jcsd+h26OWNITpkN9/UOVJ1F6AlI/6/0PZgMjWCKbbHujgAwbA7JhuSNWCtHJEs0MIIaotUj44B2lrFjplg07yUN6XnffFNCh5DaI7IIYIMVyQtAwpG5G0+IF5ABxmIEXtP3f/pCWI4froqKgCNLvq0asq9l80e1RzGVkFIpo9cnsRxU1DZ10R1uNqPtISxHQxU3jAciARAmB+OGQVgFiefy2GQOkyGXdLOhJMQJOTUO6XqN1o4RdMi27ORR1VKCoWIRyi2iF1Kyr6GTnOeqC7HY6AvF5H+d/o90Ed5YjZi0Q44NHskfhPxA1ECKGQ7WhmMaJYP2ICUknRX612MKBBIgTAEqyC/vkL23VVCmkxYvsglify/xDdXYvQ38t5pm5AOiUae+avtIfDI7ojyvsKeazufHy3Faj6HMJ0SC5GRBYiMvr0avoHmj1SNiAroyWImR5IWtzTLobb12BAg0QIgCU4zUdOC/963TURSooR0x0hhLxeQ/Ia1HQXIYQqf0d119CoEw8s/MRwRnQHZNOlqyeZiyjWSFaGpKWI6dZXV9G/6HsMWQX8U8Jyh0QIkEkm3cYw7NatW6mpqXV1devWrXN07GYa4j179hQX//WF4/P5b7/dZVJgAAYVwbh/XlMFD6yChBCSFiPWGoQQwhGQYDxqSkbW4ajmIvJah0gProbN8UdO87s/BccPteUgVSskwr/Q7RGO8MDDVKY7kkAiBKZIhCqVat26daGhoUePHn3++ee7TYS//fabUCgMCAhACLHZ7Kc/KQADR7e3Rlnuf73mDUP1NxFCqCkJef6r876h3zz0sPpEqFXCA8K/MD2Q42xEMFprnumOmpIevgOGJEWI5dH3kfUVrVb77bffqtV9swSm2YWEhEya1CeTkZpmGabMzEyE0KlTPc0UNXv27Hnz5j396QAYaDr1GlW3I00Hogr+2rQOR3nbkVqCZOV/dfToJY4vqotFOLyl5m985lBt0eiTD5Sw3JG05KH15WJEpHdugvcrjY2NH330kWGx9H6tqKjozp07z24i7KUjR47ExcX5+Pi89NJLdDrdbOcF4FnXqdeotBgx3f7qUIoQ4vgieTWq/RNxQx54OvhIHD90/ztEZCC3laaMdiD569Yo9s9P29iAuC/KZDL/+9//WjoKEzh37tyePXv66OC9/b2qqOimkzGPx2MyezVH6rhx41gsFplM/u2333bv3p2cnEyldr8ojFarNV7CfuLEia+//nrXamq1WqvVajSa3oUPBhqZTIbDdffHqz/S0pmKeqlUov9zTGzIIdKcFVKp4X0aOwDlf69lh6iMCh8JR3Smt+UjErsD2WKPs+Ozz3SfPp6Bp3Y0lWAUQdf3SI05eKqLsj//6GQymaVDMCWtViuVShUKBZFIJBJ7m7yoVOojK/f2WOPHj+9a+PHHHy9durQ3u//f//2f/sWqVat8fHzOnj27cOHCbmvi8fiNGzcaNl1dXbvNtfpE+LBsCgY8DMN6+U9Yf8BEBBqTrEFkLkIIaaqRlfcDV8cfgfK/JvisIz/eJTMRTYA6qhl8rwE2TN6Unz7bg6Gr/auPbieqCsTzJfXnr9kAS4QEAoHJZBL/ZsIj9/ZYhj6fT4lCobi7u9fW1j6sAg6Hi46ONsm5AOg39P1l9IlQWox4oQ+8ax2GEIasRzz2Ydm+CEcaYFnQxJjuSFrc/ZobkkLkvMjsAQEL6MNxhGlpaVevXkUIKZXKxsZGfWFWVlZiYmJ4eHjfnReA/se446ikuPOAB5uRiOPXq/lCO7Hyhy6jj8DyeOgIigHxjBD0hmlalxMmTCgvL5fJZHPmzKFQKLdu3bK3tz916lRmZmZ0dHRLS4uHh4e3tzeJRMrNzf3Pf/4TERFhkvMCMEBQBX91HNWpUHt+5zt1DCf0XPaTHNYu+p/ep6BbTDck/rObcp0aSYr+WdwKDGimSYSnT5/W6XSGTQ6HgxDauHGjfvyKnZ1dbW1tfn6+Tqfz8vKysrIyyUkBGDiotkhRh7QKdHs+sokwWTPOLhrZwYOGHtEc/lqwtxPJfcRwQgTohTAomCYR6jNfJwzGP9MbMpnMYcOGmeRcAAxAFFskq0Q35yCyFRp5qPve/KAvdJ3NQK81+4HJ2IB5rVy5cuPGjZ6eZro1DXONAvAMoNqi/B2IxEIjDz/eYEHwlB6WCNuyH5iMDZgXn88nkUhmOx38ygHwDOAGIZclKHw39PA0N4oNUrciTNP5/4/WbOS6zEIxDWS1tbXV1dWGTT6f7+Tk1LXa8uXLbW1tzRYVJEIAngH8UYg/ytJBDEo4AiJzkbIRUe0eKG/NQhx/C8U0kCUmJh49elT/OjY2dtmyZd980818ubNmzTp+/LjZHqhBIgQADG5UAZLXPZAINR1IUduvp9t+KJ0aZX+KdEoznY7hjDzXGhfMnj179uzZCKETJ06kpqa+//77ZoqkR5AIAQCDm2HsikFbDmJ7D8zb1Dg8ovCQVmGm05G7HyNw+/bt119//erVqwLBMzG8BxIhAGBw049dMTaA74viCMj7TcuGUFJSsnDhwiNHjugX5nsWQK9RAMDg1rXjaFsWshqgidDSmpubp02b9tFHHz1TU2lCixAAMLhRBZ1bhM33kP9zFopmgNu0aVNLS0taWtqrr76KEBo7duySJUssHRQkQgDAIEexRe0FRtsYas1E3GCLxTOgrV27dtasWYZNR0fHbqvt37/fy8vLXEFBIgQADHK0B1uE0jJEZCCKjeUCGsh8fX19fX0fWW3MmDFmCMYAEiEAYHDrdGu0JR2ag2aj1WqjoqI6FR49etTe3t6cYUAiBAAMbpQHO8u0pCNuiOWiGVwIBMKpU6c6FXK5XDOHYYJeoxcvXpwxY4aHh0dISMjWrVuNl6EwKCoqmjp1qouLy7Rp00pKSp7+pAAAYBp/9RrF/tpsTUfcIIsGNLhYd4HHm3s4gwnOl5ubu3Tp0qtXr37//fe7d+/euXNn1zrPP/98aGhocnJySEjIvHnznv6kAABgGgQqItCQqvWvzeZ70CIcbEyQCN95551Fixa5uLhERkauWLHi5s2bnSokJCRUVFRs2rTJ1tZ28+bNpaWlycnJT39eAAAwDcNQQmUTUreZbD1I0E+YuAUaHx8fFNT5rkJubm5gYKB+TQ0SieTv75+bm2va8wIAwJMz9Jcp3otsx8B6kINNrzrLNDQ0dG3nIYQmTZrEYrEMmzt37iwpKfn99987VWtqajKuZmVl1dDQ8LBzabVa4yely5Yt27p1a9dqSUlJLS0tU6ZM6U38YICRSqV79+5dv369pQMBlrFjx461a9fS6XRTHZBK5OlqbmgVSmrejo4xNzCp1FRHtiyZTNbe3q4fut7flZeXEwgEqVR67tw5BweHoUOH9nJHKpVKJD4i0/U2EZ44caJr+fDhww0Z7uDBg19++WVcXByTyexUjcvlSo2+WO3t7Twe72HnIhAIxr1pGAwGmUzuWi0tLa2qqgoeNw5OVVVVhw4d+vDDDy0dCLCM/fv3m3i9uiFvoIyNKG8LGnOawfcx2WEtjU6n//jjjyqVytKBmEBoaKi/vz+Tybxx44a/v79pBxr2KhH6+voeP368hwrHjh17//33r1275u7u3vVdNze3goICnU6Hx+N1Ol1BQUG31QzM33cWADCo2UUhuySkUyI8xdKhmBIej3/xxRctHUU/YIJnhKdOnVq3bt3x48cFAkFLS4tEItGXf/XVV9euXUMIjRs3jkKh/Prrrwih/fv30+l0M88aAAAAjzawsiDoPRMMqL948aKVldWKFSv0myEhISdPnkQIxcfHs1isqKgoAoHw22+/LV++fMOGDUKh8LfffjP/MBEAAACgWzgMwx5dy0TUarW+7+jDaLVaCoXi7Oz8yEO1tbVptdoenjWCAUyj0dTW1j5sul4w4FVWVtrb2xMIA3HhXPAoTU1NZDLZuANmz5YsWfLJJ5/0XMesibA3KioqNBrNI6tptVoMwx7ZFwgMVEqlkkKBG1mDFHz6g5lGo8HhcL3/N0goFNJotJ7rPHOJEAAAADAneFYHAABgUINECAAAYFCDRAgAAGBQg0QIAABgUOuXvS6LiooOHjyoUqkWL17cdY5vMDCIxeKUlBSxWDxp0iQXFxdDeUlJyYEDBxQKxaJFi0JC/louB8OwEydOJCUlubi4vPLKK4/sJAaecZWVlRcuXCgsLBQIBEuXLnVwcNCXYxh29OjR1NRUd3f3l19+2dB3tKKi4tdff5VIJPPnzw8PD7dc4MAEmpqazpw5U1BQQCAQIiMjn3vuORzur2nQ4+Pjf//9dw6H89JLLxm+FXK5fM+ePWVlZeHh4QsXLjRU7r3+1yIsLS0NCwvTaDQcDmfMmDGpqamWjgj0iREjRmzbtu2dd95JT083FFZVVYWFhcnlcmtr63HjxiUmJurLt2zZsmXLFk9Pz8uXL0+fPt1CIQOTWbZsWWJiokgkun//vq+v7/379/Xl77333rZt2zw9Pc+cOWOYari+vj4sLKy5udnOzm7y5MnXr1+3XODABPLz8+Pj4+3t7dls9muvvbZx40Z9eUxMzHPPPefg4GD4xPXls2bNunjxoqen56effrpp06YnOSXW37z99tsrVqzQv/7ggw8WLVpk0XBAX9EPFfX29j59+rShcOPGjYZP/OOPP547dy6GYVKplMPhpKamYhimUCisra0TEhIsETIwGblcbng9bdq0jz76CMOwlpYWBoORl5eHYZhMJmOz2enp6RiGffbZZzNmzNBX/uqrryZPnmyJkEGfOHv2rLOzs/71uHHjvvvuO/3rKVOmbN++HcOw5ORkLper/8JkZGSw2WyJRPK4Z+l/LcKbN29OnDhR/3rixIk3btywbDygj3Q7D9+NGzcmTZqkf2349DMyMkgkkn5ZFgqFMmbMGPhW9HdUKtXwWqFQ6Ne0SUlJ4fF4Pj4+CCE6nT5y5Ej98nA3b940/lZ0u2Yc6I90Ol18fHxAQABCSKvV3r59Ozo6Wv+W4df/xo0bo0eP1n9hAgMD6XS68T2kXup/zwjFYjGfz9e/trW1ra+v12q1MNnSINHp029ublYqlbW1tYZChJBAIKipqbFQgMDETp8+nZ2drV/95mEfdKdvhVwub2lpgUVs+jWJRBIcHNzQ0ODo6BgbG4sQamho0Gg0hrW3bG1txWIxevDT15c/wa9//2sREolEwxxsGo2GQCDAFN6DB4lEMv708Xg8gUAw/koghNRqNcy/NTAkJCSsWbPmxIkTNjY2CCEikajVag3vGj7oTn8TEEI9z2kMnn1MJjMlJSUlJWXo0KFLlixBf3+mxh+0fqlaEonU6VvR7RK2Pet/KcTBwcGQ8Kurq+3t7Z+gjxDopzp9+gKBgEgk2tvb19bWGn4ZqqurhUKh5WIEppGUlDR79uzDhw+PHTtWX2Jvb19TU4P9PSuk4YPu9K3gcDhdlwcH/QsOh+NyuV5eXjt27Lh+/XpdXR2Px6NSqdXV1foKhk/f3t7eUKjT6cRisb29/eOerv8lwhkzZpw8eVL/y/C///1vxowZlo4ImE+3n35ISIiVlVVMTAxCqL6+/tatW9BxtL9LT0+fPXv2vn37DB0CEEIjRozA4XBxcXEIoerq6uTk5GnTpiGEZsyYcerUKf1/QvA3YQDo6OgwvE5JSWEwGNbW1jgcTv/rjxDSarWnT5+eOXMmQmj69Ol37typra1FCF29epXBYOi7Czwe0/TsMaPm5uYhQ4ZMnDhxzpw5jo6O5eXllo4I9ImXX345NDSUSqW6u7uHhoZmZmZiGNbW1hYQEDBhwoR58+bZ29sXFxfrKx85coTP569cudLT03PdunUWDRyYgJ+fH5fLDf2bvtcohmH79u2ztbVduXKlm5vbu+++qy+UyWTDhg0bPXr0woULbW1t9d1KQf/1zjvvhIeHv/DCC1OmTOFwOAcOHNCXZ2Zm8vn8xYsXR0ZGRkREGLoWv/HGG+7u7itXrrS1tT106NATnLFfrj4hl8uvXr2qVqujo6PZbLalwwF9oqCgQCqVGjZ9fHwYDAZCSKFQXLt2TaFQREdHczgcQ4XCwsKUlBQXF5eIiAgLhAtMKjs7W6lUGjatra0Nkyrk5+ffu3fP3d3deOC8SqWKjY2VSCRRUVGwTGl/p9FoUlJSSktLORxOWFiYcV+YxsbG2NhYDoczYcIE4yfBiYmJpaWlw4YN8/T0fIIz9stECAAAAJhK/3tGCAAAAJgQJEIAAACDGiRCAAAAgxokQgAAAIMaJEIAAACDGiRCAAAAgxokQgAAAIMaJEIAAACDGiRCAAAAgxokQgAAAIMaJEIAAACDGiRCAAAAgxokQgAAAIMaJEIwuNTV1a1aterbb799ZM233nprw4YNj6z25Zdfvvrqq62traaI7vE0NDTcvXs3ISGhtLTUeNEiAMBjgUQI+r0lS5aQyeRDhw51fSsjI4NMJvv5+RlKWltbf/nlF/1y9j07cODAr7/++shq586d2717t/Ga2mZw/fr14cOH29rahoeHjxw50s3Njc1mjx079vfffzfUycnJ2b17d1ZW1pOd4vbt27t3766srDRRyI+2du1aHA63evXqrm9t3rxZv0C52YIBgwokQtDvqdVqtVqt1Wq7vqXT6dRqtUqlMpTQ6fRx48YFBQWZMUATO3/+/MSJE5OTk8eOHbtp06avv/56/fr1I0eOvH37dmxsrKFabGzsq6++euXKlSc7y7Fjx1599dUnzqNPYPv27e7u7nv37r18+bJxeXp6+ueff25lZbVr1y6zBQMGFaKlAwDArEQi0fXr1y0dxVPZsGGDVqv95ptv3nzzTePyysrK8vJyS0X19BgMxp49e6Kiol5++eXs7GwrKyuEkEqlWrFihVqt/v777x0dHS0dIxiYIBGCwUWpVGZnZ3M4HA8PD+Py1tbWixcvisViR0fHadOmsVisbndXKBSXLl0qKSnh8/mTJ08WCAQPO1Ftbe21a9fEYjGbzR41apSvr6/xu01NTWVlZUKh0N7evqioKDY2ViaT+fr6Tpw4EY/v6T6NWCwuKiqiUqlr167t9JZIJBKJRPrX+fn5+ruaVVVVqamp+kIPDw8Oh6N/nZubm5WVVVNTQyaTAwMDIyMjjc977969+vp6hFBRUZFh94CAADKZbKiTlpZ29+5diUQiEokmTpzI4/H6N5YHAAAgAElEQVQ6xdPc3Hznzp3y8nKdTsfn84cOHert7d3DpSGExo8fv2bNml27dv373//es2cPQujjjz/OzMycMWPG0qVLe94XgCeHAdDPzZs3DyG0f//+rm+lpaUhhDw8PAwl+fn5CKGpU6caV7t48aLx33Fra+vY2Fgej2dlZWVcLSMjw9XV1VCNSqXu379/9OjRCKHq6mpDNbVa/dZbb5FIJONftIULF8pkMkMd/dPHjz766P3338fhcIZqI0aMaGlp6eFiGxoaEEIkEqmjo6OHamFhYV1/2S9evIhhWHV1tYuLS6e3/Pz88vPzDbszmcyuu5eWlurfLSkpGTlypPFbLBZr3759xgHs37+fTqd3OsK7777bQ8x6UqnU3d1dH21aWhqJRLK2thaLxY/cEYAnBokQ9HtPmQjz8vKoVCqZTP7yyy9LS0uzsrJeffVVHo9Ho9GME2FLS4u9vT1CaMOGDXl5eUVFRZ988gmFQrG1te2UCFetWoUQCg0NPX36dF5eXmxs7JQpUxBCixYtMtTRJ0JXV1cbG5sff/zx7t27Fy5cCA4ORgi9/vrrPV+vvtm3YMGCysrKh9VJSkp67bXXEEJr1qy58rfGxkYMw+7fvz98+PAff/zx1q1bRUVFN2/efOmllxBCXl5eKpVKv3tsbKy+Z8pnn31m2F2feuvr6x0dHfF4/Jo1a27evJmXl3fw4EGhUIjD4c6dO6ffvbi4mEgk8vn8Q4cOFRQUlJWV3bx5c9OmTdu3b+/50vSuXbuGw+FEIpG+GX3kyJHe7AXAE4NECPo9fSJ0d3cf0UVgYOAjE+HChQsRQv/973+NjzlnzhyEkHEi3Lx5M0Jo+fLlxtU2btyob+sYEuHt27cRQgEBAQqFwlBNq9WGh4cjhNLS0vQl+kRIJBKzsrIM1crKyohEolAo7Pl6f/vtN0Nz08/Pb9WqVYcOHdInOWM7d+5ECH311Vc9H03vxRdfRAj98ccfhpJ//etfCKELFy50qvnqq68ihD755BPjwszMTCKR6O/vb3x1nX6kj8Vw43fmzJlPfBAAegl6jYIBorq6OqeL4uLinvfSaDTnzp2j0+mdHrm9/fbbnWqeOXOma/n69euJxAcetOtHcbz77rsUCsVQiMfj9fnj0qVLxpWnTZvm7+9v2HR2dvb29q6trZXL5T3EvHDhwpSUlNmzZ9Pp9JycnH379r3wwgsCgWDFihUSiaTn632YmTNnIoSSk5N7rqbVao8dO0ahUN555x3j8oCAgNGjR2dnZ+sfTOr7uaSkpKjV6ieLRygU6l/o/00BoE9BZxkwQOzatUvfrDF27969oUOH9rBXWVlZR0eHr68vm802LtffpTSWl5dHJBKNhyQihPh8voODg3FfzXv37iGEYmNjs7OzjWvq65SVlRkXdu08IhAIcnJy6urquj7GMxYYGHj69Gm5XJ6YmJiUlHTp0qWbN28ePHiwoqIiNjbW+KFjt7Kysr744ovU1NTKykqpVGoob2xs7HnHoqKi9vZ2GxsbffvYmH7fsrIykUgUFRXl7Ox88uTJxMTE6dOnjxs3btKkSVwut+eDG2RmZn766acsFksqlb777rvTpk3TZ1YA+ggkQjCo6dOA/jmfMQaDwWAwDJtqtVqpVNra2hIIhE41bW1tjROhfoqZ06dPd81GXC63U4/Qrt1J9BUwDOtN8DQabfz48ePHj//Pf/5z6tSpBQsWxMXFxcXFjR8/voe9bt26NWnSJK1WO2HChJkzZ+rzU3Fx8Z49e7odi2lMf3VtbW27d+/u+i6Xy9U3AZlMZkJCwocffnjmzJmffvrpp59+IhKJ8+fP//rrr3voZ6un0WheeukllUq1d+/ehISEXbt2vfXWW7/88kvPewHwNCARgkFN3z2yrq6uU7lUKpXJZIaGCIlEolAoTU1NGo2m073QTvvqD3jt2rWeW6Im9/zzz48aNermzZupqak9J8IPP/xQoVCcO3du+vTphsJjx47phyv0TD+qxMvLq1N7tyuhULhv376ff/45NTU1Njb2l19+OXbsWFVV1c2bN3ve8bPPPktNTZ0+ffoLL7wwd+7cmJiY/fv3z58/f+rUqY8MD4AnA88IwaDm6urKZDJLS0s7TRaq725qzM/PT6vVZmZmGhfW1tZWV1cbl4SEhCCE4uPj+ybenuifShrarPoxf10beRkZGWw2+7nnnjMuNAwWNND3x+m0u6enJ5PJzM/Pb25u7k1IRCJx+PDh77//fkZGhoODw61bt/TDEx8mIyPj888/53A4+klk9EPscTjcK6+8YpHZXMEgAYkQDGoEAmHWrFkKheKHH34wLt++fXunmnPnzkUIffXVV8aF33zzTadUsXLlSn21rs/bNBqNQqF4yoDb29tPnDih0+k6lefl5emzb2hoqL5EP9ij62ShNjY2MpmsqanJUFJTU/Pzzz93qtbt7iQSadmyZVqt9oMPPugam+Fxo/FzRz06na4fy9/D5OAajWbVqlUqleq7774zTCIzYcKEl19+ubq6+r333nvYjgA8Jbg1Cga7zZs3nzlzZvPmzTqdbs6cOXK5/IcffkhMTKTRaMbVXn/99d27dx89epTNZr/yyitEIvH48ePffvutnZ1dbW2toVpkZOS6deu+//77YcOGvf3228HBwSwWq7S0NDk5+cCBA2fPnu12qHvvyeXyhQsXOjk5zZs3b8SIEXw+v62tLTk5effu3TKZLCoqSj/AHyEUEhJCJBJ//fVXGo3m4uJCIBCmTp0qEonGjx+/d+/e2bNnb9682cnJKS0t7cMPP7S1te2UvfRxfvrpp/X19fqkuHjxYhaL9emnn165cuWnn36qqKhYsWKFt7e3RCIpKSk5f/58QUFBRkYGQmjHjh1//PHH8uXL/f39RSJRfX39/v37c3NzR4wYYZj7pqtPPvnEcFPUuHz79u0xMTF79ux5/vnnJ02a9DQ/PQC6Z+nxGwA8raefWSY2Nta4E4dAILh9+3bXmWXy8vJ8fHwM1eh0+rFjx7rOLKPT6bZt22aYzEwPh8OFhYUZJmfRj7TbtGlTp4Cjo6MRQiUlJQ+7WKlUumTJEhsbm06/yBQK5eWXX25vbzeuvH//fgcHB0Md/cwyTU1NERERxvvOnDnz7NmzCKFXXnnFePdNmzYZd/U0BF9bWztnzpxOvYEYDMaaNWv0Ffbu3Wvc1Uhv7NixVVVVD7uu9PR0EonE4XC6nSXgypUrOBzO2dm50wUCYBI4rHf90wB4ZtXW1kokEjs7u64ThCqVyoqKCjKZ7OzsrC9Rq9VlZWUMBkPfyjGQyWRXrlypq6uzt7ePjo6m0Wj6oQ6dhjGo1eq4uLiSkhIulxsdHc3j8WpqahQKhbOzc6cOpTKZTL9SIIFAEAqFQUFBxmeUSCQNDQ1cLrfToAKxWCyXy52cnDp1yelEq9VmZWVVVFSIxWICgeDk5BQeHv6wMQYymUzfo8fOzk7fTxXDsOTk5NzcXAKBMHToUH9/f7lcLhaLWSwWn8/vtHtLS0tLSwtCqFNUVVVVCQkJTU1NbDbbyckpNDTUuA2tVqvT0tJKS0vb2toEAoGPj4/x/xBdNTU1tbW1MZnMrj149crLy7VareESADAhSIQAAAAGNegsAwAAYFCDRAgAAGBQg0QIAABgUINECAAAYFCDRAgAAGBQg0QIAABgUINECAAAYFCDRAgAAGBQg0QIAABgUINECAAAYFB7thIhhmFbtmzpZc2uK9GAwUOj0Vg6BGAx8OkPZlqt1uQzgz5bc41qNBoajaZWqx9ZU61Wa7VaKpVqhqjAM0gikXSdYhsMEvDpD2YKhYJIJPY8K/3jerZahE9ApVK1trb2JncCAAAAXZlvYd729vaioiJPT09T/StXVVLSUlraUlzs5eEhptGchw+H9VkAAAA8LjO1CE+cOOHq6vraa6+5urqeOnXq6Q/Y1taGSkutJZIRNGpNSboTidRYVfX0hwUAADDYmKNFqFAoXnvttePHj0dHR1+5cmXp0qXTp0+nUChPc0yNRkMjEGJrEuKTDpUpJTtcDnFEIlMFDAAA/Z1SqXR3d+/o6LB0ICazcOHCXbt29cWRzZEIr169ymKxoqOjEUITJ05kMBixsbFTp059mmNyOJz7ZDKbK4gMXq1pTt+ZenKD0LPdyorN4ZgoagAA6MdUKlVbW1tFRYWlAzGNy5cvHzt2rI8Obo5EWFFR4ebmZth0c3MrLy9/WGUMw65evWrY9Pb2FnXX1CMSie7h4aLgYDKZbJtw6Yszax0U66tSUiijRj1lWxMAAAYGHA7H5XItHYVpMJnMvju4ORKhTCYzTk40Gk0qlT6ssk6n+/zzzw2bUVFRb7zxRtdqhuETGIbxVXQXa9GN0uvenOCGhgYONAoHgR6+QmDAg0+/NwbeT0mr1UokkscdPkGlUkkkUs91zJEIBQJBS0uLYbOpqcnOzu5hlQkEQmxs7COPaTyOkOXgEOU0+c+Sa25jRjsJBI+8ZjAwwEiywQw+/UGIQCCwWCwSidQvxxEOHTo0IyND/8xWJpNlZGSEhoaa8Pgu/v4OwybFqMudwsMhCwIAAHgs5kiE/v7+kZGRq1atunHjxqpVq8aMGTNkyBATHp9IJI4MHFNBq0cPSYIYhsGIewAAAN0y0zjC48ePOzg4fP75505OTsePHzf58Yl4oifPM68xr+tbMpks/9atpIsnCu7e1Wq1Jj81AACAfs1MM8twudzt27f36Sn8bf2z67NDhZ1vuorv38fJqv7v2tr/zT7TIBbbOTr2aRgAAACeUlFRkaOjo9lmk+73c40a+Nn65dTndC3HdLqSthKJUiKWVGOwYAUAADzzJk+enJ2dbbbTDZxEGGAbkFWf1bVc4OFxQ3y/TYFi24pshEK1Wn0/JSU/NvZ+aios5gIAAM+gCxcu+Pn5me10AycR+vJ9syuzpVKpVCo1znBsDqfQTsoNDyvmt3TIZMmXL+Pu3/dgMGyl0tqBMucCAAA8+8Ri8dKlS+vq6hBCGo3mtddeu3XrVrc19+zZU1tba7bABkgixDBMXdzMy2++/uPOwrNnC2/dMh5MmtOU89Lwl+6W3627e5cvkWRm/DF359Q6uVirVFowZgAAGFSEQqGbm9vixYu1Wu2mTZvy8vJGjhzZbc0zZ840NTWZLTDzLcPUp6RSKaOtzY8t4qlqOe1coYtLZWGhV0gIQkihUVS2VS70X/jOH+8w3bFdFUcrq7OH0AI3HNj4ybLv8CSSyMPD0uEDAECf02E6u+12DR0N5jndcIfhiS8ndircvHnzhAkTFi5cmJCQkJaWRiAQzBNMzwZIIiQQCGoMG+00+tekQ1XyjknFM0N8pxKIRDd//7zGPA+eB5fKdeI4fZ92OLs247ulP6aXVTXX7Mmtv2JNJkvt7Pp0FjsAAHgW4HH4+n/XWzYGAoGwZcuW8ePH79y5UyAQWDYYgwFya5ROpxNdXEYHzp87/rNFw9ZnN6TGNpyi19e3tLTk1Of42/pXFBaOlzmdyjwy0eclom+gu7f35gmbD6Qf6FC2QpcZAAAwD4VCsWHDhhdeeOGLL75obGy0dDh/GSCJECEk8vDwjY6esnZt6Lip3689eLv6dru8pbW5OTnlhjNylJWXT/cetWzYjJmeY7h8Ps/dXamhDbMZ//mN3c01NUp4WAgAAH3v7bff9vDwOHjw4KJFi5YvX45hmKUjQmggJUKEEB6Px+FwdkOGVEoVnszQXbdOlF26pC7OCmtn1tbUTHGf8n9j/k+NYXg83t7Z2To8fKrfglp5akdxaum9e70/C4ZhZfn5eTduFKalqVSqvrscAAAYSG7dupWSkrJnzx6E0Oeff45h2MOWGPTw8KDRaGYLbIA8IzRmIxAw2Oyw8gl/3jvA7fCoK8gdO+Xj++3qPIkEh2EcT0/9bAV4PN6dw18QOP/P8svTGQ46nQ6P79W/BY319ZSqKh6dgJfJqgsLXc042AUAAPqv0aNHJyUl6V+TSKRLly49rGZMTIy5gkJoQCZCvfEuw39L+2b73Z8Wez+v6sDsPTycvLwQQjgcTl+BRqNVEQgRwsh3/3zvueHre5kFEUJqhYJCwM0+PvuL6C9ZlOC+ugAAABgE7nW5Iefn50cmk80Zw8BMhFQqVU1nRrtObOS28Hwn6ry9HUUiQwrUIxKJzuHhDRV2RUnkCnKrqKODTqc/7ICtLS3S5mYGl8vl8bi2tqdvn2xr7/jmzsGPXhyjVqth7ScAwEClX72njzKTVqv9+uuvOxVu377d1ta2L073MAMzEeJwOPdhw14UfYlwOBuB4GFLONLpdL6T03T2iPSrB13qkXVICM/Gpmu15sbG1rQ0Po3WWFysCw62trW9wyoZMWbVnbijmsKMoro6txEjKBRKH18TAACYVVNTU319vVwux9RqPJlMp9Pt7Ow4HI4JT0EgEA4ePNi1PDMz08PDo4fGiWkNqM4yxkgkkp2jo52DQ88LGTfX1i7wGJfSmODK4TSVlXVbp72+XshkSrSt9ixWq1jc2tp6Pu/8dMHoxUOn3hbHCnS6VjPOgAAAAGZQVlZWVlDQkZ+P5ecTSkp0+fnSgoKivDyxWGyGs8+cObOgoMAMJ9IbmC3C3iPTaC5sT4lKklubx/YM77YOjcO5m33jrcvrFnDnuVgHUZlat0oN3YM603PW+itvTHB8jmve29kAANCnGhoamqqr8RUVjnw+z9GRgMdrtNr65mZxWVkNQgwGg81m92kAcXFxQqGwT09hbMC2CHvJRiBQ2NsHOj33Tel5e3d3hJBOp5NIJMYjC9k83uaKo0OtJl6p/7O1KTkp9eg019E8BgPjutpxw7alH5E0NMjlcstdBAAAmFJdXR2qqxPZ2vK5XAIejxAiEgj2fL4dh4MaGvSzZj+Bixcvfvnll4bNw4cP7927t9uaW7durampebKzPIHBngjxeLyrr+8riz+IK4i5/ftvMfv2Xf7hh4qYmPJbt5rq6zEMK0xPv3jq+47y0uWRq/47/8tyaW2Qnf8iv8UECsVn+PDVEWuLKmPUZdlld+/qYLFDAED/p1arlXI5XqGw7vI4kM/lIqnUeEmDxxISEvLpp5+2tLQghDAM27Jli8dDpnqOiYlpbW19srM8ATPdGt2xY4fhhq9AIPj444/Nc95e0pY3z3ccfuPWvpb6Mg6J7hqx2k0kKiosJFIotMbGi4VHtoz+F6ZDVjTnhePXVzc2tlE5joGBGo3GDs9YFLLgTNGpBX6rlUqlOUeAAgBAX9BoNEijIRIInXraI4RIRCLSanVabe8HXhsTCoVRUVFHjhxZt27dlStXEEJjx441TdBPx0wtwgsXLuBwuNDQ0NDQUH9/f/OctPd0KtUC/wXFjfljXEZzqTbfxG+va6/HkUg4HK6wubBB1hDtGm0jEAgjI52nTp38r3/5jxtnxeORSCQVlRphF3mr5E4HkQgdRwEAAwCRSEREokar7Tr/mUqtRgQCnkB4giyot3bt2t27dyOEdu/evWbNmq651iLM11kmOjp63rx5ZjvdY7Hx8MB3dPwr+lNMJhO4jyrIPbX+3NYNE9+vq6ralXAsVDCpUCK19ffv1JcXh8O5hobWllln3lHrPK2f+JsBAADPDhKJRKXTFTRaY2srn8s1fquhtRWxWCwW64kPHh0drVQqz549GxMTs2vXrqcO1jTMlwh//fXXCxcu+Pv7r169+ml+jn3BRiBgjh4tCA/XarUEAuGN8rB39k6vy73hTeA0tmdMGv+6c0REt7c9qVSqi4/PhJHTblTd8BPCXGsAgIHAzs6urK2tsrxcq9PZWFkRCQS1RlPX3FzX3o5cXOzs7J74yDgcbvXq1StWrJg5cyafzzdhzE/DZImwurq66xNUBoPh6OiIEJo0aRKPxyORSEePHt23b19KSsrDRkpqtdoJEyYYNqOiot54442u1dRqtVarVavVpoofIYTH4/WtOk2rbH346ztObnbA46cHzrDGUVtbe1qtaazD2ON5x1/weaGHg6tUKqlUSqVSzTZEdGB74sf1YACAT783nuanZG1t3SES1eNw1Q0N1UVFeIR0OBxisZCLi8jV9SkXcF2xYsW///3v1atX91AnICCg659KrVYrkUgUCgWRSOx5gLgxKpX6yMm/TJYIt27dev369U6Fo0aN+vnnnxFC7733nr5k6dKlPj4+Z8+eXbx4cbfHwePxGzduNGx6eXl123zUJ0L99Nkm5+DtzVQo/h39KVuGOQYEtLHZtra2PaykHM4O+ejOusohue4Bwd0+KVQoFFUpKdZarUSnwwcG8p/i/ylg8KzdVwDmBJ9+XxOJRCwWq47Hk0mlOp0ORyCwWCyhUPj0y5jfuHHDz89vzJgxPdQ5d+5c10ICgcBisUgk0mMlwt4w2bG+//773lQjkUiurq4NDQ0Pq4DD4aKjo00V1ZOxEQgoEREMf3+1Wo0nEDwEgh6yYHt7O62sNlrgXlUYR8IRPUNDO1Xo6OjITkxkV1ZaeXnxSaT7ZWWQCAEAzz4rKysrKysMw/TPjEzSseXFF1+8ePHivn379EfDMOzOnTud6oSFhZm576E5nhEqFIrm5mZ7e3uEUEpKSkJCwueff26G8z4NVq8fCCsVCiaRuMR/yaHMQ+85juz0rlarLU9OdlAoisuzjqbsXTP7P0S+qA/iBQCAPoHD4UzY/HrhhRc++ugjNzc3/aZWqz18+HCnOkOGDBmAibCtrc3b29vJyYlIJJaVlW3ZsiU8vPvJzPojNodTgsf7WQVXl3x79V6Mmkq1E4l4Njb6r45SqaRrtSdLj18oPY/aSbza1LWjLNzeBQAAS4mKijLeJBKJP/30k6WC+ScMM5xDIBA0NjYWFxfrdDo3N7cB1luEQqG4RUTkpaYuj1hyKedEhJTc6uHT5ODgNWIEHo+XtLXtSjh4v+Hmr0sP/VJ+LZddBcMNAQDgmWKmoW8UCsXX19e/y1C8gYFCoTBptPmhczzxwl8yvrpfn8FRKmUyWcX9+zk3TqZUX1zq+4bc3mXalKVxZXGWDhYAAMADYAy4aXAdHasl0ue8n5/t+9LO3J8alVIymdxRV5dYG7c8bMlYzyAOnx9iH9KqaK2WVFs6WAAAAP8Y7MswmYo1n0+OiMC7ulLEYqvYrP2l598ZEqgk4q4UXDu28GibSmNHp2s0mpEo6OTvP88dtULk7m7pkAEAAxyGYfoZrgeAPh08ConQZPQdTdUuLq+2vPjppdcL1V6pjQVEzLGByBYO8WQwGKU5OXM4/pXNWbiSkiYOx9rGxtIhAwAGLDKZzOFw3AfQ/9wLFy7soyNDIjQxmUzmy7KPdhh/MvELFYG2OnoZi8ezEQgQQiqJJNJlxL+vnnp9KLmjo8PSkQIABjIKhVJVVWXpKPoHeEZoYnQ6vR3DFvksnuc1n8xkR7lNwP5ep9BKJMJjVq3t0qz2WqtnZpI9AAAY5KBFaGJkMlk4bFhVQQFSjXx75Mw6HcHJ1VX/lsDBoZ3FYldEFtp1jIKVCwEA4NkAidD02ByOb3i4z7BhcrmcSqUaT8/GZrMnB0+9I76zEq20YIQAAAAM4NZoX8Hj8QwGo+skpeNcxl0v6zw7OQAAAEuBRGhuQ2yGdKg6SppLLB0IAAAAhCARml+DWDxBOuT8yZ+rS0stHQsAAABIhOal0+ma8vJmu4e3yQrkxcVKpdLSEQEAwGAHidCsMAzDI+Rr45vXmEfA4XR/j6wAAABgKdBr1KwIBALd2VlaosyoLVfYcGkwiOKJNDc1VZaVEdRqKoVi5+n59EtmAwAGM0iE5iby8JA7OBDyvaR8raVj6ZdqysvbstLOXt7tzRKMGv98ZWur15gxXXvnAgBAL8GtUQug0WhhLmGpNamWDqT/aW1puX/79snUX+vai8ua7q39fXVrew08agUAPA1oEVpGqDA0VQyJ8PG0t7c33r2rk9TcT7m2cOjrbgwurintnQOvf0oiDxs1mcVmWzpAAEC/1CeJsK6uTqfTCYVC48La2tqCggIfHx+BQNAXJ+1fQu1D96bttXQU/Yy0pYVPoXzfdG54xHwVXdDs7z+5zsHK2erXix8rK5t9J0wQeXjgcDhLhwkA6GdMfGv0l19+sbe3FwqFL774onH5/v37/f39P//8cz8/v4MHD5r2pP0RX2HVmJqXlXBbLpdbOpZ+g8HhiDskKVUps4bNHzJu3JDgYKGd3RT7ycJ2eVVFHLmior6mxtIxAgD6HxMnwpEjR169enXHjh3GhR0dHW+99dbZs2djYmLOnDmzfv36Qf7XXyKR4IvLI21E2sbCiqwsS4fTb3CsrEqFOA3fleDtZ+/qasXlNtHp1fUNc/yWHq09TyHilH8v3dnR0ZF5+8Yfv++pKCy0bMwAgGefiROhj4+Pr68vHv/AYa9cuWJjYxMZGYkQGjVqFI/Hu3btmmnP27+oVCo6gRAkCMptytYN7v8JegnDMK1WixDKkxeERUywd3bG4/EEAsF7+HBhdDTbL8ze2vlKRaqVnZ2+fmV2dlXlrS+vrS9OiM24d680N7euuhpGbQIAumWOzjKVlZUuLi6GTRcXl8rKyodVxjDsypUrhk0nJydPT8+u1XR/M2mkZsJkMouIRHemz4X710aP/lc/vQoz0Gg0eDxe0t5enZ5O1OmIAkF8RfycIXOMP30nF5d2Hk8gi05m1M1jsfSFGrn8nvger50Vc+m7cfnTbqGKqaOXKDqGiAbQat2DWf/93QdP73H/+HdqmHXrsRPhyZMnjxw50qmQyWQeOnToYbsoFAoymWzYpFAoPazPrtPptm7daticNm3amjVrulZTq9Varbb//jLYBwYqbBlnq7/facuH1eq7VZ6fr62r0yAkVSiCbHit6nZ1mTy+KH7zqM0dHR1yudwwdpBIJE4KmvrBjQ8MP0mKQHC5IGG949yjuf9ryN8lwXTe/sE2FQxroRAhpMgkKn4AACAASURBVNFoKnJyNG1tJC7XydcXxiD2O8afPhhsFAoFkUgkEnubvKhU6iMrP3YiDAoKolAonQqN81xXAoGgqanJsNnY2NipQ6kxAoEQGxv7yDD0iZBKpT6y5jNrqFWokMS/nRoT5jOa//c9PbVaXV1UpJJKeU5ONoO4e61EImG1tlrzWBQC5Wry3ThF5rdJ364P2qiWqf0d/BFCGIYZTygz3nN84ZlCFUHFo/EQQjQHVr6jWhQw6T+hQyX5BWmNOZm1efNC5zCZzOqyssL4eOv2dh9/P4VSKWtttXd2tth1gifS6dMHgwrxb6Y85uPu4Onp2e29yh6Eh4evXr1aIpGwWKz29vbMzMzw8PDHPe/AU19TM0Pn01B4u0PJbiIQrPl8hFBFXp62Kv9Keczk5gXUyMhB+9uu0+kIONzaC2uj3SZ62I/ZmriH1y78+tzHM3yDSrKz3fz9O9VXK9Sj1P7HT/04L2oVwuF+v3Mo0naE5+jRdffv65iO1Cbu+YYr6z08JBKJurCQq5XF5x5/Lzb56LrzamiOAzDombizTH5+/rZt265du1ZaWrpt27bz588jhLy9vSdOnLhkyZI//vhj6dKlU6ZM8fDwMO15+yNpY+N4txEZjem2LJa0sREhpNPp2mtrj+cdPZJx9NTt/UXZ2YN2zhQ2m31Vll/Y3LAj4VAzF59Aqf5o7me+Q/2jPIdr6ur0HWeMVaSnLxSGicUJhTdvNiUnNxTfmaJxVXZ0+EREDJ8y5flZK9PUOQQCQaFQ4DTKTWmf1mOIhXGuVmdai0Q6na44Kyvv+vX7KSkqlcoi1wsAsCATJ0KVStXS0jJkyJC5c+e2tLTIZDJ9+dGjR4cPH3748OERI0YcPnzYtCftp5g2No4Mj7Sq9DqJhGFtrVQqC+Lj60rzbsde2SD8V0rWpZbihJKUFAzDLB2puUna2wsSEg4n7p09/k0vrsfesxsWE0eotbhvp3y70G+hBo/v9PQbwzCcSjXHb3ZqTkry1eN1GUkpxYlRHpHShgZ9BSFTSCFSUnIT6u/d++7Cj3wVf8Hkt2njxxfadzCZzAaxmN3QMITNFsrlNcXFlrhiAJ45Wq22ODMzLy6uKD1do9FYOpy+ZeJeo4GBgYGBgV3LmUzmhx9+aNpz9Xe29vYIRdYmsGudmCNsbatLS+212kvqu2GhUXSS9dQpy1Kbk+cKg1QqVdeHsgNbZXq6sq2Qrm4Y3iYYFfrCm7GvfxT1gY7Ovt8hxxEI9kFBnaaPweFwFIFAXFS01nHhT9m/pjTFTnIZTcfzCHy+oU4wOzjuwvHZ/hH3cAn/jviCGx4+1VX2W/ZvCCG1UkkjYEtOLfl60jcaOcPcVwvAM6muqsqqqel00Ym5ngvEZWWiAX0bD+YatRgcDidwcAgKHVmiKR+BInEEglyrPH//3C8zDhRXtzpRSck5qcoQcs8dkRBCGo2murhYKZFwHR0NnW76LwzDCFrtsZyjSwOXcogMLl2wY/IOZ6a7wsXFwdX1YXu5DBlSyWA4K5VvBAiJKhKmsSb6+tra2+vfra2sHNXKr89P3JZ64uXoVd4CVxaLNZI68s1LbyKEuALB3ms/Z1ffv1CSOGfWG2a6TgCebWq5nE5AP6X8NM5pPF5uY+lw+hasPmFhhtm3+ULhmYZ7XLqnnGYTMnMmyck/VlvlOmzYIyfPrMjP15Rkx6bslmRmtre3myXqvqLT6bRabQVeerM4ZbjtaIqzs87dnc8f1i4Q2Dk59bAjDocTOTnRfXw8bMIdhMEBkycLHBwMP7q2mppxnsNi5UkijpcnfShmZ0ej0URsEVFD/PPW+bKEhP/lnGb6DU/nt3Ctrc1yoQA866wdHTNaalQKFFedbS0SWTqcvgUtQgsbZj9sy40tOp1OIpFcUSZPnPuyT1gkDocbFTGp6nozRnz0A0Jla2uFpOBg5oHZHnPlUinbLIsw6HQ6cUWFrKGBKRAIRaKnn+oaw7DSnJzWsrKGkpKrLbHBbpPJAUMdBYLeDxfD4XDuAQEKhYJAIJBIJOO3KGy2i9Rjw8QN4fzxjJCh9g4OCKGqkpLodrfS34/gRG58gnKh85Idtd0/va4sKpJWViIi0TEoCNa4AIMEk8kkBDpnxaMyRx3HysrS4fQtaBFa2FDh0HRxen5SouRuQvmtP4eTgvVJhYAjuHJdC5sePVUm087udkmqQqGKrckgUaniqqq8jIyie/fqxeKnCQzDsOamptqqKoVC0fXduqoqfFFRes6puDN7UuJvPuWcAHK5PCMxsS0pSV1TqqxPzMu9+k7wAp1S+QSDpqlUaqcsiBBy9PTssHMI9Z7HCAjUZ0GEkKSiYoxzcFJN7LE7O+d7z/Pjeec15MnUsk77SiQSXVlZXXOalba9GiaGBYOAUqnU/0Y3qZpITFJ+a76lI+pz0CK0MCuqFZ/EbxUXiLUNEU4BtJYODMP0udDb2rugqSBQ0E3nI2OO7u5XKBVsnxG3SGW+SUmk1lZdRQXb21ve0NBMIvFsnvDmflVxMb6sjE4g5GVnu0VEcDgc43c7WlpISPpDzM4QZHO74OIb6q/cIyO7ZqDewDCsLCWF09J8J+fCiayYiV5Bbwx7zZpmIzfd1CFEItHVz69r6TSvKap6mSvGFwkjWW4ewVXBiVWJUa5RxrXa2traWhs3x22e4ztnku9LpgoJgGdTTXm57P59Eh6vsbERq8UjHEdk1Q/8//+gRWhharU6gOgVc/fyz4k/T3afoiMSDbcZvW28CxoLHnkEDabJUeS/HLyqIC6GlJMjLskvkaZ+e/lTaxpN1tqqryOTSvPj4/Pi4qpKSnoZmLSmRkeQ/vfyZ613bxZfvdppGQe2QJBYkeVDdnkjYkOeqgAvbzUMlXlcKpWKolL9VnL4amvOKxFr3V3mWLuG1dFohq4ufcQxMLCFxB4dudRl7jKXqCihs/NQgt/la/9rbmw01CnJzVXl5p66fcy2XXAk/QLDeYA/KQGDHIZhbcXFdKK8WV5CbmysbKwc4zymqr2qQz3A552ARGhhZZmZU8ku50r/56j0cHEY6xgUZHhL3yJECKlUqsqiovL8/G6Xr8quz3ZmOQ/DiVSovkFVt+fON1lV5fea8+631bL+7vpRmZXlTiAMYbG0xcW97FBDZDDOZJ5vrrq/7953jYr7iooK47FEfDu7bIFa5+pF9/Ae6hIWU3GHRqN1dHTkJyTkxcU91uJHBAIhuakgtjDusyU77CInjnvttcBZs3yGDzftFEpdsdjsIaNG+U2Y4O3vT6fTKwsKJuGcWyqSm9PSJBJJc3Pz5XNH3toyLeXeuSQsYdmEdQSO8Nqt44VpaQN+TBUYzDAc7ruk7w5lHtIhVC+rd2Q7ell75TbkWjquvgW3Ri1M294+3XeqI08Ywh9JCwpiG92B9LL2+j7+e41GU5KWxmhvUGnlZbW1XqNHGz85a6yvvxJ3OojqhyF8qFPwxoLvJvnPnhC18s+7H5bbE4ZQqdWlpUQKRatUlqhq4sriZrst6OXfcSd//2Onk1/wmOkssj5x/8Q7duGdesSUKEsmTJ+pYLg6to7/oyL2+bq6upISmqymSdXAUqtbbGy4XO4jz9LW2lqZeveX+K/HuC1WObgFuLpaav5YRUvLRJ9xP9/74W7WdWZVFUul+jPxBy+WXVLG714iV2uC9auuE3Nrrs1xjqytqHB0czPsqNPpmpuaEEI8a+vezHMPwLNJpVKVZ2fnVuScTr5p4yDAOTo2Njba0my9cW63E2K8J3mzWCxLx9hXIBFaGIHDobXjxokmVCiV1nS6oVyj0RBLpep7+QVxcSqZ7FzFsZKWkg9G/VculxsmIG1pbpakp3dUpY+nuymZTH+HiQKr4JUz3hU6OYWiywXS+z5JPAc8XqFWS7TaH+K+L2zIivRd5vNgv0edTtfR0UEikQzD9jEME1dUVJblF6rLJy9fJy+vSLi7Uyqk6xOwRCLBMIzFYmXVZ70V8ZYj33N09bATsduu/fLl1XtXpMRqmZB6eO5xTe/mKqvNz29rz7NjktcEz0I8ngVnUafz+c0VFXNYz52P+3XTqDdvVWcjdeOiYS+rtVgH35ossJ9OsDvy+8EDt34J8Z3F4vH0/ehkMllecnJW3nkKmRwaNNerF8NdAHg21RQX28lkx5uvLY+Yu7X+tKOXR+3tWrxYMVppI63IqklKch41ql+vc9ADSIQW5hoYWFtR0aZQODo5GY+db25sdFUTbOlkG5I6pU58MfeyFmmLOhojjWaZkbW22tBoBc35C/wXEInEVcv/D/29+FawXfD5jPMvOoR9Ev8xV84RUjxvSgvJHnYSJ5LxLUetVlt49y5DJpNjGC8gQL/eRWNdHXb/fkND4gJKEJVCc54QNUG97FLj1WEoojQ3F19TQ8Dhqq3YhY2Fvnzfjo4OIZ4awvW/k3ck1DFyrPtL78R/lqtqjeDxenX9ONydivgJrhMwhCybQESenpVE4pCqEbHt8Tvv7RRLW+YHr1AhAmdoUHB4uFqtrkpKWu+64WzyvkpNJZNAsA4ObqurU5WVVWXdOZX9E2+IR4RrtFKpHKh/KcCAp5HLZRpJbFnsoRlH9t24WdFWUSut5SgJtiL/Q5mHeDicVCodqF9vSIQWRiQSje+zGeBwOAyhkU4jD2UcIlh5Et0CbNvpsfkxtkxbh6AgDpeLEGJyuQ1FRRXNVRSMQ7O1Nb4vF2wXvC1uW411e0J+UpCcnU65896I57OY6uvl1yOcIgzVWltaeDLZ4bxfZnnPaiwq0idCeVubDZ1+p+pOtNfYjuZmgrPzYr/Fy39b/mbwm2qxWKWublY061rYIoaISqTiqXgxhr054i2GU62GyWY6O+PbA+octb3sQSr08Tlx5M7WsR+1sNkeT9rB1STweLzI1bWjuvoLly8S026TdQxRcJiNr6/Azo5AIFAoFNdRo9o7Or4OO7By//KkhgPu9+4hDHNl07emH14f8sLWqv9VKZqcnqjfLADPAo6Dw49x3w/nj2rH0ZycPQubCmultQKhG7uJmSXOqdco3RgDdgJCeKTxjOLZ2LRwODM8Vx6Jj/k1Yfd01xnLvCcWNd/2ZjBqcnL0day4XIK/ZyEVxwwcKnxw4hVfvm+5rPwmrdSK57ti0n/svbwXBc4Ptw65nHNZIpEYquEJBJVOe7bgbExRDMLj9Z1EEJV6rSg5viTRhe3PEQoVCgW3VOVXo73w+86m1tYv7nzx4cVN1xIv+aqdlEolmUy2Cw3VOboUWPM7hMIGMnlEZFRqbWpvrrGxvj4t81YdWx05dal3WJjFl1rF4/HOw4bJ+aLgKUtGrX7NPyrK3sHBEBWFQrF2cWlql77mtvjPkj8dGRhZrfpf/pEA5yCqTaC1Y1g8rqT/rhQNBjOdTleYnt6clXmy8OKoSWvdRo3ysfNJqUmhEqlegSHIfYhW4F4m1NFoNEtH2legRfiMIhAI3sOGFWaQvpq18cu72yYQ3AgUrE3ZVtZaisj/LNiroKh4HiLB34PEDYg4ogfV46s7X3847wO23P0Dt831Cq0X1V12N1XserPJyc1lyBCEkJWVVQJZUi3THC66OX7EusbERHFhYWlzyfaivS9G/8dl1EQuj1dbVWWHYe+MWf/lpW0h/Cn5YmkkKfhm/fn5LssqsrM9Q0M5Vlac4cOHDB+uVquJRGJkScfW21sfeYH6B5xVlbGLKUNb6uroD59H1JzodHrXxQ4NXHx9K6lUYl3d88+9+tm1HQwGX0mkrhi1wj4sbHxmx81bp0ooYfygoCceuwmARbQ0N7Oamkqk+cFcnofOhkKhePA8Yktj7Zh2+ltWE8bMSGxMGpLtomxowNPpzkFBA+weKbQIn2mYSjXOY8wfi/8QcW2ayWQvbujZwjs8o2ngxRKxHbObibZLc3KipELbkrqhWjenyEh8cDA/NNQRTw5x9GpRlqvEYv2SfjgcrpxRP2rGomJBe311gVrdcjHt52v39myb+N4khwgrLhchRKJS5VqtCHMYprO5XXrk5eAFqya9SrNmBdj7aqRS45OSSCQcDhfmEJYmTtNinZcM7ET/gDOpJnHKkPGG9ZKecQQCwcXT0y0qKtRv+sI5O1jBY95568DYZcvYfP5zvACxNF9IxdcXPHroJwDPFAzD8Aidzjs913cuptUihDx4HvGV8Ya/LZF2kVf/PCtLTXWnUp202uoB9yWHFuEzjSsSlWZmWhGJDRgWEh1916okqzHLuP0nlortWZ0Hnut0OnV9/QjXIB1BJtQQtFqttbW1UqlsxrBpntN2xHyzzOtfRIHAydubSCTGV8aPcxmHdCjmfmxRddwYlsdLwSvtnELLdDp9B0ietXWFSFRQWDg1bHlHS8ws/0mFjU3fTdpFI7K13S12oW6We9VwLp85ODxiqs3DV8Ngcrn1hYX3ajLWhb7DEggeVu0ZJHRyshOJhuDGz0Sv/H979xnYxJUtAHhm1CXL6pKtZslFcq+4YWy66aEH0guBFLIJG/LSNmVDstlNNtlk09j0BmQhCRBICIRucAHcu+UiW7YlWVaxrV5G835ocRy6HRvbcL9f0mikueORdWbm3ntOYAmCIEQcOZobXddbxxKkjW/zAGC4WGx2HYV4pO3s2uTH+UolBEGR7Mh+d38gEKIoKtThoc4WPLvjX9U7Hlz+lM81zr0Yow4EwgmNFxJCptGcDoeMwSCTydkR2dubtg9dQWfVhdJDL3gXgiB+AmFR5OL88HyDw88jEiEIIpFIdKVSYLWyrD9V2o7lGlO6EEQWE1PUWfR40mPQQNfbFa/GExKjclfrKBSXzyc8P7UfhuEwpZJIoXgbG58lpes9nug5czwOB5FM5gwp+Bfg8/ksDQ0LJAleh9pYV8fi8S7X88dksdSRXH1wMDMpc6yTyIy6C+ZIMFmsVg4HwnELDR0bZt41Xq0Cbmwul0vf1uZHUUF4OO3341b0XV0Dej2VzRbKZCOYzIrD4QwhblJqfOKchYFhbiKqiNSPMD10v9/vcrnYEC4+PHZTyevBGPXvpz9+5oEPRm2vJgYQCCc6Op0+OI81UZDYYGzw+r0E5H+jE3U2XWjQhYEQgiBJcnJXfb0fhXmJUYMTBEMkEr/f/3Lw6+sO3Herqxu1ECqbymw6S5AZXhU1vc1Y/PiUJ9xiuTgy8uLJcKFSqSUoyG61irlc2uUHj6EoSoCgdHF6QXtBfMh0FEWvMASmC9Uqk1Iv7uCcdBAEiUpODjFn9mG+4N8nZQWA0aIuK5NiGA6HU587NzSxhtFg8NbXR7BYJrVaB8NXKNt5Bb+2/row9n9R0Ov16kurpnu4MQZIXVcni42143BrYtfYIhw4RsS9tY9v9NsZKGvcR7eNolEOhBaLZe/evWVlZWazeceOHYPLt2zZUltbG3gsFArfeeed0d3uTYJKoMqZ8jpDXXJIcmCJzqobfDxUEJ2uzMy8eDmDy+1S4aYJp39fe3Cm8lZDc9lKfLROpRKJxX+b9Tez1eojkS43JZzFZrOuNjuQRCL5ebwoT8pLrW/emU+9clXhWkNtPP+yI1MmnXBO+OG2w+PdCuAGhGGYrqvL3NxMFdDxZALNT3O5XIPno87+fhaFUtxVlCnKajeZoGEGQgzDBgYGfqn95eNVHweW2O12ForKedJwvshrMuFwuLCMDEo7H8HjiXT6rXXZX3393OrsRyIzMkaWZ38CGuXBMi0tLfv27UNR9Icffhi6/OTJkxKJZPXq1atXr54/f/7obvSmkhKaUqGvGHx6uSvCy6HRaJKcnJicVd9j1QIq9UxP4YyoXAmXq4bhxv5+E4Pxx6/PIhIShDkzxdNmVeCu0qNea6iN411UFGLSkjFl7X3t490K4Aak7eiAmpq6dXVPbb1v3VcPVTbUdKtUbrc78Gowj9fS37vppydKOqqDQ4fxaxDQWlPTXnCQ1qBhGf932komkwf8/nXJ65J5qTCVCkEQlUqVxcZKFYp+jWZz5t1ndccEHo95koxxuxajHAjT09P37Nnz8MMPX/xSdnY2CIR/XBIvqaS1xOv1Bp5eso/wyqhU6uLM5V3+7lJj/RnNuXz5PC+BEDd1qnLmzKiUlD9+uwOG4eDg4BXRy3cc+lSn0aAo2tfXZzabL55jV2uoTRAk/MHNTRxhzLCOvo7xbgVwA7LqdDiiZ6v240XTNgggYYOnWOxwaM7fY2MwmRXcvjqav0mAXe5E1ufztVRVNZw40VJVFRgxHuDxeGCjsd1aNzMyk2juCwRXMpnMS01lCNM8IXLZkDIAEAQheLw4SGxxWexeJ3ID3Rq9ftMnPvzww1WrVr3wwgvGIWVugGGx2+1iDc5cUtRy+nSg7NFwrwgD3E73PF/aPw5vCWdO66EEi9PScDjcKCbJtNlsU8xcd0d1e9Hhgzt3WoqLPRUVqtJSDMMG1/H6vS3mlhhuzGhtdNyJ6CKD3eD1e8e7IcCNhsrlnmuvjOPGxYdnbV606WTXiS67ZujkpZP6AkF4WKtXfcm3d7a0nN61y1pQEIYgbItFr9EMvuRwOFR69dYzW1fFrPJA0OB5MIvDUaSnh8fHk4bkdIQgSBQT0+ZDEUJoNd528Vi5yWvYfYQ2m62+/hIlORISEq6Qd2DFihVcLpdAIGzbti0jI6OysjL496mfB6EompKSMvh04cKFzzzzzMWreb1eFEUHL4xuEp2NjVOZ4R862uhuW0djIzdc4va5cV6c1Wu9+puHaKusXC3MbO488mDCciKLBcHw0HQzf5xBp2NDuLsUd/1r1+ZUJGkfqT00PvG2hAd7enoCHRsYhpVrykOJoV6n1wuN5CDafj+FcYIQ0ASN2kYZQzbeDbnBTcyjP3aCebwigtnNkATFxVnb2jK4U/dWHVw8+3Gr1Rq44/JLzS+b8zYfaT9y8T+yzWaz1dfDA9rmzsK9TbseWvxMv9EYzOVCEGTQ6Rz1dV8WvhXlT/H4BRyZ7JKF3i4gSU5maRKMwc4RlyD9g1wuFx6Pv/YybWQy+ap9mcMOhG1tbZs2bbp4+ddffx05ZKL3BTZu3Bh4sHTp0tjY2H379t15552XXBNBkE8//XTwqUwmu2Ttj0AgvMGyG1wVncViOJ2zwmd/cu6LpbM2mz3mUHroCGqjkAmE/Oi5QTRaBFfupVDGorpKT3t7VnBaZAL2RdX+uWFJP3fWwlNILBaLRCJhGNZcUdFVfjSvX2jR66VRUSPbxAQsChPODu/19ibQb5z7vRPWBDz6Y8pA68vIna2IiXHJ5RWUzt0te/8vJQXDMNXZsyZNZVIvKYeS+q7p3Yv/LG632+O3v1rzjzw4QWPqefvM9vuXPY3H4ykUSnd19QDWSWLBL816Go2OEVzzLKa4kLhOR+d4HQICgTCsQHgthv1ZiYmJRUVFI94eDocTiUQWi+VyK8AwnJYGpiRfWkhYWJvZnEKb/e/TLyyNXVKttYdQLjtj/Qp4kZGaykolO62HSIwcg/sbdDrdm5paa7dLg2a8k7eyuqaiqPQIOTrC0ts70NPT53Ti1GqDrS1LEuPs7PRHRNwwZfzCGGEd/aCbEBh9jcbGe5LvgSCITCYvSF/yXNmLEATZ7fYgu71ooGa+IpdjQ+weu8lp4lA4g+8ydHf31NY8+93z08Nmrsy595yx/aNTzz2iu7XdbI7IycFTqafUhbPks1yonzaciwolR3lMfWzU93EcXY8fIIfD0Xy+ZPmJEydKSkqmTZt2HbZ74yEQCMqMjEhFwvplGz6t/w9k7eUSRpLWks3lyvPyGBkZiqysMRoAzeZysxYtQiMj9Thc2LxF3Ny4up46tKEBUqkIBQXHT247U3hgpmQmCsM3UgE/MHAUGCONxsZobnTgsYguohKoLZYWAoHg9PtPd57OFk3FCIQEQUJ1T/XgWzAMMzU1NRpOyJX8xem38zIz08Pi1qQt+6zmY7bfb7PZxDEx2/UlHHYyJpdfdWbUUAqOosl0Q2VZG+VA2NPTA8NwUlKSx+OBYVgqlUIQZLPZsrKyRCKRXC5fuXLlO++8M7QXEBguPI22NGq5zW37tPzbENpIrgghCCISiXQ6fUynxBKJxKjU1JgZM2QxMWnCtIqWEk5QUGVL4d7WL0odDfckbTT7aCHx8TdMIERRNNiEby0+19nSMnRYEAD8QQa7AYZhHvW3mzdTJVOLOovIZLJHzj/Zow7ixYuTkmKCY4qaigZHTmAYBmHYkbYjaxJuZdLpVCoVFxR0W8ydzeaWj8t3dba0FB770eZ3zlt0l+TyvVqXpOAoVCbVaO7heBvlQCgQCLAhNBoNBEF8Pr+3t/fs2bOnTp3q7e3dsGHD6G70ZhOWlNRFIs8MuaPbqJZ0+7rVlx4qNqGkhqY2eNQlXTUf13yTxJ323t0fRWbkJc6Zw76BBp5p1epkD43q7sF3dPTq9ePdHODGMfRyMCCNm3a06rDdbj9jLcuYuyhh2nR7f39CD7Xv7KmW4mKPxwNBEIIgqJh9uquJT4v2h4RQqVRZYqKVG7pU9uBPpTtrv9/aUXf0dna6trV1uO3hUrkIjBjshlHbw2vj8/lcLtdYfPJ1SrGGIIho8mfSmiDIZLIoOnpWXx+D+VQkJ9KqVvvDwiZ4N1uaMO0/pf/5GMLSFt4tj1xjIZG4cvkNVt7MPTAQwZPpy/R0ItFykw1rBMZUg7Fh6EQji8kUp6OcKi/sDi3a3fnDHRl3QhDUp9HMjkh7vmMPz+frt1h4AoHL5TquPx09I1+WNzMwrpBIJArk8pye5BDiCzsP/m2gzX/3yv/zjOi7quQoVSYVn8YfrX28KpPB0FtTQ8QwR1CQcrTHkUzoX0/gchAEQTFsRcyKBF4CNhm62VgD1IFzTWeKf9648MmUadMU6ek3XtE+pkjkQcmmgb6mASNzktTTALdwJz4URas6qiIZv929tHR350kSSUTCR/u3NB46nk5PgyAIIZHk9HAMwyoN9QQSLrCzmQAAIABJREFUyWIyaU6dqvx1+2zP75I34XA4D4ZlRGXel/mUmK4Q0mNYEslwm2Tu7Y3UBZcc+tGg1f7xHbwyg1bbUFioKi3trKrye7W/tu4MMpv7+/tHdysg6fakRKFQCDJZk0bjh2FebOwED4RWq5XQqc0OCUvkJzmauyB+2Hi3aExwBQJidg6xMa1d4k+7zDTZicPhcHRUVMBuN5HPl8fFTfCv0E3L4/G0njljO3dOGC02xxoDp48kOt1pMj0b9cSPhR/MlcRAqg4nXyKJi+uoro4Rz91hLY7tX1J7+DDR3dPSV/uq+CWTXi+SyQIfSCaTqVFRmrY2YnzqA/OWhEqlw50F4ff7e2pqpgsibF6Dpb6exeNdbsBdIIWN1+slEAiDwxH8fn9nc7PDaPRTKHyJhM1mX2Gkgt1ut9bVdZpLg9zBrSrdMeselbdVSlFmQBnDavNVgUA4WUkiI1G5HEGQif8T5vP5iAjyp4w/RbGjDDd0DoTg4OC8pJnlxvKczgyLWg0TCOL4+KBxnfHm8Xj6zGY8gcBis4d+VTS1tWIMrbXWizxuPZsdOtkqYd0kzL29LI+j29GcL0vtbWkJBMIQqVTjdPZUV69f/FKwiGd1+NxuN5PJVGZmrovkZb6Wto4wo6Rtf2fjiUez1+EQIvL73PfCsLBQqXTEvxt+vx+PYXKW7Ofmn4kw7PP5LhkIu9Vqs6qps1kVwuVTBAJRamowg9Hf11dfXNynrijSnl5Km2qSRRilUkVW1uViocfjocLwP4++JbVAScJca3ffooQ7/3bs/f9EZJFJSaP4nwUC4SQ2WcqgBAcH99BoEii6z+VnKsPHuzljK0eS8+rRV+9HZ8Sw2V6fr7W6OjonZ7wa4/P5WktK+D6f0++3SiRhSiUEQSiKtpSXd545s6flx4OmM2Eu1rL8x9JnLRvu0EHgOsATCCc0xUqOkkFk9J+PZzgcTh4bC0EQpNW6nWgfkcgLCoIgCMMwT7Mh3yP58PvHRWGJG+a/ZnH5rXy+/KL62H/k7BmPx+MEAnwfq0bX5mOzL9nT7/F4HK2t+yo+azzzk5yXsOnO1/QqFSE+vufcuaKSrxtqD0A+ZpnMviRSCbtcVquVyWReclt0Ov1ofzPJQcoRpn6q37tlxT+xflqz75y+sxCP+mPy8ka8Fxfu1Gh9EABcDg6HU2RkWK1WFoFApVLHuzljK0ucVd5dTpD7tVYtm8LGPJ7AchRFYRi+zmOarFYry+stNZ2J4cbYtNoeOt3rcnlRlGuzqYNt5ZqKjeI7++jmX7p2JHakeKTSK5fNAq4zFEV9Pt+n7UcXimaqMSws5neJeWUxMWY+3+f1RnK5gTQrbreb7HA8PW9zW2VlFEVMFoeL4uKEYaPfExEeHx8k5J+q/JMs8dJl1Px+Pw6G2y3ta+LWFOoqflL9lJV0h8PhIPqcP2p/fjvnmc72rv3aH4IMZ4QGOZ9OJycmXpwmzO/391ksx13V0umLMlj50fB8Jl7sJ/nejvsXmUDWON1XLnc6LCAQAtcDgiCMm6NiLZ1Il9Fl37We2lf+YTQ/6ZGlbzidTpNOZ1er9Xo9nkoNiYyURkePdSE3u91u6OnpbW6uKNizU7+NTuKslKzP7O0NEQhq9Hob0fPvqrefXvOCXetflpO95/Plp0sOZbNY8vh4EAsnCAzDmktLcabuAW1V3vzXorOnXrACDMOc3484IxAITgSJ4UXLp4dXGQyxWVns4UyTHxY+my/kCdV9agVHMbjQ7XbjcDg8Hk8mk+HQ0JoBzVz54mi2+P1zX2dMudfv9+9uPzElLI2rTLJGxs91Jrz/7TNrs5aJO/gnyssVubmh4eFDry/bamroRmN7yU/r524RZObSLRYqi2VsbXUMDNgRFBEIRvGWGAiEADCa2hsaFrnDt9e/kRGxqlpTWFe5B+nt9Xs8YjqdaOk16PrxBEKF0ZiQlTWs2SN+v9/U2+tHURaXe9VYZertNZaX7v/lUzYR953xyEL22rb+usKGHWYNu4MGK0mxX6h+vHXq8hB+IhTDqevoyEXSVLZzq+xLNPX1kcmXqPMMXH8ul4tit58xnpmjzKU7vYEhJ1d+Cw6HE6emqlUqmEpNzs8f685pJUfZZGoaDISttbVQT48PgtixsbzQUF6ktDbEvujRJ3s6u3a0fW1sPm2uZ3+t/XVT5kZCQkKuSORwOGJonLdObDldvDOIzF9lvrtHFMWJj49MSUEQxO/3+00mm9+EENE0mpRCo/EEAgiCWByOrrubQCSGj+rAbBAIAWDUYBjm1uuXxs0NoiLz2POwiLzni5/7RJqp7e39pP7b2nN7XG6KoJw1O2YFajKJ0tNFYvE1ntW2VlUxzGZdV1dVX58wMVGamhp8+Stsc0dHhfZ4rbE0hxPxcMo6ES3mTvGKT45/KETJmNFW6fh5Tfac6XErI/Py8Hi8lsu9Fbl/w+H73ZBzmFVMgDFEIBCcEHRCfWJ17K1uGL7GHNP04GD6lClj3bYAJVfZYGiI88jtvb3GgQGKwZAYHU2hUBqbmnihoY3GRkWIgkalefv67kpdtf3kF3NpsSH6nvR58SFiMYIgVCqVGBzybNpfiCGa7XUHy9v33il5mtTXZzGbOVwugiAogXCo4eAs+SwHhgnOn/zh8XieQIDH40e3lwHMIwSAUQPDMEYgZAgzn8993ofDSVnymfKZuxt293GCdrQcuHXKsxsy/rwgfPZH5Z85agqcRUXNv6/ReDkoikIWy6+tv7z785OVDf9leq3a80VZL+B2u/V6vaaj7Yvjn96VuzFTvCBOkO4PDXVhuMcXPMWVzohTzHhj/VdPTP8z/XwFSjaH46OycgR535R/HzT8+ubAGMHj8cFxin36WlZomiQtbQIODldylLV1ZUyjkdTd3X7kqy9+fvmfO55SGZpdbjeKog3GhlheLARBZCYzW5BLc/lL9ecezNsQ7PEGij3hcLjwzEwkIaFXKMlPXd5rs58aKIOHzG0VJSe+13pAGbGAl5w81nfswRUhAIwmSXJya12d3+0OnzHDbrEk2xZv+uHxmR5bavbS3FWbmisqQmy2h4mUb6u/eT4jD7bbnU7nFQYQmY3GPp3OjWF6o+Gb0m2PKZad0BYXaYsS5AuGrub3+3t1OnVtLTww4Farax2VUkoETBZAKTG8iAgFi2UyGExGY+zy5ZaODo/L1dPXB5+fv0Umk8Oys9Mo5udPv/R4RMSY/4GAa1beX6nMzkqeNmO8G3JpSq7y256Pg5LI39bsazadzk1c3apXrf/48TfXvqU6daraXh3Di4EgSBwZ2Y0g+RkPJ4SE8EJCWmy20PPFfkkkkjI+3i6Xd7W25jKRvxe9mDJljTwoyGQyOR2OgrZjzAjpwgV3XId9AYEQAEZTEJ2uzMr63xOx2Od0rkjIOta299/5X+Dx+JTcXE1jI6lDGZsy78PqrXckPxly+VujVqvVUl5OcLlsjY1qdwdiD8KEKWIm/mRn9fQ5jw5ds7O5GdfeTmto6DF3lWtPVPW1vLLhEzc1NCbjf/OOeSEhvJAQCIK4AoHJYMDh8RFDxllQKJQFqUue273pp92fxiqy5HFxEzxj381gYGBgb/nefFn+eDfkspQcZRPW9UPDkf1tx/6S9FBMRl6lVuvS4H/u3vls2F+azpXfu3gjBEE4HE4aFcUVibRNTVYUFaalXXCbl0ajKRMTI2Jj/2nf3kjVwWfcfr3eqlYXGfffGTHNarVeh8KHIBACwBjyO50PZTyo5CsiGCKPx0On0yMSEvhhYSFV8Xd8uDxPqCIVkviJiZdMOGfv7+cQiSX1RZFk+Ezj4Y3z70metiDIE/v54ccFYvHQNR29vXwKsrXhW52+PlaQ9UzO82SIgbtUQnM8Hn/J+qt6tfpBydxm3YlsdqRBqw35/ecD1w2GYRqVqqOmhmixdFYcWD7vtWsZJjMuQmghdti5qeu9rU/8JyQ4xgbDYWLxJnHoxsMPHWo63KxvUbB/G1BKpVIjr1h0CI/H351y96c/f/i29P49lf9F+tUac9uLi17q7+0FgRAAJje6ROJvcS+Rr+jF4yPP512jBweHxSU9nL32lH7/gpjshro69vTpF7+XxmC02/v/fu7NRC/TwSUn8NMpdHo2K7v1h1anz0nB/2/QqdfrtSP+x/Y8EcYVr5U9RQtXOFgsbnS0ZDjBzOt03hKz+IEf16eRMggORxCTiWGY1WKhBQczLjPZGRgLBq2W1NXVWvuL19JOcHsygiT9fX3ciVekJZCWYXqfSBmSND0ij8PnQxDk9XpbBwYWS+/59963KQwHpjL6OL5rHOaDYViaM+LrxpLdLc6mfu3dsQvmT1nv9sHU65KYCQRCABhD4vDwPjbb63ZHstkXnNcvUS5Z/9Pde47v5JCljSRSRFraBSvQ6fTjtPbgpMy7Up8NolAIYnFg3lgML6ZSX5ktzoYgyOl0tp858/WJV71uysolT0miY9jnp1cPC1cmMxiNC2jzP/jl5aduf6N4z24eLUjO4Zjcbl9ycuBnDrgO3DZbu7l2d/O+eyTTNysec6Aoc0LO7Ozr62MODGxd8g8BVdDW3Bz4hhAIBGVmptfp7HRXVfdUhXjQPovlGqO42+3m+fEz43KKVLXrUjdgciUSGoqTyznX5SQABEIAGFuXTB/FZDKNvNA10nXbT29dNXt9UCmuqK0tKidnMA+I2+02dHZuK/7i+aVbMmLnDH1vqiC1sLUwIzTDZrXWFhS01x3W2dq+vOMrLZHKvyiZ1rU2ksUiTZs23W6XRItf3P001tXPCqYylZFbbnm9T6sFgfD6cLvdDq/3lcPv3T/tAZZPSBVL8VFREzMTRaAAjiRYgvr9EPxbAmEYholU6qPpj7b0Nbv8fvo139QlEokuBPlT2mNYGtaPoytzc69nRzUIhAAwDhAEUaSmYhCUFZ3w8n+fjiXQ503f4FKp7FwujUbz+/1t5865TM3sbn1EH2foG+12u7KH0Vb5a5UzHnW5eJjns9Lt67MfhFAYf1GSqmGhUCgMsTibOCM9U2RKclEQz+72X1899Ma9t7xis9nIZPIILjSBa+fz+dpKSprUx6kkSKaYE5+RcR36xkaMyWSa+Pzm3l4vgoh+3/knjo/vrKoKClJiItHlkoheDEEQaXq6TqWCEUQaGXmdh2uN8jcbw7Da2lqNRiMUClN+/9dpaWlpaGiIjY2NAEO0AQCCIAgSK5WagYFHUv6stlS+2/Cff4V95PP5IAhyu90Ut/tw94llCUvITpfH4xmcR9Xb0TE3NP6Fym9dVZX9vYYdntO88GQI4mjw+PA/nDVbnpSkbmoy9/QkpaUZenvFA64TbR+pivf1FhUJ4+JY0dFXTVyJYZjFbHY7HCwe7+LskcAV2O12hs93Unvs0bwHWDAcFBQ03i26EhiGIxMTvV4vHo+/YI4jjUaLnnphQrhrQaPRrjygZuyMciDMzMzs6+uLiYmpqqpSKBT79+8nkUgQBL3//vuvvPLK9OnTCwoKXnzxxUceeWR0twsAkxGNRlPk5iIcjlSb+M2PRyo9PfPpdAiCSCSSE4cr7jjz56w/e0ikoX2HCB4voUuZduK3ZW922/2ZodErZz+KSWRRqal/vD0EAkERH99No6nb22EeLzE758UEzts7/pLGCuea02WVSnN2TviUKVeY+NjV1ga3tdHweHVzc3hODun8jDHgqshkcg+GtZhaZanhKIUyAWfQX2xiDmcdAXh0S1SXlZWlpaVBEORwOOLi4l5++eW7777barWKRKLjx4+npaWVlZXNmjWru7v7kuc7Pp+PQqF4r6FkndfrRVEUnHLetK7P7KLrxmazbd7xGK3fvTB0AYPFYkuleEFw5mtxp9adFkcqh2YldbvdbeXlXWfO4OF+oohDcjEZU6aER0WNRU0uVWkp12rV1VZUtpU1miobrB2L0+4Rh6RE5eZKFYpL/lI3nDoVQ6VCEGTq7/fHx/PGpnPxBjj6KIoae3owDOMKBIP3nLv1nVO2KE5uKJRGx4Ift8txuVx4PH50b9SP8hVhIApCEESlUiUSidVqhSDoyJEjQqEw8FJaWlpISMjRo0eXLl06upsGgMkLQZCVrIx/V2x5kpLtdjpZQUF7tIUp6blRCRemwCaRSDHZ2RyZzNTQgMcwnEAgVyrH6OohLCGhs6HBwBbwcDkJopQWV8/Rmi+sTn2sTGbmcDiXmvtICApq0DV+17jzrvhHuMPJKn6zaSkv51itMAy3aDTKrKzAEdT5e0KTYhTJo3BxDwzLWPV+FxYW1tbWbt++HYKgrq4uqVQ6+JJUKu3q6rrcGzEM27lz5+BThUKRmJh48WroeaPaamDSuMGOvtvtjmZGEFHctprP9V7XJtlrRaqT05OnX24fOXw+i8tFUZRAIPj9/jFqFR6PlyckyBMSrFZre1kZp65ufebmF9veVeozY2yReAKBSCRekARSFB39ScvBL1qPP7D6PSqVOkbHaLIffa/XC/f1aT1dDq+D71PY7fbARX9tT20sL3ZS79p1ECjtee0nfwiCXHXlYQfC7du3f/755xcspNPpe/fuHXza2tq6du3aDz74QCKRQBDk8XiGXsYSiUS32325z8cwbNeuXYNP586dq1QqL14tcGt0UtxGB8aCx+O5wrdo0iEQCBYyeW3ahvbacirdsengX+vZjrtFj1x1H6/PH4FIJEZkZHQJBN7m5juJD7zwwz8e16FKoZTAZDJjY7m/L4hjZDvb+QNO0hgeoEl39Pv6+rxuN4PFCpw3YBhm8/v31vzg9rvXJv+Zh2GB3anWVytYism1a9ef2+0e1pkQkUi86n3UYQfC3NzcQHgbamiXaUdHx5w5c55//vnbbrstsCQkJMRoNA6uYDAYQi+f5B5BkB9++OGqzQB9hDc5FEVvsGL3CTk5ssREj8dj6u159KPVpHYd10wmy8gTJ+1nTHy8TSZzHIHnpk49dvafDUz5I7e93NfVJZXLh66msWogCGq1tkbwRz4+3OVyaZubUY9HEBl5ccGpyXX0Nc3NSHt7EA7X0doaNXVqoOWKqVN/PPogDsL9JSdnsL9TZVFtSNswiXZtXCAIMv59hFKpdOh9zgt0dXXNnj1748aNDz744ODC7OzsdevWWSwWFotlNptra2uzs7NH2F4AuEEhCBKYOm1Sqb5Y+o/i7iJW/0CgNtt4N+03ZDKZQ6c/Me0JNTn1QPOBH+v3zUi994J1WswtySHJtYba/IiRJ4xuLy8X+1EEB2tKSyl5ecManej3+4d162ys2bXaUCpy6NwvkT5BvdUqSksLlUrdeE872+Lz+0hBv53N1/fWB0oXAdfZKJ9sLliwAIIgo9H4zDPPPPPMMwcOHIAgKDw8fNmyZStXrty2bdvKlSuXL18uk8lGd7sAcOOAYSFdeGvsrRAETZxf8wA8Hg/zeA4f6mOH8aS529UnhXFxF6zTamldqlxaa7h0xcRr4ff7Yafz57b9t22/XVV2uv7MmUAFu2uhaW5WHT/ecOKExWQacQNGF45K3V7+36+O/EvX3xTL5fY3N/v9/uLO4kxRZjgrvKG3IbCazWMz2A3hrPDxbe3NaZQD4bp169avX886b3DY91dffbV06dKCgoLly5d/+eWXo7tRALiRhERHq6zWtv7+ARaLyWKNd3MuFJGQEJSerlix4t6n/q4K6bNAfUNftXlsA+6B/Ij8PxIIEQSBmcz9Vb9GWFnby951dNae+eknU2/vVd9os9n8HR1BiE1KQvR1dSNuwOiSxMd/1nkyS7H0Xd13nc5OFMO61erDJ3anBqckChKre6odDodWqz10fE+cXTLQ1z/e7b0ZjfKo0U2bNl1yOYlEevzxx0d3WwBwQ2Ky2fTp030+38ScjQ7D8GDerAWyBduKt22esXmwt77V0hrOCk8QJDQYG/yYH4Eve6rt8/ksZjMOh2Ox2Rdf+HKiZT/7247OebfRWvfud0/fk7LexmBgSUkXDMwZ+mkul8vr9eJheMvJLdHc6AVxD4zG7v5R/X191eqynmDbXav+Fnz84+dO/Pu5/NcFHR32zspppFspIdTS1rNZhlBzU1Njza5F4cqesjJKbu7EPPQ3MJA8EAAmHBwONxYT5EdXn8UyxxZ56NyudlyGODs7kCKj1dwawYpAbV5pT9Dxw7vTM+dePNQFgiC/39989izX6XRhWJtAEJGQ4PV6jTqd3W6HULSvt7dIc2KqOIMskcWpMXbs2n83f/L5tFkDPT2XDIQ2m63z7NkgDLPi8TYCdLazoUSliuDM6f/1VwadThcKuQLBdRtYZzGbnVYrnc2m0+kWk8lcVlbZtPNOXHYwm7Pu3i2vvxHVqDorkcSpzE2viJI8pN6i0kNhs+44a6g02Zoelf+LDMMulwsEwutsogxIAwBgcjF3di5V5GmcrUycz9zdHVjYammVM+T6ysq5vChkoL27ouKS0xwdDgfd5dre+GV5b6GvtxdF0dayMl99nfmn/R27dzMrKrrqj6+iJTMiInCJibKU/Jyk2V+V/Zd4vqDjBQxtbTIySTNQJ4bhZm8HVZmwQDmzsuoHSnnRoR/f/euz895869HiAwd0Gs1w51y63e7+/v5AAthrYdBq+0tLae3tuuJi68BAf09PCI1a0HX81rgF/Xo95sUeoc8/07T/g51/VeKjbH5cWmRGg7Wlsrv6y5bvlivughFSPx5Po9GG1UjgjwOBEACAkSBQqagPSxIkFWvOESgUCIJQFG3QNoQFhZEhSMGJUplVRBS9ZBQhEAgOv/9o29H/1uxE8Xifz0dyOLZVfbm1+OXDlbtKtEcaW8tmyXMxjycuNZWRnp4Qseybyv1mVV1bbe3FWSFhHO5n1YHHDz7eYGws1pXkCbMeyb7/pOrXD8ve7m2pXiBMrS7aaS07AjU1dbe1XfsOWkym9oICe2lpc2HhNc7t69dqJSxWEJWKs9nKCgq629vf++X9YGKwiCqjMJk2i+X+hNUVzjJLKHlVxhP8jAymj4ZYXHf9+PTqOZvJuQvxKSnyzExQ5eP6A39xAABGIlQma7fbOeyUfY76pWKxy+VSnz3rLK1ixyktEiSSHvdx+ccz0x4cmnrG5/O119V5LRYim20Skls8Pp+rt4tgFTqdLgQp7i6+N/YOna3P5HIsjLvVhVBFAgEMw6FSqUITnh+b2NxTmImQBiSSC+ZWBon5z3/0aY5o7qs1Ozro5tdn/R01EN5Y+oFfo/eiKJFIfHgK4/Oar7fOWdplMEBDanQ4HI6u+nqjVov5/S6HYwDtp7kJoVIpXSoNUyqNajWd4H7n+Dvzg2YYtdrInJzQy88cCyAzmW1NVfd/dXusj8ejh0VKIn9RH3x42ou+8HChWDzQ32/BCNtX7CBBQR6ZDEYQZ0PDbeFZGSFZ8fGLos7npwSuPxAIAQAYCTweH5mUtDxkw8r/rnS5XKqqqmCzsd/dNU0Q4WMwQmLWHmt8JSjqt9QZdru9rqQEr1UftRy5O37dd9aStGn5og60vHBblJVg4OJrcU5R3qpICoUQFBTM47E5nN+yjfv99yfft2nfE3aRMxZBxLGxDqvVbbUyBAJTV9env76Rxk96eO5LD3++mIh6pTksRqoCb5a50n02k8nd0wO34bny6G9Kdy1e8Of+/n4MwxgMBgzDmsrKUK8X6uoqUhWc7TrRbjLfmjQrgbXe39VlYLGsdvu7h/9h69J/73hnvfQ1u0rlFgiu3HsnlMu/aTnCIsluybvDoC5r7Cx+dsH/hYlSxOHhEAQxWSxfUlKfVotjsURSqclopOPxf5/zdwiCGuz2MTxUwNWAQAgAwMgJIQGx3rT/3//g4qjfVW+L5soE1BADkRgqEM5Nyj/Udui+5PswDNPr9Z3FxahR++2x11sIdqqfeaK/bnHq8pkx/CePP/Fo9iOfnftu9sxlmfmXnoPPjYrqrXLcwb51V93nz8VFVBzUJIvFZMTfXF9Px0HnOn76ZPGnqtLKDVPWNBgbGDYngUiUKhSB96IoajGZ+qpF/1f4fK7lXkytxiOIgcmMSk2FPB4YQcq7Ck+oDq7PuNva7y+w7DeXf7Mm96G2oqJOY3lDU+tDsfc7KcbXyl5/LuuNvr4+wWWGrQbgcLgOSk94RlZOfF43zMmUzmLzY2xs9m87IhAMjvcJZjDaEAQZGLD7fHRQpXVcgUAIAMDIGRoaFomm9OgKS8xtbipnuWhlBwSFR0RAEJRDST+w7+tcKMXr89lbG8sKth3sOZsjTE+BpDsPb7fyMHnM+mAGTxEU/coXT7UhA3Pn3Iui6CWHy/JCQ/Fkcq7fr0iPeavkzbs4D5cRO94/9/7b0z6s0JRLmJIwlrQR0t2TeK/X7+mx/y65MQ6H4/L5szOWhB7Ycnr3VgmbS5MLJP5Eh8NB4vOPnd37RePBjVkP+UgsEh2fy7nvVdW7/nMRWRzRF00f/fPe1yxWWhibfWBbweGSXdMdztbgYHlycohEcrlcB+W68rXT1prxHDQpCU8m+/l8uUh0yTVJJFJ4dnafyRREJrOGBEvg+gOBEACAkYMhKEee/VXl23col0yffa+eSIqdNg2CIIvZPNMftsdYxu4zV7e0/aT/FnZbnknbIIrPKW9tzZHm15prU9lCE5s9U7Bip/ZtLa5nASPWbDTyLnPJxWAw9AxGjCeRAfO/1R3Rq0ol/NBfOo8XW5rzBHnNFotizpwWvR5CUWZU1MXpOnUq1ebU2z74/vVYMrO9DGbiORs8r8ROnf6Rp2DxQy9OiVuFO5++cuUu94mab7UNhAXibAUzWicOInG5D+Y/+vKJvyS3cNgMCUalGnA4gUgEQZDP5+tubXVbrSyxmBcSAkFQmbbsnfnvyJnyi3fhYiQSSSAU/pG/PzAqQCAEAGDk2FFRMT7fs2tj+11uM5MVHvu/VJlup1McxE3gJbxf9D7SQ2tCGz9Z82lta4c3PDySycz7KR0pAAALfklEQVTF4o1OgwPDwqOjCV7vGzHyws7TRDwZvnyGcQRBIjMyujWaBYo7/n7yyXmiZRJx4iel77kQ1xNLXgxLyCCRSNClKtUMyo+Yi1uOI2pxqMN+Cjlzsnk7SoDO9p37YeZuKuF/gdPlcq1Qzu0wn+on2WJDp7fjcJExMR6PRxaiuFOx9mxzQUmdemvCDrfF4g8NbaupaTxT2NFeCAnJCxRrSFSqE+d0+pwyhmz0/sDA9QACIQAAIycQiVg8HoqilN+X4WVyOGoMuyfsgfd+fFGFM96quEsL4VNWrODw+YGxmn6EHCSXU6lUYUxMZ5ljinj+AJsdweFcYVsEAoGIx+dHJMtZ7yeEJhaUlWeGheEQHLfPfdWkrKEKRXt5eZx4qkHoF2NYOmnG7VtXNdaolyTMJMK/jWslEolOAuGFnL/CEGwgkKOzsmAYJpFIA5GRMbZ5ClK0337i84rvHr7rzaa6Ol9L3UfHXpjJlP2qUeWHL3DabGX2ytTQ1ImWIRa4KvjiSTnjyOfzUSgUr9d71TVBGaabnNVqHSxeA0xMLper4uhRCQEt7imaF7bQKpGI5Je+YYhhmM/nu5YSE709Pb6aGgaJ5EHRqrY2iZTuQT0EnEB8DWnJUBT1er0EAqGlvNxSX19due9T0+5/37JVOmW+aEgZAJfLZdBoYAThSyQXfKbZaKxuK739p3v3z9qO79YfOvGhCYf8KX7N+43/ZSgT/nTfP18/9boDc7y18K2r/3WAkXK5XONfhgkAAOBakMlkkUJB7uxcEb2yy2K5ZK61ABiGr7HQEpfP7xCLG9TqYIFAnJUF6XQkPASFhl5LTrLBxHWKKVPqMexWmZSpiUwMiTf9frI8mUweHHF6ATaXG+dNSrYJSn78iCcILexr2Jy6qYPHCxes/rjy4+x9+zRVv06Lmmu8TCo4YMKarJllzp07d+TIkfFuBTA+rFbr1q1bx7sVwNWJwsOdUmkrBJHj4kZlYCQMw7Lo6F8rK0XR0RGxsaFTp4ZMnSqPHV4NPxiGpdHRep9/mjBf4/VyL6o0fgVGleqJzDuOtB8srt69YeETpMS01FtumRqSHKTXlZ74wNfZsSp6hrGlZZi7BQzDL7/8UllZObqfOVkDYWFh4eHDh8e7FcD46O7u/uyzz8a7FcDV4XA4SWSkIj1dcJkpBCPz0Ucf9fT0QBBEoVAu6Ju8RvTg4PDcXNqUKZHTpg2vIjwMzwqf+fFD3y1Pf0IgyojNzUUQhOrxzVHM1ti7XszaTMRI8HDKCAPDdejQoZKSktH9THBrFACAmxGRSBya/u0aCWJimmpq8Hi8aO7c8Lg4GIYxDHOTSA9lPtgpWKAZsKEQFHZRsWJgggOBEAAA4FqxeTzG9Ol+v3+wUxOGYfmUKQaNhiOUKsXi4V1fAhMDCIQAAADDcHG1yCuMrwEmhYk1fQJFURKJFBYWdtU1+/v7URRlg7xENyWfz6fX68Vi8Xg3BBgfnZ2dQqFw4tcuBsaCyWQiEonXPnvq9ttvf+WVV668zsS6IsThcG1tbddSBhNFUQzDQOGum5bb7QZVvG9a4OjfzHw+HwzD134aFBoaetV1JtYVIQAAAABcZ5N1+gQAAAAAjAoQCAEAAICbGgiEAAAAwE0NBEIAAADgpjYpR122tLR8/fXXHo/ntttuS0pKGu/mAGNCp9OVlpbqdLr8/HzZkOIAbW1tX331lcvlWrt2bUpKSmAhhmG7du06c+aMTCZbv379yNJuARNHZ2fnzz//3NzcLBAI7rjjDtH5DG0Yhu3YsaOsrCwiIuKBBx4YHDuq0Wi+/PJLq9W6evXqjIyM8Ws4MApMJtPevXubmppwOFxOTs6iRYsGK1sVFRXt3r2bwWDcf//9g98Kp9P5ySeftLe3Z2RkrFmzZgRlsCbfFaFarU5PT/f5fAwGIy8vr6ysbLxbBIyJrKys119//cknnxyaYLerqys9Pd3pdHI4nBkzZgymHHz55ZdffvnlqKiogwcPLl68eJyaDIyaO++8s6SkRCKRqFSq2NhYlUoVWP7000+//vrrUVFRe/fuXbVqVWChwWBIT083m80hISHz5s07fvz4+DUcGAWNjY1FRUVCoTA4OHjjxo3PPfdcYPmhQ4cWLVokEokGj3hg+dKlSw8cOBAVFfXqq6++9NJLI9kkNtls3rz5nnvuCTz+y1/+snbt2nFtDjBWAlNFlUrlnj17Bhc+99xzg0d8y5YtK1aswDDMZrMxGIyysjIMw1wuF4fDKS4uHo8mA6PG6XQOPl64cOGLL76IYZjFYqHRaA0NDRiG2e324ODgyspKDMP+9re/LVmyJLDyW2+9NW/evPFoMjAmfvzxx7CwsMDjGTNmvPfee4HH8+fPf/PNNzEMO3v2LIvFCnxhqqqqgoODrVbrcLcy+a4ICwoK5s6dG3g8d+7ckydPjm97gDGCIJf4cp48eTI/Pz/wePDoV1VVEQiE1NRUCIJIJFJeXh74Vkx2Q2tuu1yuoKAgCIJKS0vZbHZ0dDQEQVQqderUqQUFBRAEFRQUDP1WBBYCNwC/319UVJSQkABBEIqip0+fnjNnTuClwX//kydP5ubmBr4wiYmJVCp1BEWaJl8foU6n4/F4gcd8Pt9gMKAoCpIt3SQuOPpms9ntduv1+sGFEAQJBAKtVjtODQRG2Z49e2pra3fu3AlB0OUO9AXfCqfTabFYWCzWuDQYGBVWqzU5Obm3t1csFh87dgyCoN7eXp/Px+fzAyvw+XydTgf9/ugHlo/g33/yXRHi8fjBHGw+nw+Hw13y0gG4IREIhKFHH0EQHA439CsBQZDX6wX5t24MxcXFDz300K5du7hcLgRBeDweRdHBVwcP9AW/CRAEXWO9e2DCCgoKKi0tLS0tTU1Nvf3226Hzx3TogQ5U0SIQCBd8K0ZQXWvyhRCRSDQY8Lu7u4VC4QjGCAGT1AVHXyAQ4PF4oVCo1+sH/xm6u7uvJbsgMMGdOXNm2bJl27Ztmz59emCJUCjUarXY+ayQgwf6gm8Fg8EI3EoFJi8YhlkslkKh+Ne//nX8+PGenh42m00mk7u7uwMrDB59oVA4uNDv9+t0OqFQONzNTb5AuGTJku+//z7wz/Ddd98tWbJkvFsEXD+XPPopKSlMJvPQoUMQBBkMhlOnToGBo5NdZWXlsmXLPvvss8EBARAEZWVlwTB84sQJCIK6u7vPnj27cOFCCIKWLFnyww8/BM6EwG/CDcDhcAw+Li0tpdFoHA4HhuHAvz8EQSiK7tmz55ZbboEgaPHixYWFhXq9HoKgI0eO0Gi0wHCB4RmdkT3XkdlsjomJmTt37vLly8VicUdHx3i3CBgTDzzwQFpaGplMjoiISEtLq66uxjCsv78/ISFh1qxZq1atEgqFra2tgZW3b9/O4/Huu+++qKioRx99dFwbDoyCuLg4FouVdl5g1CiGYZ999hmfz7/vvvvCw8OfeuqpwEK73T5lypTc3Nw1a9bw+fzAsFJg8nryySczMjLuuuuu+fPnMxiMr776KrC8urqax+PddtttOTk52dnZg0OLH3vssYiIiPvuu4/P53/zzTcj2OKkrD7hdDqPHDni9XrnzJkTHBw83s0BxkRTU5PNZht8Gh0dTaPRIAhyuVxHjx51uVxz5sxhMBiDKzQ3N5eWlspksuzs7HFoLjCqamtr3W734FMOhzOYVKGxsbGioiIiImLoxHmPx3Ps2DGr1Tp79mxQpnSy8/l8paWlarWawWCkp6cPHQtjNBqPHTvGYDBmzZo1tCe4pKRErVZPmTIlKipqBFuclIEQAAAAAEbL5OsjBAAAAIBRBAIhAAAAcFMDgRAAAAC4qYFACAAAANzUQCAEAAAAbmogEAIAAAA3NRAIAQAAgJsaCIQAAADATQ0EQgAAAOCmBgIhAAAAcFMDgRAAAAC4qf0/Jsy5L7+DnPoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2Bb1fXHv9rbluS97TiOs/c0mWRCykqYZZc9SqBASQOU9QPCLlAKDWWF2aaBkELIIiF7T9txHO+9l/Z+vz+eoj1tWZLt+/nL77773j3Ss/TVuffccxgURYFAIBAIhKEKM9IGEAgEAoEQSYgQEoYWFEXdddddTz/9tN+ea9euve+++1Qqle9uX3zxxX333VdWVhYiA4Ogp6fn5MmTBw4cuHDhgkajCb8BBMLggAghYcDz7LPPcrnc5557zv2UWq3mcrk8Hs/WYrFYPv300w0bNvi97aZNm9atW6fT6Xx327Nnz7p165qamoI1uy+cPXt2yZIlMplsypQps2fPzs/Pj4mJmT59+j/+8Q9bn7q6unXr1u3fv793QxQWFq5bt66oqChEJvsnOTmZ4ROBQBA2YwhDCnakDSAQ+orJZDIajSaTyf0URVFGo9GxhcFgzJ8/PyMjI1zWhZ5Tp07NnTtXpVJNnDhx+fLl8fHxjY2N586d27Fjx+bNmx988EG6W1FR0X333ffAAw/Mnj27F6Ps2LHj8ccff/fdd8eOHRtS870yd+7crq4uj6fOnj3b2toql8vDYwlhqEGEkDC0YDKZu3fvjrQVfWLNmjUqlerhhx9+//33Hdvb29tPnjwZKav6zn/+8x+P7YcPH54/fz6Hw/n666/DbBJhiECEkDDkOHHiBJ/PHzNmjGOjVqv95ZdfqqqqEhMTly1blpCQ4PFas9m8c+fOc+fOSSSShQsX5uTkeBulu7t7586ddXV1XC532rRp06dPdzyrUqlKS0vlcnlOTk5TU9O2bds6Ojpyc3OXLVvG5/N9279v3z4Ajz32mEt7fHz8kiVL6L+rqqrKy8sBtLW1nThxgm7MyMhITEyk/66urj5x4kR9fT2DwcjPz58/f77jBHJJSUl9fT2Auro62+V5eXkxMTG2PqWlpQcOHGhvb09JSVm4cGFqaqqLPRqNZu/evTU1NVqtNj4+fsyYMRMnTmQwGL5fnQvNzc3XXnutXq//4IMP5s+fH9S1BEKgUATCAGf16tUA1qxZ435KqVS6/J/TM6h5eXmO3U6cOJGVlWX7UAgEgq+++mrGjBkA2trabN3q6+snT55s68ZkMl944YU777wTwJ49exxv+NZbb4nFYscP2rx581paWmwd6KW7m2+++Z///KejAg0fPryqqsr365VKpQBKSkp89LnpppvcP+zvvfcefdblRwCA9PT0ffv22S6fOHGi++Xbt2+nz3Z0dFx55ZWOp7hc7vPPP2+xWGx32LZtW3x8vMsdVqxY4fuluaDX6+l53dtvvz2oCwmEoCBCSBjw9FEI29vbk5KSGAzGk08+ef78+bKysueee47P59NOoU0IjUYjrYI33XTTqVOnqqurP/zwQ5FIRHtCjkL46quvAsjNzV2/fn1RUdHBgwfvuOMOADNmzDCZTHQfWgizsrJEItErr7xy+PDhnTt3Ll68GMBll13m+/UuWLCAVtZz585561NYWPjKK68AuOKKK3ZcpLa2lj47atSoN954Y/fu3RcuXDh06NCf//xnDocjl8tbW1vpDocPH77//vsBPPTQQ7bLOzo6KIrSarX0+7BixYqdO3eeP39+06ZNI0eOBPDOO+/Ql6tUKplMJhAI3nvvvZKSktra2gMHDrz11ltPPPGE75fmwt133w1g5syZOp0uqAsJhKAgQkgY8NBCmJaWNtMN24SkrbO7EK5ZswbA3Xff7XjPJ554gr7QJoT0AlVBQYHZbLZ1++yzz+huNiGsq6vjcDhJSUk2UaG58cYbAWzYsIE+tAVz/vTTT7Y+KpUqPj6eyWQqlUofr/fAgQM2dzMnJ+eWW2756KOP6uvrXbpt2bIFwAMPPODv/aMoinrppZcAvPXWW7aWt956C8C7777r0vONN94AcNtttzk2trS0SKVSmUymVqttr87lLQ2W9957D0BycrL7SyMQQgvZPkEYJLS1tRW7UVJS4vfCTZs2AXj88ccdG//0pz8xmUz3bi7tN998c3JysmO37777zmg03nfffS6rjA888AAAWpxsjB49evny5bZDkUh0ySWXWCyW6upqHwYXFBQUFRXddtttMpmsqqrqq6++uv/++zMyMpYvX97Y2Oj39XrkqquuAnD06FG/Pb/88ksAzzzzjGNjYmLidddd19XVdfjwYQD05G1hYaFare6dPfv373/iiSd4PN6mTZvS0tJ6dxMCIUBIsAxhkPDEE0+8/PLLLo0qlUoikfi4ymKxlJaW8vn8/Px8x/aUlJSkpCTH3YHnzp0DMGHCBMduHA5n7Nixzc3NtpZTp04BOHPmDO2n2lAoFABcFM5lUABJSUkAWlpafG9ayMrK+uKLL0wm09GjR48dO7Zt27bt27dv2bJl/vz5p06dEolEPq4FUFtbu3bt2n379jU0NDjuWGhvb/d9odFoLCoqYrPZn3zyicup0tJS2wscNWrUrFmzDh06lJWVtXz58gULFixdujQlJcX3zR3NW7FihcFg+Pjjj+mVWgKhXyFCSBjSaLVas9mckpLiHs2YmJjoKIR0ihn3aFKXFlpXdu3atXfvXpeeMpmMzXb6xAmFQpc+tLtpsVgCMZ7NZhcUFBQUFKxaterw4cMLFy4sKyv75ptv7rnnHh9XlZeXz5o1q7Ozc9asWcuWLZPJZCwWq7u7e+3atWaz2feISqWStm3dunXuZ2UyGX2WyWRu3br1xRdf/Pbbb9evX79+/XoGg7Fo0aIPPvggLy/P9xBarXblypVtbW2PPPIIvUZIIPQ3RAgJQxqBQMBiseiFQBctbGlpcTykl+VaW1tjY2Md21tbWx0PaQf0k08+ue666/rLaE/MnDnzxhtv/PTTT48fP+5bCF999dX29va//e1vq1atsjUeO3Zs7dq1fkcRi8V0hpe2tjYWi+WjZ0xMzJtvvvnGG28UFRX9+uuvX3311Y4dO5YtW1ZUVOQjQQxFUXfdddfx48dnz55NL0YSCGGArBEShjRMJnPUqFF6vb64uNixvb6+3kUI6blKeubThsFgKCwsdGyZNGkSgAMHDvSXxd6hNyDa9InD4QBwT7hz5swZAHTwjg3bZkEbXC4XgIuPyOVyx4wZo1arT58+HYhJDAZj3Lhxjz766NGjR2fMmFFZWenyBrrw+uuvf/vtt1lZWd9//z1tAIEQBogQEoY6K1asAEAHSdp4++23KecKZXS3t99+23Hecv369S4e4c0338zj8T777LMLFy64DERRVK+DRxz5/PPP9Xq9S2NbW9vmzZsBTJkyhW6hY0zoffGO0Nv7amtrbS0ajea1115z6UZvC6mrq3Npp7eCPPPMM+4Sa0tQTseOOp5iMpn08qe75TZ27Njx9NNPCwSCjRs3ektoQCD0B2RqlDDUeeyxxz755JPPP/9cLBb/4Q9/YLFYX3/99YcffpiUlOToFK5cuXLmzJmHDx9euXLlk08+KZPJfvnll2eeeSYzM9NRVDIyMl5//fVVq1YVFBQ88cQT06dPT0hIqKmpOX369BdffPHiiy963OoeFKtWrXryySevvfbaSy65JD09XaVSFRYW0jso8vPzf//739Pdhg0bJpfLd+zY8cc//jE/P5/L5V5yySVjxoxZsGDBtm3bbrvtttdee23kyJEXLlx44YUXXEJkAUyePJnFYn3yySdcLjcrK4vFYi1fvjwtLe2Pf/zjDz/8sHXr1jlz5jz44IOjRo0ymUzV1dU7d+7cuHEjvUT6448/vvDCC3fcccfkyZOzsrJUKtUPP/zw008/paenz5o1y+OL6ujouOGGG8xmc05OjscFSJqnn346MzOzj28ggeBKRDdvEAghoO+ZZYqKihyDOEQi0YYNG9wzy7S0tBQUFNi6sVis1157zWNmmfXr17unHBs9evShQ4foDrbMMi4G09vYbTlcPPLQQw+lp6e73JzFYl1zzTUNDQ2OPbdu3er4uujMMnq9/pprrnG8dsaMGfS2h/nz5zte/vHHHzuGetqsUqlU9957Lz31aoPL5dpSAWzfvp3eQeHIuHHjzp496+1FuTvQHjl+/LiPd4ZA6B0MilSoJwxwOjo6Ojs75XJ5XFycyymKosrLyxkMxvDhw22NZWVltJfj2NNgMOzevbu6ulouly9atEgmkzU0NOj1etoZsnWzWCwHDx48d+6cSCSaP39+WlpaW1ubUqlMTU11yRFqMBiOHDlSVlZGR6WOGjUqNzfXdlan0zU2NorFYlvyT5r29naFQpGSkuK35FBJSUlFRUVTUxNFUWlpaVOnTqXnHt3R6XTNzc0WiyU+Pt6WLPTs2bNnzpwxmUyjR4+ePn262Wyura3l8/nu+q1SqejpXxer2traDh482NTUJBKJ0tLSpkyZ4hhGZDabz549W1lZ2d7eLpfLhw8f7jvRqNFodJ+GdSctLc0xIx2BEBKIEBIIBAJhSEOCZQgEAoEwpCFCSCAQCIQhDRFCAoFAIAxpiBASCAQCYUhDhJBAIBAIQxoihAQCgUAY0hAhJBAIBMKQhgghgUAgEIY0RAgJBAKBMKQhQkggEAiEIU10CSFFUS+88EKAPQOs4k0YlLjXACIMHcjTH8qYzeaQZwaNrlyjJpNJIBAYjUa/PY1Go9lsdklzTBg6KJVKuhY8YQhCnv5QRqfTsdlsNjuUNQSjyyMkEAgEAiHMECEkEAgEwpCGCCEhomga0Pwr2g9H2g4CgeAFdTXK10XaiP4llNOsBELQbJ0KUSYMXbgioALlBAIh3Fz4O+o3Y/i9kbajHyEeISFymNQwKbDoN2jqQJEYYAIh+rAYUfUV1LUwaSJtSj9ChJAQOdTVEGaBJQAnFvrWSFtDIBDcaPwZMSMQOxo9xZE2pR8hQkiIHKoqiHMAQJQJdU2krSEQCG5UfoZhd0I6Dt2FkTalHyFCSIgc6mqIsgFAlE2EkECIRhq3IeNaSMehhwghgdAfqKshzgaIR0ggRCUmFZhscCSQjiceIYHQP6iqIKKnRrOgro20NQQCwRlDN7hSAJCOQ9fZSFvTjxAhJEQOdTVEWQAgzCIe4YDn+MOo/iagnpq6fjaFECKMCrBjAECQAliga4m0Qf0FEUJC5FBVk2CZwYO6FvWb/HfTd2BzLiiSNXsgYLzoEQKDe3aUCCEhQhgVsBjAiwfoqVEihAMcYzead/hXuI7DsBhh6AqLTYS+YXAQQvlktOyKqDX9CBFCQoSwRcoA4MoACsaeSNpD6COGblBmtB/x063tIADoO8NgEaGvGHvAibX+PeIRlK+DpsF62Pwr6n6IlF0hhwghIULYImVoyOzoQMfQjbSr0LTVT7f2Q2CwYCBCOBBw9AhFmRh+L84+az0seR1N2yJlV8ghQkiIELZNhDQkXmagY+xG9o1o9CmElAmdxxE3gwjhwMDQDY7Ufjh6NRp/QdcZ6FrRvGswzW+HRghLSkqWLl2am5t7/fXXNzY2und48sknF1/kzjvvDMmghIGN49QoyDLhAIcywaRF8hIoS2FUeO3WdRbCTIiHkanRgYGxB9xY+yEnBmOfxunVqN0AfiIRQicsFsuVV145d+7cvXv3JiQk3Hrrre59Tp48WVBQ8NRTTz311FP33HNP3wclDHg0DRCm2w+TL8XZZ3H4DhiVkbOJ0FsMPeDEgMkBPxm6Zq/d2g8hfhZ4cug7wmgcobe4eIQAht8HVTmKX8bwe4gQOrFz506NRrNmzZq0tLS1a9cePHjwwgUPJXXGjRu3aNGiRYsWFRQU9H1QwoBH2wRBqv0wYyWuKIe6Bg2bI2cTobfY4ux58dC1ee3WfggJBeDKydTowMBx+wQNk4Px/weLAVk3ECF0ori4ePLkyQwGA4BEIsnLyysu9pCn/OWXXy4oKLj33nsrKyv7PihhwKNtgiDFqYUXh7Sr0LbfeqiuRvOvMKnCbxohaGxRFfwE6Nu9duspgnQ8eHFECAcGBoeoURtZN+Cy0+ANqqnREBTmbW9vj4mJsR1KpdK2NtefhHfddVdqaiqHw/nyyy8LCgqKiori4+M93s1sNstkMtvhHXfc8dJLL7l3MxqNZrPZZCLbcgcqYl2TyiSByknnmOLJ/LJ1GpWKU/MZt+QFsPiG3EeMwx50v1ytVtO/vQjRAKunicuUaFUqHjPWoqg3qjz+fKFEijINM5VlEbLVrTrPfQKCPP3wINB1GMw8s4cnJYXZLDYqVEoFGOGOuNTpdGw2m80OVLz4fL7fziEQQqlUqlarbYcKhUIul7v0+f3vf0//UVBQcPDgwZ9++umOO+7weDcWi+XoMgqFQh6P596NFkI+n99H4wmRwdAFJlcsTXRtFxXgUIOYo0f9V5j9LYwKXsUnvPF/dr8BRVFisTgcphICoVMHQbxYLIY4FVDyPD4aTR24sSJpCrSpaFL05fGRpx8mzApBbCq8vdVskZhnATfG89l+g32REN4zBGI+bNiwkpIS+m+DwVBVVTVs2DBvnRkMhkwm02h8FTuWOeBRBQkDHpcFQhsMNuJmoOoLaOqRdCmSF6PtAMzasNtHCBJDl32N0NvUqOICJCMAkDXCAYPHqVEbXNmgmR0NgRAuX768o6Pjxx9/BPDhhx9mZmZOnjwZwM8///zxxx8DUCqV+/fvt1gsFEX9+9//Pnr06IIFC/o+LmEAo20CP9nzqcQ5KHwe2TeBwQInBrIJaN0XXuMIwWNUWL8xfQTLKMsgyQMALokaHSAYfQohb/D8oAmBEPL5/G+//fbhhx+Oj4//6KOPvvzyS7q9sLBw//79APR6/T333CMQCMRi8XPPPff111+PGjWq7+MSrHSdAWWJtBFBonOLlLGRMAdGJbJvsR6mLPWfrIQQcYwBBMsoLyBmBDCovkAHMxY9KDPYQq8dBpFHGJpp1sWLF9fV1anVapFIZGtcvXo1/Ud8fHxJSYnRaLRYLGSqM8RQZuyYjdy7MOVvkTYlGLxNjQJImIXRqyGbaD1MWYZDt4XNLkIvMXRfFLl46L14hIoLSJwHABwpjCpQZjBY4bOQECy+50UxqIQwlAE/jiroDofDISoYehSl4MnRshslb0TSjIO3oOa7IPprG716hEweJr5qP5RNgrqabKKIdmw7r3kBeIQMJrixg+Y7NKxY9OH7LLhvInSBCCEhWug6ibiZmLcZxa/CYoyMDcoy1HyHjqNBXOK+idAbDCa4cSQjV7Tjd0O9xQhNHcS51kMSL9M7Tj6O7QVhyr5kIEJIGCh0noR8MkRZkOShdW9kbCh5C3HT0F0UxCU+pkbdGUSft0GLzSPkxMBihFnn2kFdBUEamFzrIVdOftwEjaYONd9BOh6HbglHWIDvSBkMqg8mEcIBDi2EANKuQONPETBA14LaDZj6AXo8pBPyio+pUXdIbEX04ziNxnfYQWGLDlVcnBel4clhIIGjQVL0Mobfi5mfwdCFsg/7fTjiERIGCBS6TkNGC+Hv0BAJIWz4GamXQT4JJnUQchX41CgG1edtENL4C+D8pWmLl+kuxOYcVH4BAPU/Qj7NfhXxCINFU4+6/2Lk42ByMPXvKPo/X1U+QoJ7xm0XBtEHkwjhQEZZDq4UvDgAkE2AWQ/F+XDb0FME2QSAgdgxgc6OGhVgsMAOODPIIPq8DTYMXfhtOXQtTl+a9J56fRv2XoW8B3HmL2jeicYtGPUn+4Uk3WiwlH2E7JutH3bpeKRdjnNr+3dElxpM7gyiDyYRwoFM50nIp1w8YCBtOep/DLcN3UWIHQsA0rGBzo4G5Q6C/ryRL82oxNAFUGjaDosenIu/bOjA0cIXkH4VJq5F2hX4bTkmvuq04EQ8wqCw6FHxCfIcku6OexGl7/fvSiHxCAlRR933Hn4Adh63LhDS5NyO8o/Dvbm+pxjSsQCC8Ai1DUEKoXzQfN4GG/RzqdsITgxwMQs2Lx66VtRvQt4DADDhZYx8FDnOZUrJum9Q1P4X0nGIybe3CNPAkfgq/dh3AvIIB8lDHFxC2Lp3YFQ5V5Sg/ZCHdnWNVyUrX4fGLa6N9T8ieYn9MH4meHI0/hw6Q/1h6IRJba2vKx2LnsCEsO2Afb98IAyiH56DDUMXhGlo2g6uvWIM+Alo/AWcWGtmUV48Jr5ml0kasn0iKMo+woiHXBuFmf37dUc8woHKuddQ932kjQiAqq9w9jnXxuJXsHUaTv4J6irXU4YutB9E11mAAoD6TQDQcQwA4qY59cx/BKXv9YvNHukuQuwY63dcrL+p0bYD1u++hp+QdkUQo3BlZBotSjF0IW4muFKnb0xePJp3IP1qXxcKM6By+z8neETbhJ5zSL3ctV2UZRXCtgNQ14Z+XH07eJ6L5VmxZQga+AwuIVSWQVkeaSMCQFGKtn0wqZ0aW3aj4CvETbd+QVR+gSpr1lY0/A/Ji8CJgaoaqirsvQaVn6PmG2T/3vXOmdejuwjKsv5/DQAc5kUB8BMBJrRNXjsXvoDCF6FtgrIMCXOCGIVMjUYthi7w5Eha6BRnz0sAZfEjhPIp6D4Li76/DRwMNPwPqZeByXFtF2VZ9e/cWtR8E/pxfSQEpmEwwZHA2BP6ocPOwBdCkwZbJoCygDJBXR0+DegLygvgSNGy26lRXQNxNsQ5ViFs3o6il6wuYN1GZKyAbAK6z6D1N8in4vRqVH/rQQiZXCQvtBd572+sHuFFpOPQXei1s6ELFR+j8jOkLPXwqfbBIJqBGWzQs2epS8FPsjfyEiBMR9xUXxeyRYjJR+fJ/jZwMFD/I9Kv9NAuyoSmFgB6StB1NvTjapv9r+UPls9myIRQr9crFL72tVgslq6uLosl1KEcqnJ0n4WqAqpqMFhQRb1HSFmgLEfefU5FFSgLNHUQZkKUDXU1ACjLoGtB0w7oWtDyG9KugHQCus6g5TcMvxe5d0OYYV2DcUE+OXzfLz1Fdo8QAQhhwhwUPh/cvCgG1Zr8YMPQBa4M2Tdj5qf2xoQCLNjmuijoTvwstB/uV+sGAyYV2vYjZZmHU/QaoVkHdTW6Qy2ElAmGLvAS/HQjQujISy+9lJiYmJubO3/+/PZ2Dyl3d+/enZmZOXbs2KysrL17Q5oJjJ4L7T4LZRniZ0HbBIvBekrXGo1foOoa8OKRsRKNDkKoawZHChbf7hEqyzDmLzj/DvZcgVGPgxML2QR0nUbrb0iaj/Ev4NLtnu8vC6cQFlv3TtD4jpcxdGHCK2AJkXpZcKPwyNRotEILIRj23GkAmFzEjvZ/bfwszyFjBEeatiF+FjieqsDTa4TKCxDnQlXpIa1dX9C2gBcPhj+B4CVA1xrKcSNECITwyJEj7777bmFhYWtra0pKyl//+leXDiaT6bbbbnvzzTcbGhpef/31W265xWwO3fqqsgxMDrrOQFWOmFEQZkBVaT1V/HJYI0f88utCKM5bc/BLx8Gih6LUekpdA1EWAIhzoK6CrhVgYsQf0XEY0nEY+1cAkE1Ay6+gzJDkgcFyitNzRD4J3WfDsYJd8S+Ih4GfaG/x4RFSFhgVkE3AyhavlnuDEwujcuDVXBwKWIWwVxAhDISW35Cy1PMpeo2wpwSyCZAMh6IklOPqApgXBSC+OIM1wAmBEH755ZfXXXddZmYmg8F47LHHvvrqK5f5z927d1sslhtuuAHAjTfeaDKZfvvtt76Pa0VZjsT56D4DRRkkeZAMt8fL9BRD0xCygfoKhY7DqP8RilJI8gEg6wZUfGw9aRNCUTZU1VCWIWYE2CIs3o/p/7T2EQ8HZUHifD/jcGIhSOn3FDOqSpxeg5mfOzXGjoHivGcNNirAFoHBAjP4UlwMFjhiGLt7ZymhH+mLEIqHWUtSDFlUFf5zUCjLnLYPOsKVAhTaDyFmFKTjQ7xMGGDWC1HO4Ij+DYEQVlZW5udbH1V+fr5SqXSZHa2oqMjPz2cwGAAYDEZ+fn5lZaWHGznc0IZWq/UzvLIMmSvRdQbKMsTkQewohOegjRoh1LfDpEHDT1BesP5nj3gElZ9bY65sQihIgbEH3WcgyQOA2DFgXCyezGBCOh5JC/yPFYZlwhOrMOYvrjNgbDH4yZ4Dd/vyjQkSOBqt9PGxxs9E/ebQWTPQKP8X9l3rWj3t9Gpr+lYaZZn1q8Ajoiw0bUPsKEjHo/tMKG3TNoGf7L/bYPEIQ1Chvqenx1aSVywWA+ju7k5MtM+YKRQKoVBoOxSLxd3dXn/dm83mhQsX2g5XrFjxwgsvuHczGo1ms9lkMomUZdrYOQL9E+g8oWWmsniZzM5zepWKYewWaZss3HiNKipqujK7S/iSUYyus5RBqZcvNKtUgJyfsMhy7u+G3FW87nKLZJRRpQIgFGRY6n6xSCca3Cxnjn2HEuVQ/l4RVzSW0XrExIhjmBSm5N+F/LUwjN3Clr2aiZ+4W8IXjzI1HzMx01zamT2NfHZMr5+FkB2r626wwB6aqFar6Z9WhAgi1HXoTDxLbx8rM/fPgiPXGoyUMeuOoC4cHE+f31XC0jYbCt825to3ywsbt5l1Cn3MHACwGMTaRhUVDy/vMJ+bym7dpmFnMfg8bsMv2tB913EVNWDFuX8FucBkJPEVFR4/18yes+zG781xs82Ji0JlFY1Op2Oz2Wx2oOLF5/P9dg6BECYkJNiEjf7DUQXpDj099r0mXV1dLh0cYbFYVVX+fW1aCPlsCwxdwviRkI5Hx1Fh4hhYmtG+gyMWo+0MxLlMXROtzeGmfjNiR0My3N7S1QbpSMTmM+o3CRIngrZq3FPYcyV3/GoYGhB3NY9ulAxjtu9F7s1cd8vFMwIaPXkWDt7Cqfsa/GQMvzEkL8iJ6k1IvlQU6+khxk9i68vhbrlaD35c758FP07I0jnelqKoyDxZgiNmhVCaCl5vH4S4AIv38nbO4yXPcE0N4ZNB8vS1VZj2Ae/kY7yRd1uzaVMWqC4wWVwO/eoUpRCmi2O8+9yxuWhjCpMnwtCFU8W9eU80DTj5KMa/iJhRTu3mTtNWE2kAACAASURBVEjHefgKcoEzBpoaD+N2HMHhq5B5Hc4+jOXnPAf79Bb2RUJ4zxBMjY4dO/b48eP038ePH8/IyJBKpS4dzp49azAYABgMhsLCwnHjxvV9XABQlUM8DAwmZOMhygKTC8lw61bCnnNInAuTKjKbdsv/ieYdTi305GfaFWDxIcq0NsomgZ+Mll1Q10CYZW0U58Co8DUf4pe4qYgZgSUHYdYEVy/XN7pmnHwclAl1P3jdLi0d63lEMjU6CKFg6PFTss4vkuEY9SRK3gyRSQMICqpypF+JhDn27InqKnBi0VMMsxbwNy8KQJQJUTZYAghSAQt0LUFboSpH637smIfa/zq1B7hGyIsHZfRQEKq7EGlXYNo/kHo5zjwTtFVhJwRCeNddd/3yyy8bN24sLS199tln77//frr9gQce+PbbbwFMmzZtxIgRf/nLX6qqqlavXj1y5MjJkyf7vGXAKMutXpdsovU/RpQNbRPMOijOIXYM+Mm+cp30H7pWaOqdWtS1EGYh/Urk3Q8Gy96e/XtUfwN1rXWNEIAoG0CfhJATi0V7EDMKGStRtxFAaDZsHXsIVetx4lE0/4p0L3sBY0aj55yH9r4K4SDZrjSoMCrAFtrXsHtN7l1o2TU4Yi6CQFMPjhRsMRLnoO2AtbHnHGSTEDsGnSeAAIRQnAvpRaciZmRvQuT0nYifiekfoeITp/YA1whBx/e5PTvbN/PEtaj5LvpDokIghDk5ORs2bHjvvfeuvfbaJUuW/PnPf6bbY2Ji+Hw+/ffGjRvr6uqWL1/e0NCwcePGvg9qxfZ2Z92IyW8CAJODxLmo+RY95xA7GoLUyASO6ltdnz3tEfLiMfkdp/asG1D7XzC54EisLeIc8JNDM5lAC2Hpe9g+q69CUrcRPSW4/Cwaf0HcVHDlnrtJcqGu8hA4SoRw8NHHZ2qDI0HuXSh9NwS3GgBQ+F8eFKV2kUu4BO0HrSfpby3bxhJlmdPyijsZKzBrvfXvmHwoLgRtjqEDvDgkLUD7QaewnQC3TwAQZXtIj6yqgDgXALhyxORH/6+c0EyzLl26dOlS180ur732mu3vzMzM//znPyEZywllmTWTEycWsRcrhox+CscegkmJ2NEQpkHbGPpx/eLBI6yxz4g6IkhF/AynpNLyyci8NjRmxM+CvgMlr0OYAXVtn762zj6HaR9AkIL5W2DyvoTOEoCXAE2d1a+10ccvTZ58cOzbHVSESggB5P4Bvy7ClL+F5m5hprsIp57Egl/89wTQXQxlOZq2gsW3CqFsItTVMHSDK0XPOSQtAEuA2n8DgLLcc3I1Gwym/RezZASUpb46e0TfCa4cXBkkeeg4ioRLAAAUdC0QBOYRinOgqnZttLkoAPgJ0HvIshJVDPBcoyYlpBNcG5MuBScWhh6IMiPjERp7YNZ59gg9kn2r01YhcS6mvh8aSxhMTHod87dANsGalrB3UGaoKhA/CwBi8h2qAXvCtkzrCPEIBx8hFEJJHkxK6NtCc7cw07QVbfusaYH9d94GUSaadtg9QgYb8mlWF7CnGLGjET8TbTaPMOAlkph8a4IORQmUAbuGtEcIIGkBWnZZG/WdYIsC3fIryvHlEQLgxUf/kx3gQnjJd4if6aF9zBrIJgKMyHiEutaLAnzxs2FUwqL3WtNk2O2Y9UV/GZN9M6Tj+1q6TFMHXgJY/IA6S/I8bCUkQjj4oJ2Y0MCAbJJ182t30QAraNCyGyY1NI0AUPouuk776ty0DeNeQNs+dBfbRS7hErQdAGWBohQxoyDKgigDZ5+Drtnrr2d3bFOjRS+j4rNAr6I9QgBJl9rLAOiaA10ghKethLpWMLn2/w1eAnRECCNC+pVY+CsACFJDs6eesmD7LGsol190rRBlgS20Twhoav38QzumauwPRJl9Wq9WVUKS678bjWNyHxt9FEJxLjpP2LPIEqKBEHqEuJgFgrJg9xL8OAyFHnYPRyOUCW0HEDvG6oQVvYxdi70WxzZp0HEEGSsRk4/mnQ5CWID2A1DXgCe3xgrM24zqryHMDCIWSZwLTS0sBrTsDiJ81NABnhwAEueg87j1Ky7AkFEa9+QyqnKIHZY2eWRqNILQ0iIIkUeoqUX74UDTtehawU+EMMO+TKiugdDTAmHYEPXNI1RWQDws0M6SvNBPjcomInYsyj7s/R0IIUTXAnVNqIVwCjpPoPM4eHG4/CxK3vS1FB09dByHOAfxs6C8AG0jGAzM/xmHboeu2UPn1j2QTwZHguTFgMW+ihZfAMUF7JxnL2rGT8al2zHu2SAsYXIhTEfjL9A2BiGE+k5w4wCALUbsWHQcBQBNPQSpgd5BPAzqWtT9YG9RVjj9buaTqdGIIwzRGiE95xDgJgR9K/hJEKZDfdEJ87FAGB6EmU41rF2+ZTQNflJaqyrtM/5+EfeDRwhg4qsoftXDjiVC+Kn4Fw7dFmIhlE1G10nUb0balRCmQToOnadCdvP+oObfqNuIll1IWoCYEVBcQNdpSCcgbjpybkXJ29ZuulZ8n4Ta/8CoRMmbSF0OAClLIMqyrzVwYnB1LeZswKQ37PcXD0P2LcGZJMlH2UeQjvcswx6xeYQA4qZZt210nYJ0fKB34Ehw6TacegKnV1tbHBcIQTzCaECQGhqPUFkKXgI6AhNCXYvVI9Re9AhVlRBnh8CMXiPKsgfLdBzBqSedfsH9drnr9n8XVEF5hLlQV1t3UFj0KPsICMV6knQckhag+qs+3YQQEtR1aN2Lpm2hFEJJHvQdqPnGWq5SPhWdxwCgeWc0pc53oPY/OHgrzr+NpAWQjIDyArrOQDYRAEY+jspPrTXgSt9D3HScfBxbxiNmBPJXAUDiXCzc5XQ3BgtxM5zKXPeCmBFo3o7sm3rjEeKiUw6g43hQiX4QNwPLTqDhJ1z4O+AcMgqAF0/WCCMNWwwGG4Y+Fy5QXED2TYF6hNapUQePsHWPNeQyUghSoGu3rrEVv4Kk+ai9uJvF0I2eIntBKI8E5RGyBODFW5ck2w/j+MMwdMPQHYIvTflUKCv6ehNC39HUIWUZOk+EUggZTMgmwKRF3HQAiJuGjmMAhSP3oPrLkI0SQtQ1mLMRmTc4eYSyCQAgTEfGCpx5GoYulP8TU97F4v2Y9BqmfQgmBwDAcN1fFBJi8kFZkHkDdG2BRrEaOu0eoXwKOo6DMqH7LGSTghuaK8W8/6H4FZx/B4pSN4+QCGHEEab3aecAjfICUpbCYnTdHegRXSt4DmuEhk4oSiMshAwWBCnQ1KO7EB3HMPs/aN1n/X3QfhCUxU+8dVAeIRziZdoOgjKj8WewBSFIQSLKiP4UFUMCTT3G/RW8+FAKIQD5VKT9zloMNm4aOo+j8wS0DWjeGcpRQoW6FvIpmPYB2GKIh0FTi87jVo8QwPj/g7IMP41CylKIh0GUhczr+92kmFGIyYc4BxyJ09Zkb5jUAAMswcXLR0LXhLZDEGXa83sEjjgHC3eh+Vd0Hnfa9UH2EUYFCQX2sOBeoyhFTD7iZwTkFNo8Qvpbu2U3Emb3e1yoX+gynuffQv4q8BKQfCnqfwSAtgOQT/UQ3mKDnuHhxXnt4I4tXqb9IOSTUb8pNN+YQiKE0YGmDpIRWLAVCXNDedsxf8GEl61/S0ZA14bydRh+HzqOBhqwHTZMGphU4CdYD5k86yqMbUMwPxELtmP8Sxj/YvisSpyDhbsBgJ/sdZlQeQGFz1v9RUOn0+eawYJ0AsrXBTcv6kjMSMz/CVfVONXrZgnAYMGo7OU9w8IQEMKUZWjc2qc7mLXQtUCUjbiZAS0TukSNNu1AcogLkfQGUSY6T6B+M4bfAwCZ16PmOwBoO4DcO30lZwoqZJQmfhaatlmrho5Zg8atRAgHDyY1LHrw4iCfArbQf//A4SXYv0AZTMgno+IzDLsT0vH2bJxRgqYWokzAoRSUZARixzpNezCYGH5P0J+dPsGwbnvgJ3ldJmz4GcWv4Mi9oCzQd7jmSpRPQd1/IZ/aJyvcU2hFfbzMEBDC5IVoP9jLX5TV3+DI3VCWQTwMDBbkU9AVQPVLW9SotgEWPZp3RoUQCjNR8gYyrrH+66dfBWUpGv6HzhPIuhG6Zph1ni90iQELhMzr0LoPLbvBiUXaFQAVGiG0rnQa/fck9B+aegjSwzFQ3DSIMiGfjORFUTc76r4hKmaEdYEwGvAhhB3HMOVd9BSj8jNXjxCAfArMut57hN6I+uQyQ0AIObGQTUDr3t5c2/A/VH6Guh8gGQEAwnT/MagWI4wKcOVg8ZGxAj8Og0kN6djejB5aRJnQtSDvYglQlgDT/4mDN0MyHFw5RNmeK8uDjpQJ8lctW4TM63DsYcQXgMlFfEFohJDBgiApMsljg6L+Rxy9337YuhfFL3vvPRDQtdgjzjR1EGWEY9CMazH2rwCQtBD1P2Lv1dh/XTjGDQS1W4qM3Hsw4o8RssYNQRK0XqZGO44iaQGG3Y72g/a0MjbipoLJ9ZC3so/wQxQv07QVZ54OwX3cCJkQVlRU7Ny5s7HR85dUU1NT5UXq6sI+u5WyDE3bPJ8yqUGZvFxGoeU35D2I4lesU/+CAIo66dvAjbMu+Bd8jXk/Yvo/naZQIkXMSCTOgdyhAFbyYmRci6T5ABAzwmu8THchYkcHPdzwu6EoQUIBACQtsIdo95EBMTvasgsV/7KukrYdwJ4rUf1NpG3qG0Uvo/RiRmxNPYTh8giH3Q4A8TPBiYUgFarKcIwbCNapUQekY6PJI0z27BEaOqFvh2QEZJPQecqeaNRGzEhcuj3QZIqBw4uHrs9To92FOHQ7LnwAkzoUNjkRGiF88803CwoK3nvvvQkTJnz33XfuHW655ZaCgoLFixcvXrz4D3/4Q0gGDYKUpWja7vnUyT+h4lPPp3rOgS3ExNfAlVk9Qq4MZq3XKUQaeoHQhnyqn/zxYSNxLha5ucUzPrbu4ZV4F8LOE36ybHuEjgBMXggA+X+0B0H0kQEhhJ0nkDQf59aidQ/2rcDMz6CuCTScPTrRNqC70Pq3pg7CsHiENpgcLD2M0U9F0TpTxHNF+cbb1GjHMcingMGEdByUpdA2udVTYyBxXujtcdxB0bilN94hZcHeqzHlb4ifwWrx8mXeB0IghO3t7X/961937969efPmr7766k9/+pPR6GEV5+9//3tFRUVFRcWOHT73bvcHsglQV3v+HaFp8CoALbuQdCnYQszdhIxrAAAMp3AsyuyhGruLEEY5DJZ1eV8ywnO8jLEH2ibEjOzNzef9z/oDgi0O2XviuDszOqHM6D6LGZ+i/kfsvx6X/BsZ14AliP49xb7QNjkIYbg8Qhd48dEkhP6yB0cWH0JIr/+xBBAPQ+s++ybC/rXHIVjmzNNo3Rf0HXqKweQg6yZkrGQ2fB9a6xASIfz555/Hjh07evRoAEuWLLFYLAcPHnTv1traWlhYqFaH3qv1D4ONmFH2T7IjuhavRSNbdiP5UgCIn2lf4nKcHe08jr1Xe7ghPykENoeZmBGed1B0noJ0PBissBvkhej3CHtKIEiDKBNT3sP8LdaZZ5Fbhv6BhbYRqkrrT8nwe4Q0bBEoCiZNBIZ2x1t50SiB72WNsPOYPRBGNhntB0O2ZuEbW7AMZYaiNIgfNLpWa66PjiOImwEAGdcwW3aEfDtNCArz1tXVZWVZfxwxGIyMjIz6etdd5wwG4/333//oo4+qqqqee+65J554wtvdKIpyLOGbn58/btw4926WiwRoJEM6Hl2nKfl0AFCcZ/QUUxkrATD1raBMHu5jUjFb9lim/B3Opxj8ZGiaKIsFAKOnlKFtsFjMjkuADHUNhBlUwIZFC+I8Zs85i0EBttixmdFxHLLJ0fNyGIJ0NO+ignz64cT+jmXeCID+/2GIsqCqomR9i0qPGBRT14KYkZauQsRNZ2rqLfxUROLNZ/LiLdpWiDIj/PQpM1PbFKk3ISB4iUxdi/tbxOw4Zpn0rvV/UjqRUbWe4srC8OlmcOOha6MsFigrmGYtpWsNcFBG5Rdo/IW6dCej7RDiZlAWCzhxVOxENO+0ZFwV4OhMpn9/L1AhvPzyy90bH3rooeXLl+v1ejbbfh8ej6fVusr1999/HxMTA+D48ePz5s2bO3fu9OnTPQ5EUdS///1v2+G8efPy8jyUpjQajWazOUDjAbDFo5ntJw1pOu7xP7A6DzJ0zVrZArCFQl0rpe/S6RyX/Sh2+QecsrdMaSsMkMLpFLicRIuy1qTTAeB0neeYdXpFE+Uwz85VVFtix5t0PtcRoxEpN/VqxqE79dPWO+o6r/2YOXFR9LwcJjuRq67V6XR6vZ7D4TieYmgbmYqz5qRlkbKNhtt21CJx/Qfg8NLRXW5MiPTbaNIwNdWWmOBCnxiGDj5LaI6daGk/ZRKNF6hr9axEKhL/EnyO3KBstLAS3Z9+OGFo6/m8OJ3BAkT6gXqDkgj17Tqtxhq1BwBg6Jr5ZqOOlUh/pzFFo/mAnhJb+v9RMiHhalt1Oh2r/TQPMGtaDIENyu25wG7bp1M08toPGzLvok015v8fU5DACthsLpfrqFAeCVQIH330UfdGejo0OTn5yJEjtsa2trbUVNcSHrQKApg6deqsWbMOHz7sTQiZTObGjRv92kMLIZ8fcHRT4jQ0fs/mmNDyC66ux9YpQkYn2Gyw+AwwhCytNXrKqMCh26DvwKLd7NjRHt4dSTrMHVyhEAB01QAE6HJaMtE3QLbC2mFgMfMf2DFPWPcJ8h+xN/acZo1/NopeDjMPugahUGg2m4UuVtX9jBOPYcxfMP4lx89/uFGcxrCbXN8xaR56ijkRfxvrt6N4LZYGljLXhqECwjR23CRoSrlcCyiTIDbgGj2hRZDIZ6jg8em7QFlQ8w2yb+6XgG11G0TZfgyIOJwYIVvnVAy85wLkE+1mp8wEGPzYVIThhZgzYWgVCoXQVUCQwjZ1sQMcVFsNrlTQ+gM0tfyU6XRAgy5pKpvN9qttQRHovZYsWeLt1KxZs9asWaPT6fh8fkNDQ01NzZQpXoMMjUZjVVVVQkKCtw79hXQ8egrR8BMS54IjgTDdmvaFlwiOGKpK8OJg6MSuxYibgdkbLubGdUOQgvaLqq8sA1cGbSOkDpO3fmvwRi1MHqb9AwdusguhUQFtI2JHRdQsZ/iJMCo8B+72nMP4F9DyG7ZNw8S1SF7scKoYMSPDsdJJmdBdCLlbwmJxttdireFE14KeIlBmMFjoORforhhtIwQpkI5D4xY0/ITYyG2KDTxe5sSjuPA+khf3y4J9xIvJBIIgBapKJyHsOuO0wYMTi9y7wrTcK86FWQdVJXrOIXFeEGuEqgqMeAhFr0A+KQTJir0Tgh/OkydPnjZt2k033bRhw4abbrrp1ltvTUpKAvDcc8+tWLECQEtLyy233PLxxx9//vnny5cv53K5V10V6PRuyOBKwY3D+beRfjUAqxBqWyBIgngYVJUwqbBrMZIWYto/vKogAEGKPVhGVY7Eua41YtS1UR1X7Rv5JFh0UJy3HrYfhHxSFEXKAAADgjTPWdR7ipE4Dwt3YszTOHwnmn+1tlMm7JiLjmPhsE5VDX6iyzorAIiyoaoOhwG+0bXApIayHJQJ22cGmmVC2wRBKqTj0HUSJx7D1Pf62UrvBCiE599B236Ic/orUlfpXIE9Osm6CeffcWrpOuO6U37Gx+DEhMMYBhNpV6B+s/VDGuD2CYsBmkbkPQhDB+Jm9quBoZlB+uGHH6ZMmfK///1v5cqV//jHP+jG+fPnX3/99QBiY2OnTZt25MiRffv2XX755ceOHYvMrIJsArpOW3f10UJIR3iKh0Fdhdr/gp+CSa/7uQk/GbomANC3AUxIxzklOtF3gMnpTeL2aIFh/X+lqfwCWTdG1B5PSDwV/gUuujgMZKzA9I9x7H5raFnrfmsBkGChTKjdENwl3sp0iLKhiYKthNoWgIHuM+g6A6PSXorLz1WNEKRAkAIGB8PvtZZJigi8uICEsP5HTHoDoqz+SuulLEOMh8CF6CL/EbT85hQqb6sSFRHSr0T9D1BeQOKcQD1CdQ2EaeAnInkJkvphd6MDoXE2JRLJM88849K4YMEC+g8+n79q1aqQDNQnpBNg6AYvAQCE6eguAlcKXiJEOeg6ibYDyLnZ/00EKda4ZGUZJHkQpKL7rP3swJ0XtZF+FQpfwOg/w9CJpm2Y9mGkDXJDkgfFBUjmODVqG8Hk2ieCUi9D1TQUvoiJr6LhR3DlUAYvhKpKHL0PmcGk9fJWuJEtAksEXWuEt9boWiAdh64z0DYheRHqvseUd/17/Noma2aleZt7k1ohhPDi0VPsv5uqApLh4CVA19ovZqgGgkfIFmH0n1H4POZsBACzFpoaxERumSNpIfbfCF4CRNmBeuq2Ar/zf+pX0zAkco3ayP0DplycKxA4T412nUHrPqQu938TfiL07aAsUFwUQkePMMp3FwVC4jz0nIOuFdVfI/XyvpaV7w88bnl0X/Ga8g4qP0V3Ieo3Y8SDvfEItU0w9oAKIjjZV+FGcRRsJdQ1I2UJus6gbT+G3QFBSkBbm2mPEED8TF+rBmHAW2U7x11lZi307RBm9GM9WPpHcPQz/B40bbX+A3cXQTIiko+PxUfKYsSOAVsEIKA0ab1I999bhpIQirLsZZddpkY7jiJxTkDT5Qw2uDLo26Asg2Q4hGlOa4QDeoGQhslF5rXYNh3FryL3rkhb4wlJnodkQD3FiB3j1MJPwvgXsW8FQCHjWg9C6Leyj7YJlMWebDoQVJWQePnoRsMyoa4FKUvQfRqt+5AwG5nXBzT3S68RRgMe1wibtuOHdLuiqyohygaDCX5Cv6wR6tsBRnDlOSMFWwxBqvVXY/cZe9HgSDH8XmSuBAIu1UuEsN9xFEJRJhgsZKwI9Fo6XkZV7uQRnnkayjIPqXgHItPXYcEvmPSmNStKtGGr+uuIxxjI3HvAS0D6VZDkQVXp5NsZFdgxB4YuXwPRUVGGACp92/BRu1GU6TnGJ5zoWhA3A0YVWDyIspC6HC27/F9l8wgjjrsQ1m3E4TshGQ7VxWVj23waPxH6fpgaHSjuIE3sWGsaSPdImfCTsgzD7gQCrspke5T9z1AVQn4CTEpoasFPBJOLYXcgPeBAVn4yVBXoOgNJHvhJ0HfAqMD5t3H+nWjPQBg4MaOQ/fuoKJrhjigbuhbXHRTuHiEABhPz/odxz4MtBD/RaWZS2whQ6DzuayA6qWxQQuhtjRA+S8SFB5MGlBmcGMgmIGE2AIiyrJuIfEFB2xwtQsh1C5YpfgUzP0XqZXZv2+ZG8PrHIwzjt3MIkI5FTxEAdByJ8PquIwHW6VUSj7DfYUCQhu4ia/DCjH+5ZWH3jiAFB34P+WTIJoLBAj8B1d9Akoeaf6OneMBPjUY/DBZE2Uy1c0Ueb7vieHHgxAJATL7T7Cjt7fneU0H30QcshLoWsPheJ9h5if0VuxEgtiy4KcuQdiUAcCRgMGHs8XWVvgMcCZi8cFjoF3489B324NvO4zB0IXmxUypXm1D10xrhQPQIjT1QnEd85MJ9XeDF+/+NQlmgrg66EmpvGbJCCAjTYTGAF3xVhBEPYvFeFHxtXXkWpKLiY+TchuRF6Dk3GKZGox9JHlPjIIQuIaOeL3ETQrbYvxDyE4PwCH0vafCjRgjH/AVZN1gbBWl+Ch1Hz7woACYPLB6MCuth+cfIvRsMppMQ2p4CP5F4hFaPsHUf4mZEy68ZBLZGqKoEPwHsMG20G9pCyBb2Zs+ffKo1DzqNIA2dJ5G2HCMeBJMHfnIIbSR4RpLHVDlsJewuhNRfuhNXj7ARKUvR6U8IY8cEI4SVvn7ARo8QOiJMdc0I4YK2MVoiZWhss2pGJWo3WNecxNlQ11g72NcIE8gaISQjoK5F4xYkLYi0KQ4EskbY+hsS5obFGmCoC2FINnUJUiHOQcwoJM7Dol2RzHI5dIgZwVRX2A+7i5yy3Hm+JN8p1lTbhPhZMBvseYLcoYUw8KlRHyGj6LfYjcDxKISCND9CqI5Q0SVv2PbUN/6E+AKrtypMh7YZFiMsRmgaIMoGAK4chh5QphAbMCA2EdpgciAZjuqvo0wIA/AIm3dZq+CFhSH8rR0qIRTn2ANt4gtCcEOCXyR5TLWDR9hT5CFSxoXYMeg+aw8c1TZBmIq4afbZ0dJ3YTHY+5t1MGsgzg3CI/QRMgpb7Ebkkst49gj9TY1q6iCKKiG8GDha94M90pvBhiAZmnqoqyFMs65ZMFjgyaHvCOXo3UXgygbG3gkbsWMBCvJoKgHmf42QQstuJBEhDAMx+RDlhOA+Ix/DpDdCcB9C4MgmMzXVqPvBehiIRyhIgTAd7RcLL2gbwU9B3DTr7KiuBScecyrRrGsGPxm8ODePkPIaXaIo9eUrsPhgCYLblRhaPHuEqdD69AgjVYbXG7x46Nph1qF5hzVdIg29TOiygBfy5DKNPweUdiOqkI5DwuwIZ0Jwwa9H2HMObFE4I/CHsBAmL8Yl34TgPgxWv6ZFJ3iAK9VO+xZH70PncVBmKEr8e4QAUn9nLwFBe4Txs9C6BwBadgGU014CbRMEyeDJXT3Cuu+x/wa4Y1RCcQ5xPn93R3aZsHdTo9EmhHHTUfEvdut2yCY6hUfRiXta9zq5PvwE6NtAmUD1rfZs3Q84/RQANG5BqofKrFHNsDsw8bVIG+EM398aYUtY50UxpIWQMJAxx07E5Ddx8gmoKsFP8lDwwZ205WiwCWEj+ClIWoCec9A0oHknmFw3IUwB100I2/Z72M4PoG0v5NPAEvgyIAqFUJjmxyOMtjXCEQ+BJ+effhDp1zi104l7av9tD4jFxenoE3/C+bf7NGhPEUreRscRdJ2OrsW2QKBLaEUVfj3C5l3hnBdFqISwtbV169at33//vbcOFEVt2rRp7dq1mzdvpqhI5+AnDA6yfw91Faq+8h8yUGZlxwAAIABJREFUShM3HdomqGthVAIARwImF+lXoXYDmn9F2u+gdRZCfgq4ctep0baD0NR5CMFo3onkhX4MiGy8DJ1Z1wU/2ycoaOujSwjBwKz1FtlkZKx0ahZloXYDmHxIx9sb+YnQNqLmW//p9Hyja4UoE3tXIHEeWAEXAyd4gyuHxeBr9b39IBLmeD3bD4RACH/99decnJzHH3/81ltv9dbn0UcfffbZZ41G45o1ax5//PG+D0oggMFG3oMoeT3QUrEMFlIvQ+PP0Dkkz8y8AaXvgDIheZHVI1SUQlEKXTMEKa5To2YteorBlXtIyNL8K5IX+TEgsnvqPU+NJkHX5jWxuL4DLEHY9nIFCidWM3MzhGlOjaJsKEqc3EEAvATUfAe22M8+Gb/o2zBmDUAhbaAtEEYnDCbiZqD9kOez6mowOa7Pt58JgRDOnj27p6dn/fr13jo0NzevW7duy5Ytzz777JYtWz788MPW1ojGkRMGDcPvAYMZqEcIIP1K1P0AjcMm8eRLYdIiaSGE6VDXAUDpe9jzOyguQJACrgyGbvsKU8dxxI5BzEiHsBrKmrRWU+8/hVUEp0ZNGlBGa5IdRxhs8OKtlcXcibYFQh/QWyZcymfyE9BxFCMfhcXoJzjWN7pWiLKx6Ddke/2tTwiOhEu8uukdR8Nf8zIEQsjj8dhsX9Eiv/3228iRIzMyMgBkZmbm5+fv2bOn7+MSCODKMeNfSF4caP+Uy9BxFD2Fdo+QwUbeA8i8DsIM69So4hzYYtRugCAFDDbYInsqk/ZDSCiAOMcuhC17sCkTO+chcZ7/wn4RFEJtg9d98T52UETbAqEPRFmY9g9r3UQbvEQwmMi8DvJpfrII+UbfBn4iJCOizjkeuCRcgrb9nk9FQgjDEe7Y2NiYnGzPt5KcnNzQ4HV93mKxPPnkk7bD6dOnX3nlle7djEaj2WxmMKIyKzSh/9Hr9VwuFwCSV9DHgV3H4iQtYlz40JK0xGS7JH8NAIahg6OuM+j13O5i44I9nKO3GXmZlF7P5cqMqmZKJADAad1vzriBoSxlKMrpy9n1WzDySYtkFMTDLP5sYLJkLG2zMVBTQwlTUcPiJXscmsNLNiuqLeLx7qdYiioGL9UUCYN9Y3/6jmT+weXfgMHLYqdeaWTGsWInMVoPmRKW9W44rrbFyIylou99GMCIJ/E6T+m1CvfEb5y2w+bRz/r4NOn1erPZbDYHWiiUzWazWH5+pAYkhAcOHLjmmmvc2/ft25efn+/e7gKTyXQMkKEoyrdZMpnM9rdYLGYyPbit9D09niIMBZhMZu+ePpVxLfPQTci+3fVyfjzDrGXpGhiUmSEZblp4kEFX3+DKmaZuiskEKGbnEcvk9xiUkdG8jb6c2bLDPPldxM1CALMrDH4SQ98WkX9apq4JgjTPQwvSmLomePyU6RooUUYUfsoCffryieaC/zABxE1jlr3fyxdCWRjGbgY/gUGSRoUQXiwlGcHqOU3FzXJqp0zMnrNm+VQfD4t5kQCHCsRfCkgIZ8yYUVrqocB3bKzbkoMnUlNTm5rsiayamppSUrym8WUymWvWrAnktkwmk8OJpl2ihDDC4XB6+fQzrsAxIUucwXK/XJjGbt+F2NFOd+bFsc0KcDho3QN+MjsmG/rhqFzH5HCga4Gmlp1UEOhGUnEq9G2R+ac1tECczvQ4tCQb2mrXd6P+R0jyoGuAfIKHNyrSBP30k2bh6B0cDrs3lcX0beDEcLg+N8YQekHibHbnYSTPhVGJ829jzGoweegugSCdI/SVu8dsNrPZbN/rccESkKiy2WyZJ3xrckVFRXt7O4AFCxaUlZVVVVUBqKysLC8vX7BgoO3FIQwa2CKMehLyyR5OCdPRtN21nJMtcLRqPXJuAwDxMOsaYfMOJC0IIp1Cv64RWozoPOn1rLYRAi9heMmL7dsrrbcy4Oh92HctFKUDZo3QN7wEcGKcMgcFjq61NzVqCH5JWYLzb+Pss9g2DSWvo/0IAHQcjUi5qBA4+52dnddff/3q1av1ev3111//8MMP0+233Xbb559/DiAhIWHVqlXLli1bvXr1smXLHnvssbi4AZWsjzDIGPc8YkZ6aBeko/lXVyGk99SbNKjbhJybAUCQAmMPTBo0bkPK0iDG5cphUsJi7IPp3mnbhx2XoKfY81mN92AZ+SRY9Og5Z2+p+x7SsYifgc4Tg0QIQedgq+3Nhbo28IkQ9gOpy7FgK4wKjP0rht9vDSJt2WOtGh1eQuBdikSie++9F8BTTz0FQCCwziG8+eabthiZV199ddGiRcXFxR999NGll4Y1ZQCBECjCdBg6PQihvhP1mxA/82KNLQZEWWjaiqatmPhqEPdnMMGNg641NHuk2vaj7gdMfst6qDgPXgIO3oKlR8B0CyTRNnoflIH0q1G/yf7Cyz7CiIeRugyUGcL0EJgaDQhSe7mDQt8KfkKorSEAAGQTMeVdAGDxUPEZQKF5Byb8X/gNCYEQ8ni8RYs8bCWeNctpFXThwoULF/pLvUEgRBD6S98lbSlPjopPoW/D9H/aG8U5OHgLpn0YtE4kX4qKjzHueevhwZuR/4hTecvAad1rTZRKoyjFyEfRuhel72OUW84KH9snAKRfjVNPYswaAFCUQHkB6VeBycEsr5uDBx7C3gohmRoNAwmX4Mi96DoNrjScubZtkDgoAuEiwnRwpa6CkTgfGddg4W6kX21vjJuO0X/GsNuDHmLiWlz4u72KbOteVH3ZS2u7C+33AaAoRUw+ht9rTyxuh4K2yZcQJs6GugaaOgCo/xGZ10dXsYKQIEj1VXvSB7o24hH2O/xkcGU4/7fg1hpCBxFCAuEi0rFOakcjn4zxL7nOl4573u7VBYUwA/mPWEsZmDTQNqPuh17WRuguhL4dJpX1UFGKmJFImIPO4zDrnHrqO8AW+UqSyWAjZTGatgNA28GILNL0O32aGiUeYf+TcAmqv0bKkogMToSQQLiIOBczP+v3UUY8gsYtoCxQliEmH7w4dBz2f5ULFj3UVRAPszqFJg10LRBlgyNB7Bh72UUabaMvd5Am6VJrLSo6e87go9dCqGsDj3iE/U/CJWCwkDgvIoMTISQQwgtXCm4cVBVQlkGSh4yVqN0Y9E16SiAeBskIqxAqyyAeZs3xlrQALbudOvvYO2Ej6VK07IaiFGyxf9UciAhSrELYeRxN24K4kHiE4SFlKfJXBVRPrR8gQkgghB3ZBHSdgbIMMSOQsQL1m4K+Q3chYsdBlHVRCEvtaTaTFqDVWQg1DRD60zZxDlh8VPwLCZcEbcyAwOYRVn+LU08EcaGOCGFYEGVh0uuRGpwIIYEQdqQT/p+9+w5o6lwbAP5m74QEQggQ9pKNCIq4wVl33VqttbV6a1tte9tb21u1y8/W2tYOW0etu3q1ap1URVwsAdlD9gx7JSE75/sjbRoBETUkAs/vr5w37znnOSTw8J7zDtSaiST3EcsTWfmjjkqkUz3eEVqzkFXAX8uyI4Ta8/8ZGWkTiZrvIU3HP5V70yJECAkmoMKfBuZ9UYQQkYFwJKRqRa2ZqL0ANSX3dke4NToIQCIEwOy4Qag1A0kKEcsLIRyi2CBFw+MdQZ8IDS3CdqMWIZGObEagmvP/VO5hNL0xwQSkkSGbAdoiRH83ClszkccaVPxLr3bRqZFGgsi8Po4MWBgkQgDMznBrlOWJEEJUAVLUPd4RWjORVWD3iRAh5PUayv/2n82Oql4N4beLQnSHx1jcsd+h26OWNITpkN9/UOVJ1F6AlI/6/0PZgMjWCKbbHujgAwbA7JhuSNWCtHJEs0MIIaotUj44B2lrFjplg07yUN6XnffFNCh5DaI7IIYIMVyQtAwpG5G0+IF5ABxmIEXtP3f/pCWI4froqKgCNLvq0asq9l80e1RzGVkFIpo9cnsRxU1DZ10R1uNqPtISxHQxU3jAciARAmB+OGQVgFiefy2GQOkyGXdLOhJMQJOTUO6XqN1o4RdMi27ORR1VKCoWIRyi2iF1Kyr6GTnOeqC7HY6AvF5H+d/o90Ed5YjZi0Q44NHskfhPxA1ECKGQ7WhmMaJYP2ICUknRX612MKBBIgTAEqyC/vkL23VVCmkxYvsglify/xDdXYvQ38t5pm5AOiUae+avtIfDI7ojyvsKeazufHy3Faj6HMJ0SC5GRBYiMvr0avoHmj1SNiAroyWImR5IWtzTLobb12BAg0QIgCU4zUdOC/963TURSooR0x0hhLxeQ/Ia1HQXIYQqf0d119CoEw8s/MRwRnQHZNOlqyeZiyjWSFaGpKWI6dZXV9G/6HsMWQX8U8Jyh0QIkEkm3cYw7NatW6mpqXV1devWrXN07GYa4j179hQX//WF4/P5b7/dZVJgAAYVwbh/XlMFD6yChBCSFiPWGoQQwhGQYDxqSkbW4ajmIvJah0gProbN8UdO87s/BccPteUgVSskwr/Q7RGO8MDDVKY7kkAiBKZIhCqVat26daGhoUePHn3++ee7TYS//fabUCgMCAhACLHZ7Kc/KQADR7e3Rlnuf73mDUP1NxFCqCkJef6r876h3zz0sPpEqFXCA8K/MD2Q42xEMFprnumOmpIevgOGJEWI5dH3kfUVrVb77bffqtV9swSm2YWEhEya1CeTkZpmGabMzEyE0KlTPc0UNXv27Hnz5j396QAYaDr1GlW3I00Hogr+2rQOR3nbkVqCZOV/dfToJY4vqotFOLyl5m985lBt0eiTD5Sw3JG05KH15WJEpHdugvcrjY2NH330kWGx9H6tqKjozp07z24i7KUjR47ExcX5+Pi89NJLdDrdbOcF4FnXqdeotBgx3f7qUIoQ4vgieTWq/RNxQx54OvhIHD90/ztEZCC3laaMdiD569Yo9s9P29iAuC/KZDL/7//+z9JRmMC5c+f27NnTRwfv7e9VRUU3nYx5PB6T2as5UseNG8dischk8m+//bZ79+7k5GQqtftFYbRarfES9hMnTnz99de7VlOr1VqtVqPR9C58MNDIZDIcrrs/Xv2Rls5U1EulEv2fY2JDDpHmrJBKDe/T2AEo/3stO0RlVPhIOKIzvS0fkdgdyBZ7nB2ffab79PEMPLWjqQSjCLq+R2rMwVNdlP35RyeTySwdgilptVqpVKpQKIhEIpHY2+RFpVIfWbm3xxo/fnzXwo8//njp0qW92f2///2v/sWqVat8fHzOnj27cOHCbmvi8fiNGzcaNl1dXbvNtfpE+LBsCgY8DMN6+U9Yf8BEBBqTrEFkLkIIaaqRlfcDV8cfgfK/JvisIz/eJTMRTYA6qhl8rwE2TN6Unz7bg6Gr/auPbieqCsTzJfXnr9kAS4QEAoHJZBL/ZsIj9/ZYhj6fT4lCobi7u9fW1j6sAg6Hi46ONsm5AOg39P1l9IlQWox4oQ+8ax2GEIasRzz2Ydm+CEcaYFnQxJjuSFrc/ZobkkLkvMjsAQEL6MNxhGlpaVevXkUIKZXKxsZGfWFWVlZiYmJ4eHjfnReA/se446ikuPOAB5uRiOPXq/lCO7Hyhy6jj8DyeOgIigHxjBD0hmlalxMmTCgvL5fJZHPmzKFQKLdu3bK3tz916lRmZmZ0dHRLS4uHh4e3tzeJRMrNzf3Pf/4TERFhkvMCMEBQBX91HNWpUHt+5zt1DCf0XPaTHNYu+p/ep6BbTDck/rObcp0aSYr+WdwKDGimSYSnT5/W6XSGTQ6HgxDauHGjfvyKnZ1dbW1tfn6+Tqfz8vKysrIyyUkBGDiotkhRh7QKdHs+sokwWTPOLhrZwYOGHtEc/lqwtxPJfcRwQgTohTAomCYR6jNfJwzGP9MbMpnMYcOGmeRcAAxAFFskq0Q35yCyFRp5qPve/KAvdJ3NQK81+4HJ2IB5rVy5cuPGjZ6eZro1DXONAvAMoNqi/B2IxEIjDz/eYEHwlB6WCNuyH5iMDZgXn88nkUhmOx38ygHwDOAGIZclKHw39PA0N4oNUrciTNP5/4/WbOS6zEIxDWS1tbXV1dWGTT6f7+Tk1LXa8uXLbW1tzRYVJEIAngH8UYg/ytJBDEo4AiJzkbIRUe0eKG/NQhx/C8U0kCUmJh49elT/OjY2dtmyZd980818ubNmzTp+/LjZHqhBIgQADG5UAZLXPZAINR1IUduvp9t+KJ0aZX+KdEoznY7hjDzXGhfMnj179uzZCKETJ06kpqa+//77ZoqkR5AIAQCDm2HsikFbDmJ7D8zb1Dg8ovCQVmGm05G7HyNw+/bt119//erVqwLBMzG8BxIhAGBw049dMTaA74viCMj7TcuGUFJSsnDhwiNHjugX5nsWQK9RAMDg1rXjaFsWshqgidDSmpubp02b9tFHHz1TU2lCixAAMLhRBZ1bhM33kP9zFopmgNu0aVNLS0taWtqrr76KEBo7duySJUssHRQkQgDAIEexRe0FRtsYas1E3GCLxTOgrV27dtasWYZNR0fHbqvt37/fy8vLXEFBIgQADHK0B1uE0jJEZCCKjeUCGsh8fX19fX0fWW3MmDFmCMYAEiEAYHDrdGu0JR2ag2aj1WqjoqI6FR49etTe3t6cYUAiBAAMbpQHO8u0pCNuiOWiGVwIBMKpU6c6FXK5XDOHYYJeoxcvXpwxY4aHh0dISMjWrVuNl6EwKCoqmjp1qouLy7Rp00pKSp7+pAAAYBp/9RrF/tpsTUfcIIsGNLhYd4HHm3s4gwnOl5ubu3Tp0qtXr37//fe7d+/euXNn1zrPP/98aGhocnJySEjIvHnznv6kAABgGgQqItCQqvWvzeZ70CIcbEyQCN95551Fixa5uLhERkauWLHi5s2bnSokJCRUVFRs2rTJ1tZ28+bNpaWlycnJT39eAAAwDcNQQmUTUreZbD1I0E+YuAUaHx8fFNT5rkJubm5gYKB+TQ0SieTv75+bm2va8wIAwJMz9Jcp3otsx8B6kINNrzrLNDQ0dG3nIYQmTZrEYrEMmzt37iwpKfn99987VWtqajKuZmVl1dDQ8LBzabVa4yely5Yt27p1a9dqSUlJzc3NU6dO7U38YICRSqV79uzZsGGDpQMBlrFjx461a9fS6XRTHZBK5OlqbmgVSmrejo4xNzCp1FRHtiyZTNbe3q4fut7flZeXEwgEqVR67tw5BweHoUOH9nJHKpVKJD4i0/U2EZ44caJr+fDhww0Z7uDBg19++WVcXByTyexUjcvlSo2+WO3t7Twe72HnIhAIxr1pGAwGmUzuWi0tLa2qqmr+/Pm9iR8MMFVVVYcPH/7vf/9r6UCAZezfv9/E69UNeQNlbER5W9CY0wy+j8kOa2l0Ov3HH39UqVSWDsQEQkND/f39mUzmjRs3/P39TTvQsFeJ0NfX9/jx4z1UOHbs2Pvvv3/t2jV3d/eu77q5uRUUFOh0Ojwer9PpCgoKuq1mYP6+swCAQc0uCtklIZ0S4SmWDsWU8Hj8iy++aOko+gETPCM8derUunXrjh8/LhAIWlpaJBKJvvyrr766du0aQmjcuHEUCuXXX39FCO3fv59Op5t51gAAAHi0gZUFQe+ZYED9xYsXraysVqxYod8MCQk5efIkQig+Pp7FYkVFRREIhN9++2358uUbNmwQCoW//fab+YeJAAAAAN3CYRj26Fomolar9X1HH0ar1VIoFGdn50ceqq2tTavV9vCsEQxgGo2mtrb2YdP1ggGvsrLS3t6eQBiIC+eCR2lqaiKTycYdMHu2ZMmSTz75pOc6Zk2EvVFRUaHRaB5ZTavVYhj2yL5AYKBSKpUUCtzIGqTg0x/MNBoNDofr/b9BQqGQRqP1XOeZS4QAAACAOcGzOgAAAIMaJEIAAACDGiRCAAAAgxokQgAAAINav+x1WVRUdPDgQZVKtXjx4q5zfIOBQSwWp6SkiMXiSZMmubi4GMpLSkoOHDigUCgWLVoUEvLXcjkYhp04cSIpKcnFxeWVV155ZCcx8IyrrKy8cOFCYWGhQCBYunSpg4ODvhzDsKNHj6amprq7u7/88suGvqMVFRW//vqrRCKZP39+eHi45QIHJtDU1HTmzJmCggICgRAZGfncc8/hcH9Ngx4fH//7779zOJyXXnrJ8K2Qy+V79uwpKysLDw9fuHChoXLv9b8WYWlpaVhYmEaj4XA4Y8aMSU1NtXREoE+MGDFi27Zt77zzTnp6uqGwqqoqLCxMLpdbW1uPGzcuMTFRX75ly5YtW7Z4enpevnx5+vTpFgoZmMyyZcsSExNFItH9+/d9fX3v37+vL3/vvfe2bdvm6el55swZw8qm9fX1YWFhzc3NdnZ2kydPvn79uuUCByaQn58fHx9vb2/PZrNfe+21jRs36stjYmKee+45BwcHwyeuL581a9bFixc9PT0//fTTTZs2Pckpsf7m7bffXrFihf71Bx98sGjRIouGA/qKfqiot7f36dOnDYUbN240fOIff/zx3LlzMQyTSqUcDic1NRXDMIVCYW1tnZCQYImQgcnI5XLD62nTpn300UcYhrW0tDAYjLy8PAzDZDIZm81OT0/HMOyzzz6bMWOGvvJXX301efJkS4QM+sTZs2ednZ31r8eNG/fdd9/pX0+ZMmX79u0YhiUnJ3O5XP0XJiMjg81mSySSxz1L/2sR3rx5c+LEifrXEydOvHHjhmXjAX2k23n4bty4MWnSJP1rw6efkZFBIpH0y7JQKJQxY8bAt6K/o1KphtcKhUK/pk1KSgqPx/Px8UEI0en0kSNH6peHu3nzpvG3ots140B/pNPp4uPjAwICEEJarfb27dvR0dH6twy//jdu3Bg9erT+CxMYGEin043vIfVS/3tGKBaL+Xy+/rWtrW19fb1Wq4XJlgaJTp9+c3OzUqmsra01FCKEBAJBTU2NhQIEJnb69Ons7Gz96jcP+6A7fSvkcnlLSwssYtOvSSSS4ODghoYGR0fH2NhYhFBDQ4NGozGsvWVraysWi9GDn76+/Al+/ftfi5BIJBrmYNNoNAQCAabwHjxIJJLxp4/H4wkEgvFXAiGkVqth/q2BISEhYc2aNSdOnLCxsUEIEYlErVZreNfwQXf6m4AQ6nlOY/DsYzKZKSkpKSkpQ4cOXbJkCfr7MzX+oPVL1ZJIpE7fim6XsO1Z/0shDg4OhoRfXV1tb2//BH2EQD/V6dMXCAREItHe3r62ttbwy1BdXS0UCi0XIzCNpKSk2bNnHz58eOzYsfoSe3v7mpoa7O9ZIQ0fdKdvBYfD6bo8OOhfcDgcl8v18vLasWPH9evX6+rqeDwelUqtrq7WVzB8+vb29oZCnU4nFovt7e0f93T9LxHOmDHj5MmT+l+G//3vfzNmzLB0RMB8uv30Q0JCrKysYmJiEEL19fW3bt2CjqP9XXp6+uzZs/ft22foEIAQGjFiBA6Hi4uLQwhVV1cnJydPmzYNITRjxoxTp07p/xOCvwkDQEdHh+F1SkoKg8GwtrbG4XD6X3+EkFarPX369MyZMxFC06dPv3PnTm1tLULo6tWrDAZD313g8ZimZ48ZNTc3DxkyZOLEiXPmzHF0dCwvL7d0RKBPvPzyy6GhoVQq1d3dPTQ0NDMzE8Owtra2gICACRMmzJs3z97evri4WF/5yJEjfD5/5cqVnp6e69ats2jgwAT8/Py4XG7o3/S9RjEM27dvn62t7cqVK93c3N599119oUwmGzZs2OjRoxcuXGhra6vvVgr6r3feeSc8PPyFF16YMmUKh8M5cOCAvjwzM5PP5y9evDgyMjIiIsLQtfiNN95wd3dfuXKlra3toUOHnuCM/XL1CblcfvXqVbVaHR0dzWazLR0O6BMFBQVSqdSw6ePjw2AwEEIKheLatWsKhSI6OprD4RgqFBYWpqSkuLi4REREWCBcYFLZ2dlKpdKwaW1tbZhUIT8//969e+7u7sYD51UqVWxsrEQiiYqKgmVK+zuNRpOSklJaWsrhcMLCwoz7wjQ2NsbGxnI4nAkTJhg/CU5MTCwtLR02bJinp+cTnLFfJkIAAADAVPrfM0IAAADAhCARAgAAGNQgEQIAABjUIBECAAAY1CARAgAAGNQgEQIAABjUIBECAAAY1CARAgAAGNQgEQIAABjUIBECAAAY1CARAgAAGNQgEQIAABjUIBECAAAY1CARgsGlrq5u1apV33777SNrvvXWWxs2bHhktS+//PLVV19tbW01RXSPp6Gh4e7duwkJCaWlpcaLFgEAHgskQtDvLVmyhEwmHzp0qOtbGRkZZDLZz8/PUNLa2vrLL7/ol7Pv2YEDB3799ddHVjt37tzu3buN19Q2g+vXrw8fPtzW1jY8PHzkyJFubm5sNnvs2LG///67oU5OTs7u3buzsrKe7BS3b9/evXt3ZWWliUJ+tLVr1+JwuNWrV3d9a/PmzfoFys0WDBhUIBGCfk+tVqvVaq1W2/UtnU6nVqtVKpWhhE6njxs3LigoyIwBmtj58+cnTpyYnJw8duzYTZs2ff311+vXrx85cuTt27djY2MN1WJjY1999dUrV6482VmOHTv26quvPnEefQLbt293d3ffu3fv5cuXjcvT09M///xzKyurXbt2mS0YMKgQLR0AAGYlEomuX79u6SieyoYNG7Ra7TfffPPmm28al1dWVpaXl1sqqqfHYDD27NkTFRX18ssvZ2dnW1lZIYRUKtWKFSvUavX333/v6Oho6RjBwASJEAwuSqUyOzubw+F4eHgYl7e2tl68eFEsFjs6Ok6bNo3FYnW7u0KhuHTpUklJCZ/Pnzx5skAgeNiJamtrr127JhaL2Wz2qFGjfH19jd9tamoqKysTCoX29vZFRUWxsbEymczX13fixIl4fE/3acRicVFREZVKXbt2bae3RCKRSCTSv87Pz9ff1ayqqkpNTdUXenh4cDgc/evc3NysrKyamhoymRwYGBgZGWl83nv37tXX1yOEioqKDLsHBASQyWRDnbS0tLt370okEpFINHFNPnRGAAAgAElEQVTiRB6P1yme5ubmO3fulJeX63Q6Pp8/dOhQb2/vHi4NITR+/Pg1a9bs2rXr3//+9549exBCH3/8cWZm5owZM5YuXdrzvgA8OQyAfm7evHkIof3793d9Ky0tDSHk4eFhKMnPz0cITZ061bjaxYsXjf+OW1tbx8bG8ng8Kysr42oZGRmurq6GalQqdf/+/aNHj0YIVVdXG6qp1eq33nqLRCIZ/6ItXLhQJpMZ6uifPn700Ufvv/8+DoczVBsxYkRLS0sPF9vQ0IAQIpFIHR0dPVQLCwvr+st+8eJFDMOqq6tdXFw6veXn55efn2/Ynclkdt29tLRU/25JScnIkSON32KxWPv27TMOYP/+/XQ6vdMR3n333R5i1pNKpe7u7vpo09LSSCSStbW1WCx+5I4APDFIhKDfe8pEmJeXR6VSyWTyl19+WVpampWV9eqrr/J4PBqNZpwIW1pa7O3tEUIbNmzIy8srKir65JNPKBSKra1tp0S4atUqhFBoaOjp06fz8vJiY2OnTJmCEFq0aJGhjj4Rurq62tjY/Pjjj3fv3r1w4UJwcDBC6PXXX+/5evXNvgULFlRWVj6sTlJS0muvvYYQWrNmzZW/NTY2Yhh2//794cOH//jjj7du3SoqKrp58+ZLL72EEPLy8lKpVPrdY2Nj9T1TPvvsM8Pu+tRbX1/v6OiIx+PXrFlz8+bNvLy8gwcPCoVCHA537tw5/e7FxcVEIpHP5x86dKigoKCsrOzmzZubNm3avn17z5emd+3aNRwOJxKJ9M3oI0eO9GYvAJ4YJELQ7+kTobu7+4guAgMDH5kIFy5ciBD6v//7P+NjzpkzByFknAg3b96MEFq+fLlxtY0bN+rbOoZEePv2bYRQQECAQqEwVNNqteHh4QihtLQ0fYk+ERKJxKysLEO1srIyIpEoFAp7vt7ffvvN0Nz08/NbtWrVoUOH9EnO2M6dOxFCX331Vc9H03vxxRcRQn/88Yeh5F//+hdC6MKFC51qvvrqqwihTz75xLgwMzOTSCT6+/sbX12nH+ljMdz4nTlz5hMfBIBegl6jYICorq7O6aK4uLjnvTQazblz5+h0eqdHbm+//XanmmfOnOlavn79eiLxgQft+lEc7777LoVCMRTi8Xh9/rh06ZJx5WnTpvn7+xs2nZ2dvb29a2tr5XJ5DzEvXLgwJSVl9uzZdDo9Jydn3759L7zwgkAgWLFihUQi6fl6H2bmzJkIoeTk5J6rabXaY8eOUSiUd955x7g8ICBg9OjR2dnZ+geT+n4uKSkparX6yeIRCoX6F/p/UwDoU9BZBgwQu3bt0jdrjN27d2/o0KE97FVWVtbR0eHr68tms43L9XcpjeXl5RGJROMhiQghPp/v4OBg3Ffz3r17CKHY2Njs7Gzjmvo6ZWVlxoVdO48IBIKcnJy6urquj/GMBQYGnj59Wi6XJyYmJiUlXbp06ebNmwcPHqyoqIiNjTV+6NitrKysL774IjU1tbKyUiqVGsobGxt73rGoqKi9vd3GxkbfPjam37esrEwkEkVFRTk7O588eTIxMXH69Onjxo2bNGkSl8vt+eAGmZmZn376KYvFkkql77777rRp0/SZFYA+AokQDGr6NKB/zmeMwWAwGAzDplqtViqVtra2BAKhU01bW1vjRKifYub06dNdsxGXy+3UI7RrdxJ9BQzDehM8jUYbP378+PHj//Of/5w6dWrBggVxcXFxcXHjx4/vYa9bt25NmjRJq9VOmDBh5syZ+vxUXFy8Z8+ebsdiGtNfXVtb2+7du7u+y+Vy9U1AJpOZkJDw4Ycfnjlz5qeffvrpp5+IROL8+fO//vrrHvrZ6mk0mpdeekmlUu3duzchIWHXrl1vvfXWL7/80vNeADwNSIRgUNN3j6yrq+tULpVKZTKZoSFCIpEoFEpTU5NGo+l0L7TTvvoDXrt2reeWqMk9//zzo0aNunnzZmpqas+J8MMPP1QoFOfOnZs+fbqh8NixY/rhCj3Tjyrx8vLq1N7tSigU7tu37+eff05NTY2Njf3ll1+OHTtWVVV18+bNnnf87LPPUlNTp0+f/sILL8ydOzcmJmb//v3z58+fOnXqI8MD4MnAM0IwqLm6ujKZzNLS0k6Theq7mxrz8/PTarWZmZnGhbW1tdXV1cYlISEhCKH4+Pi+ibcn+qeShjarfsxf10ZeRkYGm81+7rnnjAsNgwUN9P1xOu3u6enJZDLz8/Obm5t7ExKRSBw+fPj777+fkZHh4OBw69Yt/fDEh8nIyPj88885HI5+Ehn9EHscDvfKK69YZDZXMEhAIgSDGoFAmDVrlkKh+OGHH4zLt2/f3qnm3LlzEUJfffWVceE333zTKVWsXLlSX63r8zaNRqNQKJ4y4Pb29hMnTuh0uk7leXl5+uwbGhqqL9EP9ug6WaiNjY1MJmtqajKU1NTU/Pzzz52qdbs7iURatmyZVqv94IMPusZmeNxo/NxRj06n68fy9zA5uEajWbVqlUql+u677wyTyEyYMOHll1+urq5+7733HrYjAE8Jbo2CwW7z5s1nzpzZvHmzTqebM2eOXC7/4YcfEhMTaTSacbXXX3999+7dR48eZbPZr7zyCpFIPH78+LfffmtnZ1dbW2uoFhkZuW7duu+//37YsGFvv/12cHAwi8UqLS1NTk4+cODA2bNnux3q3ntyuXzhwoVOTk7z5s0bMWIEn89va2tLTk7evXu3TCaLiorSD/BHCIWEhBCJxF9//ZVGo7m4uBAIhKlTp4pEovHjx+/du3f27NmbN292cnJKS0v78MMPbW1tO2UvfZyffvppfX29PikuXryYxWJ9+umnV65c+emnnyoqKlasWOHt7S2RSEpKSs6fP19QUJCRkYEQ2rFjxx9//LF8+XJ/f3+RSFRfX79///7c3NwRI0YY5r7p6pNPPjHcFDUu3759e0xMzJ49e55//vlJkyY9zU8PgO5ZevwGAE/r6WeWiY2NNe7EIRAIbt++3XVmmby8PB8fH0M1Op1+7NixrjPL6HS6bdu2GSYz08PhcGFhYYbJWfQj7TZt2tQp4OjoaIRQSUnJwy5WKpUuWbLExsam0y8yhUJ5+eWX29vbjSvv37/fwcHBUEc/s0xTU1NERITxvjNnzjx79ixC6JVXXjHefdOmTcZdPQ3B19bWzpkzp1NvIAaDsWbNGn2FvXv3Gnc10hs7dmxVVdXDris9PZ1EInE4nG5nCbhy5QoOh3N2du50gQCYBA7rXf80AJ5ZtbW1EonEzs6u6wShSqWyoqKCTCY7OzvrS9RqdVlZGYPB0LdyDGQy2ZUrV+rq6uzt7aOjo2k0mn6oQ6dhDGq1Oi4urqSkhMvlRkdH83i8mpoahULh7OzcqUOpTCbTrxRIIBCEQmFQUJDxGSUSSUNDA5fL7TSoQCwWy+VyJyenTl1yOtFqtVlZWRUVFWKxmEAgODk5hYeHP2yMgUwm0/fosbOz0/dTxTAsOTk5NzeXQCAMHTrU399fLpeLxWIWi8Xn8zvt3tLS0tLSghDqFFVVVVVCQkJTUxObzXZycgoNDTVuQ6vV6rS0tNLS0ra2NoFA4OPjY/w/RFdNTU1tbW1MJrNrD1698vJyrVZruAQATAgSIQAAgEENOssAAAAY1CARAgAAGNQgEQIAABjUIBECAAAY1CARAgAAGNQgEQIAABjUIBECAAAY1CARAgAAGNQgEQIAABjUIBECAAAY1J6tRIhh2JYtW3pZs+tKNGDw0Gg0lg4BWAx8+oOZVqs1+cygz9ZcoxqNhkajqdXqR9ZUq9VarZZKpZohKvAMkkgkXafYBoMEfPqDmUKhIBKJPc9K/7ierRbhE1CpVK2trb3JnQAAAEBX5luYt729vaioyNPT01T/ylWVlLSUlrYUF3t5eIhpNOfhw2F9FgAAAI/LTC3CEydOuLq6vvbaa66urqdOnXr6A7a1taHSUmuJZASNWlOS7kQiNVZVPf1hAQAADDbmaBEqFIrXXnvt+PHj0dHRV65cWbp06fTp0ykUytMcU6PR0AiE2JqE+KRDZUrJDpdDHJHIVAEDAEB/p1Qq3d3dOzo6LB2IySxcuHDXrl19cWRzJMKrV6+yWKzo6GiE0MSJExkMRmxs7NSpU5/mmBwO5z6ZzOYKIoNXa5rTd6ae3CD0bLeyYnM4JooaAAD6MZVK1dbWVlFRYelATOPy5cvHjh3ro4ObIxFWVFS4ubkZNt3c3MrLyx9WGcOwq1evGja9vb1F3TX1iESie3i4KDiYTCbbJlz64sxaB8X6qpQUyqhRT9nWBACAgQGHw3G5XEtHYRpMJrPvDm6ORCiTyYyTE41Gk0qlD6us0+k+//xzw2ZUVNQbb7zRtZph+ASGYXwV3cVadKP0ujcnuKGhgQONwkGgh68QGPDg0++NgfdT0mq1EonkcYdPUKlUEonUcx1zJEKBQNDS0mLYbGpqsrOze1hlAoEQGxv7yGMajyNkOThEOU3+s+Sa25jRTgLBI68ZDAwwkmwwg09/ECIQCCwWi0Qi9ctxhEOHDs3IyNA/s5XJZBkZGaGhoSY8vou/v8OwSTHqcqfwcMiCAAAAHos5EqG/v39kZOSqVatu3LixatWqMWPGDBkyxITHJxKJIwPHVNDq0UOSIIZhMOIeAABAt8w0jvD48eMODg6ff/65k5PT8ePHTX58Ip7oyfPMa8zr+pZMJsu/dSvp4omCu3e1Wq3JTw0AAKBfM9PMMlwud/v27X16Cn9b/+z67FBh55uu4vv3cbKq/15b+7/ZZxrEYjtHxz4NAwAAwFMqKipydHQ022zS/X6uUQM/W7+c+pyu5ZhOV9JWIlFKxJJqDBasAACAZ97kyZOzs7PNdrqBkwgDbAOy6rO6lgs8PG6I77cpUGxbkY1QqFar76ek5MfG3k9NhcVcAADgGXThwgU/Pz+znW7gJEJfvm92ZbZUKpVKpcYZjs3hFNpJueFhxfyWDpks+fJl3P37HgyGrVRaO1DmXAAAgGefWCxeunRpXV0dQkij0bz22mu3bt3qtuaePXtqa2vNFtgASYQYhqmLm3n5zdd/3Fl49mzhrVvGg0lzmnJeGv7S3fK7dXfv8iWSzIw/5u6cWicXa5VKC8YMAACDilAodHNzW7x4sVar3bRpU15e3siRI7uteebMmaamJrMFZr5lmPqUVCpltLX5sUU8VS2nnSt0caksLPQKCUEIKTSKyrbKhf4L3/njHaY7tqviaGV19hBa4IYDGz9Z9h2eRBJ5eFg6fAAA6HM6TGe33a6ho8E8pxvuMDzx5cROhZs3b54wYcLChQsTEhLS0tIIBIJ5gunZAEmEBAJBjWGjnUb/mnSoSt4xqXhmiO9UApHo5u+f15jnwfPgUrlOHKfv0w5n12Z8t/TH9LKq5po9ufVXrMlkqZ1dn85iBwAAzwI8Dl//73rLxkAgELZs2TJ+/PidO3cKBALLBmMwQG6N0ul0oovL6MD5c8d/tmjY+uyG1NiGU/T6+paWlpz6HH9b/4rCwvEyp1OZRyb6vET0DXT39t48YfOB9AMdylboMgMAAOahUCg2bNjwwgsvfPHFF42NjZYO5y8DJBEihEQeHr7R0VPWrg0dN/X7tQdvV99ul7e0Njcnp9xwRo6y8vLp3qOWDZsx03MMl8/nubsrNbRhNuM/v7G7uaZGCQ8LAQCg77399tseHh4HDx5ctGjR8uXLMQyzdEQIDaREiBDC4/E4HM5uyJBKqcKTGbrr1omyS5fUxVlh7czampop7lP+O+a/agzD4/H2zs7W4eFT/RbUylM7ilNL793r/VkwDCvLz8+7caMwLU2lUvXd5QAAwEBy69atlJSUPXv2IIQ+//xzDMMetsSgh4cHjUYzW2AD5BmhMRuBgMFmh5VP+PPeAW6HR11B7tgpH99vV+dJJDgM43h66mcrwOPx7hz+gsD5f5Zfns5w0Ol0eHyv/i1orK+nVFXx6AS8TFZdWOhqxsEuAADQf40ePTopKUn/mkQiXbp06WE1Y2JizBUUQgMyEeqNdxn+W9o32+/+tNj7eVUHZu/h4eTlhRDC4XD6CjQarYpAiBBGvvvne88NX9/LLIgQUisUFAJu9vHZX0R/yaIE99UFAADAIHCvyw05Pz8/MplszhgGZiKkUqlqOjPadWIjt4XnO1Hn7e0oEhlSoB6RSHQOD2+osCtKIleQW0UdHXQ6/WEHbG1pkTY3M7hcLo/HtbU9fftkW3vHN3cOfvTiGLVaDWs/AQAGKv3qPX2UmbRa7ddff92pcPv27ba2tn1xuocZmIkQh8O5Dxv2ouhLhMPZCAQPW8KRTqfznZyms0ekXz3oUo+sQ0J4NjZdqzU3NrampfFptMbiYl1wsLWt7R1WyYgxq+7EHdUUZhTV1bmNGEGhUPr4mgAAwKyamprq6+vlcjmmVuPJZDqdbmdnx+FwTHgKAoFw8ODBruWZmZkeHh49NE5Ma0B1ljFGIpHsHB3tHBx6Xsi4ubZ2gce4lMYEVw6nqays2zrt9fVCJlOibbVnsVrF4tbW1vN556cLRi8eOvW2OFag07WacQYEAAAwg7KysrKCgo78fCw/n1BSosvPlxYUFOXlicViM5x95syZBQUFZjiR3sBsEfYemUZzYXtKVJLc2jy2Z3i3dWgczt3sG29dXreAO8/FOojK1LpVauge1Jmes9ZfeWOC43Nc897OBgCAPtXQ0NBUXY2vqHDk83mOjgQ8XqPV1jc3i8vKahBiMBhsNrtPA4iLixMKhX16CmMDtkXYSzYCgcLePtDpuW9Kz9u7uyOEdDqdRCIxHlnI5vE2VxwdajXxSv2frU3JSalHp7mO5jEYGNfVjhu2Lf2IpKFBLpdb7iIAAMCU6urqUF2dyNaWz+US8HiEEJFAsOfz7Tgc1NCgnzX7CVy8ePHLL780bB4+fHjv3r3d1ty6dWtNTc2TneUJDPZEiMfjXX19X1n8QVxBzO3ff4vZt+/yDz9UxMSU37rVVF+PYVhhevrFU993lJcuj1z1f/O/LJfWBtn5L/JbTKBQfIYPXx2xtqgyRl2WXXb3rg4WOwQA9H9qtVopl+MVCusujwP5XC6SSo2XNHgsISEhn376aUtLC0IIw7AtW7Z4PGSq55iYmNbW1ic7yxMw063RHTt2GG74CgSCjz/+2Dzn7SVtefN8x+E3bu1rqS/jkOiuEavdRKKiwkIihUJrbLxYeGTL6H9hOmRFc144fn11Y2MbleMYGKjRaOzwjEUhC84UnVrgt1qpVJpzBCgAAPQFjUaDNBoigdCppz1CiEQkIq1Wp9X2fuC1MaFQGBUVdeTIkXXr1l25cgUhNHbsWNME/XTM1CK8cOECDocLDQ0NDQ319/c3z0l7T6dSLfBfUNyYP8ZlNJdq80389rr2ehyJhMPhCpsLG2QN0a7RNgKBMDLSeerUyf/6l/+4cVY8HolEUlGpEXaRt0rudBCJ0HEUADAAEIlERCRqtNqu85+p1GpEIOAJhCfIgnpr167dvXs3Qmj37t1r1qzpmmstwnydZaKjo+fNm2e20z0WGw8PfEfHv6I/xWQygfuogtxT689t3TDx/bqqql0Jx0IFkwolUlt//059eXE4nGtoaG2ZdeYdtc7T+om/GQAA8OwgkUhUOl1BozW2tvK5XOO3GlpbEYvFYrGe+ODR0dFKpfLs2bMxMTG7du166mBNw3yJ8Ndff71w4YK/v//q1auf5ufYF2wEAubo0YLwcK1WSyAQ3igPe2fv9LrcG94ETmN7xqTxrztHRHR725NKpbr4+EwYOe1G1Q0/Icy1BgAYCOzs7Mra2irLy7U6nY2VFZFAUGs0dc3Nde3tyMXFzs7uiY+Mw+FWr169YsWKmTNn8vl8E8b8NEyWCKurq7s+QWUwGI6OjgihSZMm8Xg8Eol09OjRffv2paSkPGykpFarnTBhgmEzKirqjTfe6FpNrVZrtVq1Wm2q+BFCeDxe36rTtMrWh7++4+RmBzx+euAMaxy1tbWn1ZrGOow9nnf8BZ8Xeji4SqWSSqVUKtVsQ0QHtid+XA8GAPj0e+NpfkrW1tYdIlE9Dlfd0FBdVIRHSIfDIRYLubiIXF2fcgHXFStW/Pvf/169enUPdQICArr+qdRqtRKJRKFQEInEngeIG6NSqY+c/MtkiXDr1q3Xr1/vVDhq1Kiff/4ZIfTee+/pS5YuXerj43P27NnFixd3exw8Hr9x40bDppeXV7fNR30i1E+fbXIO3t5MheLf0Z+yZZhjQEAbm21ra9vDSsrh7JCP7qyrHJLrHhDc7ZNChUJRlZJirdVKdDp8YCD/Kf6fAgbP2n0FYE7w6fc1kUjEYrHqeDyZVKrT6XAEAovFEgqFT7+M+Y0bN/z8/MaMGdNDnXPnznUtJBAILBaLRCI9ViLsDZMd6/vvv+9NNRKJ5Orq2tDQ8LAKOBwuOjraVFE9GRuBgBIRwfD3V6vVeALBQyDoIQu2t7fTymqjBe5VhXEkHNEzNLRThY6OjuzERHZlpZWXF59Eul9WBokQAPDss7KysrKywjBM/8zIJB1bXnzxxYsXL+7bt09/NAzD7ty506lOWFiYmfsemuMZoUKhaG5utre3RwilpKQkJCR8/vnnZjjv02D1+oGwUqFgEolL/Jccyjz0nuPITu9qtdry5GQHhaK4POtoyt41s/9D5Iv6IF4AAOgTOBzOhM2vF1544aOPPnJzc9NvarXaw4cPd6ozZMiQAZgI29ravL29nZyciERiWVnZli1bwsO7n8ysP2JzOCV4vJ9VcHXJt1fvxaipVDuRiGdjo//qKJVKulZ7svT4hdLzqJ3Eq01dO8rC7V0AALCUqKgo400ikfjTTz9ZKph/wjDDOQQCQWNjY3FxsU6nc3NzG2C9RSgUiltERF5q6vKIJZdyTkRIya0ePk0ODl4jRuDxeElb266Eg/cbbv669NAv5ddy2VUw3BAAAJ4pZhr6RqFQfH19/bsMxRsYKBQKk0abHzrHEy/8JeOr+/UZHKVSJpNV3L+fc+NkSvXFpb5vyO1dpk1ZGlcWZ+lgAQAAPADGgJsG19GxWiJ9zvv52b4v7cz9qVEpJZPJHXV1ibVxy8OWjPUM4vD5IfYhrYrWakm1pYMFAADwj8G+DJOpWPP55IgIvKsrRSy2is3aX3r+nSGBSiLuSsG1YwuPtqk0dnS6RqMZiYJO/v7z3FErRO7ulg4ZADDAYRimn+F6AOjTwaOQCE1G39FU7eLyasuLn156vVDtldpYQMQcG4hs4RBPBoNRmpMzh+Nf2ZyFKylp4nCsbWwsHTIAYMAik8kcDsd9AP3PvXDhwj46MiRCE5PJZL4s+2iH8ScTv1ARaKujl7F4PBuBACGkkkgiXUb8++qp14eSOzo6LB0pAGAgo1AoVVVVlo6if4BnhCZGp9PbMWyRz+J5XvPJTHaU2wTs73UKrUQiPGbV2i7Naq+1emYm2QMAgEEOWoQmRiaThcOGVRUUINXIt0fOrNMRnFxd9W8JHBzaWSx2RWShXccoWLkQAACeDZAITY/N4fiGh/sMGyaXy6lUqvH0bGw2e3Lw1DviOyvRSgtGCAAAwABujfYVPB7PYDC6TlI6zmXc9bLOs5MDAACwFEiE5jbEZkiHqqOkucTSgQAAAEAIEqH5NYjFE6RDzp/8ubq01NKxAAAAgERoXjqdrikvb7Z7eJusQF5crFQqLR0RAAAMdpAIzQrDMDxCvja+eY15BBxO9/fICgAAAJYCvUbNikAg0J2dpSXKjNpyhQ2XBoMonkhzU1NlWRlBraZSKHaenk+/ZDYAYDCDRGhuIg8PuYMDId9LytdaOpZ+qaa8vC0r7ezl3d4swajxz1e2tnqNGdO1dy4AAPQS3Bq1ABqNFuYSllqTaulA+p/Wlpb7t2+fTP21rr24rOne2t9Xt7bXwKNWAMDTgBahZYQKQ1PFkAgfT3t7e+PduzpJzf2UawuHvu7G4OKa0t458PqnJPKwUZNZbLalAwQA9Et9kgjr6up0Op1QKDQurK2tLSgo8PHxEQgEfXHS/iXUPnRv2l5LR9HPSFta+BTK903nhkfMV9EFzf7+k+scrJytfr34sbKy2XfCBJGHBw6Hs3SYAIB+xsS3Rn/55Rd7e3uhUPjiiy8al+/fv9/f3//zzz/38/M7ePCgaU/aH/EVVo2peVkJt+VyuaVj6TcYHI64Q5JSlTJr2Pwh48YNCQ4W2tlNsZ8sbJdXVcSRKyrqa2osHSMAoP8xcSIcOXLk1atXd+zYYVzY0dHx1ltvnT17NiYm5syZM+vXrx/kf/0lEgm+uDzSRqRtLKzIyrJ0OP0Gx8qqVIjT8F0J3n72rq5WXG4TnV5d3zDHb+nR2vMUIk7599KdHR0dmbdv/PH7norCQsvGDAB49pk4Efr4+Pj6+uLxDxz2ypUrNjY2kZGRCKFRo0bxeLxr166Z9rz9i0qlohMIQYKg3KZs3eD+n6CXMAzTarUIoTx5QVjEBHtnZzweTyAQvIcPF0ZHs/3C7K2dr1SkWtnZ6etXZmdXVd768tr64oTYjHv3SnNz66qrYdQmAKBb5ugsU1lZ6eLiYth0cXGprKx8WGUMw65cuWLYdHJy8vT07FpN9zeTRmomTCaziEh0Z/pcuH9t9Oh/9dOrMAONRoPH4yXt7dXp6USdjigQxFfEzxkyx/jTd3JxaefxBLLoZEbdPBZLX6iRy++J7/HaWTGXvhuXP+0Wqpg6eomiY4hoAK3WPZj139998PQe949/p4ZZtx47EZ48efLIkSOdCplM5qFDhx62i0KhIJPJhk0KhdLD+uw6nW7r1q2GzWnTpq1Zs6ZrNbVardVq++8vg31goMKWcbb6+522fFitvlvl+fnaujoNQlKFIsiG16puV5fJ44viN4/a3NHRIZfLDWMHiUTipKCpH9z4wPCTpAgElwsS1jvOPZr7v4b8XRJM5+0fbFPBsK3+48cAACAASURBVBYKEUIajaYiJ0fT1kbicp18fWEMYr9j/OmDwUahUBCJRCKxt8mLSqU+svJjJ8KgoCAKhdKp0DjPdSUQCJqamgybjY2NnTqUGiMQCLGxsY8MQ58IqVTqI2s+s4ZahQpJ/NupMWE+o/l/39NTq9XVRUUqqZTn5GQziLvXSiQSVmurNY9FIVCuJt+NU2R+m/Tt+qCNapna38EfIYRhmPGEMuM9xxeeKVQRVDwaDyFEc2DlO6pFAZP+EzpUkl+Q1piTWZs3L3QOk8msLisrjI+3bm/38fdTKJWy1lZ7Z2eLXSd4Ip0+fTCoEP9mymM+7g6enp7d3qvsQXh4+OrVqyUSCYvFam9vz8zMDA8Pf9zzDjz1NTUzdD4Nhbc7lOwmAsGaz0cIVeTlaavyr5THTG5eQI2MHLS/7TqdjoDDrb2wNtptoof9mK2Je3jtwq/PfTzDN6gkO9vN379TfbVCPUrtf/zUj/OiViEc7vc7hyJtR3iOHl13/76O6Uht4p5vuLLew0MikagLC7laWXzu8fdik4+uO6+G5jgAg56JO8vk5+dv27bt2rVrpaWl27ZtO3/+PELI29t74sSJS5Ys+eOPP5YuXTplyhQPDw/Tnrc/kjY2jncbkdGYbstiSRsbEUI6na69tvZ43tEjGUdP3d5flJ09aOdMYbPZV2X5hc0NOxIONXPxCZTqj+Z+5jvUP8pzuKauTt9xxlhFevpCYZhYnFB482ZTcnJD8Z0pGldlR4dPRMTwKVOen7UyTZ1DIBAUCgVOo9yU9mk9hlgY52p1prVIpNPpirOy8q5fv5+SolKpLHK9AAALMnEiVKlULS0tQ4YMmTt3bktLi0wm05cfPXp0+PDhhw8fHjFixOHDh0170n6KaWPjyPBIq0qvk0gY1tZKpbIgPr6uNO927JUNwn+lZF1qKU4oSUnBMMzSkZqbpL29ICHhcOLe2ePf9OJ67D27YTFxhFqL+3bKtwv9Fmrw+E5PvzEMw6lUc/xmp+akJF89XpeRlFKcGOURKW1o0FcQMoUUIiUlN6H+3r3vLvzIV/EXTH6bNn58oX0Hk8lsEIvZDQ1D2GyhXF5TXGyJKwbgmaPVaoszM/Pi4orS0zUajaXD6Vsm7jUaGBgYGBjYtZzJZH744YemPVd/Z2tvj1BkbQK71ok5wta2urTUXqu9pL4bFhpFJ1lPnbIstTl5rjBIpVJ1fSg7sFWmpyvbCunqhuFtglGhL7wZ+/pHUR/o6Oz7HXIcgWAfFNRp+hgcDkcRCMRFRWsdF/6U/WtKU+wkl9F0PI/A5xvqBLOD4y4cn+0fcQ+X8O+IL7jh4VNdZb9l/4YQUiuVNAK25NSSryd9o5EzzH21ADyT6qqqrJqaThedmOu5QFxWJhrQt/FgrlGLweFwAgeHoNCRJZryESgSRyDItcrz98/9MuNAcXWrE5WUnJOqDCH33BEJIaTRaKqLi5USCdfR0dDppv/CMIyg1R7LObo0cCmHyODSBTsm73BmuitcXBxcXR+2l8uQIZUMhrNS+UaAkKgiYRproq+vrb29/t3ayspRrfz6/MRtqSdejl7lLXBlsVgjqSPfvPQmQogrEOy99nN29f0LJYlzZr1hpusE4NmmlsvpBPRTyk/jnMbj5TaWDqdvweoTFmaYfZsvFJ5puMele8ppNiEzZ5Kc/GO1Va7Dhj1y8syK/HxNSXZsym5JZmZ7e7tZou4rOp1Oq9VW4KU3i1OG246mODvr3N35/GHtAoGdk1MPO+JwOJGTE93Hx8Mm3EEYHDB5ssDBwfCja6upGec5LFaeJOJ4edKHYnZ2NBpNxBYRNcQ/b50vS0j4X85ppt/wdH4L19raLBcKwLPO2tExo6VGpUBx1dnWIpGlw+lb0CK0sGH2w7bc2KLT6SQSyRVl8sS5L/uEReJwuFERk6quN2PERz8gVLa2VkgKDmYemO0xVy6Vss2yCINOpxNXVMgaGpgCgVAkevqprjEMK83JaS0raygpudoSG+w2mRww1FEg6P1wMRwO5x4QoFAoCAQCiUQyfovCZrtIPTZM3BDOH88IGWrv4IAQqiopiW53K/39CE7kxicoFzov2VHb/dPryqIiaWUlIhIdg4JgjQswSDCZTEKgc1Y8KnPUcaysLB1O34IWoYUNFQ5NF6fnJyVK7iaU3/pzOClYn1QIOIIr17Ww6dFTZTLt7G6XpCoUqtiaDBKVKq6qysvIKLp3r14sfprAMAxrbmqqrapSKBRd362rqsIXFaXnnIo7sycl/uZTzgkgl8szEhPbkpLUNaXK+sS83KvvBC/QKZVPMGiaSqV2yoIIIUdPzw47h1DveYyAQH0WRAhJKirGOAcn1cQeu7Nzvvc8P553XkOeTC3rtK9EItGVldU1p1lp26thYlgwCCiVSv1vdJOqicQk5bfmWzqiPgctQguzolrxSfxWcYFY2xDhFEBr6cAwTJ8Lva29C5oKAgXddD4y5ujufoVSwfYZcYtU5puURGpt1VVUsL295Q0NzSQSz+YJb+5XFRfjy8roBEJedrZbRASHwzF+t6OlhYSkP8TsDEE2twsuvqH+yj0ysmsG6g0Mw8pSUjgtzXdyLpzIipnoFfTGsNesaTZy000dQiQSXf38upZO85qiqpe5YnyRMJLl5hFcFZxYlRjlGmVcq62tra21cXPc5jm+cyb5vmSqkAB4NtWUl8vu3yfh8RobG7FaPMJxRFb9wP//D1qEFqZWqwOIXjF3L/+c+PNk9yk6ItFwm9HbxrugseCRR9BgmhxF/svBqwriYkg5OeKS/BJp6reXP7Wm0WStrfo6Mqk0Pz4+Ly6uqqSkl4FJa2p0BOn/Xf6s9e7N4qtXOy3jwBYIEiuyfMgub0RsyFMV4OWthqEyj0ulUlFUqt9KDl9tzXklYq27yxxr17A6Gs3Q1aWPOAYGtpDYoyOXusxd5hIVJXR2Hkrwu3ztf82NjYY6Jbm5qtzcU7eP2bYLjqRfYDgP8CclYJDDMKytuJhOlDfLS8iNjZWNlWOcx1S1V3WoB/i8E5AILawsM3Mq2eVc6f8clR4uDmMdg4IMb+lbhAghlUpVWVRUnp/f7fJV2fXZziznYTiRCtU3qOr23Pkmq6r8XnPe/bZa1t9dPyqzstwJhCEslra4uJcdaogMxpnM881V9/fd+65RcV9RUWE8lohvZ5ctUOtcvege3kNdwmIq7tBotI6OjvyEhLy4uMda/IhAICQ3FcQWxn22ZIdd5MRxr70WOGuWz/Dhpp1CqSsWmz1k1Ci/CRO8/f3pdHplQcEknHNLRXJzWppEImlubr587shbW6al3DuXhCUsm7COwBFeu3W8MC1twI+pAoMZhsN9l/TdocxDOoTqZfWObEcva6/chlxLx9W34NaohWnb26f7TnXkCUP4I2lBQWyjO5Be1l7fx3+v0WhK0tIY7Q0qrbysttZr9GjjJ2eN9fVX4k4HUf0whA91Ct5Y8N0k/9kTolb+effDcnvCECq1urSUSKFolcoSVU1cWdxstwW9/Dvu5O9/7HTyCx4znUXWJ+6feMcuvFOPmBJlyYTpMxUMV8fW8X9UxD5fV1dXUkKT1TSpGlhqdYuNDZfLfeRZ2lpbK1Pv/hL/9Ri3xSoHtwBXV0vNH6toaZnoM+7nez/czbrOrKpiqVR/Jv7gxbJLyvjdS+RqTbB+1XVibs21Oc6RtRUVjm5uhh11Ol1zUxNCiGdt3Zt57gF4NqlUqvLs7NyKnNPJN20cBDhHx8bGRluarTfO7XZCjPckbxaLZekY+wokQgsjcDi0dtw40YQKpdKaTjeUazQaYqlUfS+/IC5OJZOdqzhW0lLywaj/k8vlhglIW5qbJenpHVXp4+luSibT32GiwCp45Yx3hU5OoehygfS+TxLPAY9XqNUSrfaHuO8LG7IifZf5PNjvUafTdXR0kEgkw7B9DMPEFRWVZfmF6vLJy9fJyysS7u6UCun6BCyRSDAMY7FYWfVZb0W85cj3HF097ETstmu/fHn13hUpsVompB6ee1zTu7nKavPz29rz7JjkNcGzEI9nwVnU6Xx+c0XFHNZz5+N+3TTqzVvV2UjduGjYy2ot1sG3JgvspxPsjvx+8MCtX0J8Z7F4PH0/OplMlpecnJV3nkImhwbN9erFcBcAnk01xcV2Mtnx5mvLI+ZurT/t6OVRe7sWL1aMVtpIK7JqkpKcR43q1+sc9AASoYW5BgbWVlS0KRSOTk7GY+ebGxtd1QRbOtmGpE6pE1/MvaxF2qKOxkijWWZkra02NFpBc/4C/wVEInHV8v+ivxffCrYLPp9x/kWHsE/iP+bKOUKK501pIdnDTuJEMr7lqNVqC+/eZchkcgzjBQTo17torKvD7t9vaEhcQAmiUmjOE6ImqJddarw6DEWU5ubia2oIOFy1FbuwsdCX79vR0SHEU0O4/nfyjoQ6Ro51f+md+M9yVa0RPF6vrh+Hu1MRP8F1AoaQZROIyNOzkkgcUjUitj1+572dYmnL/OAVKkTgDA0KDg9Xq9VVSUnrXTecTd5XqalkEgjWwcFtdXWqsrKqrDunsn/iDfGIcI1WKpUD9S8FGPA0crlMI4ktiz0048i+Gzcr2ipqpbUcJcFW5H8o8xAPh5NKpQP16w2J0MKIRKLxfTYDHA6HITTSaeShjEMEK0+iW4BtOz02P8aWaesQFMThchFCTC63oaioormKgnFotrbG9+WC7YK3xW2rsW5PyE8KkrPTKXfeG/F8FlN9vfx6hFOEoVprSwtPJjuc98ss71mNRUX6RChva7Oh0+9U3Yn2GtvR3Exwdl7st3j5b8vfDH5TLRar1NXNimZdC1vEEFGJVDwVL8awN0e8xXCq1TDZTGdnfHtAnaO2lz1IhT4+J47c2Tr2oxY22+NJO7iaBB6PF7m6dlRXf+HyRWLabbKOIQoOs/H1FdjZEQgECoXiOmpUe0fH12EHVu5fntRwwP3ePYRhrmz61vTD60Ne2Fr1vypFk9MT9ZsF4FnAcXD4Me774fxR7Tiak7NnYVNhrbRWIHRjNzGzxDn1GqUbY8BOQAiPNJ5RPBubFg5nhufKI/Exvybsnu46Y5n3xKLm294MRk1Ojr6OFZdL8PcspOKYgUOFD0684sv3LZeV36SVWvF8V0z6j72X96LA+eHWIZdzLkskEkM1PIGg0mnPFpyNKYpBeLy+kwiiUq8VJceXJLqw/TlCoUKh4Jaq/Gq0F37f2dTa+sWdLz68uOla4iVftZNSqSSTyXahoTpHlwJrfodQ2EAmj4iMSq1N7c01NtbXp2XeqmOrI6cu9Q4Ls/hSq3g83nnYMDlfFDxlyajVr/lHRdk7OBiiolAo1i4uTe3S19wW/1nypyMDI6tV/8s/EuAcRLUJtHYMi8eV9N+VosFgptPpCtPTm7MyTxZeHDVprduoUT52Pik1KVQi1SswBLkP0Qrcy4Q6Go1m6Uj7CrQIn1EEAsF72LDCDNJXszZ+eXfbBIIbgYK1KdvKWksR+Z8FexUUFc9DJPh7kLgBEUf0oHp8defrD+d9wJa7f+C2uV6h9aK6y+6mil1vNjm5uQwZghCysrJKIEuqZZrDRTfHj1jXmJgoLiwsbS7ZXrT3xej/uIyayOXxaquq7DDsnTHrv7y0LYQ/JV8sjSQF36w/P99lWUV2tmdoKMfKijN8+JDhw9VqNZFIjCzp2Hp76yMvUP+As6oydjFlaEtdHf3h84iaE51O77rYoYGLr28llUqsq3v+uVc/u7aDweAridQVo1bYh4WNz+y4eetUCSWMHxT0xGM3AbCIluZmVlNTiTQ/mMvz0NlQKBQPnkdsaawd005/y2rCmBmJjUlDsl2UDQ14Ot05KGiA3SOFFuEzDVOpxnmM+WPxHyKuTTOZ7MUNPVt4h2c0DbxYIrZjdjPRdmlOTpRUaFtSN1Tr5hQZiQ8O5oeGOuLJIY5eLcpylVisX9IPh8OVM+pHzVhULGivry5Qq1supv187d6ebRPfm+QQYcXlIoRIVKpcqxVhDsN0NrdLj7wcvGDVpFdp1qwAe1+NVGp8UhKJhMPhwhzC0sRpWqzzkoGd6B9wJtUkThky3rBe0jOOQCC4eHq6RUWF+k1fOGcHK3jMO28dGLtsGZvPf44XIJbmC6n4+oJHD/0E4JmCYRgeodN5p+f6zsW0WoSQB88jvjLe8Lcl0i7y6p9nZamp7lSqk1ZbPeC+5NAifKZxRaLSzEwrIrEBw0Kio+9alWQ1Zhm3/8RSsT2r88BznU6nrq8f4RqkI8iEGoJWq7W2tlYqlc0YNs1z2o6Yb5Z5/YsoEDh5exOJxPjK+HEu45AOxdyPLaqOG8PyeCl4pZ1TaJlOp+8AybO2rhCJCgoLp4Yt72iJmeU/qbCx6btJu2hEtra7xS7UzXKvGs7lMweHR0y1efhqGEwut76w8F5NxrrQd1gCwcOqPYOETk52ItEQ3P+3d5+BTVzZAoBnRl2yrC7ZapZcJPeKG8ammx56IL0QSCGbsCEvbVM2JJvdZJNNNo1Nb0AWkgCBhEDoBhfAvVsusmVbkmUV2+plNO+HFseh27GxDff7JY1GmjseWWdm7r3nzLwFWh9YgiAIEUeO5kbX9daxBGnj2zwAGC4Wm11HIR5pO7s2+XG+UglBUCQ7st/dHwiEKIoKdXioswXP7vhX9Y4Hlz/lc41zL8aoA4FwQuOFhJBpNKfDIWMwyGRydkT29qbtQ1fQWXWh9NAL3oUgiJ9AWBS5OD883+Dw84hECIJIJBJdqRRYrSzrT5W2Y7nGlC4EkcXEFHUWPZ70GDTQ9XbFq/GExKjc1ToKxeXzCc9P7YdhOEypJFIo3sbGZ0npeo8nes4cj8NBJJM5Qwr+Bfh8PktDwwJJgtehNtbVsXi8y/X8MVksdSRXHxzMTMoc6yQyo+6CORJMFquVw4Fw3EJDx4aZd41Xq4Abm8vl0re1+VFUEB5O+/24FX1X14BeT2WzhTLZCCaz4nA4Q4iblBqfOGdhYJibiCoi9SNMD93v97tcLjaEiw+P3VTyejBG/fvpj5954INR26uJAQTCiY5Opw/OY00UJDYYG7x+LwH53+hEnU0XGnRhIIQgSJKc3FVf70dhXmLU4ATBEInE7/e/HPz6ugP33erqRi2EyqYym84SZIZXRU1vMxY/PuUJt1gujoy8eDJcqFRqCQqyW61iLpd2+cFjKIoSIChdnF7QXhAfMh1F0SsMgelCtcqk1Is7OCcdBEGikpNDzJl9mC/490lZAWC0qMvKpBiGw+HU584NTaxhNBi89fURLJZJrdbB8BXKdl7Br62/Loz9XxT0er360qrpHm6MAVLX1cliY+043JrYNbYIB44RcW/t4xv9dgbKGvfRbaNolAOhxWLZu3dvWVmZ2WzesWPH4PItW7bU1tYGHguFwnfeeWd0t3uToBKocqa8zlCXHJIcWKKz6gYfDxVEpyszMy9ezuByu1S4acLp39cenKm81dBcthIfrVOpRGLx32b9zWy1+kiky00JZ7HZrKvNDiSRSH4eL8qT8lLrm3fmU69cVbjWUBvPv+zIlEknnBN+uO3weLcCuAFhGKbr6jI3N1MFdDyZQPPTXC7X4Pmos7+fRaEUdxVlirLaTSZomIEQw7CBgYFfan/5eNXHgSV2u52FonKeNJwv8ppMOBwuLCOD0s5H8HginX5rXfZXXz+3OvuRyIyMkeXZn4BGebBMS0vLvn37UBT94Ycfhi4/efKkRCJZvXr16tWr58+fP7obvamkhKZU6CsGn17uivByaDSaJCcnJmfV91i1gEo901M4IypXwuWqYbixv9/EYPzx67OIhARhzkzxtFkVuKv0qNcaauN4FxWFmLRkTFl7X/t4twK4AWk7OqCmpm5d3VNb71v31UOVDTXdKpXb7Q68GszjtfT3bvrpiZKO6uDQYfwaBLTW1LQXHKQ1aFjG/522ksnkAb9/XfK6ZF4qTKVCEESlUmWxsVKFol+j2Zx591ndMYHHY54kY9yuxSgHwvT09D179jz88MMXv5SdnQ0C4R+XxEsqaS3xer2Bp5fsI7wyKpW6OHN5l7+71Fh/RnMuXz7PSyDETZ2qnDkzKiXlj9/ugGE4ODh4RfTyHYc+1Wk0KIr29fWZzeaL59jVGmoTBAl/cHMTRxgzrKOvY7xbAdyArDodjujZqv140bQNAkjY4CkWOxya8/fYGExmBbevjuZvEmCXO5H1+XwtVVUNJ060VFUFRowHeDwe2Ghst9bNjMwkmvsCwZVMJvNSUxnCNE+IXDakDAAEQQgeLw4SW1wWu9eJ3EC3Rq/f9IkPP/xw1apVL7zwgnFImRtgWOx2u1iDM5cUtZw+HSh7NNwrwgC30z3Pl/aPw1vCmdN6KMHitDQcDjeKSTJtNtsUM9fdUd1edPjgzp2W4mJPRYWqtBTDsMF1vH5vi7klhhszWhsddyK6yGA3eP3e8W4IcKOhcrnn2ivjuHHx4VmbF2062XWiy64ZOnnppL5AEB7W6lVf8u2dLS2nd+2yFhSEIQjbYtFrNIMvORwOlV699czWVTGrPBA0eB7M4nAU6enh8fGkITkdIQgSxcS0+VCEEFqNt108Vm7yGnYfoc1mq6+/REmOhISEK+QdWLFiBZfLJRAI27Zty8jIqKysDP596udBKIqmpKQMPl24cOEzzzxz8WperxdF0cELo5tEZ2PjVGb4h442utvW0djIDZe4fW6cF2f1Wq/+5iHaKitXCzObO488mLCcyGJBMDw03cwfZ9Dp2BDuLsVd/9q1ORVJ2kdqD41PvC3hwZ6enkDHBoZh5ZryUGKo1+n1QiM5iLbfT2GcIAQ0QaO2UcaQjXdDbnAT8+iPnWAer4hgdjMkQXFx1ra2DO7UvVUHF89+3Gq1Bu64/FLzy+a8zUfaj1z8j2yz2Wz19fCAtrmzcG/TrocWP9NvNAZzuRAEGXQ6R33dl4VvRflTPH4BRya7ZKG3C0iSk1maBGOwc8QlSP8gl8uFx+OvvUwbmUy+al/msANhW1vbpk2bLl7+9ddfRw6Z6H2BjRs3Bh4sXbo0NjZ23759d9555yXXRBDk008/HXwqk8kuWfsjEAhvsOwGV0VnsRhO56zw2Z+c+2LprM1mjzmUHjqC2ihkAiE/em4QjRbBlXsplLGortLT3p4VnBaZgH1RtX9uWNLPnbXwFBKLxSKRSBiGNVdUdJUfzesXWvR6aVTUyDYxAYvChLPDe729CfQb537vhDUBj/6YMtD6MnJnK2JiXHJ5BaVzd8ve/0tJwTBMdfasSVOZ1EvKoaS+a3r34j+L2+32+O2v1vwjD07QmHrePrP9/mVP4/F4CoXSXV09gHWSWPBLs55Go2ME1zyLKS4krtPROV6HgEAgDCsQXothf1ZiYmJRUdGIt4fD4UQikcViudwKMAynpYEpyZcWEhbWZjan0Gb/+/QLS2OXVGvtIZTLzli/Al5kpKayUslO6yESI8fg/gadTvemptba7dKgGe/krayuqSgqPUKOjrD09g709PQ5nTi12mBry5LEODs7/RERN0wZvzBGWEc/6CYERl+jsfGe5HsgCCKTyQvSlzxX9iIEQXa7PchuLxqoma/I5dgQu8ducpo4FM7guwzd3T21Nc9+9/z0sJkrc+49Z2z/6NRzj+hubTebI3Jy8FTqKXXhLPksF+qnDeeiQslRHlMfG/V9HEfX4wfI4XA0ny9ZfuLEiZKSkmnTpl2H7d54CASCMiMjUpGwftmGT+v/A1l7uYSRpLVkc7nyvDxGRoYiK2uMBkCzudysRYvQyEg9Dhc2bxE3N66upw5taIBUKkJBwfGT284UHpgpmYnC8I1UwA8MHAXGSKOxMZobHXgsoouoBGqLpYVAIDj9/tOdp7NFUzECIUGQUN1TPfgWDMNMTU2NhhNyJX9x+u28zMz0sLg1acs+q/mY7ffbbDZxTMx2fQmHnYzJ5VedGTWUgqNoMt1QWdZGORD29PTAMJyUlOTxeGAYlkqlEATZbLasrCyRSCSXy1euXPnOO+8M7QUEhgtPoy2NWm5z2z4t/zaENpIrQgiCiEQinU4f0ymxRCIxKjU1ZsYMWUxMmjCtoqWEExRU2VK4t/WLUkfDPUkbzT5aSHz8DRMIURQNNuFbi891trQMHRYEAH+QwW6AYZhH/e3mzVTJ1KLOIjKZ7JHzT/aog3jx4qSkmOCYoqaiwZETGIZBGHak7ciahFuZdDqVSsUFBd0Wc2ezueXj8l2dLS2Fx360+Z3zFt0luXyv1iUpOAqVSTWaezjeRjkQCgQCbAiNRgNBEJ/P7+3tPXv27KlTp3p7ezds2DC6G73ZhCUldZHIM0Pu6DaqJd2+bvWlh4pNKKmhqQ0edUlXzcc13yRxp71390eRGXmJc+awb6CBZ1q1OtlDo7p78B0dvXr9eDcHuHEMvRwMSOOmHa06bLfbz1jLMuYuSpg23d7fn9BD7Tt7qqW42OPxQBCEIAgqZp/uauLTov0hIVQqVZaYaOWGLpU9+FPpztrvt3bUHb2dna5tbR1ue7hULgIjBrth1Pbw2vh8PpfLNRaffJ1SrCEIIpr8mbQmCDKZLIqOntXXx2A+FcmJtKrV/rCwCd7NliZM+0/pfz6GsLSFd8sj11hIJK5cfoOVN3MPDETwZPoyPZ1ItNxkwxqBMdVgbBg60chiMsXpKKfKC7tDi3Z3/nBHxp0QBPVpNLMj0p7v2MPz+fotFp5A4HK5jutPR8/Il+XNDIwrJBKJArk8pyc5hPjCzoN/G2jz373y/zwj+q4qOUqVScWn8UdrH6/KZDD01tQQMcwRFKQc7XEkE/rXE7gcBEFQDFsRsyKBl4BNhm421gB14FzTmeKfNy58MmXaNEV6+o1XtI8pEnlQsmmgr2nAyJwk9TTALdyJD0XRqo6qSMZvdy8t3d15kkQSkfDR/i2Nh46n09MgCEJIJDk9HMOwrltvTgAAIABJREFUSkM9gUSymEyaU6cqf90+2/O75E04HM6DYRlRmfdlPiWmK4T0GJZEMtwmmXt7I3XBJYd+NGi1f3wHr8yg1TYUFqpKSzurqvxe7a+tO4PM5v7+/tHdCki6PSlRKBSCTNak0fhhmBcbO8EDodVqJXRqs0PCEvlJjuYuiB823i0aE1yBgJidQ2xMa5f40y4zTXbicDgcHRUVsNtN5PPlcXET/Ct00/J4PK1nztjOnRNGi82xxsDpI4lOd5pMz0Y98WPhB3MlMZCqw8mXSOLiOqqrY8Rzd1iLY/uX1B4+THT3tPTVvip+yaTXi2SywAeSyWRqVJSmrY0Yn/rAvCWhUulwZ0H4/f6emprpggib12Cpr2fxeJcbcBdIYeP1egkEwuBwBL/f39nc7DAa/RQKXyJhs9lXGKlgt9utdXWd5tIgd3CrSnfMukflbZVSlBlQxrDafFUgEE5WkshIVC5HEGTi/4T5fD4igvwp409R7CjDDZ0DITg4OC9pZrmxPKczw6JWwwSCOD4+aFxnvHk8nj6zGU8gsNjsoV8VTW2tGENrrfUij1vPZodOtkpYNwlzby/L4+h2NOfLUntbWgKBMEQq1TidPdXV6xe/FCziWR0+t9vNZDKVmZnrInmZr6WtI8woadvf2Xji0ex1OISI/D73vTAsLFQqHfHvht/vx2OYnCX7uflnIgz7fL5LBsJutdqsaupsVoVw+RSBQJSaGsxg9Pf11RcX96krirSnl9KmmmQRRqlUkZV1uVjo8XioMPzPo29JLVCSMNfa3bco4c6/HXv/PxFZZFLSKP5ngUA4iU2WMijBwcE9NJoEiu5z+ZnK8PFuztjKkeS8evTV+9EZMWy21+drra6OzskZr8b4fL7WkhK+z+f0+60SSZhSCUEQiqIt5eWdZ87safnxoOlMmIu1LP+x9FnLhjt0ELgO8ATCCU2xkqNkEBn95+MZDoeTx8ZCEARptW4n2kck8oKCIAjCMMzTbMj3SD78/nFRWOKG+a9ZXH4rny+/qD72Hzl7xuPxOIEA38eq0bX52OxL9vR7PB5Ha+u+is8az/wk5yVsuvM1vUpFiI/vOXeuqOTrhtoDkI9ZJrMviVTCLpfVamUymZfcFp1OP9rfTHKQcoSpn+r3blnxT6yf1uw7p+8sxKP+mLy8Ee/FhTs1Wh8EAJeDw+EUGRlWq5VFIFCp1PFuztjKEmeVd5cT5H6tVcumsDGPJ7AcRVEYhq/zmCar1cryektNZ2K4MTattodO97pcXhTl2mzqYFu5pmKj+M4+uvmXrh2JHSkeqfTKZbOA6wxFUZ/P92n70YWimWoMC4v5XWJeWUyMmc/3eb2RXG4gzYrb7SY7HE/P29xWWRlFEZPF4aK4OGHY6PdEhMfHBwn5pyr/JEu8dBk1v9+Pg+F2S/uauDWFuoqfVD9lJd3hcDiIPueP2p/fznmms71rv/aHIMMZoUHOp9PJiYkXpwnz+/19FstxV7V0+qIMVn40PJ+JF/tJvrfj/kUmkDVO95XLnQ4LCITA9YAgCOPmqFhLJ9JldNl3raf2lX8YzU96ZOkbTqfTpNPZ1Wq9Xo+nUkMiI6XR0WNdyM1utxt6enqbmysK9uzUb6OTOCsl6zN7e0MEghq93kb0/Lvq7afXvGDX+pflZO/5fPnpkkPZLJY8Ph7EwgkCw7Dm0lKcqXtAW5U3/7Xo7KkXrADDMOf3I84IBIITQWJ40fLp4VUGQ2xWFns40+SHhc/mC3lCdZ9awVEMLnS73TgcDo/Hk8lkODS0ZkAzV744mi1+/9zXGVPu9fv9u9tPTAlL4yqTrJHxc50J73/7zNqsZeIO/onyckVubmh4+NDry7aaGrrR2F7y0/q5WwSZuXSLhcpiGVtbHQMDdgRFBIJRvCUGAiEAjKb2hoZF7vDt9W9kRKyq1hTWVe5Benv9Ho+YTidaeg26fjyBUGE0JmRlDWv2iN/vN/X2+lGUxeVeNVaZenuN5aX7f/mUTcR9ZzyykL22rb+usGGHWcPuoMFKUuwXqh9vnbo8hJ8IxXDqOjpykTSV7dwq+xJNfX1k8iXqPAPXn8vlotjtZ4xn5ihz6U5vYMjJld+Cw+HEqalqlQqmUpPz88e6c1rJUTaZmgYDYWttLdTT44MgdmwsLzSUFymtDbEvevTJns6uHW1fG5tPm+vZX2t/3ZS5kZCQkCsSORyOGBrnrRNbThfvDCLzV5nv7hFFceLjI1NSEATx+/1+k8nmNyFENI0mpdBoPIEAgiAWh6Pr7iYQieGjOjAbBEIAGDUYhrn1+qVxc4OoyDz2PCwi7/ni5z6RZmp7ez+p/7b23B6XmyIoZ82OWYGaTKL0dJFYfI1nta1VVQyzWdfVVdXXJ0xMlKamBl/+Ctvc0VGhPV5rLM3hRDycsk5Ei7lTvOKT4x8KUTJmtFU6fl6TPWd63MrIvDw8Hq/lcm9F7t9w+H435BxmFRNgDBEIBCcEnVCfWB17qxuGrzHHND04mD5lyli3LUDJVTYYGuI8cntvr3FggGIwJEZHUyiUxqYmXmhoo7FREaKgUWnevr67UldtP/nFXFpsiL4nfV58iFiMIAiVSiUGhzyb9hdiiGZ73cHy9r13Sp4m9fVZzGYOl4sgCEogHGo4OEs+y4FhgvMnf3g8nicQ4PH40e1lAPMIAWDUwDCMEQgZwsznc5/34XBSlnymfObuht19nKAdLQdunfLshow/Lwif/VH5Z46aAmdRUfPvazReDoqikMXya+sv7/78ZGXDf5leq/Z8UdYLuN1uvV6v6Wj74vind+VuzBQviBOk+0NDXRju8QVPcaUz4hQz3lj/1RPT/0w/X4GSzeH4qKwcQd435d8HDb++OTBG8Hh8cJxin76WFZomSUubgIPDlRxlbV0Z02gkdXe3H/nqi59f/ueOp1SGZpfbjaJog7EhlhcLQRCZycwW5NJc/lL9uQfzNgR7vIFiTzgcLjwzE0lI6BVK8lOX99rspwbK4CFzW0XJie+1HlBGLOAlJ4/1HXtwRQgAo0mSnNxaV+d3u8NnzLBbLMm2xZt+eHymx5aavTR31abmiooQm+1hIuXb6m+ez8iD7Xan03mFAURmo7FPp3NjmN5o+KZ022OKZSe0xUXaogT5gqGr+f3+Xp1OXVsLDwy41epaR6WUEgGTBVBKDC8iQsFimQwGk9EYu3y5paPD43L19PXB5+dvkcnksOzsNIr5+dMvPR4RMeZ/IOCalfdXKrOzkqfNGO+GXJqSq/y25+OgJPK3NfuaTadzE1e36lXrP378zbVvqU6dqrZXx/BiIAgSR0Z2I0h+xsMJISG8kJAWmy30fLFfEomkjI+3y+Vdra25TOTvRS+mTFkjDwoymUxOh6Og7RgzQrpwwR3XYV9AIASA0RREpyuzsv73RCz2OZ0rErKOte39d/4XeDw+JTdX09hI6lDGpsz7sHrrHclPhlz+1qjVarWUlxNcLltjo9rdgdiDMGGKmIk/2Vk9fc6jQ9fsbG7GtbfTGhp6zF3l2hNVfS2vbPjETQ2NyfjfvGNeSAgvJASCIK5AYDIYcHh8xJBxFhQKZUHqkud2b/pp96exiix5XNwEz9h3MxgYGNhbvjdflj/eDbksJUfZhHX90HBkf9uxvyQ9FJORV6nVujT4n7t3Phv2l6Zz5fcu3ghBEA6Hk0ZFcUUibVOTFUWFaWkX3Oal0WjKxMSI2Nh/2rc3UnXwGbdfr7eq1UXG/XdGTLNardeh8CEIhAAwhvxO50MZDyr5igiGyOPx0On0iIQEflhYSFX8HR8uzxOqSIUkfmLiJRPO2fv7OURiSX1RJBk+03h44/x7kqctCPLEfn74cYFYPHRNR28vn4JsbfhWp6+PFWQ9k/M8GWLgLpXQHI/HX7L+ql6tflAyt1l3IpsdadBqQ37/+cB1g2GYRqXqqKkhWiydFQeWz3vtWobJjIsQWogddm7qem/rE/8JCY6xwXCYWLxJHLrx8EOHmg4361sU7N8GlFKp1MgrFh3C4/F3p9z96c8fvi29f0/lf5F+tcbc9uKil/p7e0EgBIDJjS6R+FvcS+QrevH4yPN51+jBwWFxSQ9nrz2l378gJruhro49ffrF76UxGO32/r+fezPRy3RwyQn8dAqdns3Kbv2h1elzUvD/G3Tq9XrtiP+xPU+EccVrZU/RwhUOFosbHS0ZTjDzOp23xCx+4Mf1aaQMgsMRxGRiGGa1WGjBwYzLTHYGxoJBqyV1dbXW/uK1tBPcnowgSX9fH3fiFWkJpGWY3idShiRNj8jj8PkQBHm93taBgcXSe/69920Kw4GpjD6O7xqH+WAYluaM+LqxZHeLs6lfe3fsgvlT1rt9MPW6JGYCgRAAxpA4PLyPzfa63ZFs9gXn9UuUS9b/dPee4zs5ZGkjiRSRlnbBCnQ6/TitPTgp867UZ4MoFIJYHJg3FsOLqdRXZouzIQhyOp3tZ858feJVr5uycslTkugY9vnp1cPClckMRuMC2vwPfnn5qdvfKN6zm0cLknM4Jrfbl5wc+JkDrgO3zdZurt3dvO8eyfTNisccKMqckDM7+/r6mAMDW5f8Q0AVtDU3B74hBAJBmZnpdTo73VXVPVUhHrTPYrnGKO52u3l+/My4nCJV7brUDZhciYSG4uRyznU5CQCBEADG1iXTRzGZTCMvdI103fbTW1fNXh9Uiitqa4vKyRnMA+J2uw2dnduKv3h+6ZaM2DlD35sqSC1sLcwIzbBZrbUFBe11h3W2ti/v+EpLpPIvSqZ1rY1ksUjTpk232yXR4hd3P4119bOCqUxl5JZbXu/TakEgvD7cbrfD633l8Hv3T3uA5RNSxVJ8VNTEzEQRKIAjCZagfj8E/5ZAGIZhIpX6aPqjLX3NLr+ffs03dYlEogtB/pT2GJaG9ePoytzc69lRDQIhAIwDBEEUqakYBGVFJ7z836djCfR50ze4VCo7l0uj0fx+f9u5cy5TM7tbH9HHGfpGu92u7GG0Vf5a5YxHXS4e5vmsdPv67AchFMZflKRqWCgUCkMszibOSM8UmZJcFMSzu/3XVw+9ce8tr9hsNjKZPIILTeDa+Xy+tpKSJvVxKgmSKebEZ2Rch76xEWMymSY+v7m314sgot93/onj4zurqoKClJhIdLkkohdDEESanq5TqWAEkUZGXufhWqP8zcYwrLa2VqPRCIXClN//dVpaWhoaGmJjYyPAEG0AgCAIgsRKpWZg4JGUP6stle82/OdfYR/5fD4IgtxuN8XtPtx9YlnCErLT5fF4BudR9XZ0zA2Nf6HyW1dVZX+vYYfnNC88GYI4Gjw+/A9nzZYnJambmsw9PUlpaYbeXvGA60TbR6rifb1FRcK4OFZ09FUTV2IYZjGb3Q4Hi8e7OHskcAV2u53h853UHns07wEWDAcFBY13i64EhuHIxESv14vH4y+Y40ij0aKnXpgQ7lrQaLQrD6gZO6McCDMzM/v6+mJiYqqqqhQKxf79+0kkEgRB77///iuvvDJ9+vSCgoIXX3zxkUceGd3tAsBkRKPRFLm5CIcj1SZ+8+ORSk/PfDodgiASieTE4Yo7zvw5688eEmlo3yGCx0voUqad+G3Zm912f2Zo9MrZj2ISWVRq6h9vD4FAUMTHd9No6vZ2mMdLzM55MYHz9o6/pLHCueZ0WaXSnJ0TPmXKFSY+drW1wW1tNDxe3dwcnpNDOj9jDLgqMpncg2EtplZZajhKoUzAGfQXm5jDWUcAHt0S1WVlZWlpaRAEORyOuLi4l19++e6777ZarSKR6Pjx42lpaWVlZbNmzeru7r7k+Y7P56NQKN5rKFnn9XpRFAWnnDet6zO76Lqx2WybdzxG63cvDF3AYLHYUileEJz5WtypdafFkcqhWUndbndbeXnXmTN4uJ8o4pBcTMaUKeFRUWNRk0tVWsq1WnW1FZVtZY2mygZrx+K0e8QhKVG5uVKF4pK/1A2nTsVQqRAEmfr7/fHxvLHpXLwBjj6KosaeHgzDuALB4D3nbn3nlC2KkxsKpdGx4MftclwuFx6PH90b9aN8RRiIghAEUalUiURitVohCDpy5IhQKAy8lJaWFhIScvTo0aVLl47upgFg8kIQZCUr498VW56kZLudTlZQ0B5tYUp6blTChSmwSSRSTHY2RyYzNTTgMQwnEMiVyjG6eghLSOhsaDCwBTxcToIopcXVc7TmC6tTHyuTmTkczqXmPhKCghp0jd817rwr/hHucLKK32xayss5VisMwy0ajTIrK3AEdf6e0KQYRfIoXNwDwzJWvd+FhYW1tbXbt2+HIKirq0sqlQ6+JJVKu7q6LvdGDMN27tw5+FShUCQmJl68GnreqLYamDRusKPvdrujmRFEFLet5nO917VJ9lqR6uT05OmX20cOn8/iclEUJRAIfr9/jFqFx+PlCQnyhASr1dpeVsapq1ufufnFtneV+swYWySeQCASiRckgRRFR3/ScvCL1uMPrH6PSqWO0TGa7Eff6/XCfX1aT5fD6+D7FHa7PXDRX9tTG8uLndS7dh0ESnte+8kfgiBXXXnYgXD79u2ff/75BQvpdPrevXsHn7a2tq5du/aDDz6QSCQQBHk8nqGXsUQi0e12X+7zMQzbtWvX4NO5c+cqlcqLVwvcGp0Ut9GBseDxeK7wLZp0CASChUxem7ahvbacSndsOvjXerbjbtEjV93H6/NHIBKJERkZXQKBt7n5TuIDL/zwj8d1qFIoJTCZzNhY7u8L4hjZznb+gJM0hgdo0h39vr4+r9vNYLEC5w0Yhtn8/r01P7j97rXJf+ZhWGB3qvXVCpZicu3a9ed2u4d1JkQkEq96H3XYgTA3NzcQ3oYa2mXa0dExZ86c559//rbbbgssCQkJMRqNgysYDIbQyye5RxDkhx9+uGozQB/hTQ5F0Rus2H1CTo4sMdHj8Zh6ex79aDWpXcc1k8ky8sRJ+xkTH2+TyRxH4LmpU4+d/WcDU/7IbS/3dXVJ5fKhq2msGgiCWq2tEfyRjw93uVza5mbU4xFERl5ccGpyHX1NczPS3h6Ew3W0tkZNnRpouWLq1B+PPoiDcH/JyRns71RZVBvSNkyiXRsXCIKMfx+hVCodep/zAl1dXbNnz964ceODDz44uDA7O3vdunUWi4XFYpnN5tra2uzs7BG2FwBuUAiCBKZOm1SqL5b+o7i7iNU/EKjNNt5N+w2ZTObQ6U9Me0JNTj3QfODH+n0zUu+9YJ0Wc0tySHKtoTY/YuQJo9vLy8V+FMHBmtJSSl7esEYn+v3+Yd06G2t2rTaUihw690ukT1BvtYrS0kKlUjfe0862+Pw+UtBvZ/P1vfWB0kXAdTbKJ5sLFiyAIMhoND7zzDPPPPPMgQMHIAgKDw9ftmzZypUrt23btnLlyuXLl8tkstHdLgDcOGBYSBfeGnsrBEET59c8AI/Hwzyew4f62GE8ae529UlhXNwF67RaWpcql9YaLl0x8Vr4/X7Y6fy5bf9t229XlZ2uP3MmUMHuWmiam1XHjzecOGExmUbcgNGFo1K3l//3qyP/0vU3xXK5/c3Nfr+/uLM4U5QZzgpv6G0IrGbz2Ax2QzgrfHxbe3Ma5UC4bt269evXs84bHPb91VdfLV26tKCgYPny5V9++eXobhQAbiQh0dEqq7Wtv3+AxWKyWOPdnAtFJCQEpacrVqy496m/q0L6LFDf0FdtHtuAeyA/Iv+PBEIEQWAmc3/VrxFW1vaydx2dtWd++snU23vVN9psNn9HRxBik5IQfV3diBswuiTx8Z91nsxSLH1X912nsxPFsG61+vCJ3anBKYmCxOqeaofDodVqDx3fE2eXDPT1j3d7b0ajPGp006ZNl1xOIpEef/zx0d0WANyQmGw2ffp0n883MWejwzA8mDdrgWzBtuJtm2dsHuytb7W0hrPCEwQJDcYGP+ZH4Mueavt8PovZjMPhWGz2xRe+nGjZz/62o3PebbTWvfvd0/ekrLcxGFhS0gUDc4Z+msvl8nq9eBjecnJLNDd6QdwDo7G7f1R/X1+1uqwn2HbXqr8FH//4uRP/fi7/dUFHh72zchrpVkoItbT1bJYh1NzU1Fiza1G4sqesjJKbOzEP/Q0MJA8EgAkHh8ONxQT50dVnscyxRR46t6sdlyHOzg6kyGg1t0awIlCbV9oTdPzw7vTMuRcPdYEgyO/3N589y3U6XRjWJhBEJCR4vV6jTme32yEU7evtLdKcmCrOIEtkcWqMHbv2382ffD5t1kBPzyUDoc1m6zx7NgjDrHi8jQCd7WwoUakiOHP6f/2VQafThUKuQHDdBtZZzGan1Upns+l0usVkMpeVVTbtvBOXHczmrLt3y+tvRDWqzkokcSpz0yuiJA+pt6j0UNisO84aKk22pkfl/yLDsMvlAoHwOpsoA9IAAJhczJ2dSxV5GmcrE+czd3cHFrZaWuUMub6yci4vChlo766ouOQ0R4fDQXe5tjd+Wd5b6OvtRVG0tazMV19n/ml/x+7dzIqKrvrjq2jJjIgIXGKiLCU/J2n2V2X/JZ4v6HgBQ1ubjEzSDNSJYbjZ20FVJixQzqys+oFSXnTox3f/+uy8N996tPjAAZ1GM9w5l263u7+/P5AA9loYtNr+0lJae7uuuNg6MNDf0xNCoxZ0Hb81bkG/Xo95sUfo88807f9g51+V+CibH5cWmdFgbansrv6y5bvlirtghNSPx9NotGE1EvjjQCAEAGAkCFQq6sOSBEnFmnMECgWCIBRFG7QNYUFhZAhScKJUZhURRS8ZRQgEgsPvP9p29L81O1E83ufzkRyObVVfbi1++XDlrhLtkcbWslnyXMzjiUtNZaSnJ0Qs+6Zyv1lV11Zbe3FWSBiH+1l14PGDjzcYG4t1JXnCrEey7z+p+vXDsrd7W6oXCFOri3Zay45ATU3dbW3XvoMWk6m9oMBeWtpcWHiNc/v6tVoJixVEpeJstrKCgu729vd+eT+YGCyiyihMps1iuT9hdYWzzBJKXpXxBD8jg+mjIRbXXT8+vXrOZnLuQnxKijwzE1T5uP7AXxwAgJEIlcna7XYOO2Wfo36pWOxyudRnzzpLq9hxSosEiaTHfVz+8cy0B4emnvH5fO11dV6Lhchmm4TkFo/P5+rtIliFTqcLQYq7i++NvUNn6zO5HAvjbnUhVJFAAMNwqFSq0ITnxyY29xRmIqQBieSCuZVBYv7zH32aI5r7as2ODrr59Vl/Rw2EN5Z+4NfovShKJBIfnsL4vObrrXOWdhkM0JAaHQ6Ho6u+3qjVYn6/y+EYQPtpbkKoVEqXSsOUSqNaTSe43zn+zvygGUatNjInJ/TyM8cCyExmW1PV/V/dHuvj8ehhkZLIX9QHH572oi88XCgWD/T3WzDC9hU7SFCQRyaDEcTZ0HBbeFZGSFZ8/KKo8/kpgesPBEIAAEYCj8dHJiUtD9mw8r8rXS6Xqqoq2Gzsd3dNE0T4GIyQmLXHGl8JivotdYbdbq8rKcFr1UctR+6OX/edtSRtWr6oAy0v3BZlJRi4+FqcU5S3KpJCIQQFBfN4bA7nt2zjfv/9yfdt2veEXeSMRRBxbKzDanVbrQyBwNTV9emvb6Txkx6e+9LDny8mol5pDouRqsCbZa50n81kcvf0wG14rjz6m9Jdixf8ub+/H8MwBoMBw7CmsjLU64W6uopUBWe7TrSbzLcmzUpgrfd3dRlYLKvd/u7hf9i69N873lkvfc2uUrkFgiv33gnl8m9ajrBIslvy7jCoyxo7i59d8H9hohRxeDgEQUwWy5eU1KfV4lgskVRqMhrpePzf5/wdgqAGu30MDxVwNSAQAgAwckJIQKw37f/3P7g46nfV26K5MgE1xEAkhgqEc5PyD7Udui/5PgzD9Hp9Z3ExatR+e+z1FoKd6mee6K9bnLp8Zgz/yeNPPJr9yGfnvps9c1lm/qXn4HOjonqrHHewb91V9/lzcREVBzXJYjEZ8TfX19Nx0LmOnz5Z/KmqtHLDlDUNxgaGzUkgEqUKReC9KIpaTKa+atH/FT6fa7kXU6vxCGJgMqNSUyGPB0aQ8q7CE6qD6zPutvb7Cyz7zeXfrMl9qK2oqNNY3tDU+lDs/U6K8bWy15/LeqOvr09wmWGrATgcroPSE56RlROf1w1zMqWz2PwYG5v9244IBIPjfYIZjDYEQQYG7D4fHVRpHVcgEAIAMHKGhoZFoik9usISc5ubylkuWtkBQeERERAE5VDSD+z7OhdK8fp89tbGsoJtB3vO5gjTUyDpzsPbrTxMHrM+mMFTBEW/8sVTbcjA3Dn3oih6yeGyvNBQPJmc6/cr0mPeKnnzLs7DZcSO98+9//a0Dys05RKmJIwlbYR09yTe6/V7euy/S26Mw+G4fP7sjCWhB7ac3r1VwubS5AKJP9HhcJD4/GNn937ReHBj1kM+EotEx+dy7ntV9a7/XEQWR/RF00f/vPc1i5UWxmYf2FZwuGTXdIezNThYnpwcIpFcLtdBua587bS1ZjwHTUrCk8l+Pl8uEl1yTRKJFJ6d3WcyBZHJrCHBErj+QCAEAGDkYAjKkWd/Vfn2Hcol02ffqyeSYqdNgyDIYjbP9IftMZax+8zVLW0/6b+F3ZZn0jaI4nPKW1tzpPm15tpUttDEZs8UrNipfVuL61nAiDUbjbzLXHIxGAw9gxHjSWTA/G91R/SqUgk/9JfO48WW5jxBXrPFopgzp0Wvh1CUGRV1cbpOnUq1OfW2D75/PZbMbC+DmXjOBs8rsVOnf+QpWPzQi1PiVuHOp69cuct9ouZbbQNhgThbwYzWiYNIXO6D+Y++fOIvyS0cNkOCUakGHE4gEkEQ5PP5ultb3VYrSyzmhYRAEFSmLXtn/jtypvziXbgYiUQSCIV/5O8PjAoQCAEAGDl2VFSMz/fs2th+l9vMZIXH/i9VptvpFAdxE3gJ7xe9j/TQmtDGT9Z8Wtva4Q06Rae+AAALg0lEQVQPj2Qyc7F4o9PgwLDw6GiC1/tGjLyw8zQRT4Yvn2EcQZDIjIxujWaB4o6/n3xynmiZRJz4Sel7LsT1xJIXwxIySCQSdKlKNYPyI+biluOIWhzqsJ9Czpxs3o4SoLN9536YuZtK+F/gdLlcK5RzO8yn+km22NDp7ThcZEyMx+ORhSjuVKw921xQUqfemrDDbbH4Q0PbamoazxR2tBdCQvICxRoSlerEOZ0+p4whG70/MHA9gEAIAMDICUQiFo+Hoijl92V4mRyOGsPuCXvgvR9fVOGMtyru0kL4lBUrOHx+YKymHyEHyeVUKlUYE9NZ5pginj/AZkdwOFfYFoFAIOLx+RHJctb7CaGJBWXlmWFhOATH7XNfNSlrqELRXl4eJ55qEPrFGJZOmnH71lWNNeolCTOJ8G/jWolEopNAeCHnrzAEGwjk6KwsGIZJJNJAZGSMbZ6CFO23n/i84ruH73qzqa7O11L30bEXZjJlv2pU+eELnDZbmb0yNTR1omWIBa4KvnhSzjjy+XwUCsXr9V51TVCG6SZntVoHi9cAE5PL5ao4elRCQIt7iuaFLbRKJCL5pW8YYhjm8/mupcREb0+Pr6aGQSJ5ULSqrU0ipXtQDwEnEF9DWjIURb1eL4FAaCkvt9TXV1fu+9S0+9+3bJVOmS8aUgbA5XIZNBoYQfgSyQWfaTYaq9tKb//p3v2ztuO79YdOfGjCIX+KX/N+438ZyoQ/3ffP10+97sAcby186+p/HWCkXC7X+JdhAgAAuBZkMlmkUJA7O1dEr+yyWC6Zay0AhuFrLLTE5fM7xOIGtTpYIBBnZUE6HQkPQaGh15KTbDBxnWLKlHoMu1UmZWoiE0PiTb+fLE8mkwdHnF6AzeXGeZOSbYKSHz/iCUIL+xo2p27q4PHCBas/rvw4e98+TdWv06LmGi+TCg6YsCZrZplz584dOXJkvFsBjA+r1bp169bxbgVwdaLwcKdU2gpB5Li4URkYCcOwLDr618pKUXR0RGxs6NSpIVOnymOHV8MPhmFpdLTe558mzNd4vdyLKo1fgVGleiLzjiPtB4urd29Y+AQpMS31llumhiQH6XWlJz7wdXasip5hbGkZ5m4Bw/DLL79UVlaO7mdO1kBYWFh4+PDh8W4FMD66u7s/++yz8W4FcHU4HE4SGalITxdcZgrByHz00Uc9PT0QBFEolAv6Jq8RPTg4PDeXNmVK5LRpw6sID8Ozwmd+/NB3y9OfEIgyYnNzEQShenxzFLM19q4XszYTMRI8nDLCwHAdOnSopKRkdD8T3BoFAOBmRCQSh6Z/u0aCmJimmho8Hi+aOzc8Lg6GYQzD3CTSQ5kPdgoWaAZsKASFXVSsGJjgQCAEAAC4VmwejzF9ut/vH+zUhGFYPmWKQaPhCKVKsXh415fAxAACIQAAwDBcXC3yCuNrgElhYk2fQFGURCKFhYVddc3+/n4URdkgL9FNyefz6fV6sVg83g0BxkdnZ6dQKJz4tYuBsWAymYhE4rXPnrr99ttfeeWVK68zsa4IcThcW1vbtZTBRFEUwzBQuOum5Xa7QRXvmxY4+jczn88Hw/C1nwaFhoZedZ2JdUUIAAAAANfZZJ0+AQAAAACjAgRCAAAA4KYGAiEAAABwUwOBEAAAALipTcpRly0tLV9//bXH47ntttuSkpLGuznAmNDpdKWlpTqdLj8/XzakOEBbW9tXX33lcrnWrl2bkpISWIhh2K5du86cOSOTydavXz+ytFvAxNHZ2fnzzz83NzcLBII77rhDdD5DG4ZhO3bsKCsri4iIeOCBBwbHjmo0mi+//NJqta5evTojI2P8Gg6MApPJtHfv3qamJhwOl5OTs2jRosHKVkVFRbt372YwGPfff//gt8LpdH7yySft7e0ZGRlr1qwZQRmsyXdFqFar09PTfT4fg8HIy8srKysb7xYBYyIrK+v1119/8sknhybY7erqSk9PdzqdHA5nxowZgykHX3755ZdffjkqKurgwYOLFy8epyYDo+bOO+8sKSmRSCQqlSo2NlalUgWWP/3006+//npUVNTevXtXrVoVWGgwGNLT081mc0hIyLx5844fPz5+DQdGQWNjY1FRkVAoDA4O3rhx43PPPRdYfujQoUWLFolEosEjHli+dOnSAwcOREVFvfrqqy+99NJINolNNps3b77nnnsCj//yl7+sXbt2XJsDjJXAVFGlUrlnz57Bhc8999zgEd+yZcuKFSswDLPZbAwGo6ysDMMwl8vF4XCKi4vHo8nAqHE6nYOPFy5c+OKLL2IYZrFYaDRaQ0MDhmF2uz04OLiyshLDsL/97W9LliwJrPzWW2/NmzdvPJoMjIkff/wxLCws8HjGjBnvvfde4PH8+fPffPNNDMPOnj3LYrECX5iqqqrg4GCr1TrcrUy+K8KCgoK5c+cGHs+dO/fkyZPj2x5gjCDIJb6cJ0+ezM/PDzwePPpVVVUEAiE1NRWCIBKJlJeXB74Vk93QmtsulysoKAiCoNLSUjabHR0dDUEQlUqdOnVqQUEBBEEFBQVDvxWBhcANwO/3FxUVJSQkQBCEoujp06fnzJkTeGnw3//kyZO5ubmBL0xiYiKVSh1BkabJ10eo0+l4PF7gMZ/PNxgMKIqCZEs3iQuOvtlsdrvder1+cCEEQQKBQKvVjlMDgVG2Z8+e2tranTt3QhB0uQN9wbfC6XRaLBYWizUuDQZGhdVqTU5O7u3tFYvFx44dgyCot7fX5/Px+fzACnw+X6fTQb8/+oHlI/j3n3xXhHg8fjAHm8/nw+Fwl7x0AG5IBAJh6NFHEASHww39SkAQ5PV6Qf6tG0NxcfFDDz20a9cuLpcLQRAej0dRdPDVwQN9wW8CBEHXWO8emLCCgoJKS0tLS0tTU1Nvv/126PwxHXqgA1W0CATCBd+KEVTXmnwhRCQSDQb87u5uoVA4gjFCwCR1wdEXCAR4PF4oFOr1+sF/hu7u7mvJLghMcGfOnFm2bNm2bdumT58eWCIUCrVaLXY+K+Tggb7gW8FgMAK3UoHJC4ZhFoulUCj+9a9/HT9+vKenh81mk8nk7u7uwAqDR18oFA4u9Pv9Op1OKBQOd3OTLxAuWbLk+++/D/wzfPfdd0uWLBnvFgHXzyWPfkpKCpPJPHToEARBBoPh1KlTYODoZFdZWbls2bLPPvtscEAABEFZWVkwDJ84cQKCoO7u7rNnzy5cuBCCoCVLlvzwww+BMyHwm3ADcDgcg49LS0tpNBqHw4FhOPDvD0EQiqJ79uy55ZZbIAhavHhxYWGhXq+HIOjIkSM0Gi0wXGB4Rmdkz3VkNptjYmLmzp27fPlysVjc0dEx3i0CxsQDDzyQlpZGJpMjIiLS0tKqq6sxDOvv709ISJg1a9aqVauEQmFra2tg5e3bt/N4vPvuuy8qKurRRx8d14YDoyAuLo7FYqWdFxg1imHYZ599xufz77vvvvDw8Keeeiqw0G63T5kyJTc3d82aNXw+PzCsFJi8nnzyyYyMjLvuumv+/PkMBuOrr74KLK+urubxeLfddltOTk52dvbg0OLHHnssIiLivvvu4/P533zzzQi2OCmrTzidziNHjni93jlz5gQHB493c4Ax0dTUZLPZBp9GR0fTaDQIglwu19GjR10u15w5cxgMxuAKzc3NpaWlMpksOzt7HJoLjKra2lq32z34lMPhDCZVaGxsrKioiIiIGDpx3uPxHDt2zGq1zp49G5Qpnex8Pl9paalarWYwGOnp6UPHwhiNxmPHjjEYjFmzZg3tCS4pKVGr1VOmTImKihrBFidlIAQAAACA0TL5+ggBAAAAYBSBQAgAAADc1EAgBAAAAG5qIBACAAAANzUQCAEAAICbGgiEAAAAwE0NBEIAAADgpgYCIQAAAHBTA4EQAAAAuKmBQAgAAADc1EAgBAAAAG5q/w+4KLk4+M77FAAAAABJRU5ErkJggg==", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -932,6 +1492,13 @@ "end" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Online learning (Filtering)" + ] + }, { "attachments": {}, "cell_type": "markdown", @@ -942,7 +1509,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 88, "metadata": {}, "outputs": [ { @@ -974,7 +1541,7 @@ "end\n", "\n", "@constraints function hgfconstraints() \n", - " # Structuted factorization constraints\n", + " # Mean-field factorization constraints\n", " q(x_next, x_prev, z_next) = q(x_next)q(x_prev)q(z_next)\n", "end\n", "\n", @@ -994,7 +1561,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 89, "metadata": {}, "outputs": [ { @@ -1048,7 +1615,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -1060,7 +1627,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 91, "metadata": {}, "outputs": [ { @@ -1070,161 +1637,161 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1256,7 +1823,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -1266,101 +1833,101 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1376,21 +1943,849 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As we can see BetheFreeEnergy converges nicely to a stable point." + "As we can see BetheFreeEnergy converges nicely to a stable point. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Offline learning (Smoothing)\n", + "\n", + "Aside from online learning, we can also perform offline learning (smoothing) with the HGF model to learn the parameters in case we have collected all the data. In this offline setting, we treat the parameters $\\kappa$ and $\\omega$ as random variables and place a prior over them. These parameters will be updated along with latent states during the inference. First, let's define the HGF model for offline learning" + ] + }, + { + "cell_type": "code", + "execution_count": 261, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "hgfmeta_smoothing (generic function with 1 method)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Model for offline learning (smoothing)\n", + "\n", + "@model function hgf_smoothing(y, z_variance, y_variance)\n", + " # Initial states \n", + " z_prev ~ Normal(mean = 0., variance = 5.0)\n", + " x_prev ~ Normal(mean = 0., variance = 5.0)\n", + "\n", + " # Priors on κ and ω\n", + " κ ~ Normal(mean = 2.0, variance = 1.0)\n", + " ω ~ Normal(mean = 0.0, variance = 0.5)\n", + "\n", + " for i in eachindex(y)\n", + " # Higher layer \n", + " z[i] ~ Normal(mean = z_prev, variance = z_variance)\n", + "\n", + " # Lower layer \n", + " x[i] ~ GCV(x_prev, z[i], κ, ω)\n", + "\n", + " # Noisy observations \n", + " y[i] ~ Normal(mean = x[i], variance = y_variance)\n", + "\n", + " # Update last/previous hidden states\n", + " z_prev = z[i]\n", + " x_prev = x[i]\n", + " end\n", + "end\n", + "\n", + "@constraints function hgfconstraints_smoothing() \n", + " # Mean-field factorization constraints\n", + " q(x_prev,x, z,κ,ω) = q(x_prev)q(x)q(z)q(κ)q(ω)\n", + "end\n", + "\n", + "@meta function hgfmeta_smoothing()\n", + " # Lets use 31 approximation points in the Gauss Hermite cubature approximation method\n", + " GCV() -> GCVMetadata(GaussHermiteCubature(31)) \n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similar to the filtering case, we use the `infer` function from `RxInfer` to implement inference. " + ] + }, + { + "cell_type": "code", + "execution_count": 262, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "run_inference_smoothing (generic function with 1 method)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "function run_inference_smoothing(data, z_variance, y_variance)\n", + " @initialization function hgf_init_smoothing()\n", + " q(x) = NormalMeanVariance(0.0,5.0)\n", + " q(z) = NormalMeanVariance(0.0,5.0)\n", + " q(κ) = NormalMeanVariance(1.5,0.5)\n", + " q(ω) = NormalMeanVariance(0.0,0.05)\n", + " end\n", + "\n", + " #Let's do inference with 10 iterations \n", + " return infer(\n", + " model = hgf_smoothing(z_variance = z_variance, y_variance = y_variance,),\n", + " data = (y = data,),\n", + " meta = hgfmeta_smoothing(),\n", + " constraints = hgfconstraints_smoothing(),\n", + " initialization = hgf_init_smoothing(),\n", + " iterations = 10,\n", + " returnvars = (x = KeepLast(), z = KeepLast(),ω=KeepLast(),κ=KeepLast(),),\n", + " free_energy = true \n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can get the result." + ] + }, + { + "cell_type": "code", + "execution_count": 263, + "metadata": {}, + "outputs": [], + "source": [ + "result_smoothing = run_inference_smoothing(y, z_variance, y_variance);\n", + "mz_smoothing = result_smoothing.posteriors[:z];\n", + "mx_smoothing = result_smoothing.posteriors[:x];" + ] + }, + { + "cell_type": "code", + "execution_count": 264, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9d2Bb5b3w/z3a05I1LHlPee/YSSAJWYQkQFghBcpIoZTRBZe2t9y3t5dL+2vf99629xZaKARoSwgrISQhEBKSkD0cx46nvGR5yLKsLVl7nHN+f8hDliVZduzYjs/nL+s5zznnOfLR832e70RwHAcCAgICAoKlCmm+B0BAQEBAQDCfEIKQYAnx85///Lnnnpuy265du5599tn+/v7o3Q4fPvzss8/W1NTM0uimgcPhaGhouHDhQnt7u81mu/EDICC4mSAEIcEiZteuXTQa7cknnwx7VCKR0Gi0gYGBsZaPP/74n//855SXPXHixK5duwwGQ/RudXV1u3bt6urqms6Qr5fe3t4HH3yQz+dXVFSsXr26oKCAx+OVlpb+5je/GetjNpt37dp19OjRmd2ip6dn165dly9fnqUhT011dTUyFXq9/oaNh2CpQZnvARAQzBwURX0+n9/vD3vU6/X6fL5gK/iqVausVuuNGt3s09/fv3LlSq1Wm5OT88ADDyQmJup0uo6OjmPHjn3yySf/8R//Eeg2ODj47LPP3n333Vu2bJnBXerq6p599tmf//znK1eunNXhR2T58uV8Pj/soY6ODpVKxWKxGAzGjRkMwRKEEIQES4i9e/fO9xCui9/97ndarfb+++/ft28fmUwea7fZbGfOnJnHgV0nb7zxRtj2np6ewGbxvffe43K5N3hUBEsHQhASLCGam5v9fn9FRUVwo8/nO378eHt7O5/P37RpU2pqathzcRw/d+7ctWvX6HT6mjVrioqKIt3F4XCcPHmyp6eHRCKVlJTcdtttJNK4DcLr9TY3N3M4nLy8PLPZfOTIEY1Gk5aWtmXLlri4uOjjP3fuHAD89Kc/DZaCAMDlcu++++7A32q1Wi6XA4DVaq2rqws0SiSSlJSUwN9DQ0M1NTX9/f0oimZlZW3YsIHD4Yxdqru7W6lUBrqNnZ6eni4Sicb69PX1nTlzRqvVCoXCdevWZWVlhYzT6/WeP3++p6fHarWKRCKZTLZ8+fKQMU+J3W6/5557jEbjyy+//PDDD0/rXAKC6YETECxa3nzzTQB47LHHwh4NaNv6+/vHWpKSkuh0enAfpVJZXFw89nOgUCh//OMfd+zYAQB1dXVj3SwWy8aNG4N/OM8+++yvf/1rAPjggw+CL7h7926hUBjcs6ysTKFQjHUI+OCsWbPmwIEDwZJPIpFcu3Yt+vOWlpYCwLFjx6L0+eUvfzn5Z/6LX/wicHTz5s0IggQfEggEBw4cGDv9nnvumXz6e++9FzjqdDqffPLJYLlOIpF++MMfBlTQAerq6tLS0kKuUF1dHf3RQsAw7MEHHwSATZs2+f3+aZ1LQDBdCEFIsIi5TkHodrsLCgoA4Mknn2xsbOzt7f3zn//MZDKTkpJCBGFgv7Vp06bLly/39/d/+OGHYrE40C1YEO7ZswdBEKlU+tZbbzU0NNTW1r700kskEikrK2t4eDjQJyAIExMT2Wz2yy+/fPbs2bNnzz7yyCMAUFxcjGFYlOd94oknAKCkpKSmpiZSn66urnfffRcAVq5ceXyUzs7OwNHVq1e/+uqrgR1wbW3t7373Ow6HQ6fT29raAh0aGhoCtsYdO3aMna5Wq3EcR1F069atALB+/fojR460t7cfPXo0YEd86aWXAqdjGCaTychk8m9/+9vm5ub+/v6ampq//e1vTz31VJTnmswrr7wCADKZzGw2T+tEAoIZQAhCgkVMQBCKRKKV4Qjo4qIIwrfeegsA7rjjjuBrvv7664FNzJggDCgks7Ky3G73WLcTJ04Euo0JQrvdLhAI2Gx2R0dH8AV/8YtfAMCf/vSnwMexqIw333xzrA+KogGRLJfLozxvR0eHWCwOnJ6UlLRjx44///nPwdvNAC0tLQBw9913T/X94TiOv//++wDw4osvjrXs27cPAH7+85+H9Pz0008BYMOGDSiKjjU6nc7MzEwqlTowMDD2dJs3b47l1pE4ePAgiUTicrktLS3Xcx0CghghwicIFj1Wq7U1HCiKRj/x4MGDAPCzn/0suPHpp58O8WAMdPvxj39Mp9PHGjdu3Bhia/zqq69MJtN3vvOd3Nzc4PYf/vCHAPD1118HN/J4vGeeeWbsI4lEuv322wGgp6cnyoBzc3PlcvmPfvQjiUQyODi4b9++F198MScnZ9WqVe3t7dEfNhL33nsvAFy5cmXKnh988AEA/OpXvwpWjTKZzKeeeipgZw08F4IgnZ2dRqNxZuNpb2/fuXMnjuN///vfoxhiCQhmEcJZhmDR89BDDwXm6BDi4+MtFkuUEwNOJWVlZcGNTCYzLy8vOEw+bDcAKC8vv3bt2tjHwN99fX0vv/xycDccxxEE6e3tDW7MyckJcR6RSCQAoNVqowwYAEQi0V//+tfXX3+9oaGhpqbm5MmTX3755cWLF2+77bbGxsbExMTopxsMhv/+7/8OaDuDI/NikVuBBzx48OA333wT3N7a2goAgQeMi4vbvn37Z599lpmZuXXr1vXr12/evDkzM3PKiwcwm83btm2zWq2vvvpqwEZIQHADIAQhwdLFbrcjCBLsDxkgISEh+GMgdUtI4+QWs9kMADU1NcHSMQCfz6dSqcEtLBYrpE/AhwXDsFhGTiKRKisrKysrn3/++Y6OjrVr12q12jfffPO3v/1tlLMMBkN1dXVvb29lZeXjjz8eHx8fGNXLL78cKRYzmMCqYs+ePZMPxcfHj/29Z8+e0tLSf/7zn3v37g3Eq6xYseKNN95YtmxZ9OtjGPbYY48pFIp777333//936ccDwHBbEEIQoKlC4fDMZlMer1eKpUGt4dsywIRbFqtNti/NFK3V199NUTXOtfk5eU9//zz//mf/zkW7RCJN954o7e396WXXvrTn/401jg0NBSyhY0El8t1OBxtbW2BzWsk6HT6r3/961//+tednZ3ffvvtp59+evr06TvuuEMul0c/8eWXXz5y5Eh+fv7u3buDta8EBHMN8bYRLF0Cgi1kA+dwOELsbWG7AUB9fX3wx4DJ8OLFi3Mx1OgEsq6MCY/APm/yJq+xsREAQmLyQp4iyunTfcDc3Nznnnvu1KlT27dvN5lMp06ditJ5//79f/zjH+Pj4w8fPjxlPCUBwexCCEKCpcsDDzwAo/6cY427du0aHh6e3O2NN95wuVxjjceOHWtqagruds8994hEoi+++CKsqLDb7dc/4I8++mjydZxO58cffwwAVVVVgZbk5GQAUKlUIT0DSuDgZOIoigYnKY1+eiCn629/+1un0xlyyO12+3w+AHC5XJN9lAKWS4/HE+m5Ghsbd+7ciSDInj17cnJyInUjIJgjCNUowdLl8ccff/3110+ePPnoo4++8MILHA7n8OHDr776ampqarAYWLly5fbt2/fv379ly5ZXXnklOTn5/Pnz//qv/5qWlhYsVDgczttvv71jx45Nmza99NJLa9asSUxMHBgYkMvlH3zwwSOPPBI21H1a/P73v3/++efvu+++tWvXZmZmut3ujo6OXbt2BdSVAfdUAGCz2QUFBa2trU8++WRFRQWDwSgrK1uxYsX69evfeeedF154wefzVVRUqFSq//qv/5qczDo/Pz/wVbz44osymYxKpa5duzYvL+/BBx8MfA/V1dUvvvhiSUkJhULp7e09f/78Bx980NzcnJSUVFdX98gjj3zve99buXJlZmam1+s9fvz4O++8ExcXFynxKYqi9957r8PhSEtLO3To0KFDh8J2e/7558vLy6/zCyQgCM/8Rm8QEFwP159ZRqVSBTtxUKnUv/71r5Mzy9jt9m3btgX/cF544YVA4HlIZpkjR45kZ2eH/MoyMzMPHz4c6DCWWSZktL/73e8A4N13343yvK+++urkDROCIBs2bGhvbw/uWVtbW15ePpZEJpBZBsOw559/PjizTH5+fltbGwBkZ2cHn37o0KHgxGljmWW8Xu/LL78c4ulDJpNvu+22QOR7U1PTZK+izMzMM2fORHoot9sdy0z1+eefR/lmCAiuBwQnKtQTLFqsVqtOp4uLiwvrhaFUKlEUzczMpFBGNB89PT0YhoUIKhRFz58/397eHhcXt379eqlUqtVqHQ5HcnJycOAgANTV1V27do1Go9166605OTlms9lsNickJATn6gxcsK6uTi6XezyexMTE7Ozs4Hg4v9/f39/PYDACiWnGsFgsJpNJLBZPmV1aqVR2dHRoNBqfz5eQkFBVVRUpP6rX6x0aGvL7/Xw+XyAQBBo7Ozvr6+vtdrtMJlu9ejWZTFYqlVQqdfJFXC7X0NAQjuMho7JarRcvXgw8RWJiYkVFxViYPwDgOC6Xy7u6urRabVxcXFZWVlVVVZREoziOR4+eDCCRSNhs9pTdCAhmACEICQgICAiWNISzDAEBAQHBkoYQhAQEBAQESxpCEBIQEBAQLGkIQUhAQEBAsKQhBCEBAQEBwZKGEIQEBAQEBEsaQhASEBAQECxpCEFIQEBAQLCkIQQhAQEBAcGShhCEBAQEBARLmgUhCN98883JKfDDEksdbYKbGBRFiaSASxxiEljizMULsCAE4e7du5VKZSw9gwvCESxBPB4PhmHzPQqC+YSYBJY4Ho9n1lfDC0IQEhAQEBAQzBeEICQgICAgWNIQgpCAgICAIDz+pWGJIAThosSHYXUaDeE2QkBAMHfUazRv1Na2GwzzPZA5hzLfAyCYNn1W6+GODoPT6fB6b0tPn+/hEBAQ3IQYnM6jCoUXRT9padmUlbUqLW2+RzSHEIJw0YDjeJ/Vekml6jAaAy2nenokbHaeSDS/AyMgILjJwHH8YHu7F0UDH48rlYAgq1JT53dUcwchCBcHeodjb2ur3ukMbsQBDra3P1dVxWMw5mtgBAQENx+tev3A8HBwywmlkk2llkul8zWkOWUObYRnzpzZvHmzVCpdt27d3N1lKdCi071bXx8iBQO4/P79bW0YYSwkICCYJfwYdrKnJ6QRx/HDnZ03q71wDgUhi8X6/ve//9JLLw1PXFkQxI7R6fyoufkzudwzqqOYTL/Veq6//0aOioCA4Cbm8sCAOVzWAhTD9ra2XlGrb/yQ5po5VI1WV1dXV1d/9NFHc3eLmxUcxwdstrrBwSatNpbd3pne3hyBIJnLvQFjIyAguImxuN1nensjHcVw/EhXl9Zu3yqTUUg3T9DBgrAR+v1+tVo9lmWNzWZLJJL5HdI84vL5PmpuVk1nG43h+H65/OnKShaVOncDIyAguOk50tXlmyp2sE6jMblcT5SXIzdmTHPPghCEKpXqxz/+MZ1OD3zMyso6dOhQ2J4OhwNBbpovPwwOn+8TuVzrcEz3xCGvd3d9/cMFBTfTMm0yTqfT5/ORyeT5HgjBvHHTTwLzSLNO16LRxNKzQ6c7q1Asmw/fGafTiWFY7O8Ag8GgUKaQdAtCEGZmZr722msrVqyYsieO4xwO5wYMaV7otVj2t7fbfD4ajTaD04dcri97e+/Lz+fM6PRFAYlEotPphCBcytzck8A8Yna5TqvVsU8+FzWaitTUuNENzA0DQRAWizW7i6GbefewiLC43Qfb23c3Nto8nuu5jsJkerO2ts9ima2BERAQLAX8GLa/rS2KU95kPCg62bl0kTKHglCn0+3bt6+mpsZisezbt+/cuXNzd69Fig/Dukymva2tr9fUNAwNzUoUhNPn+7ilZchuv/5LERAQLBC6zWb99C0mMRKISB6Y5JfgxzBX1OJ/TUNDM7DjLEDmUDUaEIQAUFVVtW/fvvLy8jVr1szd7RYdF/r7T/X2zkVOW7ff/2Fz8w8qK2+81iJWMB8Mt4NHD+I1QCIcfAgIImJ2u48qFB0GAwBwaTQunQ4Awx6PmMXKio9n0WhUEknEYkk4HPJMtYXHu7tbdLrJ7Yc7O/sslp3ZnHh+GlDjJnfAAU50dz9aWjqz+y4c5lAQFhcX7927d+6uv3gJuCBfHRyc8RVQHK8bHKxKSiJFePVtHs+nra3fKyujLkxzWstvQPk+oC5YvRck6+d7NAQECxGrx3O6t7cxSFdk83ptXm/gb7vX2xNkBKGTyXki0eacHPY0XcfP9/dfVKkmt/daLH0Wyy0pif9s7/iezBkvXR729C6TadBmS1rksVuEjfBGg2LY521t1yMFfRj2SUvLyZ6e6JGt6uHhA+3tC7SKynA7VPwBkreBvXu+h0JAsODQORxHFYq/1NRc02hitJh4ULRJq32rtrbfao3xLjjA2b6+sHY+DMe/6urakpOzgqlbzVJ/2mOPMpPULv4Qe0IQ3mi+6OwMq4WIEavH835DA5tK/X5Fxbn+fofPF6WzXK/f3djoGF1CLiBsCuDmACcL7DeJsZ2A4PoZ9nj2y+V/uXLlzdraywMDM1jF2rze3Y2NsSRCs3u97zc0fNvTE7aaW7vBwKZS80UiMF6pTs9PINu/6uqKdKkWnc4VdSJa+BCC8IZSr9E0Dg3N7FwPil4dHHy3vr5QLL43Ly+BzS6TSE6OZiGIRL/V+kZt7bWFVrzQ3g3cHOBmEztCAoIALp9vT1NTs05nDJdVOHb8GLa3tfVUT08UOTpos+2qq+uN7F5er9EsS0oCuxJIZBBWb2O3DdqGayPosXwY1qjVXs+Y5x1CEN44DE7n15FXVdFRDQ+/dvlyj8XycHHxrampgRiatRkZXSbTlA6iTp/vUEfH4c7OhZKb2z0EJAZQecDJAvsUgpyAYCng9vs/am7WzZIHJobjZ/r63qyt/banp9diGcsU48OwbrN5b2vru/X1w5Ejtawej8ZuLxCJwKUBTjYgFCqN93BOwtm+vr4IetdatXphTC4zZEEE1C8FcBz/srNzytxFYTG5XHtbW7cXFmbHxwe308nk9RkZRxWK75WXT3mReo3G6fPdnZs7/+H2w13AlQEAIQgJCADA6fN90Niome2QJ5PLdbav72xfH5lEiqPRAGDY40FjWA1f02hKEhIoJBKgLiAzAQCYifGY4YGCgr2trXdkZ5dNSoFpdLnken2RWDy7j3DDWJQ7woWl5YuNJq02iiIiCgPDw7sbG9dnZIRIwQAViYkeFJXr9bFcqt1g+EtNTc3AwDx/gfZu4GYDANDFgPnAS4T/L3I8Rmj57XwPYrGisdneqa+fdSkYDIphZrfb7HbHIgX9GHZtaKgyMREAAHUDmQEAwEwElyaTz/9eefmF/v5DHR2T1/Tn+voW48wcYFEKws/b2xeiA0hkXH7/N93TNoa5/f4TSuWnra1bZbKR93ISCMDWnJxj3d0xpoTwoOjXCsWnra3RvWzmloCnTABiU3gTYOuA5t+Axzh1z643Qf7/5n5AiwaN3f73hoawNY/mi9rBwWQuN4HNBoDgHSG4NAAgZrF+sGwZAvD21avOiXPIkN3eZTLNw4hng0UpCHstll319UcVinqNpk6j0S74LCrHFIppCZ56jWZ/W9tfrlxx+f3PLluWJxRG6ZzG48kEgim9ZoJpNxj+fOnSse5u73QyKs0adgVwCEF4E+E1A+4H9eGpe6q/hOGOuR/QouGYQuGbl99gBLwoelGlWp+ZOfIZdY8IQoYUPAbwOwCASiLdk5eXwedfHhgIOf2kUrlQHBGmyaIUhABgdbsvDwx80dFxuKPjo+Zm5wJ23u02mablUlU7OFijVucIBM8sW7YtNpPe7VlZ7QZDt9kc+118GHZJpXq3vv46XdRmQuiOkHAcXeR4TEDlwsDBKbrhftCfB8/NWeJ8BrTp9TMzl8wdF1Wq7Ph4MYs18nlsR0iigrAKNN+M9VzNUl8dHAxRRGkdjuuJkJ5HFqsgDMbq8Rxoa1uYKxE/hn3V1RW76nzQZjvT2/tQUVGZRMKLOUEag0J5sLDwQFvbdPP+6RyO965dm1P7RBhsihFnGSB2hDcFXhOk3A/a04EdQ0SMVwH1EIIwgB/Djk9Hi3MDMLvdtYODG8a2gxAQhIyRvxPWgbNvJPDXY+Cbz8p4zMmh9Kd6ehbytiQSN4MgBIAuk2mfXL4As6ic7+83xWwAaDMYPmpu3paXJ2Ayp3ujNB5vq0z2YVPTdKWa0+d7v6FBFXM2iuvFrQMSBWijjj+cbEIQLno8JuBkgWgFaI5F66Y7DdJN4I7Jseum52xfX+wzw43hSFfXqolllRDUTaONVrwiUSHpThj8CnAUzNcAYLWUVaNWhzjgzMwfYt65SQQhALTp9e83Ns5WIM6sYHK5LoRL4hcABwhIbofP16zT7WlqOt7d/d2SkugWwSgUicVbZbI9TU0dxhjcFoJw+/27GxtvkKHbrgRO9vhHThZYW8HSfCNuTTBHeE1AF4B0E+jPR+umPQ1pO4gdIQDonc4L/f3TOqXPap1WjaTp0m4wDHs8K1NSgtrwAsrgtvzi8QZuLtBFoD8P5iZgJYkpvgQ2u22Sy3qjVqucjplmIXBTxRGqrNa3rl6tTk6+LS2NPd/Rcn4M+0wuj2QJt7jdn7S0GJxOColEQpBUHq9cKs0Xia6zvnyBSMSj0z9sbn6yvFw0puiPgUD+0mWJiavS0mJXyc4EpwrYaeMfudkgex7ObIPUB6Dyf+bwvgRzh9cENAEgJDDVR+yD+cBwCVZ9BFd+AJgXSPMdzDp/4Dj+ZUdHLJEMAVAc/6qzs9tsRjFsZUpKEpeLIIje4ZBwOGlxcbNSnxbF8W+6u7fl5QUn8Seh7g18k0ia2Dtsqxuz/CVtgc43gZkEDAmgzqqk7MsDA8UJCaEP2Nn5XFUVbWFm/A/HTSUIAQDD8ZqBgYahoRQul0mlbsjMnIGacVY43NExaLOFPdRjsXze1rY6LW1FcrLb76eTyTN4m/kMhsXtntyexOVuysraJ5c/XVlJnY5YRTHsilp9dXAwnc8vEIlKEhKYEdLYm93uOBqNPOnieoejQaulkcnxDEYil0tGEKvH06zVWtxumUBQlJAQR6eDcwBYwatOBIp/DRmPwvHVUPkngNmsOk1wg/CYgBYPZAa4IzuFWZqAnQE0AdCE4DEAM+kGjm9h0aTVRsrPMplOo/GEUpnAZv+outridl8dHFSazTiAkMms02gCUWQojsfR6blC4arUVAZlJlN6zcBAApudyecHN5YLGSInAwA2Z2d3m0wjsw2VD4lbgMYD5wD4XXkJwqMKhc7hGAm3GMXkch3v7r4rN3cGg5kXbjZBGMDj9wdcKPut1ifKyqa1N5oVvu3pieQpemlg4KJKtb2gIIPPB4CZvbjZAsH9+fmv19SEjX8ol0p7LZYvOzvvz8+f7pUxHO8xm3vM5uNKpZTDoZHJCWx2Oo9HI5O9KGpyuRQmU4/FwqHRisViIYvFodFoZPKwx6M0m1t0ukguS0qz+Zvu7lQejz84RKJL9XV15YmJ1UmjsyEnC8hMsMqBVwiXnwLDZWCnw/qj0x08wfwQ2BFSOOCJnE3e2gr8EgAAhmgpC0K33x+jj4zN6/2ys9Pscm3KzpYJBACQwGbfKZMF9xn2eMgkEglBrG537eDgX69ceay0VMrhRLhkeKwezwWV6vsVFSHtVQIyaOMBgEYmb5XJPm4etV8IKgEAPEbwGEgIUpmYeHVwMGRgAHBVo8kXi8OmAVmA3JyCcIxhj+fDpqZnq6pmJm9mRiCtUdhDbQZDrVp9nSVzpRzOjsJCBoVSkZhYMymUJ8DdubnvXbt2Ra1enpw8s7v4UDTgQdNtMl2aZOm0eTyXItw6EjhAv9Xab7QDLw0oNrXNZvN41mdkjOyGpRth6AS4tWC6Cqv3wcn14FQDa4aDJ7ihBGyEtHhwRd4RBlY5AEAXL2Uz4ZednfbIyUCadbp6jYZLo9m83iG7fUVy8neKiqKU2x2bRpgczrbc3Oz4+L2trc8sWxb7dIfh+H65fHVaWojmjEujJVKsQBMEPuYJhfki0YSiFhQWOF0AUCGVvnX16h3Z2SFmHRzHjyoUP6yqmhXl7Vxz8zjLRMLsdn/RceNieC8NDHwbrr4XANi83q86O7cXFl6PFEzkcp8oKwu86CtTUiIV5qWQSA8VFZ3r74+UMH7e8A0DlRf482xf33gqcMlGGDoJXW+D7HngF0PyXaA+NJ/jJIgdjwloQqAJwWfFMJ/L5wujqLC2Aq8IAIAuWrKOo1cHB6OUYBuy248pFMuTk7MFgjVpaT9dsWJdRsa0is4XisV5ItGB9vbY47VO9fbSKZSVk5bLuUIhEtjoj7ItL48b7HhBZoLfCQBxdHoSl9sWrvCT3uHoWWCBkpG4+QUhAMj1+hsQ5onj+EWVKorr8JGururk5OSZlnLm0Gi3pac/UVrKGjXdxTMYBSJRpP58BuOpioq6wcGD7e1uv39mN519fMNAHf8G6jWava2tfgwD6UbQnYah45DxKABA8r2gmipAm2AhgGPgGwYaHxAS0IU1ytb/unDhLzU15hAD9viOULQ0d4Q6h+NY5MnB7vXuk8u3ymQFIlGZRJIVH8+ckRJrU1aWx+8/E0EjFUKLTtei092fnz9505YnEoHXMh7mBMCmUrcXFo6vvMksQEdycVQkJjZEqC4XvXj4wmFJCEIA+Ka7e06jdhw+3yetrd90d0daiw3abIM22+q0tLBHp4RBofygsnJDZua4A8vAF4D5VkW9YDyD8f3KShqZ/GZtrWJBpAHEwe8IFoQA0G4wfNTc7KXEAycHUh8Y2S8mbgbjlcWVj3thpnSYc3xWoHIAIQMAMBKaBnsBwOb1ftDYOK4D9DvBPQScLIAlKgj9GLa/rS2SD7nSbN5VV1chlV5/9QYSguwoKmoYGmqdKhG/anj4qELxSHExa5JPHJVEyuTzwWsOFoQAkMHnP1JcPOJVTmECOjKj5otEQ3Z7WN+9TqMxbPtCY6kIQi+KHmhvR+cg4h7FsDqN5q81NR1Rq0Kf6u29LT19WoqOYO7IzuYxGOOfvRY4dz9ceCiJTc8WCCKfB1QS6U6ZbHth4aGOjnqNZsG1m5QAACAASURBVGZ3jwjunyKZSAg+G1BYk986pdn81tWrAzmvQNG/jTRRWCBZB4NfzdJA5xyP37+rrk49PDzfA7nhBCnQ9OQUzfBIDKvJ5To8ZpIYbgeubFRYLkUb4Tfd3WFTIg/abP9oaPiys/P+goIZr5JDYFOpDxcXH1MoogQxtxkMn7a0PFBQEOLtGSBbIKCSySOm34nIhMIfVldXJSUhZFZANQoAZAQpk0jCbv4wHF8U8fVLRRACgMpq3T+rmdj8GHZCqfyfS5cOd3S4ouoeVcPDBqezQiqd2Y0KxeLQc41XQHQL4DhceXZVauqUV0jn8Z4sL7+oUn3S0jKbOQeGToL6y2n09w0DNS7sEZPL9fdB/j8VtksqlcZux3AcRCvB0jQ745x76jSaIbv9Hw0N6ggxMzctnnFB2ORLCV4YdRiNI77Tw3KIKxxppYvAs7RshHWDg2GFBI7jB9vbSxISfrJiRUjoQngwH5gbY7mjlMN5urJSrte/U1/fqtcHT3oOn++Ljo6jCsVjpaVZEVw6RzzsJu0IA9AplLtzc+8tLAUcA3xk3rslNbVhaCjsNCjX6yP59C0cbnKv0RDkev3+trb78/OvM24dAAxO52dy+ZTV4QNcUqlWpaZGcmyJAoIgq1NTN2RlhZ5pvAziNVD8KziQklX5v5nx8T1TpXIQMJnPV1fXqtW7GxsrEhPXpqdf75fgGwZz/UhO3thPiSAIAQDD8V6LJZCGmE6hpLnZEq8qPmEwkcuVsNmTwxYXDn4MC2Ti92PYFx0dzyxbNuOt/+JjdN+AAzS5BAATfhFfd3WlxsUJLK3ALxppWmKqUaXZfEShCHuo02SikslVSTFHkujPg/4CeI0g2TBl3zg6/emKii6T6dLAwFGFIk8o5NLpWru9x2KpTEz8YXU1PUK0u5TDGRGQE51lQiiVSE7SqTa/K2Dp4NJo+SLRFbV6bXr65M7fdHdnxseH3X0uEJaWIASAVp1u2ON5qKhoxoXacRy/Ojj4TXd3jOXmrR5Pr8Vy3zRD+hgUioTN3pSdnRIXTnIYLkPOs0DhgHQjDBzanL19V13dlJtdMoKsTEkpkUiOdHW9WVu7MSurUCSauXOz/hwIqsBUN56ifkqiCsJgPH5/l5PaZUahs3Ns8IVi8e2pqXOZ9maG1AwMDHs8gb+1dvv5/v6w08HNyeh02W4wWIEToip3+/2ftLQ87WijZe8caVpK4RM6h2Nva2ski8z5/v5Y1Dkj+IbBdBVynob+/UCNA0HVlGcgCJIrFOYKhQanU2k2O3w+mVB4T15e9OCKW8eGFGFHGICEIKUc7wXUOWbyX5WW9o9r11ampEwWsSiOf61Q7Cwrm3LM88XCXWXPHSqr9W+1tc3TKY00ht7pfL+x8auurhilIABcUavLpdLYsw0hCPK98vKXV69+sqIivBQEHAw1IFoJAJC2A/r3STmcigiVeyfDplJ3FBbek5d3vr8/0lp1alAXWFpAvBoYUnCFdxgLQ1DsxNSQWWPWeABAcbxZp/ugpcW4wFIVn+3rOzExYOZsX1+kpEI3FZgXcGxMNXpRpQIKe1wQDreB5igA6OzDB3tNOC9oR7g0wiesbveHzc2RHLb7rFaXzxfF6zsU7UkQVANDChmPgPYU+KaRJV/EYi1PTl6fkVEhlUaXgvFM5rjDjifajhAAyuPJwb9QIZOZJxKdihA81mM2y6fy35lHFr0gRHE8dpk0hsPn29/Wtns6SbpxHL+kUr199eq0Soj5MKxhaKh6OlHtxWJxRnSDwXAn0HjAkAAAJN8N+vPgtWzKypJMR/OQwec/WV6uHh6O0dM6FJcGmFIgM4EpBXfMPjgx7wgBACjMMWv8GBq7/e26unP9/WM7sPnlbF/ftz09Ia7CKIbtb2ubn6LHN5KrP4WO1wOq0X6rVWW1AoUDfjsAgL0b1F/BcCcMt4HutJxUfNE6qjOgi2KqZb/IsXm9u5uarJEdJs/3969KS4tVH+M1ga0bxLcCANAEIFoJg1/P0kgnsD4jY9wGEXVHCABidlwKfULFpY2ZmS06XaRJ9ahCEaMt6caziAWhxm7fVVf3/86f/+uVKzObFpVm89t1dbH4Uppcrj1NTce6u6db6elCf3+OQBAf7PAZFQaFckdOzhSdDJdBuHLk7xHt6AEGhfJoaem08mXTyORHS0sbh4aaIwf5RsSlAYYUAICROM0dYcyCMChQKRg/hp1UKv/38uW/Xb36eVvbgfb2v1+7dlGliiR48EkRLThAh9E4cN0enu0GQ6T1r9Hp/Kqr6zqvv9BxD4H6MHhNQIu/GHBQDOwIUReoPof0hyD1AVB/CaYGSLrrpFI5EsBDZgCJCr6b2b3W4HT+89q1KCWvh+x2ncNRKpHEekX9BRBWjWcqF90KHj04IzqFzgwph1MSPCSvKbogBLqwhDNB0rOo1HUZGV92doY10gx7PO9duxYlpcA8svhshA1DQ/vlcgzHm3W6rTk5BWLxFbX6o+bmpyoqZpDsHMWwLzo6dA7HuoyMyUoDFMN6LZY2g6FhaGgGxQ6HPZ7awcFnly0Le5RNo5EAbEH5lqQczoOFhRPSN3S/CxQOpD884UzDxRG9aICcH8C1X0LW9+Lo9J3l5e83NFhjXhawqdRHSkreb2iIZzAiqGEj4B4aqTLPlE5RfCcYn3V6O0LUDYCHzcSN47jWbh9zSe+3Wk/19KTyePEMBg4QR6dLORwUw0wuV4NW6/b7M/n8QPyJ3etVWa2BoFIxiyVis+MZjAQ2u1Asntb702+1ft7WFsUq2zg0lMLlTksZsMjwGMFYA9Q4A7NkJHYosCO0tgE7E1ipAADiVUAXAYWN4finLS3fLS3N5PNHIihifxMWFQqTaZ9c7onqRn6+v39lSkqsHlV+G1jb4st+bh7bfSFkYGeCWzvyJc8SGzIzxwcU0HlSomZppgsL8eGjbgj+FSxLTGwzGM729YU1k/tQ9PO2NgaFkhM16OvGs/gEYRKXm8Tlmt3ukUpDfvstHLOVz3+nvv6evLzUac3mo1weGGjUaosTEoRMJpdOpyCIyeUaGB7uNpuvJyfLCaWyKilpPKGatQWYSQG1eyqPt6OwkEmhNGhU1sGLTL8uqWBnKo8X6skp/wMIKicIQswDAweh8JfjLYlboPHfQf0lJG8TMJlPVlS8V19vi5zPMAQxi3Vvfv6nra2PlpRMI12vawjEawAA6GLwWQHzASl8qQq332/zesUsFnhNANh0pj8SkGiAumP0xPFhWJQqaGHXoXqnUz+6bL88MPDdkpIYs9+phoc/bG6eUvl5VKEQsViZiyTv8LTxGIGZBJqjFykPjEyFFBb4XWBpGl+oiW4d6+7DsI+bm+/NyysKRFAE4utvOk4qldGl4JDd3me13pOXF+sVjVeyk4sfvmVdu15/uLNz5K2jxYN3Nmv+iVgsWbBw8ky1HQQAmpDrGkzn84OtRQiC3J+f/3ZdXXZ8fNi1NYbj++TynWVlSTPNsTUXLD5BmMBm35Kaahvb9Nh7QHd2S+6P2g2Gfa2tTCo1jccTMJkun6/bbF6ZklIysVZWJFw+X+2sZgMKKN+2Bb/uhhpgp9GSt6zLyBhLE1rdvhNwFEx1cMtPACFNKNVmrAGPAYy1AACoC+T/BcX/AaqDwC8NnUSK/g+0/h6StwEAn8G4Kzf3k5aW2IcqEwjuksn2NDXdm58vi2WlhvnAZwWGCAAAIQFdBG4tsFL6rNaLKhWPTk+Oi5MJBHig6ISiC3CUx+RUcR2FnEIKDiaXU2EypcTFTb0HpbCm4ZJ6fQzZ7e/U1T1cUjJlDrxrQ0NfdXbGoiFAcfyj5uZHSkoiBWwtbrwmyH7a1vyHJivAyL+IdMWT5naTZOLwvlteFN0nl3e7ytcZWuOEK27kYG8MeodDE9UMhuP4ka6u9RkZMaofSAgs9357+6a3KCRSiUQiEwoHbTYUx5Mt2r7OQ01iMRs1xjmaneLNzTqdI+bl72SqkpImGCzd2hEvhCjQhWBtLkpLCHGb4NBot2dlnezpieQm6vH7dzc2frekJI0Xs+vcHLNobYRe80gsp0cPXhPgWL5I9C+33HJvXl4Cmx0wGa5OSzumUGjno2a90+cLZIuYUBHQo0esbY+Wlt46HlOIg6ke1h0BhgQcfQAAFx8Hxa6R/j0fQP6L4DGA1wTaU9D8Ksj/L3S/C9lPh94v5T7wGMFUF/iULxIVTjNXU75ItL2w8IRSuauurkatjqJcVZhMf7t69Wt3kds/KgmYieDWdBqN+1pb84RCIYvVYTC8VlPzZm1t3eDgw+nUl/gXb0uRtJusf+xh/+7cuY+am4fs9k9aWkLTUU6GHMZfZu6web3/uHbt6uBgpECUfqv145aWQ+3tsevJfRj28ewmMVgo4OA1QeZjl92pftKICRzD8dPOFCclYU9za5TfXT2W99rV5i9jW0wsLqY0tzfpdBiOx5hbQ8RiPZOBbxEOUwQlgRYGhZIVHy8TCFj8nAK87aGioruZrbcZXtuSk/NMZWXyjPRhAEAjk8tDhuRST6wbGg66EDzGApFocoR0SUKC1e2OYoZ3+/17mpq+7emxRZ5qDE5ni06nGh4GABTDnD5fpJ7Xz+LbEY6gPgz8UogvB48BcAy8JqCLkFHF6VgvFMP2trY+V1U1rRK11wmO4wfa28ul0gl6Wp8VSLQVbH063g8w8lqDWwtkJlDjgJsDNgVwssDSCKarkP19wDHo2wtbroD2NBivguYY5P4EOv4KgEHqfaG3REggvR3050EwYo+8Uybrt1qjFHyZTCaf/9yyZd1ms1yvP9vXJ2ax0ng8D4oKmMxMPt/t92vs9g6DweJ2b05AFFbWazU1CWy2gMlkocI+1bANur5bUhL48lcEG8Z0ZwGwXOfpXJ7Wl/sClTSyEK4dHPy0peX70asHR/CXmTv8GPZlZ+cllaoyKSmJw6FTKE6fT+dwqG02ldUa3SfL7feH9U33oej+trYfVFZefxqHBYRvGMhMJzO7ln3fWEiM2mbjUfAtsnzxMPWYQvFEpLgxdjqqP391cFBjtz9cXMydaUTvQgPH8ehBWS6//4RS+UhxcSRn0ez4+C0yWa1abfN64+j0DRkZ9IaXQl0EAnCywa4EALA0g00BXguPwX+kuDhSjdLolE0OqwgtoB0OuhA8Bg6Nlhkf3z0xlTEJQValpZ3t6/tuSUmks70oerav74JKJRMI8kUiFpXqRVGNzeb2+1Ec77VYxpKU8uh0p88HCLIuPf2W2CMvp8McCkK9Xr9z586zZ88KBII//OEPDz300Gxe3WMA1yDEl4NbD7R48BiAHiYipzghodNoPNvXtzEzczbvHpVTvb1+DFufkTGh1a3ncwQbC2QwcGCkQikA2JXAzQYA4OSArQska8HRD/Hl0P8ZmK6CoBLYGSCsAlMtDB6F1Z9C8p1g6wZSODtWwKM674XAJw6Ntr2g4IOmpmmllEMQJEcgyBEIUBzvMhq1DoeARtM5HFcHB5kUSgKbvTw5OUcgoGi+yktL3BBXrrXbzW630+lbh/dkFz0a/seNukC0EoxXIL58TAoCQHVS0sDw8OGOjgcKCiIOKGBzuuEYXa7j00yQ2G02fyaXP11ZKWSGUeRq7fajCsXdi6dg99R4jEAXXh4Y8CbePdamMJlypFnATqtkwxW1usNozBMKw5xLFwHmB59VPQzv1dc/XloqvOGls+eCfqs1upLjhFJZKBZHso3RyORteXl8BmO8yC2OQv8+2HQuXG8+IBTwGMDSBBQ2mOtBsoFDo92amnq6t3daw2ZQKGEcW5xqYE7l5zWaJKgkIaF7Uk7/cqn0TG/v5OL1IaAY1m4wtEdN1DymoDquVCIIUjYHjjZzuET92c9+JhQKTSbTxx9//PTTTw/MYro51A0+G7gGAcfAZ4G4vPFcFagT+j4J7ntHdna9RnPDorDrNJomrXbHWL0S3A+GSwAAHt0tSQnU1PtAdWC8t60bONkAAFwZ2BUw3AmcTCj6P3DlGRg6Cas+AgAQVEP/PvDbIL4MErdA7o/C31i0EgyXgxsy4+O35OTMIK8bAJARJF8kWpueviI5eVtu7o+qq5+qqLg7NzdfJKKAH+zdwExmUigZfH6FVLoqMz8H+hA8wjoUdQJdCCn3g3B5yJFtubkGp/NylBeDzLzBO8IZ0zg0lMjhfBw5gPrq4OB0heuCxmN0UUQhKTQVJlPAGxABuCM7+4RSGXEVxkkHRy8AWNzuv1+7NmWphEVBlCTXANBvtXYZjRsirMgpJNJWmYwfEmelvwCs5BH37MlwssCmAEszpD04Zha5NTV1ujmzNmZlhTnFFcOOkJUKzgHA0QKRaLJehzxavH5ag5mS0729w9dhCo3EXAlCu92+d+/eX/3qVzQabdWqVevXr9+zZ8+sXd2jA4YY3Drw6IHKA4Z0PI2vaxBsXRDk0Muh0dakpX3V2Rl7scqZgeP46d7eiyrVzvLy8comHgNovgGfheHVlafkgvhW8BjBdHXkqL17xO0loBodboO4Aki+C/J+ChuOj6R1EFaDuRESN4eNIhiHKwO/DVwTYiKXJyc/XlY242Ry4Rk4BFwZMIOcIRAK0OLBHcE64ncBmQlxeZOzVFBIpIeKiy+oVJ3GCBHWlButGp0ZPgzrMpm2FxZmCwRRcu1fUKm+VijmogTKPOA1nndnBEt9h89ncrnGzAHZ8fFMCqU1ks2MnTFiFAdw+Hz7Wls/bGpa1CZDjc3WFbnSmd3r3d/Wti0vLyj9GAZ+OxlBsgWCFSkpP6quDmM4tDROCJQKgZMF2lNAjQPpJjCOTCk0Mvn2rGm44yZxucvCOjY51cCaakdIZgJdDE4VnULJC5cipzIxsUWnm0HCkyh4UfRkhODd62GuBKFKpcIwLG/UZ7K4uLgrcnwxjuM2m808imfKMDiXFpiJQBOAtRXoImCIwG0YP4Rj4JvguLUiJcWDog0zyqkWIy6//5PWVqXZ/FRFxYTw+YCLs1VeQe6kC4oBIUPRv0HTKyNHg3eEtq7R4qUIlP4W6KM6JXY6MBIgcfNUQ0BAuCJkUwgAmXz+D6urpxG6Gx1THfiskLgltJ2ZGDG/DOoEckTFF49Of7i4+FBHR3i7Onl+VKPTpcNgSImLY1Op6zMyOozGKPqxmoGB3U1N8+LANbtYbforzgkvVbfJlMnnB2sg1mZknOnrC78AZaeDXTlWuwAAukymfa2ti7em47n+/khLbRTHP21trUpKmuCSbW0HxTtFQu7jpaVbc3LiAxr1oeOgfD+oTxvERTYccLJg4CDwS0GwbGxHCABlEklMtSwAEIA7ZbLwSqNYbIQwOnEBhJ1h4uj0VB5v1iPoTXNQ4HCubIQmk4nNZo/ZhOPi4uRyeaTOSqXygQceII+ulXJzc0+cOBG2p91uBwDUoUHJ8QgdEHMjxi1CkTiax+D1egAQimOQBOBzGnDmBEPanVlZH8nl6RzOLG6PMBzvMJkcXq/GbldYLGVi8f0yGQnHvUE7d7LTQGJIwNxSzbliJ6fhNhskfIfd8n/dqlMov4pl7fQkP47abICLuY4+v+GaL/E+/6Q0lZSS11Deenyq9JU0bgWiOetHWQjq8CdsCj60KSVFTKUe6+m5zomGaqj1J2zEfSjABEUomZqA2NV+dnGYU/xOP0bBI2szxHT6tpycj5ubV6emLpNIIOhnScKpJJ/dH3Suz+dDUZS0wLxOGoeGCkQir9dLAqiQSM709t4ZeVXepdO9ptMlstkVUmlhOJ2S0+/vMBrjGYyMBeNcPpnjvYNunI4G/WuuaTTlEknwy5/KZtNJpAaNpmjydgGJozBSEcW7/qQH8dHQ0maNxuV2b8vJiZ4P077w0nQpzOaGgQGIYIY42dvLolBWTPxyyA4NGXWV6d+z2WRjjYyez0jWJqf4gcBHlrnFI7oTjfDDp1KSGMZab86/eEDKcesdJhVOHZF/65KSuvV6/1Q/9lKxmIcgtnDX5zhUDpQ/5ZzDYKSj+hYfe6WURuOQyePFz3GU5OxFXANlwvzzanVRfHykL2cGeHDcZrPFXi2AwWBQJxUfDmGuBKFIJLLb7TiOB4ZrsVgSIsfzZWdnv/baaytWxBRXxOVyyX4jmVsJfg5Ym8hsCZnBBTKdhniAGgc+PdCFVHDCRIGXTKOtSE4+0NX1RFnZrHiQ+jDsgFzu9PmSuNy0+PgtublsKhV0pyFh7QQdJjYMgopk81EBiw3xo/VWSn7N6v4TrPsSXH2shBJgcgG4wJBQDGco5b+BybZ0bji3sckkr4OLj9L6dwMtHrK7QlSpa7jcNJHouFI589RiHj1gTio/J4ySlpsCGjkt7CIDdVOZPCBHW3/kJyQkcLmft7VdGBhIiYsTs9lCJlPMZrMQFtXvZ1GpY4tWBEEoFMrMK2bMAXqnU2O37ygqCkSGrUpP/0tNzbqMjFB7z0SMPt8JleqMWp3C4/HpdKfPhyAICUEMTqfe4cABEARZkZy8OTt7QT1sAKvHI7e4yHQOefQ/bnS5DC5XsVQaki1ls0z2mVxeJJGECZtL3w7681TNfsh5dqyt3+H4uLNzbUaGTCCYXDl9DO5CisU2u93fqFS0CKkYukymDpPpuaoqWoh0R83izM3Z1v8F7xMwFlJpl4Olnsskj6R0sXeypMuAGeFhxUUAOE1SRYvjgbCS4+0Awe2BI1wud+eyZR+3tETRNguZzG1FRey2/wSEDIW/BEpQMg2fFUhkTnwMefwFhVSXisHlAsD6nJzxUsxDx8GuBCqvAC6cB5lieHi6AV1RoNNoXC53dn8Xc7WyTk1NpdFora2tgY9NTU15sWdSmBK3FugiYCYBANDFAKP+S7gfvBbgZIdNzb4mLU3EYu1rbUWvW/1i83rfb2hgUihPlpdvzcmpTkpiU6mAo6A9E5pE0WsGmrAgtRTGsu8DQObjYKwBSwv47cAcNQxwc8Bvh7jr+JZEK0G6CbZeAzID9BcnH0/n85+urHy8tHRa6bkBdUPvh+AxgKUZ+CXhTZUMKbh1AJN/dThgHiBPnWpVwGQ+XVn5zLJlpRIJjUzusViOdHV90Kl/W5P4+3Pn/nz58rv19dN1h7sxHO/uXpOePjbRMymUFSkp38ZmxvBhWI/ZfG1oqMNobDcY5Hq9zuEIvJ04jl8eGJhhSvQ55opajfldwRrvq4ODFZOkIACkxsVl8vkRn0K8GoAEw23BbSaX60Bb258uXjzd23v9P9W5BsPxz+RyV4QQN53Dcai9fXthYZg9rlu/LLMS8l6AnjHnCRwsTcCVgeEiAIDHCJhngjE+hIB7Aa8EACC+Ekz1wQezBYKHi4uZEfbWiRzOU5WVbBoNtKdBdxaOlAIapG+MUS8Ko84NAABQJpGM69tcQyC9HdJ2ID7LZgkcVyoX+L9yrgQhi8X67ne/+8orr1it1iNHjpw/f/7RRx+dnUtjHvBagSYAhgTIzJGoCboYXIPg1gNdALT4sCl9EQTZlptLIZE+am72XEdlgB6L5Z26unyR6N68vAnq9UDefe/E2hReM9DjC8qfgvx/GW8kMyDju9D078DJHJcrXBlwsmKRGRGhcODWPcBOg8zHoecDQF3Q/J/BZpgA2QLBs1VVd+XmMqdSF4ygPgyYB3o/BEvTeOBHCCQaULngmZTzCXUBmT6Fm08QcXR6oVi8Ji3t/vz8H1RW/rSq+Geihn9bs+Z75eVbcnI6jMYLC6zUdY/FYnS5Qmqr3pqa2muxzEolpjN9fY1DMec0vyF4UbRucBBQ51jGHz+GNWm1yyIUmN2Und0wNBTRLCpZB9rTAKGzJIrjp3t737xypV6jWch1PGrVanUEFYvZ7f6wuXlLTs6EeGL3EGA+AJziM5ZmLgPJRtB+O3LIrgQaH1LvB90ZABhxnYsCKxVEt44snfnFYG0NOZ4jEPxo+fLiSaq4ZUlJT1ZUsAM/f48eVrwDzOSRmwaIXRByxgUhhUS6JWX0rEA8G0KG5G3pjgtSDieac/gCYA5tLX/4wx8YDIZMJnv55Zc/+eQTaWzJFKZmuAtoAkBIgJCh4GcjCckElWCsAacKGFKg8cAbvlgXCUF2FBUJmcx/XLtmmb7F1Y9hR7q6Dra335efv3pyCRWfDSBEEGLgtUr4SUJJGUgnGO0g+wcw8MWIp0wATg7wor73sZPxKKg+g7P3QfOrYO+dfJyEINVJST+qrp46taa5AbxGyHwCBMuARB+pOBGWsJXHJ+4bpg2ZBaiLjCB8BiMlLu7RkpJGne58ZK+EGwyG40cVituzskJ2QlQSaX1mZhT30djBcfxgR0dEl5P5oF6jcfv9gLqAwhxrSePxIlU+YVOpm7KyDra3h7dPc2VAosJwZ9hzjS7XFx0dvz937n8uXfqwufnbnp4LKlWDTtek1bbqdK06XYtO1zA01Gk0muajSqXN6/1WqQBn/+RDjVrte/X1a9PTQ+VQ/z6wNILXlMvGWYw4iC8H1xC4hwAAzI3AL4OEtaA9DQBgbZtiQkDIcMeFkRy/vKLJghAAODTag4WF3ysvzxUK4+j0HIHgibKybbm545pqtx7oYki6c0Jdp1iCCANws8HRA6OhUytTU0UsFmBeQF0jWYUZEvDbNmVlXVSp5jQ1zHUyhwH1fD7/ww8/nP3rDrcDc/TdQkb/nQwJsDNAexoS1gCVF6VqZcBR6opa/W59/QMFBbEngcRx/GB7O4rjz1dVhTfmB3aEviBB6B0GKqdQEm6lzC8G0YoJgjDjEZCsj3EwU8BKgfgKoAlAsg7sykhxSBwa7b78/A+amqJNspZmkGwEhALi1SC6JdpN6WLw6AEmqnaD9g0zASEDiQyYJ5BDgEOjPV5cfKCjQ22zrU5LS+ZyEQTBcFxjt0vY7NjztnhR9FRvL41MXpmSEkl3FAtX1GoOjRa2tmq5VHpFrW7R6Savx6cLjuOnenqMTue9+fmx1iuYM4bs+rDOpgAAIABJREFU9pNKJcD4EgfD8Ysq1XeKRjT/dDLZh2EhMq9cKm0zGM709YVmmQjAKwK7MrpRYNjjGfZ4uoxGAPB6vWGt0QIms0gsrkhMFITLaTDrYDh+oK3NM6wA1QEo+EWgEcfxIwpFu8EQR6c/VloamsXeowevGYY7gcItTxAAACAkkKwF7SlIfwTMjRBfBqJbwdwAfufUO8JgeIUw3A44BkiYX0EGnx++xCnmBdQJND4kbYXzD8GyP4+0xxJEGGA0ggLYGQBARpA7ZbLdl48CXTiiB0IogFAENKQ4IeFMX9/WKWvMzROLMMWaYBkkhItZlqwHqxwY0uiCMMDy5GQJh7OvtfVOmSxGK+6p3t5hj2dneXnEychvBxJ1wo7Qa6Iz+FWRasdX/GHCbomZNGL1nBXWfA4UNtQ+B45oxqqs+PgVycnRtBYew4gVFoKWHWGhiwIh0hO4/pTZZBb4nUAb2W1wabSd5eWXBga+7Ow0u91cGs3h87GpVAzHt+Tk5AgEIb7gbr//hFLp8PnKpdI4Ot2HokN2e41ancHne1H0z5cvMygUNpVaLpWWS6XTKsNk93rP9fc/VVER9igCcJdMtre1VSYU0qdfHWwyTVqtzePZUVQUxYVkrnF4vZ+0tIyEhY0ucRq1WhGLNZYtpUwqXZ6c/GVnZ0gi5m25ue/W1wuZzDB+9qwUsEwjR3wkTC7Xuf7+y2r19oKC/Ngrv8+U40ql0mwGmwL8zpEYIY9xyENWms3fr6gI7yo13A78Uhhu53ITc1JH/YolG2DoW0h/BCyNkPk4UFggqISe98HaBtKNsY6GwgG6GBw9gPnh4qOw5erUpwCAxwA0IQAC8WXgt4N9NJrLqQZBZay3DkRQsDMCn7Li45dx7XXBeb4obPA71qanv1Fbuzw5OWzqpXlnEQpCTiawh2ByrCFNAOkPAzsVEApgXsD9gER7unQe7/Gysg+bmnwYVhYpzM49BF6znpJ+VKFw+nyPl5ZGW5L7bMBMmrgjNN+SwGZHCtgQr44yvOuFygUA4GSNJCSMzMbMzG6TSR+2iCjmA9QJtNic+Omi8UQBY/idU5Q0mxIKO6RAKBlB1qSlrUlLc/v9dq+XRaWyqFSFyfRtT8/nbW18BsPu9XLp9DQez+P3K83mArE4TyisGRhw+/1kEknK4dwpk2XHxwPAlpwcl89ndLlqBgbkev3O8vIYN1yBdLLVSUlRftUpcXE5AsGpnp4ts7QK7rFY3q6r21FYOL3KkbPH4c7OcYMC6gIKC8fxC/39wSVW0ng8EYu1JSfnrasTXgYOjfZYaen7jY0IgoQWhGEmgkcPuB88RujdA7wiEK0aeYGnjw9F97a23puXVzZbtphwXB0cvBTII2PrAgob3DpgZ4Bqv9LGz+EVRHQYHu4A6Ubw2cocX5J4PxlplKyH9v8FADA3QsUfAQCW74JvbwevCarfmMaY+MVgaQGbAqwRA9VC8RiAEVjmIpC0FQaPQO5PAACcA5ByT6wXCfjLBJl+7oxT6/nCcX0xhQN+O4st3JCZ+Zlc/v2KigWYdHfBDWhaJHO523Jzx/OIcmUjwo8aBz7rlNnFJGz2zvLyb3t6msLF2mM4XtfX/naL6oPGRplA8IPKyikW4347sFKDd4Rs1HTL/NZljUEQUsnkBwoLyWFfTa8RaIJYXV3C2ghRVzKbvik7O2Q1wKbRwt9xMqKVMHRisjMFADAoFBGLFfin5AgEzyxb9tMVK+4vKHi+uvoumYzPYGTw+Y+Vlm7NySmXSp8oK3tm2bLvV1TcNSoFAYBKIsXR6Zl8/kNFRWQSKXav1DN9fRiOr52o6Jv8RJuys1v1etWM41UmYXW7P21tnRfnkcahoZGEkD4b4BhgPiDRu81mGpmcHhTvGHAMkXI4kyuDilisx0pLz/X17W1tnWDSQyjASADXIFiagZsHqBu0J69nqBiOf9HZGaU45XXSotN91dkJAOA1A+aDuPxRQW5QYklZrssjVpIQ/DbwmoCdzhbkrSY3Aa9wpJ1XCLgfzmwDr3HEETQuDzZ+C5KNY9usmAiYCTVfA+qKtVShWz+eojlxCwweG/nbqQJmbKrRwGgHDgUr4cjDbd8pyB2PUqOwwe8AgGWJiUIm89iCTDS4iAUhlUR6qLh4WVLSmvT0O7KzJ7or8GRMz0+WL5+yLomQyXy8tDSwmdA6HAFvUhTH6zWaN2pr5VbfFlbHv6yoGisfGA2/HVjJ4LONRRFs4KjovOzoJ80t7MwJglD5jwm/ELcOMC8AJHI4d+fmhonL8RjHE9xMCZnBo+DPFSVvLywsTkigkEhUMrmI7dyZE7cqNfWFFSvuksnSeLyKxMTvFBW9dMstK2JcIvCKgcwYKco4FSwqVcJms6nUlLi4W1JSyqXS6Al/x0AQ5IGCgmsaTcRkb0FcUasbhoa2FxQEf18IgkwutcqkUO6UyaZVtmlKbB5P9JyWc4HZ5fpaoQAAQN3Q8WdwqgJ60Stq9fKg/yOPTueNboaqw/1/JWz2s1VVUg7n79eufdraOp6hjZUCzgGwtoJwOYhXgSOM+8m0CJSdmcUlyBhyvf5Aeztu6wJbJ9i6gJsDDDG49eDW+mniARdkJKSD7uxIbxwFxTtgvgaAgfYMcHMBSBuLNzBIeJD9D4EtVyHzCVj2+riFjyuDtV+ENfhFhFcExhow1gI7HVyxZfgMNnwkrAHDJQAc/I4pTbYTyHkG2BnwVTEYr4y02Do4woL8MZMThTO2MtiWl6c0m+ULL7XsIhaEq9LSxpweb01N/cmKFbelp69OS9uWl/eCjPRosieeybwrUgKhIEQs1o+WLxeyWHtbW//n0qVXz5z5/86ebTcY7snLe5zfmU73Is7Y5h2fDag8oLAD7qPJXG4l3hgxYe6NIXhHaGmGmqdB+Y/xo5ceh96PAn9WSKV35uSEflPhanogCLIyJSV+kvKHjCA7UshStK8kIeHBwsJfSFr+rTpvh1BPYwgBgEYmVycnP1VRcW9eXqFYTEaQtenpsdbfSdw6PrPMGWwq9eHi4i86OtSRwx48KHqsu/uKWv1kRUVIiiIJm10mkUx2jSkQiaQczuyGA17s749eEGp28aHoXrl8RGj5LIBjoDkKZKbZ7VbbbMGPHFxntVAsDqtBISPIbenpL65cyaPTdzc2ugKXZaWA8SqQqMBIAPr/z955x7dVXv//c7W3rWlLlrfseCbeWQ7ZO9AwwggQCqSMttB+C2V10RYo/dF+O/iyQgmrECgQSAkhA7ITZ3glju3EI957alh7/P64ii3LkldkO47v+4+8pEfPvfdxfH2PznnO+RwZHGbYDYALXafHvWyz3f5+cfGIDQLHRElb2+dlZQ6nEz3FqP8c7Ych0ICtgKUDxqZ6qEP4fHbIImhL3d84u/NBY6LjJC69CpsOytUqoTA9Ngtr8gfFftlyRGxCzA+vanFByWj6BtK5EMaN2hB6eIScELDE0F1E1xkEzxlDHRdDgJw3kf06jtyE3vNwOaGvgjB+YL/pikcIgE2n35qYuKeychxJ+xPKdDWEEi53weDGVBIud1l09IqYmEylUixSkV8qVUJhlp/yJk+YNNriyMjHcnKezc393eLFv73hhs2pqZEiAWy9EM/pVwceAbsBTAFYwbD20ghifUQQYWyE2E9LtsmBLYXL5f6bPPccwm8ZUDJ0WtBxHNqBJIXssLCf5uRkqVQeiuHeHiGLTr85IWGNRvNQZmZaaGi/JZNwubcnJ6sVMe7iaJedff4ZWuMuWP36lGwGY/UoN884Crjsgwp+JwaVULgxIWFHSYmXOqLd6bzU1bW3qurV06dNNtsD6elDSwXIrgurNZqhukVrNJqilhbfu7DjwuZ07q7wXW8QcFwu1+7Kypb+LwfWXgiiYdOBwSOL6D33e8I9DCGDRvO79Q4waLQ1Gk2MWPx+cbHRZgNXDWvPFdEJAjw1jA0w1KB574Ce/tixO51flJV9VFLSrNdfvdZ5UWvrl/1FINYeRN4FSfaAR2hqvmwLjhGLQedCNg+Nu2DpQvtxqNZCsxXKVYjaDDp3RUwMAUCcdpWL8QFZa6FaC64KxtEZQnPHlT1CAIBsPjpOouME5AvGfPWwG5H1Kg6uRsnzYEvB4MeIxe7ng4dHCEAlFOZGRPyntPRqirkDzjRMlgGyVap5avVwOX6CWLTsJV/eEBlZ1NIyJgV0d5DQ0gWWGIKYQaWmfnHBbgSDTxrCeWq1Svs9VGuGT9iZDEin0GGCthTry/BNEroLIclA5yk4bV776lIeb0N8PNnUt6StrauhQaZe2c0U12u1ch4vUS7vN5NcJnNjQgIAo82mt1hkPB6dRkN3gvuEXfmw96FlH6zdwwRXUxSKopaW6tHs5TCDYesFfQLTH0g0Esnm1NSvLl7Mb24mc1Db+voqurpUQmGMWPxAerq/1HzSEApZrGSFonhwCbyAxVocFfVNRcV9c+YESheqoquruLXVu6v4BPDd5cuDKvqtveAoIIx3GRtLmtq8Wu9GDBZHzVSp8oYto14RE0On0d4rLt4yZ46AJUbQFa1afgT6GuAwgsGFvnIgfDcuKru6Kru66DRaTHDwipiYEK+ShlFgcziO1tcPKmC19oAbCkE0ANBYcDmdhstlOsVt4VIAkC2Ey4mqNyFKAicEABkIjZVIRl+vNWboXMgXIOxGmNvHEBr1LFWUz0dnHkzN0Dw0ngVEbIIgBhdegGwhABpBzA4NPVFf7+kRksxTq3vN5n+fP3/v7NljStWeOKb6MT0ubhjaRtIL1WoU/gJOG2hMAYuVHRZ2chzbKpZ2sOXghcPUOmIOKux9oHMAGpjBcpp2WXQ0ju1G1F1jvmjAIQ1h1dtI+Q3oHERvQc37kGSg9SDCbxnarQIAjSDchUfnD2L2drDETpfLX4SZTNp0vwlKQu0OAGg7hMg70fwtuEqwhttlXB8f//rZsyNvobGCYe0drpw/cKiEwoezsqq6u+t6ewFEBgWt9NmwzQM2nd6fG5KpVBYP0YLJUipL29sP1tYGsEH03qqqyKAg8YQlo7uAQzU13vuRtl4wgyGbV9PdIWDVyzwa6orYbC8bI+PxIoOD6wbXUXixNCqKSaO9U1R0Z8qDIewrG7q8cDTvgU0H5Rr0FEE2dgdlCA6ns7K7u6q7WyUURonFMh5PxGYTgFIoHKaW1OVylXd2fnf58qDsHocJcA2qC+LIz/c4grl8dxkJQYNiMYLngD4QOaARxIS3B19xFAB4Kn8CBQCwJxUxDyLh5wAZGr1h4CPZfFx6FeY2zHtvnAuQZOKGgX6rc0JCTtTXgykYmj20OjZ2X3X162fPLouOTg0J6X+49JjNLDqdVL3pNZuLW1vlfH5y4HRK/TEtDeHIcEIhSkD7YTKpd2F4eH5z8xhy7XQXIYh1xw3IfQtjE/jDWl+7gQz6C/mSW4UXGC4L2o9g/vvDHTI5CKJR/zn0lxB1DwBE34d9c5H0NNoOIuU3aNoNm953qrqpBXQOWbcw2u6+8lz01UJbirZDmPUYdBfRXTR8ug0Z0B5ZhIU0hJMFnSBmSaW+u6v7IkYs7k8ZDQ8KChEI2gZ3SCAI4vbk5HeKioI5HN/t3zywO50nGxrIev9hppnt9k9LSx9IT5+I79R9NtuX5eVVQxvsWXvJVMaSjm6visA5oaFD75IMpXJ4QwggNyJCzOV+eO7c5tRUtyHhhcHSBWEsgpPdaZBXWY16BRfQpNd7bgMLWKx1cXGJMpmXs66zWMo7O4taWlqHNruw9njW8wBwsRXHzOybUqIGTWMN1LCTuVT+etMHGK7KrU0zFFMzjM2o/hcsHZjzokf5BAAgOBXGRnCV4FytCgSJgs9Xi0SNtl4vjxAAQRBrNJoUheLA5cvf19QkymQMGq1Jr+80Gu1Op4DFstjtDpcrVaE4WFPTqNMN1W8KLNepIQQQvhENX5GGkM9i5UZEjFIHGS4HGr6EbC4sne5YDUcBS9cIhtBmAEMQLRbfOitDkPcyClkQp3v9tUwNghiU/wUZ/+uWYhJEY9ZPcWIzes9BsQiiBOjKh/aOBwDdJQjjx3YtGgtxj6Ls/6HrFBSfQbkG3YVD+/F6MV+truvtvTR8uiYZGr1WSe5PGOnOh9OaqYzcQ3bfdBhhM5CPFR6TeXdq6gfnzvWazcuio/39Tdf09u6uqAgVCDqNRr3VuiI6ephoaqvB8NXFi7cmJQX2GVHR1fXfS5cMPjtn2XrBCrY7nRc7O738G587gkky2QEWy/epPEiWyxk02qelpVszMoQsFggGeCoEzwHBAD8K2jI4rRDEuMOMAcVgtf6ntFTM5SZIpXwWy+50tvX1Nev12mGyOay9Xn/aJdYQIasv0n/brOXR0ZMQx3bDVfkNjXYchyIXc9/BrmikPj8oWQYAwYA0B/yIAK4lXals1Hb7ricB1CLR/Wlp7X19Vd3dLiBbpSKVEDqNRi6TKWAyCYJYYrf/99Kl18+eXaPRxAlpcFjACvd5tqthuibLjIx6I5p29defLYyI8AzjDEdfPZgidOejr8H9dYkphN13HjafxSKfU4TdsEDGvHf2bIFyERZ+DGP91eaABQpBLFgSaH40MJL8K8AJSSboXAQl+S2/1V4YKHUaPXGPoP4ziBLADIJyNejcEQvqCYK4OTHRW4zKi8n1CMcEh8EY8B0rXkfefXPkEg6DAVsvqrej9UD/TAmX+1BmZrNe/9qZM0fr6jyjbS0GQ35z85cXL3518eIajWZTUtL9aWm1vb0nR5IqLuvoeL+4WB+IJFKb01nW0fFucfHHJSUDpsvag1oPoURrL5jBFzs7VUKhZ7hYLRL5/PtijuTX9jNLKp0bFvbv8+fd/y3RW9y3nygezXvQeQqGCaw/6zGZ8hobv7t8+XBtbXlHx3BWEPBSeHC6XEc6nEvi/KbFRQYHL4wIpHUZgeEM4QnIFoItgyAGvedh7vTef435ISIDuaGTolAw6SwQdDj93qIKPn9BePjC8PAkuZxGEDSCUPD5wiuPVg6DcXty8vq4uK8vXbxc/gWadgdwef1cvx6hMA7MYHSdJd0dOkGsj4v7gNTVdJhQ/zmi7/V9oL4SwamAE+3H3ftbTBGMPp5HGonkzpQUq8Oht1r5VScEuNJ8MmRpwFRDr56QxVj+3aBmYwQduf+BqRXAcIaw8xRClo35cmwZou91h0PlC5D5j9EcxGEwHkxP31ddfb6tzXcEmyUebY3wpJMklzP7g5OdeQCNXfdupiD2xIV3EZQE/aDdGh6TeU9qapNeX9Le/m5xMY/JDOZwtGaz1eGIEYtJ1RtSko3DYNyRnPx2YWG4SBQxbIfeeq32veLiB0cUfPCPw+XaX1VV2NpqG/qfb+lyt5InGO7EXTrnTFO5V852uv94b3ZY2ImGBn+NijxZEB7OpNPfKSrKjYhIlstFbAYABKdBEAdtiT+vYgqw9g50TwOKWltJ9Qafcxk02o3x8ZMqEctVwtQGuHxIYXScQNY/AUA2F515sHZ510f5eyqOFzadnqxQFJP5MqRQorEBvDG7dDFBgluFlz7Xxm1lnJdZA1+GeP0aQgChy9FxvD/uFy0WL42KOlhTA2svDJfJVBofR+krEX4L2DIwBO6CVobI3VmCxN4HghYtU92RksKg0Rg0Go/JhK31qloJThw0NsRD9DA5oe7EE1ESqrb5PrAzDym/Gs8V+3WhCMYgT3RYmHT6hvj4DfHxBqvV4nCYbDaywozHZMLlMpl7dB2/Oi0QNE6YXMi4GQgJWrpgasHy73FozVwX55T61w6+Bt35gNMz9EIQhFokUotEazSaFr1eb7VyGIwIkWhoCFTEZm9MSPi8rOzukVpIdplMH5eUbJkzZxz7hT0m086LFxu0fuR5bTq4nDC3gRtGxkVbDAadxTLLQ8xTyGINUynBptNzwsKOjE61J1uliggKOt3Y+FZ9fYpCsTImhkGjgSkEnQ+zD/mnqcHa059saXc6j9bV9WuOe0FKzo42FhUoaCwwRTB3eG/12Q3QXYIkEwCkc9H4FRh838/AgDJPrS4mKyhYEjgtqN6O5GfdXYNGj7EukkcsCI75qtnxy56zwKgV4EbHdW0IJVlo3uM5cENkZLfJVFxJyiN1+9hysPXCYXY3w5RkuQeZokENDtuPpEj4G1N/M0gxz9SEkCWB/gEmnuBk6Hx5hOY2WHshShjPOa+uYkTAYgkAeCVDikTgdofHhr5WqL1W2hEBAKQ83oC71pkHaQ4kmUj5tUixOKWNc661FQwBrFqfu8UEMGL2RKxYvFqj+eDcuR/MmhU/bPJOo073XnHxXampo5UpABxO59nm5oM1NcPlkZHSWaYWcMPIuOjpxsbssDBPo50bGTm8euQCtbqwpWWU8dsQPv+mWbPMdvvuioptBQULIyLiJBIawWPZ+2iAw+XqNpksJlOn0dhqMDTr9W0Gg8PlYtJoKqEwLTR0TkhIYHuX+8AjWeZYfb1aJArz9XskCGJDXNwwvvIEwlPB1OxtCDtPQZxGNnKBdC7yHwNvMgQgQwWCGAHzMpkvQwai7H0Y5V1q6QCNBWYQ+uogiJqnUBe3NJY0n/Pt714F17UhlGbjwh/cr7vOou0QQpffNCsDLfuL4csQupzoyvehBeNhCOk02lJu5UKxlPD6yzfUjE0Y8BqBHw1LF7SlV2qZr9B5CrK5gb3VrhZBtNzVuiI6+kAgVFoIgghIh7/5avXAY7czz92patbPAOSy+s63trpYEq8tpbGSLJcHcziflZY26HRLo6KGyeBt1uu35efnRkbODgkZvr2U1eEo6+jw2qf0jU0HrgqmFgCw9upo4oquLk8lBCGLNWIeLJvBWBkTs7O8fPhpnnAYjNuSkqq6u880Ne2tqoLLaXWoWU0nbA6HiM0WsdkSLjdUIJgTEhIqEDBoNIvD0aDVHq2ry29u3pyaOpE9Opyw6cAMBtBpNOY3Nz+SleX58YqYGAmXa7bbNRLJyP0+Jwhym9CrbL/jxIDQf1ASaMyrLNAcPQsUvMvdBgBut95uGO1fRMdJwAX1RvTVIWQpAazSzNpZrvtHxxmWYl4AV3hdG0JhPMwdsHaj7QjyfwpeOKxdNEnmD6TdHG7zKcvgNEVtGVr2gS2Fap33eegcuBxw2mh01n1z5kR8fwp9Qxq1Gy67BXOnFwQN2a/j8HqsOjmoCVT/M/3agR8FQ21GaBLBYHxXUzPIjLUfBS9sUHPHYaETxKbkZADfXb5sdTisDseA6OVYELLZg1IBO08i6Zn+d3I+P1mhuNAsgaV79GvzSZhQ+FBm5hfl5TvLy29NShrm64neav22svK76upMlSpLpZJwuW7D6XLi0j+cs37eqNMVtbaWtrePtprIpoNollswyNZ7sFuQHRbmaWVz1OrRNBNIVSgKW1pqRyql8EIjkZBKBbDpXNX/smgeZzMYNl/9CNl0ukYiiRWL91++/HVFxR1+YpUBwKoFUwiC5nS5vq6oGKoUqJFIRsj8mgR85st0nRmolCdokGSBOUnrjJVKQ7V9rYC7BfGQagq/WLpgaYfDBFMbqQMeKxZHSpQX7KpRt4kaFde1ISRokGSguwC1H2LOC6Bz0LgLAGFuWaMWsZ3NbsEYlwNNu2FsQMQmv+0omSLYdHMj0yK4TpjbYBycvGDpBEG/JoolxkHU3eirQ94WLPtuYLAzDym/nro1+YIfhb5ayDAvLEzG4xW0tDTqdC5AKRDMbvr4dJu6xZAD+Q1DNRLVIpGcxzvf3k6KbCkFguUxMeTjlczVNtls312+XNjaOlYfcZ6nDXDZ0V0A6VzPCTdERpaWil3WIdV4Y4fHZG5OTf3o/PlvKio2xI9Q1mJzOk81Np5qbKTTaAIWi8tgMBw6WtGHba2JFoxaQ9J9Lh1E8eg4DpejxWCoNvAfSxnIdCCA2aPrPEwQxKakpO3FxV3jk5pj8Am70XdD7MFXWRET807+6YKyvZlJa8ZzoRG5Ehc9cPkyi07PHqzgyKLTR6nzPrH4NITd+ZC+PfBWNs9tliYegh+5jHfwYyyBqQ3ckLEYwk6wxGg7CE5I/3bmPbMz05UBrqC4fssnSCRZaNnvVlHhR7pVQ00tCFm8lHl+rloNhxk1H8Jlg+bh4ZoyM4VC9C2JioKuHMHJMDYMagxkqJmW7mA/ib9Ez/kByX+nDd2FXs/0qUcQ1d/4d5ZMtjk19amFC59euHBLnDSNq31w88e5wl5p9SusnrNqkcid2W/Txvd9t2XOnB8kJPxs7txHsrJ+uXDhw1lZbifjClwm88ZZs3w2mh8GEZs96CHYewG8CM8aagAKPj8hRIlAGEIAdIK4MyWlTqsdlSgdAMDhdGrN5laDobG7td4WZNE3AEB3/mjlcwHYtGBJwJK4Ok7u6+AsiYrwzMeJFouD/PXeGwKfxbo7NXWcmSMEHTQmHCMFcgF6X80tnLMHOxldI0Z9x4elE2xpQUtLZVfXrYmJXvuRSoFgtOoTE0pQMloODBrpqwPBGBT1iXsEs34+SesJWx+v/TpCwIalA4KY0SYAO4wgAOlcdBeMUMZ91VzvhlCajYrXoFwJZhAZWwMAUwsUi6GvXBUbG975GTghCL91+OwppYC/OdzBptOhLYckG3QuPCOr0zQu2g+NifCbUf8f99vGryDJAHNqur/6RRjnWziqpxjiOQyuYsX61x/b/PZz+NvWcNMTCxY8nJX1lLx4s/lN8sEtYrNDBQK+/62j5TExgxoKukaIHK7VaAalaOrKfZZdLtakEoEr/GDR6YsjI4+NY5eUTHsmvYSus+g8OaqjHGYQdNBY4CpLGsptLFlG2KDn0Vib30q43EezstbFxY3efA4wRLLSN41fyaI3LOXV7SwvdwZiG9gbS+cxnfh4ff1dqalDPVT1sIUuk0fEbbAbUP/ZwEjXWUizB83hhSN4yBbPBMGWQzp3mWM/mCKwxKP1CM2dYMsQlAirVXuXAAAgAElEQVSCThnCq0OSBYfJXSLKCXUnhZqaIc6Aw0TXV2wivhFFrvOXFUIQxCyZ7NbExB9phEpXK0A+7xLBCx/UMm26G0IAkXeg7lP360v/dDeqvqYQJbl3qrzoPTeQFCCIQfabyLuXsOmUAgGv8VNYtaOM/0i53Iz+x7q2lIyi+2OWVJropX+oq/BZPxMakhzvqvbZWHh8JCsUequ13l+1gz/sejAFMDbBboBNh776UX0rt2nJ70MmfsIBc8L6WcmefycsOn2sbjQAOo2WExb2s7lzV8fGji29czSG0GGG0wpBdJagV8Cg7a2qCkhKlCenO62lOjyYni71pfLqM310CiDoyPw7ip4a8KG7870N4SQTeUdU/f9qJBKvZhTDYe0EWwYaGxF3uPXNJ4zr3RAKoqH5kTv/haCBF46+Glg6wQ2BMA4X/iCKWHvX7Ayf1Vc8JvOulJS7UlJSQ0JofLW7pl5bDlEi+BEwehnCCZbTnWgUi2Fqgr4K3YUw1iN841QvaAj8cNi0xFCJn57iQb2u1DchdBUKfoaec3CaochFb+kor7A0Otqd5mftGeZvVSkU3pyY6D3qT5GOzl0sNhC2gHWIJYCF4eFHx+oU2gwQxsPU7L5XRQnoLRnFUTrSEH7T4kgOUXkVe0QFB49b5pRGEPPDw5dERY3hmNEYwv4OmgzBLbGKFoNhT0BtYZfJdLRXcEdivD8R9mvFEAJQLIYofkCHpevsQD3YlKC+GQ7z8ugogiEYrUdo6XRLmgg1ICa2ScX1bggB5GwbSKDgR6LrLFgSEAwI41H3CaLuUQqF98yeLR+8dREVHPxIVtZA5RYvDKYmANCWISgRvAh4duu9DjxCgo6ozTj6A5x+EHE/nvruUT4gIEogdBe9h3vOIXiwulXGX9FxAmcfQcQdCErx7LkIAHYDDL5VZ3lM5saEBAKATefvbzVMKLx39mwfWRt63x4hAJVYmcgPZDPFOaGhvWZz5VBF7GGw68ELA0GgpxiCaIjT0FM88lE2HZhBZ5qaukymFTHed/jVdxRaHBmZPYp2oW58ehLdBah4dcDh9jCEbKfx3tmzu4zGtwsLK7u7x6C57web0/lleekSfoNY6NsPFrJY4wn5ThzyXHQXAIDLiZ7CKTaErGBEb1FG3JCkUI7WI7QMEb6ZMK7B591Ewo9EZ567Xl4YB66K1EKLCAp6JCuruqeHlJhi0GjxMtmgqA1PDWMj7EZY2sGPAi8cfQ2w9qD4GeS8eT0YQgBpL0N9M7rzrxWV1KGIEmmGS8CigRG7AaZmbwvE4GP+BziwCNlvoPOU+1nQT91/UPcJlu33eYUYsXhJVNShOh0cg5IbyX492WFhab56LAAu6Cv8apQLY5eLdJc6lFffG5aEThBrNJpvq6pisrNHK7dt04MhBFcFXQXC1oMlhd0ImxbMYfe0bLoqq+hoS92DGRlDayQC0lpvXVyc3eUqamkZeepQj7D5Gxgb4TCTBhvwaCXNEMBuYNHp986eXd7ZebSurs1gUPD56+PjleOqbTDZ7R+XlMhYtCyOX4OaPLoE2slDnI6KVwFAXwmWdPg+MJPB3LcBrOJ2Vp3VjUpbof9rzcQz0wxhFBo+BzcMAJSrwQtzi6gBdBptOOUObhiMjaj/FMI4EHTww9FTiMavULUNyjUwtYA3iaK6EwTBgHwh5Auneh3+CUoivLYJe88jKMlH2EQ2DzdWQBANuwE1Hwz6yNiArlNwOfwFWxZHRYkKq74xOMnSQgaNlhMWtiA8fLiWhKYW0HleKaMDcFVSR1uGcsnZpqZhf7wB5oaFmez2821+RcU0EomMxzvZ0LBolGrOdj2YQnDDYGp1h5vYElh7hzeEF3pM+7oEd81OFQ9xdIRstjwQymEEQdwYH2+x28s6RhKQZPDduiQk1h5oyzDrZ6j9GNbuK4awE+LZwID7SBBEklyeJJe7XK6S9vaPS0pCBYJwkYjPYnEZDAGLFSIQsEcK8Lb39X1aWpokly8L6iWMvh/NDBptUpW1R4MkA91FANB+9NopCw4SyJbxar4dscOrywGbbtJq0maaIYxE7wVIsgGM7aHPCYG1F5dedatI8yLQV4/6L6DeiKInwVNNgmQfBYKSaC2HBo30nPOWz+iH3LUNSoa2bJAgk7ERNj16zkHityQ3HaWJ4u7q+AgmOygiKGjE8jXoLkHkv7aPEwpd+YqE6Jqens5RVNGtiInJjYiwO529ZvMwSTHr4+K2FRRoJJJRuTikRyiKH7hRmUFu+TQ/nG5qOtnJ3pIQKve17xUdHBwoJTMaQdySmGi22y8PXxbi5RF2nYYkAzQW2BJYusGPBjx8CKbAS6WdIIjZISHxUmltb2+TXt+i1xttNr3VarLZ7ktL86dLZ7bbC1paTjY0rNFoUhUKtB7wp8aSqVSOXtxukuCqQNBgbETLtwi/dapXM0B2sKOMR9QNX95i7QYzuN9RmWhmwB6hJ/wouBzu0OiYIGjYUIq1BVAsBgB+BPQV6DiGedsBXA9x0WlBUBLNcGnQSE+RX0NIwhKDKUCfx4ausQH8CHSe8HuI0wprD4evTBa54qXSka0gyEwZ/5LrXCVMLWwG4/bk5BGzS3IjInIjIgAwaLTbk5P5/p+tIjZ7XVzcF2VlI+9+uZxwmMHggRM64Bn4N4QGq/XrioqC5uYHZdVyoe8wSUDiov0waLRNSUliX3mYHpM8DKHDjJ7zkOQAAEvitnkuJ2y97v6XflITOQxGgky2PDp6Q3z87cnJD6anpyuV7xcXdwz+guIC2vv6vq2q+ufp0+19ffenpaWSYU8/wTo6jZYbObH5/eNEnI6u02g7BOWqqV7KADSO4s5o/gjKA8YmzxYfE83M8wiB8RhCYJBKFlcJqxaqtWCJkfJr6CsDszyK4eFHEZZ22PtAv1Lj2F2ImPtHOCooGdrSgXajxkZE3I6OE35LREzN4IaCo4Clc7TSaPqK4TxCbiip1ang8++ZPfuzsjKf8tNBbHa6UrnY43kqYLE2xMd/euHC0MkkSXL55Z6eneXldyQnD+ef2Q1g8L1rhFgimNv735W0t5Pq1Z1GY5NOl65UPpCezrm032c5KZ0gvEQJrh4uk7kpKWl7UZHd304qgw/HFUPYUwxhHJhCAGBJ3PlQ1h4wRe6IN4MP26gyMhaGh3MZjPeLi+OkUpVQSPYcbtbrhSxWakjIj7OzB4XELZ3g+DCEs6TSa84dJJGko+L/IIyfNFnRUcEJ4do67pm96pMLF5r1et9z9JVjbgx+Fcwwj5AXBhpzkLzC+CA7aJPRhpj7Meelq18axcgQdCdfQ+ivOIVOG3Tl3imjQwlKQe/5gbfGRkTeiY5+j9DlVpT2nMBTgy2HpXO0CxveI+Qo+2sZI4KCHsrImB8e7rnrxmEwbk1K+p/585dERXnZs0SZbHhJ63VxcVaH48Dly8Mtj9wg9IIZBKvbIzzd1HS4tpbLZJJyOT/JyVkZE8OBCTS2z5h/olw+3I7peFEJhXelpvo9s6eT13sOkiuRAJbYrd3j6a6NPkcfyFAqf5qTo+Dz2/v6uk2mRRERTy1c+PjcuUujogYtxmH2pxadMSUtJkaDOB1th6FaO9XrGAwnBOY2EZu9NSNjWXR0v3RtEJt9Z0rKythYLp2A4TJfmviDhISAf+XyyQzzCAk6eOoAGEIA6X+FcnUAzkMxFpzBafSaDyDLBgBtKfhRYIyUshG6DGV/RtLTAGDTAU5IMuG0o68O/Eg078W5Z7HWo5aANIQ0NsxjMYQjeIQDWR5CNnt1bOzq2NhOo7FBq2XS6eFBQUH+2xRsiI/nMBgnGhp8fkojiNuTk/9VWBgqEMz21xSQ3CD04kpo9HRT06nGxvvT0rxbJVh7/aUqjKHmYYzEisWPZmefqK8vaWvTW62DPqOx4XTAZScsnbD3kc1ewkSi1KhQedcvWRlvdZbkHbdJ3YJPo6/aBgBwGIz5av8KiyS6ixDEDnUegtjswAaKAwm5Ea6cGNnVccMJIdtQ0AjihsjI+Wp1rVbLotGUQiG5d7CAVW00aJkLl5OiDW8XFEyUYN4VZphHCGDhJyPsKo2SiNt8fMummGBsKS+h4yjO/w4gNwhHoUEfugK9F9xun7GR1LCHIhdthwGg+RvvskJjE7hhYMu8PcKqt1D5ho/zGxth00IY53cBdC7obAwRWpPxeOlKZYpCMYwVBEAQxMrY2NuTk4V+pnEYjDtSUvZXV7ca/Dz6bb49QqdNt7eqqqC5+YdDrSBIQ+gjDzaEz4/00409IPCZzFWxsT+fPz87bEi3PJYYugqavlQiT5mvDn80K+tHGRnzohJiudZwlindcepHaUluB4LOgcsO13iainjTV+8OverKIRoipACkK5XXhL6oTwQxSPifKdaUGQo3BKaBjGgmnR4nkUR66DMQLd/y1avItxwG487UVOYoOpxcDTPPEEpzqAzP6YuLKXYu2YeaD9BxAt2FkKSPfAyNjbANaPgCuOLtAYi43V1W0bQb9r5BVspEhkaHGML6L9B+zMf5m7+Bcs0Iyhce0dHxkSSX/zgrS+InnUTO422Ij/+opKRR50vCxldotM5geat7do/J+GBGhm9LbOslu+554cM+TQB0glgfF3dHSkqsWMxnMsODgmLF4pS0+9Yb3vgF48PHl21ardGE9KfLCjXoOIH2o5yIH9ySmOguh2Dw3XqbpCbUuDFcRtNuWLrQVzfU7xey2fNGdCWnEgIZ/zvRsixjhhMCS/twE5r3eIZz5Tzemjj/XzQDwQSGRsvLyz/88MPz58+Hh4e/8Yavr9IUFOOALUfyc7jwAuz60SaFR2xC+V8R/1MYG8APBwD1TTj7YzTtBkFDUDL6agfCgMZGyBbA2gtD9cAZnFZ0nvBuX0zS9A2iNo+wADJfxpc/MXq4TOZtSUnvFBY6fGmGJchkDBptx4UL89XqLJVqULKrTe+pWVza0XGivt5st68QdSfFZcJfIqu1d+gmAofB8BuAnQASZbLBcqZzEM6wX/gLxIO/AAliUfIHqG8GU8gD5oeHH66tBUMAYyO0ZeAohmssMyJ2A+hc1H4IfqS7vbsHazSaUeUVU3jCj/QtoE9iboOxyV3kdoVMpbKis/NSV5e/g66SCfQIq6urbTabWq0+ffr0xF2FYiYScx+0peg6O9oot3IVes/D3DoQGqWxEXkXzjwM1XoIotxtiWo/gqnlSrLMYI+w6ww4Sh9/vQ4T2o+MvFvMVQ4qBh8vKqFwsX99To1E8kB6eqfR+M/Tpw9cvqy1WNwG84pH2GE0flpaerSubll09GM5OUkiYrhSQl+h0bTQ0HHriwYG5RrTvC+9B4Ua9J5H7APku/lqNY/JBEOAjhNgywbp448DuwEhy+ByQeTdXWSWVJosv5ayMacL4gwYLsPix6p1HId84dAKwlUazcSFoCfwu8yGDRs2bNjw8ccfnzlzZuKuQjETobGQ9BQu/cOvmIv3fDbUN6H2ExgbIc1xD8b8EBWvImw9mva4DWHxs+CFo68OPDWc9kGGsO0wwm9G9XaY28FRAIC5FR15ACBOG1n/gqv0zk0dLzlhYcfr6/3VDkq53I0JCTqL5URDw7aCApPNxqDRmFBx2tpBdDmczgyl8rakJLcwG2vYmvorHWj7IQhicuKiY0aogTC+Xx+DzWAsiYraUyuA7hJitqDu00GKCmPFbgBbAs1WMAbVvUm5XB/a6xSjgcaEPBfth31HdEhDOAQpl5seGlowGjW+sUM59RTTE81DY1ODi96CwifBUSDiyt+eJANzXkDIMmjL0FcLSxdsOnBD0HUaXCXshkGGsP0wEn6BjuPQV7oNYeWbqP4XTK1Ie3nkq3NCYQ7MHzCHwUgNCSloHtJ/3AMRm71Wo1mr0QCwOhz2i38zRf3ISTBlXO6g8gymyL8hdMGu9xJgi5dKffYemnrUGyFO8zR1WSpVoUDQagoFPxpMEUyt46weBplzK/BKu+UzmT77EVKMltBlaD3o2xC2H3MLeA1hSXT0+fZhNxfHy1X9ImtqaoqKioaO33zzzWOSX6qurl65ciX9SsglPj7++++/9zmzr68vUMJOFNMRo9Fos9nctwozDv7yJIfCy+JbOqGvMs36g7P/qMifwWhl0EMY2sO2llMsUbI59XWmMM3aZybsXJ65o4+c6bTwO08beelsTpSj84KNOwcAr/5LS8Z7Tm64iyUZcRkMQszQ55tHv9phSQoKyqutHeVkwmnmwc5gcgHYbDbPj2gEn2Zus3tVKZBH2XVMOtdqcwCOK5OJ+QqFIUA/wtXg+yFAj/T6LSxNWPQhwpxWK4MT5tLVOOjjlJxm2fusThY8/pfiJJL1Gg3H6bwW/jemKTThPE7Fm8Yh/4GE3cDTXuxjJ/j8myKAFLG4srPTYDCM3hBwOBzGSF9ZrsoQVlVVffLJJ0PHN27cOCZzFR0d/dJLL2VmZpJv2Ww2z4+er8vlEoxLPJ7i+oBGo7HZbPr4tqmit6D0RZ4sHqzBt5A0AVWNDHMFpBn84FCk/ZYFwMWFTSfgc0HQ0XwUwbP5wUpIkhjWerZAgL5aWNq44ctGq4UojkZTR6BuXYFAoJHLR9ub19wDVhDLZ5U6VwrduSEfueCwwNYHltjzo5ywsKhro7vCKB8Cs2YtX8uLP1BdDWEUdJX08SkAOEygs1jsAT84mMPZkpk52qYfFP7gz8OpXgGt153HZOlwa9+05kGaKRD5/dayctasFoNBIBAE1iO6KkO4cuXKlStXXv0iaDSaUCgUX7NFqRTXBzFbUPWmj21FfiT66tB7DvLcgUGCDlYwrN1gy1H1FmIfBABhHBp2AkDjfxG2YQyKwJzQqyyf8OKGyMh/nz8/8jxguF5LZF2z0zIoGbIzD11nIM3xrJ0QsFhja6J7bbAwPNxos52w9qDVd4RpZOyGksJuXfGO/oFEufwvR44EZn0znNpQHN4ESTZav0NfHVJ+A4JAywGAjoI/+zxi+fLlWVlZOROwUT2BMW673a7X6/v6+hwOR09PD5PJpJw5iqlEGI+bqn2Ms2VwWtF+HHE/8R63dMJuRMdJLNgBAMI4t65s4y4k/HwMlw5csgyJRiKJDA6u6+0FAIcZFa8i5oe+9SRtWrD8GEI6B4JoaMsHkm9dTnSeBj8Crd/3fy0ggFsSE3nMaVl9uzImZpZUerzupSYG+sZRXm8zHNlVsem2DOGVFhw0u71n+C4ZFKMkaB1cTpidCN6AYCd6ewAC7HQQNPj6Hy4oKGhqasrKyoqfAJdpAg3hmTNn7r33XvJ1VlbW4sWLt2/fPnGXo6AYGX++ET8SuosIThk0yJbB3ImWfYi+xy3kJoyDvgpdZ9BThNAVY7guSwyHCQ4z6IHoYG5sQsWrS6Oeea+4GAAs7XA5UPcpND8aWugGq86ncLaboFR0FwwYQm0J2FKE3wIMaNMvjY6+diXERkFEUNBmpQGzQy47Qr8sL/dWbhseuwEE8avnnlNf01XzM4JXX321srISwESkiUygIVywYEF1ta8v4BQU1xr8SMAF+uCUSLYM53+N3hKsynOPMEVg8HF4HRZ86D15ROS5qNqGWY+73556ALMeH6faX8dRVG+PSns5SS4v6+iAuQNBySBoaDmAsA3ek21acDR+TyWKR9PXsBvAEABARx6UKwCCTOdj0mgbZs2aM4kV9BMFLxx9DTHKxEezsy92drb19dkdDofL1dbX16rX+5An6MduGH/dBcX0gUr/paAA+FE+nMWozeirx/wPB1o4AVCuRtgGqNaP+RLZr2P/QoTd6O4Y3LQbdC6yXxvParsLYOmATbcuLq6mt9dEljaKElH1FsLWez+4h9kjBEAwIJoFbSmkc2HphNMCgdtqshmMe1JTw4OGa2E/beCHw9gAgMdkenWKOFxbe3iYFFzKEM4MZp7WKAXFUFRrELHJezBiExKfGGQFAcx/38fM0SCMQ9IvUfg/AGDphKMP9Z/BOZYwXT/dBSBoMFwWsFirYmJgaQdbAaYIDAFMQ+oLbbrhDCEAUSJ0l3hMJttc6zbSAJfB2HzdWEEAPLchHMriqKhY/41+gl06Jo0yhNc/lEdIQQGE3TgZV9E8hAt/hMsBbRnE6SAYaP4W6h+M8SwudBdBvhCGaojT0kJDS5xVlzm3AoBQA30VuGGDJtv0w+0RAhDEMBq/uCcpJuTC35s163rlSWw6PVYiua4qBHjh6Dzp8xMCuC0paWdZWWV3d/8gh8GQcLlzw8JSneV/neC+BxTXApQhpKCYLJhB4IZBWw5tGYKSIJ2L2n+P2RDqq8AKhnQu9NUACEvbjcKaN9hBVocDwji0fgfF4oHJNj0YvBHKPGjMNWECleEU2g+HZ/49nHdNFAsGGF44+hoAoPhp8KMQ96jnh6T7W9TaWtPTQ6fR5oaFKa/kiKKgdQxFMhTTFsoQUlBMIpIsdOdDWwZREsJvQcHPxnyG7kJIMiCIRU8RAPReEEvjlkdHf1tVBV44LF1wGEG/okcxYlwUWBgRkWW9AeX/DywJeNeklOjVw1O7Q6OtB2HthuYhr85EBEFkKJU+Gs2bW0EEItGX4tqG+rJDQTGJSLPQdRa6cgQlgiUGwYC1d2xn6C6AJBPCWHeXKG0pglJywsI0EgkIOgRRg1pk2LTDx0Wzw8JWREcjbB06TyFk6Th+oOkBLxzGRjit0JWDGYSmb0Z1lNMK23RNlsnLy/vd73431auYNlCGkIJiEpFmuz3CoCQA4CrHLMbdUwhxBgQxZGgUvRcQnEIQxMaEBCGbDUk2Ok8CVyoC/FfTcxiMmxMS1sfFEQQBYTyEGoQuG//PdY3DFILGQPtRCGKR+CQq/jmqo8xtboH1aQiNRhtRYJOiH+p/ioJiEglOQ28JaEy3xCLZp9CzYa+xEcc3gWAg5oduXTdPqrej5xykOWAFwdwKpwUdx6B5CICAxbo/Le2jEnpX2yFoy92G1tINbqjXObhM5sLw8EyViuv5oFz8NQQxgf95rx144Wj8CtIsRNyGkt9hBwOKG7D84HCH6KshiAJqJmmFo6a2ttbpdPa/jYiIGGrzkpKSlEMjvRR+oAwhBcUkwuBBFA8axx1wGyq91nUWdC6Sn8XJeyDJgnjOlQ9cyH8cbQex8ijYUgDgqVHxBug8SN29vCVc7gNpaYeca4ou/NdBGkJrl9siXkHAYt07e3bIULFDUUKAf9JrDV44Gnch+VnQWLixEnYjvpDCZQfh/xmoK4co8Ro0hL///e/7+voA9PT0fPfdd42NjWFD5Df37dv3xhtv+GvjQ+EFZQgpKCYXSRZcV9rqDjWE+kuQZCF0JdL/grx7seasWzWt6Cl0ncWqU2SveQAQxODC75H1qufRfBZrw7zNi1pfOBbkKNIxCGsnOHJSYpMAEuXyFTExkmuzp+BEwwtH8x5I3C1uwOCBq4LhMoTxfg9xO9Z7vMfrdlxt1/sxEXkH+FGeA++++y4Am822du3aZ599dqgVpBgrlCGkoJhcYh+A80pfQM6QPULdRcgXAUD0vbi8HU17EH4zGv+L5j1YeXzACgIQxEJbiog7hlyACJKlbhC3bUi9CW0HsXwXCJrZbne4XPzpKZwdGPjhoDERPGdgRDQLukvDGUJduQ/JOgBOG6yTpbvtp3jD5XJt3bpVIpG88MILk7SS6xrKEFJQTC6yBQOvuaHoKRz0qe4SYre6X4euROcJhN+Mln2I3QrWYOVr5RrI5oHmy7aJ09BTjKBECGLJJynVSx28cAQlDxI9Jw3hMFoKZHLvUKK3BH55Y+QPf/hDeXn54cOHaVS9fyCY8X8eFBRTyNDQqO4SRLPcr+ULUfQ0AHQcQ+wD3seqb/J7WnEaLv4d0iwI4wK42OlNyHLvShJRArry/c63aWHTuXOarjE+/fTTDz74IC8vz18Dc4qxQhlCCoqpw8sQmtsAYqCtoDQH2gswNsLYMLY+FeI09BRCVzFgUyl4Yd5yAcJ41H7kd762HKKEa7CIUKvV3nfffevWrfvf//1fcuSZZ54JDh7SbppiLFCGkIJi6uAMNoS6S4OyN+lcBKfi4l8hm++lhDICXBUIBtoPI+rugC31+kOUAO1Fv5+6U0avOTgczocffug5wmKxhk5bsGBBaKh35QyFPyhDSEExdbCC4bTCYXJ3N/SMi5LIc1H5BpJ/NeYzi+eg9XukPh+QZV6fcJVwWmHtBstX9wmtnw3CqYbNZm/aNHL/E5VKpVKpJmE91weUIaSgmFK4oTC1uIvZ9UMN4UKU/wUhi30eOhziNLTsHy4lkgKAKB66S5DN9/GRrhyxP5r0BY2HTz755IMPPvAcyc3Nfe6556ZqPdMRyhBSUEwpZHSUNIS6S4jNHfSpfCHYUkiyxnza4DlgBk1fhbBJQpQA3UXfhlBbhqDpITKwbt26BQsWeI5QSTRjhUq9paCYUvrzZex96DnnrfDCluPmJtB8bAKNgDwXkXcGZoXXMaJZgzTK+7H2wtIBgWbSFzQeRCJRxGBkMhkAh8Oh1Wr7p3344YdvvfXW1VzIYrGQijajpKKi4r777hvHhWw22+rVq63WcbWtHheUIaSgmFJI3W1zK75bAuVKH3mepLLMWOFHIOfNq1/ddQ4vHKYmH+M9xQiePd07EZaXlyclDQjsCQQCkWjYFs0j8fbbbz/00EOjn6/T6U6cODG+aymVSmISW0NToVEKiimFq0RHHi7+AzFbkPLbqV7NDIOr8q7jJOkphDh90lczBoxG45kzZywWy7x584KC3A1GKisrL1y4wGKxMjMzQ0NDL168aLPZCgoKAMyePXvevHkOhwOAXq9vaGiIjIw8ePBgcHBwbm6u0+k8fPiww+FYtmwZqd/tcDgKCgoaGhrUanVOTg5BEEajsaGhobu7u6CggMPhJCcnA+jt7T179iydTl+wYAGH4xYr6O3tPXnypFgsZvpSMqqpqenu7u5/GxERIWyGFqQAACAASURBVJfLveYwGIzHHntsMrtnUIaQgmJK4Spx/rfIfg2ah6d6KTOPoYIGJN1F13JTqrKyso0bN6anp3O53EceeWT37t3Jycnvvffe73//+5tuusloNL7zzjs7d+7ctWtXX1/ftm3bALzyyitvvPGGXq//29/+lp+f/8ADD0RGRsbExBw6dOiuu+4qLy8XCoVlZWWRkZFffPEFgKeeeqq6ulqtVhcUFEil0q+//rqjo+PEiRNtbW3btm1TKpXJycmHDx/+4Q9/uHTpUr1e/9hjjx06dEihUFRVVS1dujQ3N9dut3savH5279597NgxAC6X67///e///d///ehH3klJFoslKyvLaDRyJ0sXlzKEFBRTimodln6L0JVTvY4ZiT9D2FOExCf8HfR2YWG1r0f8BLE1I0MjGVTg8dOf/vTpp59+8MEHAbz99tu//vWvv/zyy88+++zPf/7z7bff3j/t6aefPnjwoM99webm5kOHDkVFRZ05c2bu3Lm7d+9ev369wWBQKBStra2hoaGvvPIKKd7mdDrT09OPHz++aNGiO++8My8vjzyhw+G4//7733vvvSVLlpDXeuWVV1555ZXnn3/+3nvvfemllwD87Gc/q6ur87r0Y4899thjjwH4zW9+09raumXL1OvVgTKEFBRTDCeEsoJTBksMh3GgjpPEbkRfLYKS/R0UzOGIJ7GDB3twhNBut584cSIhIaGyshJAR0dHYWEhgDVr1vzkJz85cuTI2rVrV69e7TMs2U9MTExUVBSAuLg4AEuXLgUgEAhCQ0ObmppCQ0MvX7788ssvl5eXWyyWhoaGqqqqRYsWeZ6hrq6uoaHh22+/3bt3L4DKykoyMefUqVM/+clPyDkbNmz45ptvfC5gx44dO3bsyMvLY7PHtQUeaChDSEFBMWMhwAmFuW1Qn6PecxAl+lYzBwBsSkry99Ek4HA4HA7HkiVLJFfcRNKpeuyxx5YsWfL1118/99xzL7744vHjx4c5Sb/5Id0+z7dky9/169c//vjjL7/8skQiuemmm4YmcFqtViaTuWLFCjKlZcWKFeRWpdPp7E9yodN9yyEdPXr0iSeeOHz48NDdwamCMoQUFBQzGK4SpuZBhrC7EJKMKVvPSLDZ7IyMDK1W2x8Fdblc5L+pqampqalPPvkkn89va2vj8/kmk2kclzCbzZWVlVu2bBEKhTqd7vTp0zfeeCMAPp9vNBrJObGxsSKRiMFgkN5k/zLS09MPHTo0b948AAcPHhx68osXL95+++07duyIj7+G1B4oQ0hBQTGDGbpN2FM0HgWDSeT111+/5ZZb8vLyoqOjq6qqGAzGO++8s27duqioqMjIyDNnzsyfP1+pVDocDqVSuX79erVa/corr4z+/BwOZ/ny5bfccssNN9ywZ88ehcIty7Bo0aJf/vKX99xzj0ajef755//1r3/dfffdt956q1wuLykpSU5Ofv7553/729+uWrWqtbXV4XCcOXNm6Ml//OMfi8XiTz755JNPPgFw1113kbuMUwtlCCkoKGYwQw1h1xnE/XiKVjMqsrKyzp8/f/DgwdbW1oyMDNIne+utt06ePNnV1fXggw+uXr2aIAgGg1FQUFBYWGg0GjkczpYtW+x2O4C0tLQ333TXmPL5/AMHDvQ3NXz//fdnzZoF4Ouvv/7qq696e3t37Nih1+vJMKxGoykvLy8rKyNlvm+88casrKyjR492d3c/+uijubm5AObMmZOfn79//36JRPLHP/6xrKzMa/F//vOfPcv8NRofqgUsFuvbb7+dzO1DgvRnp5Z58+b94x//mDt37ogz9Xq9UCgccRrF9YrRaGSz2f72HihmAgF+CJS+CLsRc150v7X3YWcobuvu3yMMDw/Py8tTq6/FxoQzildffbWysvKf//xnX18fj8cLbLk95RFSUFDMYLgqtB8beNudj+DZw2TKUASWqqqqrVu3eo6wWKz9+/dP8jIoQ0hBQTGD8QqNdp2BLGfqVjPjiI6OJkv4+5lMZbV+JtAQHj58+N///nd5eblUKt2yZcttt902cdeioKCgGA8cJUzNA2+7zkK9cepWM+Og0+lSqXSqVzGRhnDXrl2zZ89+4IEHampqtm7dSqPRbrnllom7HAUFBcWYGeoRznlp6lZDMTVMoCH829/+Rr5YsGDBmTNnvvnmG8oQUlBQXFtw5LDp4LSBxoS5HTY9hLFTvSaKyWaS+oxcuHAhNpa6vSgoKK41CHDkMLcCQN0nkM0HpmCPimJquSqPsKen59KlS0PHMzMzPZXu3nzzzerq6q+++srfeerq6rZs2dLfVVmtVn/88cdDp5lMptdee+3JJ5+8mjVTTGs+++yz1NTUhITp0TqcIuDo9fp333338ccfD+A5eSyFteGwiyXlXnjRuHC/U6/3/NTlcj3zzDN8Pj+AV6QYB6WlpampqXq9/sMPP1y0aBGplToaOBzO8MqruEpDeOHChWeffXbo+FdffUW2SAbw2Wef/eEPf/j++++HKf1RqVSPP/54SkoK+VYmk/mc3NPTs3379t///vdXs2aKac2BAwcYDEZ2dvZUL4Riaqivr//oo49+9atfBfKkiT/jXngBfXVYuocfMsfrwzfeeKOlxVeHCorJJTMzc/78+UKh8Ntvv1WpVKmpqQE8+VUZwkWLFg0v7bpr167HH3983759iYmJw0xjMpkJCQmZmZlXsxgKCgqK8RC9BdFbvHtQXIGU2aS4vpnAZJm9e/c+/PDDu3fvnj179sRdhYKCgiIA+LKCFDOECUyWeeGFF9ra2rKzswmCIAhi3bp1E3ctCgoKCgqK8XFNaI2qVCo6nU4KuQ6Dw+Fobm4ODw+fnFVRXIN0dHTweDwqc2HGYrPZ2traKOXPmUxbW5tQKOxPrhyRzZs3//GPfxx+zjVhCNva2vr6+kYz02KxXCMdjSmmBJvNRqfT+8XyKWYg1ENghkP2BB69EptSqeRyR4h7XxOGkIKCgoKCYqqgvllTUFBQUMxoKENIQUFBQTGjoQwhBQUFBcWMhjKEFBQUFBQzmmnTmNdkMm3btq2urm7evHmbNm2akuaNFJOAzWYrKSk5f/68QCDw7GHpcrl27NiRn58fExOzdetWDodDjjc0NLz77rt6vf7WW2+dN2/eFK2aIpDk5+cfOHCgq6srKSnp7rvv7s8R7e3tffvtt1taWlasWOFZl3zs2LFdu3aJxeIHHnhAqVRO0aopAkZzc/OuXbuqqqp4PN7y5cuXLFnS/9G+ffv27dsXGhq6detWiURCDvq7MUbPtPEIN2zYsHfv3ri4uOeff56SG72Oeeedd2677bZXX33V67f83HPP/elPf4qLi/v666/7+3l1dHTk5OR0dnYqlcq1a9d+9913U7FkikDS2tp6yy23dHV1hYeHb9++fcmSJTabDYDdbl+8eDH5TejRRx998803yfm7d+/euHGjWq1ubGycO3euVqud0uVTBID8/PySkpKIiAgGg7Fp06bXXnuNHH/33XcfeOCB6Ojo8+fP5+bmWq1WAHa7/YYbbigoKPC6McaGazqQl5cnlUrNZrPL5SosLAwKCjIYDFO9KIoJweFwuFyu//znPykpKf2DWq1WIBBcuHDB5XIZjcagoKDCwkKXy/Xyyy+vW7eOnPP3v/99+fLlU7FkikBit9utViv52mAwcLnc06dPu1yuL7/8Mj4+nrw99uzZExkZabfbXS7XggUL3nrrLXL+smXL/vnPf07RwikmhNdff33BggUul8vpdMbFxe3cuZN8nZqaumPHDpfLtXPnTs8bIyoqinw9JqaHR3jkyJEbbriBjJCkp6ezWKxz585N9aIoJgSfxfKFhYUikSg5ORkAl8vNzc09cuQIgKNHj65cuZKcs2rVqmPHjrmouthpDp1O72+a43A47Ha7QCAAcOTIkeXLl5O3x/LlyxsaGmpra61Wa15e3ooVK8j5K1euJG8MiusDm812+vRpstFES0tLZWUl+bsmCGLFihXk79rrxqivr6+trR3rhaaHIWxtbZXL5f1vFQpFc3PzFK6HYpLxugFCQkLIG6ClpaV/XKFQWK3Wzs7OqVkixQTwi1/8Yu3atUlJSRh8D7BYLLFY3NLS0tra6nK5FAoFOR4SEkK1TLo+qKqqio2NDQ4OvnTp0l//+lcALS0tXC63v0Nf/0PA540x1stND0PIYDAcDkf/W5vNNqIwKcX1xNAbgAwPMBgMu91ODpIvqBvjuuGPf/zj8ePH3377bfKtz4cA6Tv23wPUk+G6ITo6Oj8//9SpU2Kx+NFHHwXAZDLJYDg5wfMhcPXWYXoYwrCwsKamJvK1w+FobW1VqVRTuySKyUSlUrW0tDidTvJtU1MTmRwYFhbWHxtobGzk8/lBQUFTtkqKwPGXv/zl3//+96FDh/q9Pc+HgF6v1+v1KpVKoVAwGIz+8f4bg2K6Q6fTxWJxamrqiy+++Omnn7pcLpVKZbPZOjo6yAmeD4GhN8ZYLzc9DOH69euPHTvW1tYGYP/+/UFBQenp6VO9KIrJIzs7m8lkHjx4EEBzc/OpU6fWr18P4MYbb9y5cyf5ffCzzz6jeqheH/zjH/947bXX9u/f72nVbrzxxr179+r1egCff/55WlqaWq2m0+nr16///PPPAdhstq+++uqmm26asnVTBAij0dj/Oj8/X61WEwQhk8nmz59P/q6NRuOePXvI37XXjZGenh4WFjbmSwYyv2ci+elPf6rRaO6//36FQvHRRx9N9XIoJorCwsLMzMyYmBgul5uZmfnII4+Q4++++65Cobj//vtjY2OfeOIJctBoNObk5OTm5t55550KhYJMK6WY1tTU1BAEERUVlXmF/fv3kx/ddtttKSkp9913n0wm27t3LzlYWFgok8k2b948f/78RYsWWSyWqVs7RWC4++67Fy1adO+99y5fvlwikezZs4ccP3jwoFQq3bJlS1pa2k033eR0Osnx2267LTU1lbwx9u3bN44rTqfuE3l5ebW1tdnZ2RqNZqrXQjFRGAyGS5cu9b8VCoXx8fHk60uXLhUWFsbExMydO7d/gtVqPXjwoE6nW7FiRX+BLcX0xWw2l5aWeo7ExMSIxWIALpfryJEjra2tCxcu9OxL2tHRcejQoeDg4GXLljEY00YkhMIfZrP5zJkzTU1NUql07ty5nvsdTU1Nx44dCwkJWbx4cX+Gub8bY/RMJ0NIQUFBQUERcKbHHiEFBQUFBcUEQRlCCgoKCooZDWUIKSgoKChmNJQhpKCgoKCY0VCGkIKCgoJiRkMZQgoKCgqKGQ1lCCkoKCgoZjSUIaSgoKCgmNFQhpCCgoKCYkZDGUIKCgoKihkNZQgpKCgoKGY0lCGkoKCgoJjRUIaQgoKCgmJGQxlCipmC1Wp98MEHf/e7340484UXXnj44YfNZvPw0955552HH364pqYmQAscA1qttqCg4MSJE5WVlSaTafIXQEFxPUEZQoppzNNPP81isV588cWhH3V3d7NYLKFQ2D9it9u3b9++c+fOEU/7xRdfbNu2zWazDT/t0KFD27Zta2trG+uyr4aioqLly5eLxeKsrKzc3Nz4+HihUDh37txt27b1z6mtrd22bVteXt74LlFcXLxt27by8vIALXlkXnrpJYIgVq5cObQr3DvvvEMQREZGxoi/DgqKcUMZQoppjN1ut9lsDodj6Ecul8tms1mt1v4ROp2+ZMmSnJycSVxggDlz5kxubu7BgwfT09N//etf/+1vf3vyySdXrVpVVFS0e/fu/mnFxcUPP/zwf/7zn/FdZe/evQ8//PCRI0cCtOqReeqpp7Kzs7/77rvt27d7jjc1Nf3yl79ks9nvv/8+k8mctPVQzDSobs4UMwU2m33o0KGpXsVV8cwzzxiNxieeeOIvf/mL53hHR8e5c+emalVXD4PBeP/99zMyMn7xi1+sXLkyIiICgMvl2rp1a09Pz5/+9KfU1NSpXiPF9QxlCClmCi6Xq7CwkMvlJiUleY4bjcY9e/bU1dWFhISsWbNGJpP5PNxutx84cODixYsikWjFihWRkZH+LtTd3f399983NDRwOJycnJysrCzPT/V6fUVFhUwmi4yMbG5u3rt3b09Pj0ajWbt2LYvFGn79J06cAPDzn//c6yO5XL5ixQrydXV1dXV1NYC2traCggJyMCIiQi6Xk68vX75cVFTU2NhIEERCQsKSJUs8r1taWtrU1ASgvr6+//BZs2YJBIL+OeXl5SdPnuzq6lKpVMuXL1cqlV7rMfx/9u47sKlyfxj4k72a2TSjSdO9aGnpoFDKpgiyQUEQRUXhOlEBvcpV7+sVFQeiFy4oXn4qAqICgggCpchoKbSl0L3bdKUradI0e533j/SGkKaltEnT8Xz+ap7znOd8T8f59jzneZ6jUl27dq2urk6n07HZ7PHjx8fExKBQqD7OLjIy8r333tu2bdv69evT0tJQKNT+/fvPnTsXHx+/ZcuWPnaEIBdAIGjE2rx5MwDg/fff77lJKpUCAPB4vK1ErVYDAKKjo+2r3bx5UygU2v4cKBTKzz//PGHCBACAUqm0Vaurq4uJibFVw2AwH3/88dq1awEAWVlZ9g3u2LGDQqHY/4nNmTOnvb3dVuHSpUsAgPXr1+/evdu+uy8iIqKhoaGPkzWbzdaWq6ur+6i2YsWKnn/mX3/9NYIgBoMhMjLSYZNIJLI/BYf/EqyuXLli3drW1rZgwQL7TQQC4cMPP7QP4MyZMywWy6GFNWvW9BGzldFotHZc79+/XywWU6lUAoFQWFh43x0haJBgIoRGsEEmwtbWVjabjUKhtm3bVl5eXlFR8Y9//INEInl7e9snQr1eb82CTz755J07d8Ri8e7du8lksq+vr0MifP/99wEAoaGhhw8fLi4uzsjIsCbLqVOnms1max1rIgwICPDy8vrkk09u3ryZlpY2a9YsAMDSpUv7Pt+UlBQAwOzZs8vKynqrk5+fbw1jxYoVaf/T2NiIIIhOp4uKitq5c+fly5crKiqysrK2bNmCxWJ9fHw6Ojqsu1+/fv3ZZ58FALz66qu23eVyOYIgGo3G+n147LHH0tPTy8rKTpw4ERYWBgDYu3evdXeFQkGj0chk8t69e0tLS+vr6zMyMj799NO3336771OzKi4uJhAINBotOTkZALBjx47+7AVBgwQTITSCWROhUCic3IO1Q7LvRLh161YAwIsvvmjf5qZNm6w3MbZEaB3BMWvWLIvFYqv29ddfW6vZEmFNTQ0WixUIBDKZzL7B5cuXAwBOnTpl/WhNhACAtLQ0Wx2lUslgMDAYjFar7eN8L1++TCaTrbsHBwc/+eST+/fvb2pqcqj222+/AQBee+21+33/EARB3n33XQDAnj17bCUff/wxAGDfvn0ONa2jczds2GBfKJFIaDSaj4+PTqdDECQ9Pb3nt/SBWI8OAJg0aZLJZBpwOxDUf3DUKDTitbe3F/dQVlZ23x1PnjwJAHB4BNXziZS12ubNm+2fcj399NMOTxN/+uknk8n04osvOnQMvvjiiwCAs2fP2hfGxcXZnuoBAKhUanJystlsrq+v7yPgGTNmFBUVrV27lsFgVFdX//jjjxs3bhQKhUuWLGlpabnv+Tq1ZMkSAEB2dvZ9ax46dAgA8M4779gX8vn85cuXt7e35+bmAgCYTCYAID8/X6PRDCwe2xPHZcuWYTCYgTUCQQ8EDpaBRrxt27a99957DoUymay3YS9Wer2+urqaSqUGBQXZl4tEIm9vb5lMZispKSkBAMTGxtpXIxAIkZGR165ds5Xcvn0bAJCXl/fWW2/Z15TL5QAAsVhsXxgeHu4QD5fLBQC0trZaOxt7ExgYeOjQIaPRmJ2dnZOTc/78+QsXLpw+fXr27Nl5eXlEIrGPfa1h7NixIyMjo6mpSaFQ2MqtPcl90Gg0ZWVlBAJh7969DpuqqqqsLaekpMTExCQmJmZmZvr7+y9atGjmzJnz5s3j8Xh9N27T1NT0+uuv4/F4FAr10UcfrV69OiAgoJ/7QtCAwUQIjVFqtRpBENtYSnscDsc+EapUKgBAz5ocDsf+ozXhpaWl2To/bZhMJhZ7z9+arYfTBo1GAwAsFkt/gsfhcCkpKSkpKa+99lpGRsbcuXNLS0t/+eWXdevW9bFXWVnZlClTOjs7p06dumDBAiaTiUajpVLp559/7nQupr3Ozk4EQUwmk/3MffsTtLaAwWDS0tLef//9o0ePfv/9999//z0ajZ43b96ePXsc/uFwauPGjXK5fPv27Wg0etu2bc8+++zFixf7Hm4KQYMHEyE0RlEoFBQK1dbW1nOTw2Ix1pkDbW1t1vltvVWzrmJz8ODBpUuXuj7c3k2dOvXRRx89dOhQbm5u34nwww8/lMvl//nPf6y9tVYZGRkOsxKdsp6dl5eXVCq15uzeMBiMXbt27dy5s7Cw8NKlSwcPHvzzzz8ffvjhgoICAoHQx47ffffd2bNn4+Li3nzzTRQK9dtvv126dOnAgQPPPffcfcODoMGAzwihMYpAIISGhqpUqoqKCvvy2trajo4O+5Lo6Gjwv55PG51OZ+0ytYmLiwMAXL9+3V0R986aYGxP1KyzMkwmk0M166T7NWvW2Bfm5eU5VLNOK3S4R/Ty8goNDe3s7CwuLu5PSGg0OjY29vXXX8/NzY2Pj6+oqCgsLOyjvkQi2bJlCx6Pty4iY51iTyQSt2zZ0tDQ0J8jQtCAwUQIjV3WKXc7d+60L+x5e2SrhtithHngwAGHfPnEE0/gcLhvv/22pqbGoQWLxWIdszpI3333nf2icVYtLS1nzpwBACQkJFhLBAIBAKBn/rA+NLUfj6NSqT777DOHatZpIY2NjQ7lzzzzDADgnXfe6dmPau09tn6B3LteKAaDsfYh6/X6Pk7NuojMe++9Z1tEJjIyctu2bUqlcv369UiPNUghyJU8OmYVggZlkPMIpVKpdYjKa6+9dvv27Tt37mzevJlMJlsfB9qmTxiNRmuOWblyZVZWVnFx8aeffkokEq09pfbzCD/99FMAgI+PzyeffHLp0qWCgoLff//9/fffDwoKOn78uLWObUK9Q8Dr168HAFy+fLmP8yUQCBwO58UXXzx06NBff/31+++/b9++3bogQFRUlHUCg/VMaTQaDofbtGnTnj17vvnmm5KSEgRB/vWvf1lr/vHHH+Xl5adOnYqLi7M+ups3b57tKBUVFWg0msFgvP322/v27fvmm28kEgmCIFqt1jrhPSUl5ccff8zNzc3Kyjpy5MjTTz/t4+Nj3fe7776LiIjYsWPH+fPny8rKsrOzrf2cAQEBer2+t/P673//CwCIi4szGAz25bbv/Pfff9/HtwWCBgkmQmgEG/zKMnfu3LEfxEGlUk+ePNlzZRmJRGK/WjcWi921a5fTlWX+7//+z5pc7Y0fPz43N9daYTCJcOPGjdbbNXsYDObRRx9tbm62r3n69Ong4GBbHevKMlqtdtGiRfb7pqSkZGRkOCRCBEH27dtnP9TTtrKM9f7MYeAPgUCwLQVw5swZOp3uEOGECROsmdipxsZGJpOJx+MLCgp6bs3Pz8fj8XQ6ve9ldyBoMFAI7HOARiypVCqXy729vXuu6WWxWKqrq9FotC0fIAhSVVVFIBAcxrzo9fq//vqrrq6OzWanpqbS6fTGxkaDwRAQEGA/KsRisWRmZpaWlnp5ec2aNYvP57e1talUKoFA4DAGRK/X37x5s6qqymKx8Hi8cePG2edarVbb3NxMpVIdhqG2t7d3dXX5+vr2PQUCQZDS0tKamhpr5hMKhYmJiQ7jV+2P1dLSgiAIm82m0WjWwjt37hQUFFgslnHjxk2cONFkMjU0NJBIpJ5LhnZ1dbW3twMAHKJqa2u7fv16S0sLhUIRCoUJCQm2xgEAZrM5Pz+/pqZGJpN5e3uHhoY6zDxx0NnZKZPJiERizxxv1dTUpNfr7U8BglwLJkIIgiBoTIODZSAIgqAxDSZCCIIgaEyDiRCCIAga02AihCAIgsY0mAghCIKgMQ0mQgiCIGhMg4kQgiAIGtNgIoQgCILGNJgIIQiCoDENJkIIgiBoTBsWiXDv3r3WJQ3vq+cr1qAxxWw2w0UBxzh4ERjj3PELMCwS4cGDB3u+ws0prVbr7mCg4Uyv11ssFk9HAXkSvAiMcdb3ebm2zWGRCCEIgiDIU2AihCAIgsY0NyZCs9n8xRdfLFiwYP369eXl5a5t3KKG/WMQBEGQC2DvX2Wgtm/ffvLkyc8++ywzM3PmzJlVVVUUCmXwzRrFRsXPCowBI0uShc4LHXyDEARBTr388stHjhzxdBRQt61bt27bts0dLbsrERqNxr179x47dmzatGmpqannzp07evTos88+O/iWLxsuH6AcCBOGrc9bD+bCzl0IgtxFIpH8+9//XrhwoacDgcC3337b2NjopsbdlQgbGhqkUmlycrL1Y0pKyq1bt1ySCOeGzZ0bNldlUN369BbpJombzB18mxAEQU5RKBQmk+npKCBAIpHc17i7EmFrayuVSsViu9v39vbuY4JEfX39unXryGSy9WNwcPB3333ntKZKpbJ9nRuQ63/Nvyu6y3VRQ8OdVqs1GAwYDMbTgUAeY38RcDez2Txkx4Luy2g0dnV1aTQas9mMQqH6uReRSMThcH3XcVci9PLy0ul0to8ajYZKpfZWmcfjvfrqq9HR0daPVCq1j8q2TfMemmfabyKZSViGG590QsMKBoMhEAgwEY5xfVwfXAv+pg0rOByOSqWi0Wgymdz/RNgf7kohAoHAaDRKJBJfX18AQG1tbUBAQG+V8Xh8REREQkLCAx0imhOdjknHiXH+E/wHGS0EQRA0ZrlrqAmLxUpNTf32228BABKJ5OzZs6tWrXL5URRkhVQsdXmzEARB0Njhxk7Fzz//fOHChWfOnBGLxX/7299iYmJcfgij8b1eUgAAIABJREFUj9HUAhcehCAIggbOjYlw/PjxVVVVZWVlHA6Hx+O54xA0IY18k9zb1v93+f8tCF2QJEhyx6EhCIKGLYPBUFdXFxoKZ1r3i3tn4eHx+JiYGDdlQQCAKEjE1rNBL+uv0nPpeXfy3HRoCIKgYau6unr69OmejmLEGNnT0cN9wxWIQteh67nJYDbM1s2m1LhgLRsIgqCRJSgoKD093dNRjBgjOxHi0DgJTlJXXddzU0VrhRARCpSCoY8KgiDITf7888833njD+h6impqaJ598UqFQ9Kwmk8n27ds35NGNVCM7EQIAuqhdinonvwcN1Q0d+I4IS0RdRx0AANEjFfsrSs6UDHmAEARBLpOampqZmfnll18ajca1a9cmJCQwGIye1To7O48dOzb04Y1QI34qutnHTGmgGKuNuECcfVpXNag6mB1GubG+pJ4VwerY31GHqgtvDW+f2O7D8fFcvBAEjWDvXHrnw2sfDtnhdj60c3PyZvsSHA53+PDhyZMnX7lyhcPhvPrqq0MWzCg24hMhI4zRUdnR/EszwkD8n/cH/1ttgNRGQgejlSilqlpVnFfcSmud/8L8zAOZ6CPoma/N9GTEEASNWNtnb98+e7tnYwgMDFy3bt3OnTurqqpcu8DKmDXiu0bnTJgDngDp89Jb5a1n9501WozWcraG7RPkQwwiBjUG8ZX8GetmEDCE5CeSA1QBf2X95dmYIQiCBqywsPCHH35YsWLFm2++6elYRokRnwgBANP9pz8T/0zkC5FR8qgrV68AAFR6lcgsEoYIA8cHBloC28a1MWgMAACJTOqc0Im9jLXlSwiCoBFErVavXr36888/P3z4cE1Nzd69ez0d0WgwGhKhFZVJrRtfx7vJAwBUVlZ2YjqxBCydQ5eNl01cOtFWLXZBrAAIfjv/m+cihSAIGqDPP/98xowZ69atIxAIR48e3b9/v1gs7lmNQCDA2fT9N+KfEdqLnxdfVVAluykz3DZoKVprYciykHsqoQEqGSXIFJjnmzEouLQ8BEEjyT//+U/b12FhYXfu3HFaLSgo6OrVq0MV1Ig3qhKhF8Hrgt+FDRc2aNHakMdDeqsWOCMQZIKc2zmT4yc/UPtlVWW16bUP/+3hQUcKQRDkGp2dnQ5veyUSiZGRkZ6KZyQaVYkQABA7NTbmUMzex/YKA4W9VkIBsVCMykKB+AdrvP5K/aS2STVlNUERQYOME4IgyCWqqqq++uor+xJfX98dO3Z4Kp6RaLQlwtSg1MNPH57uf59F9oSzhMSDRIvegiY8wFNSQasgm5LNPc8FEYOLEoIgyEUSEhIOHjzYd53Ozs7m5uaIiCG9ct26dSs2NhaLfeAsgyBIbm5uYmLikE0OGT2DZawwKMx9syAAIFQUWo4pr7ha0Xc1i8piqu9+zVNNdQ3BQhj39DhaF01Zp3RBrBAEQW7z7rvvKpXdV6qrV68+99xzg2mtoaHh888/f6BdJk6caAvggej1+qSkJJ3OySLSbjLaEmH/NYQ3YO7cZ7BMyS8l7T+2mzpNAADxdbGYJRaxRH95/9V0pmlIYoQgCBqgnTt3dnV1Wb+ePXv20aNHB9OaRCLZv3+/K+K6PwKBUFFRQSQSh+ZwYCwnwukzp1v0Fk2jprcKKpWKLqFfIVyp/G9lc36zb4MvJY4CAEhakkTuIMsl8iEMFoIgqFtaWtqSJUsmT568detWtVoNADAajW+//fakSZOSkpKeeuopBEHef/99g8Hw/PPPr1q16tatW6WlpdY1uHU63apVq9LS0mbPnj1lypRz585VVFQsW7Zs8uTJtjxXVFS0du3aiRMnpqam/vjjj9bCf/zjH83NzatWrVq1apX1Xu3IkSPz5s1LSUn56KOPTKbunrPff/991qxZM2fOPHfuXM/ICwoK1q9fr9VqAQDt7e1r165tbGzsWc1kMr355ptG4xDO9kaGgUmTJt24caM/NZVKpQuP+/2/vy88UNjb1lOHT2V+kSnXyC9/fLnkg5Lz/z5vMBm6N3196tp/rrkwEqif1Gq1yWTydBSQJ7n2ItC35cuXnzhxYsgO1x/p6ekBAQGXL1+ur6//29/+tmbNGgRB9uzZ89BDD4nF4qampmPHjpnNZolEQiQSr1+/Xl1drVarf//995SUFARBrPeIq1evLisrO3z4MJ1OX7p06a1btzIyMuh0emlpKYIgOTk5aWlpEokkKysrODj4r7/+QhDkxIkTAQEB1dXV1dXVZrP522+/jY+Pz83Nra6uXrRo0bvvvosgSG5urre3d1paWk1NzbJlywAAMpnMIf4nnnhi48aNFotl8eLFb775ptNztGZKjUZjX/jvf//7lVdeQRBEpVJZLBbXflfdOFimurq6trbW9nH69Ol4PN59hxsAv1l+zJPM0vLS/6v+v00RmwRsAZrWfYss1UhFtSKfpT4MEmPa36ehUehIcHc48pRHp2j3aRtaGvx4fh6KHYIgD9D+pdVlDN2zK9JcEnHyPT2Eu3bteuedd2bMmGH9mslk6vV6tVqNIIjZbPb393/kkUcAAHw+H4VCiUQigcDJq+g++uijwMDA8PDwN954Y926dfHx8QCAadOmZWdnR0REJCYmyuXy4uJinU43ZcqU8+fPz5w509fXF4fDBQV1D5jfuXPnvn37EhISAACffvrpggUL/vWvf33//ffr169PTU0FAHz44YcnT57seei9e/cmJCQsXry4o6Nj+3YPr9pq48ZEePDgwe+//z4sLMz6ceLEicMtEc6KmvXTmZ9m/TLrbfC2Jk/TQejwft0bhUUBAM6dP5eMTRZECwAAaJRjBzLbm33D60bHzQ6/pTARQtAYQppFIs0ieTCAmpqaTz/91PauwejoaJlM9vzzz1dVVSUlJXG53A0bNrz22mt9N2LLjl5eXr6+vravVSoVAODEiRObN2+eMWMGl8ttaGggEAg9W6itrd20aZPtks7hcAAADQ0NDz/cPc06ODjY6aGpVOqrr7768ssvp6en43C4Bzp393Hv9IkVK1bs2rXLrYcYDBQKNWnjJCKJyCQwMyoycMdxk65MYs1hGcyGiJII1Ky+Ru6iAlGoWrjuOwRBQ8rX13f16tXPPvusQ/n+/fv37dt3+fLlxx9/PC4ubsaMGWg0GkGQARzik08+2bt374IFCwAAL7/8sl6vBwA4tMbn83fv3m29MbXhcrkSicT6dVOT8xGFjY2NH3zwwYYNG7Zu3ZqVleU0yw499w6WaWpqOn78eE5OzsB+HkMgmBnMJDIBCiwJX5IzLkd3U4fokIwLGV4Yr6DkvmbNhyWEiVQivVk/ZKFCEARt3Ljxo48+KigoAAAoFIoTJ04AAC5fviwWizEYTGxsLJlMRqPRAAChUHjlyhWZTPago05IJFJRUREA4ObNmz/99JO1UCAQtLS0FBYWyuVyBEE2btz497//va6uDgDQ0tJy9uxZAMBjjz124MCB6upqg8HwwQcf9GzZZDKtWbPm1Vdf3b9/v7VjdlDfC9dx4x0hFottb28/evRoTk6OUCg8d+6cl5eX05pyufyHH35IT0+3fuRyuevWrXNa02g0um8o0ctzXz5fen7u53PHI+Mrp1QaTX0dyIvrRUFRrhdcnxo91U3xQD0ZjUY0Gm2xWDwdCOQxbr0IOBiG/8GvXLlSp9M988wzLS0tFApl+fLlK1assHZUdnR0kMnkF154Ydq0aQCAPXv2fPHFF7t27dq1axeDwbDOpkej0QkJCbaJ6lFRURQKxfp1YGCgtYfziy++eO6557788su4uLi33nrLekfo6+v70UcfvfLKKyqV6urVq2+++SYej1+0aJFUKmWz2dZJirNnz/773/+empqKwWDefvvtoqIih9n0P//8c0BAwN///ncAwL59+1asWJGXl2d9QmkPjUbHx8db07k9i8Vi/J/+z7XHYDA9m3KAGsxP+r///e9nn33mUEgmk2/fvg0AQBDEGqter582bdqiRYvee+89p+2EhIRMnjyZz+dbP3I4nE2bNjmt2dXVRaVSBxzwfd1uuV1SVxLHixvnP+6+lQv/W1jqVbpq9Sr3xQM50Gg0BAIBg4GrpY9d7r4I2Hvssceeeuqp5cuXD83hoD7s3r27rKzsiy++UKvVZDK5/4kQi8Xe94oxqDvCRx99dNasWQ6FttxrC5RAICxYsKCwsLC3dths9iuvvDJp0qT7HtFgMLi1T3my/+TJ/v1diZsWSaPmUPF4fF8/EgQY6404/+HyTHikM5vNMBGOce6+CNi7750ENEhqtdp642SDRqOnTJnitDIGgyEQCCaTiUAguHb1tUElQgaDwWAw+lMzOzs7KipqMMcahoLjgolZxLMlZxdGLXRewww6fuwATYD1FgvASzcEQdC95HL5oUOH7EtwOFxvidB93PiMcM6cOVFRUT4+PleuXCkrKztw4ID7juURGCbGwDW0n2tHxiFO/z0p2lfUqmilI3RcPY4aOESdORAEQSOFUCj8+uuvPR2FO0eNfvDBBwEBAWaz+amnniovL7c9AhxNAlYGpGpTL96+2HPTkd+O4JX48JfDayg1tYW1PStAEARBw4Eb7winTJky9He4QwxLxyojleFnw3Ov50Y9EUVidM+0PVFyIqYkhrGAwWFwTH4mk9jk2TghCIKg3sBHwYM17pFxuEdxWq329tG7j3xL0koYdAYnjgMACIwK9O7y9lyAEARBUF9G24t5PYIfwTfTzcgBpK29jePDqWyrXN21mvMUx7o1ITyhCqmSS+RMX6Zn44Qg6EGp1Wq5HL5qxvOsK3G7CUyEriHkC6+wrmhPaudvmF98vjjYKxjv170KHx6DbyA1aAo0ib6Jng0SgqAH4uvru2nTpt6mNUNDbOvWrW5qGSZCl4lYGmH6znTz25uxrbHGZfesfKEX6HU1Q7diPQRBLrFnz549e/Z4OgrI7eAzQpfhCrjmReaurq5sYnZYdJj9JmGkkKHo14RLCIIgaIjBO0JXEk0QiSaIjBbHhRDHR49v+b2lQ97BYrI8EhgEQRDUG3hH6Ho4tOOCajgMTkKUFOUXeSQeCIIgqA8wEQ4RnY9OUaXwdBQQBEGQI5gIhwgngkNrp3k6CgiCIMgRTIRDJHR8aLApuFXV6ulAIAiCoHvARDhEsBSsDqfLK8rzdCAQBEHQPWAiHDqdjE55DVyiAoIgaHiBiXDoYEVYSgvF01FAEARB94CJcOgII4Q8DQ9BEE8HMoJVdFSk16bLdfDGGoIgl4GJcOiw/dkiRFTdXu3pQEYqlUF15vAZ7jFu3Wd1J26c8HQ4EASNEjARDiEMaCe0V5fBRDhAaT+nPWF+Iiw1zGecD+cS58DtA56OCIKg0cDtiVAikeh0cL3pbmqWWiVWeTqKEamuvC5BnGBZYcHH4QXLBRFeERXnKvKa4ShcCIIGywWJsLS0dOHChVwul0K5ZyRITU3N+PHjk5OT+Xz+rl27Bn+gUYAQQKC2UT0dxYhUe6O2gFfAFXEBAAANGKsYb4A3rh++rjW58S1lEASNBS5IhEQice3atbt373Yo37Jly9y5c+vq6rKzs//5z39WVlYO/lgjXUBkgEAngONlBoDcRqYE3/1PC8vDMjcw55vmX/n5ikNNpV7Zc91zCIKg3rggEQYGBj7++OPBwcH2hZ2dnX/88Yf1hZahoaHz588/cuTI4I810rEELC/gVVJb4ulARhoE8PV8h5dbYdgY+TQ5o9Hx/VZrj69948IbQxgcBEEjm7ueETY0NKDR6ICAAOvHsLCw2tra3iqbTKampqaa/2ltHc3rkNUx6lqyWzwdxQhTW12rRCkFHIFDeXR8tMgg6lR32kpMFtPTtU8vvLXwdt3tNnXbtfprQxspBEEjT7/eR1hdXf3NN9/0LN+yZQuXy3W6i1KpJJPJto8UCqWzs9NpTQBAQ0PDyy+/TCAQrB/DwsKOHTvmtKZKNeJHmmiCNJxCTldXl6cDGRl0Kh3Ri1hVUIUmo0VdIq1WazAYMBiMrUIzvll2XZY8Odn68VbDrWQkuZPVif8RX4oqzcPkTXhpgodih9xiFFwEoMHQaDRmsxmFQvWzPpFIxOEcX43noF+JkEAg8Hg8Jztje92dw+EolUqLxYJGowEAcrmcw+H0VjkwMPCrr76aNGlSf4KhUkf2YJP4qfH6W3oiiojzus/PZixDNAiKjEIsSOu/W0uDSjEdGJPARKVSMRgMgUCwT4Rqvlpfo6fO7f6tkBZLGVRG7Auxv536LYmaFJIVokJUfBr/nsYRpP9/RdAwNNIvAtBgoNFoMpns2j/hfiVCoVC4efPmB2rXz8+PRqPdunVr4sSJAICcnJyVK1cOJMBRh0PjnMafjrwZGTInxL68VFpaIatYGr7UU4ENH7fSb/nc8BG8KSjOLcYCbEB1gAEY1FPVTivzxvPwf+JtH33EPsYYIwqFWrFsBQCgILdAVijjp3Qnwsb8RuV5pYKsmPLylCE4EQiCRgQXPCPUarW//vrrxYsXzWbzr7/+evbsWQAAgUB47rnntm7dWlRU9PXXXxcUFDz++OODP9bo0ChoNJY6DmvM+DkD+ys2sz7TIyENLzlAj+hv/35bn62vDaltiG2gIbTIyEindUOiQ0RmUUVLBQBAq9YG64LDk8NtW+Xecm1l9/yKyvxK5DRST6/nKZx0b0AQNGa5LBHeunVryZIltkQIANi+fXtycvIzzzxz+vTp8+fPMxiOo/vGLOE4IUV5z5zLkpKS+R3z4yhx+UfyW1RjeihNzu0chonRmNrIKePwlLzY1NiUxSnmp814PN5pfTQO3cHsqP6x2mQ21f9aX0GooNHuvgAZH4pntbEAAIgZsZyxFEUXzds4zwRMzY3NQ3Q+EAQNe/3qGu0bi8X65ZdfepYTCIQdO3YMvv3RJyE0wXjWiKgRFAUFAAAIQJ9Gl4eWz1o4a8nuJZk3Mx+Z84inY/QY2V8yS6hl5qSZaVfSzDjzw94PAwD4fvw+dhm3YRx6F7rhkwaVRYVZgbHfFBobqr+qt5gsuUdzTRjTvKXzUChUI7mRUEDgC/kAgMr8yq70rvjN8W49KQgaicpl5TKNbIrf6H+OANca9QBfqm8tqlZSK7F+bMhvUBlVUx6ZgqFi6vh16Pqx+0MpqC2I1kTHLYxDoVCMVQz2cnZ/9kIT0JznOUXsIs4LnBnjZthvYjPYTeimqgNVPrU+jEcZaBQaAKDz1VnEFmsF1UWVn9pPo9O4/FwgaKQrvlTccnJMdFCN3WuuZ3V6dTZXd/fOSbOkFYIKMo4MAMD54kgKUj8baVG1fHPLybSWkUv8p1jCkeC98ACApMCkiYET+7kjm8FevHGxn7dfz00NzAZNm6ZyceW44HHWEk4Ex7vTGwDQXtNO09IaMA0lhXCJAwhyRFAQfLt8PR3FUICJ0DMQLqKX6AEAiBHhyDj+U/yt5T7+Piwtq5+NZN3K8jnnY0bM7opyaElkkgmyCWFLw+5f9UFQUimlS0ofmvCQrSQqKopqoqrb1W1/tOXycjtZnW0Vba49KASNAhgtRmQWqQ3OB2yPJjAReoZPoA+5kwwAaMhuKEYVJ4d1zwcXBgiFZqHO2K/3dZgrzbMsswpKCtwYqDN/if/KaswyWUyuahDRI9Vp1eLvxBKGhMF18aCq+WHz18SusS8h4Ui1+FrdNzqpUhq7MJYYRCS2EHvb/UzJmVHzrwYEPRCyjkwCpIrKCk8H4nYwEXpGeHg418hFLIg2R1sfUG99dgUAwBFxSoyytq7X5ejssWXsemy9Jmuon28pjiqKfyqO2h3lklxYV14n/kLckdOBpqDDVrv4drA3podMZ6afCXglIIIfERYdJtAInGa7krKS+OPx13LgOm3QWORl8mrBtrTVjv7+EheMGoUGgM1gl6HL5L/JgQrEPhJrv0lGlJnqTJEhzqfN2WiN2mBDcNmcsoi/Iswyc9fZLnWrWgEUUVujBhmbWqPO+SFHtFAUJArqubVT2znZOJnCokySTrpcezk1OHUwx6oQV5B+JVUEV8x6bBYWPXS/jbPjZtu+9vb17kJ1FdUUxQbf84MACAC/gxZMC5KJgKQhCw2CPCwzMzMxKZGAI7DMLLGvGJGM/rflwDtCj5GRZNwSbnly+US/e4aEaGlaXfP9u0bLissUGEVyYnKVpUr5jfKPxj8OsA54ab0UHQqHmojpwX6Pi64U+cv8sQexv5/7vefWqooqOVZO20ijECnl18sfqGXHwBCk9Hhps7B57pq5Q5kFe2r3aq8qqrJ9/LPqz8ePP15xqKLD0MHdwA1RhbS3tXswPAgaMnW1dWGXwkqLSlVaFQmQKGEUqmL0L2gHE6HH0EPpLaEtK+ascChH89B4WffkcalGKtfJne4uLZO20du88F4HeQefBE8q5ijeW/9eI76xuqzavlpDdkPtV/3qaLUhlhDzo/NN00y8W7yeHYayGpnMSwYAIKQQJtRNsPaOqo3qk4UnH/Q9iz/f/DlRl5iwMuGB9nIHRjiDW8RV6VUAAK1J+8nvn7wjfkdZp7yedN3Xx7eYUVx1tuq+jUDQKND+e7sZmOUSubRNKkPLRKEivqGvWbyjA0yEHhO9ODp6dXTPcm+RN11Dt3598uDJ04dPO92d0kxBghAAwLTEadNnTH856WUAgIqh6hTf85aPritddA1dr9T3MyqzwszQMsanjA+aFiRABFeKHV97i25G6zl6AIBgooCP4qdnpW+/uv2tL95KPplcXv9gN4jGy0ZjqBFDwdy/qpuFzgul4+m3frhlqDSUflP6s+bngPCA4NeDX099HQDASGUIGgXZt7J77vjVza9uNN4Y8nghyC1aKlpYXawcXo6p1SSXypVYJZfHRSGo5uZRvhITfEY47PgH+mtNWsSMSPXSqe1TiSiiVqclER0nF/qqfY3RRgDA+rj1tkK0AI2rxgEAjn1zjOhFjI2PRelRebg87i1uzKyY/hy9/mp9Fi7rcZ/HAQAKH0X5jfLZ0bPtKzC6GCDRejBQHVAddimMS+aKgKiN0FZXUhfhH9HP0yxrKZtlnOW7YHjMUkID73XexG+JDb805KPyuc9wyQIyGXS/R2xy5OS8xDz6n/SvDV8/n/y8baezJWctFyxnQs9MXj3ZQ3FDkCu1/9leJCzicrm4clyXrMuMNwMAmonN6HI0nz+a7wvhHeGww6AyxDjx5ZOXL16+iCagG4gNxX8WO9QxGoxEhBgkdBzMwg/me6u9VVpVUltSdG206bipQlTR5delKXcysvTH8z9mV997l2MGuBJcS1j3WhL8eL5fq59SrwQASDukV09eRcyIwCAIDAu0Vpi+ejplBSU8IZz+HL1N2Gaue4BpBlUZVa3UVrTXcPkN9OX6qp9TNz/ZvGzzMoHA8Q3A8fPjmUHMhEsJRbVFAADEiDSfa446HvUY5bHJNZNdOJMEgjxF06qhdlGTFiV5C7xpWppBaTCQDQAABU/R8yUBo8xwuQxB9nwW+fiV+lHyKZZoS0dih0+pD7g3xbS3t3egOzAox07FsJAwhpmRnZ7dRmjDrsdWkCpSlqbwxvN8ZD49jxJyK6ThUoN9SVtmW42lZnJi9/0NM5qZCBIP5BwAABT8XBBdGH3nxJ12VLs3w9tagYAhcKI4pJkkjDeGFcpiyfu7FAAAgFvNNYw39L/+EJjAmzBVNJVJZDrdylnDIfgRaIdpir2Kzi86G/Mac+Nz+S/zJ1gmZJVnDXGoEORy4jPiDFpGMDvYL8CPY+KgOlEWLwsAgDOBw+8YzbeDACbC4SkkOsTENE0xTQmbETZ7yuxGS2NHVYd9BVm7TIlR9twRj8NLsBJBvqArtEvoK5y3ZR6bzk6ISjBZTHLJPYNu2rvaA82BwjahBeledbNeXq+8phTHim1r7KJIKAwbI8uQ3am6EyoNvRp9VVgmbCE5X3swJDpEZBJp9P2a1KhsVbKN7NiU2PtXHT5QIGZdzJmwM293vf0i7cUDMQceWfgICo+S+Ejkmc4HNEHQSIFoEHoznTWDBQBg0VidqE5aBw1LwwIAYqNijYhR1ijzdIxuBBPhMBWyMoSQQEBT0FQ8tY3SJq4Q22/tknVp8M5TjtxLzrQwY2befSJIwBBqvGpqs+4ZO1pYVNiB6/BFfPOq8+Rt8qyvsiT/kSBUZN3CdfbVmIuZLyEvgZ9AFbdq6bKlh+mHm4RNTo9LJBGlOGlJSb8W7azKqMqn5JOJ5P5UHlZeWPXCi8+8GBYZtnvBbmsJcwYzsiUSsYz+uVbQKCbOEeegcx4a370SYTuu3V/nT2KSAAA4NK7Kq6o2uxYxIWb56FxlCQ6WGaawHCx1Qff0HRPXZJDc04uoUWosRIvTHc1Cc7mufBpzmn2hMdHoc8Wnq6OLyupuU1GuIHgTNAZN9c1qY7MRwSLhU8PpcXTHMHyx1GeojQcbxz8yHoVCrX1urW0RnJ7kNLm2Qgvi7n92BonB4u88/uFvPGf8eM5428eQiJASUNJY3+gX4GTJbwgaERQlCqVQaZvOq6KocAYcndV9QdAF6xiljPZ/txstRsFWxyfoowC8IxwBWCIWUXHPYpjmTjNCcX4LMnPRzIjnHYduLpm2JI+VV/Hd3TUDae00cjCZMp4SUxPjY/CZ+NJE1kwWhu5kJoMXz2vimxPZ3mwAgA/Zx5vk3VucaH80oZnQnzOiqWk+/k4eW45QHfiOtubRvwwVNIoxO5iiGJHto5FlBACwOd3vQYuIjzAajP8x/kehU9SX13smRHeCiXAECAkP4Rq4wC7xYTQYp0kLAEDEEX2oTnLMQ889RNKTcm7kAAB0Jl2QLig0NjR8YrgPyofyMAWHw7kgzgkh/ir/+68YbgYsIys0JHTwRxwmNGSNss3JI1sIGhEUTQqNRTMpapKthMQl6YDOh9V9JYn2jT405dDGFzc2CZsqLo7CNbhdkAgtFsvhw4c3b968atWq6uq7y5r88suot05NAAAgAElEQVQvq+wolfBKMUAitqgD1dHa1GorweqwZMaDPWAj4UkSoaTzTicAoKCswIK2eHl7oUlo1gssfpxrhoTxBXw1Vp2Zldl3tbbGtmZUM4/Oc8lBhwMj3QhG80gCaFjQFGradrUhRiddQXWn6yTZkgG3XHmrUuwlJmHvTlb2DvDOx+TbekpRKNSHsz8UUAUTH54YLA8Wd4gHfKzhyQWJ0GQyHTlyxMvL6/Tp0x0ddwc3FhcXq9Xqlf9DIPSr0wzqCYVCtRHbaivujnYhG8g0Fu1B2/FL8hPKhACAmpwaOaN7oCPa25W9Aip/lfrOfd5e1lDTICVKXXhQj8OxcNgu+LgdcqNWcav8lLxSVVl/0knPpL5YX3O7ZsCNW2otpsB75sKODxyvWe5kOB6Ty9SQNNevXB/wsYYnF/z14vH4M2fOAAC+/PJLh01hYWErV64c/CEgHVNnbrg7XotmojF8Hvi9feER4WWgLPtWdnxTPG3VA+fR/oiYFsH6ntWp76QTHMfd2Kgb1RrGUL86yq3oPDqu0AV9yxDUm8afGlsDW3VhOv/z/ppWDZl7t0NII9OwjewBd7kZDUbfLl9m/D3TZ3Fo3IpIx2WQrZQCJanFcaGrkc69zwgvXLiwcOHC559/Pj8/360HGvVIQhJO1n2pNVlMDITh4zOQwSZN3k24czg1Sc0Lc0vPJFPIRGPRp690r4/qdMkVTAcGxxtVaYPny/M29TqGCIIGSWfQCUyCh1Y9tGLiigxWRv6pey6nZdlledg8H/19LghmuRkxOOlWvfTjJTFRHCbq76tAvQReZNXIm/jUt/7eEWZmOnnwExwczOP1ej1NTEwMDg7mcDjXrl2bPHlyZmZmfHy805q1tbXLly+39Z2GhYUdO3bMaU2VStXPgEcZH4EPNgcrk8vwWHyrrBULsBrtQG6qCBGEgGsB9dPqu7q6XB6kFTocHZsd+4XmC0OHgdRKeualZ1AolH0FppoJeGBgAWi1WoPBgMF4fp1ue1QyVYNo5O1yLBF2kLrdGLwIlFeXkzAkio4CdIAfyyddJdn/+RjLjR2BHaZKU4O4geHtpKNIp9M1n2wWtAgUvgrOKo79pkvFl+Kb4y2rLf3/e2T4MIx6o/suIPel0WjMZrPDVaUPRCLxvoMB+/t3+49//KNn4euvv7506dLedlm8eLH1i/nz50skkm+//Xbfvn1Oa/r5+W3btm3ChAnWjxQKhUrt9Q1YfWwaxaKio+6cvZP9Z/bDjz8sbhBbsJYAasAA2pkyfUqWKislKcXVAd5FXU5tw7c9cfsJE9aENqPbutpCBCG2rWajmWlm+kX7UYkD+TliMBgCgTDcEiEAoAZTw1Vw/ULhVMKhMNYuAsp2pZ6gj6JGAQASExKVl5RYLJZEIgEAgAX4qnypU6gtdS2EZoLTyazXv7/O0DIOxx1edmcZSoXy4nvZNqGuotSh6oiQ/q6VDwDwCvHCI3gN0HCp3MGe2ICg0Wgymdz/RNgf/U2Ely9fHsxhhEJhVVWvb3TDYrECgSAoyMn70CEb1nIW6yiroaVBIVNgcAPMBGg0OmWRG7OgFWchxzLFgqKhbu26JS+T2yfCmtwaFVoVR+zHrPsRRYFXYJuxMBFC7qBuVaPp3Y+xKERKKba0ubg5PjEeAFBbUtuOak8SJaXR0jT1GpDsuO+vl36d3DnZe5P3JNqkIw1Hoo5Hxb7cvbRhs7Q5Th/HX/xgg8ZRWJQCo+is6+RGeyYRuoMbnxHm5uZa39RaU1Nz8ODBmTNnuu9YY4EoVNTAa6g4WqGRawzE4bVcdU9oJhqFQWnYGr1YDwBAEAQxI4W3ConpxMYJjZ6OzvW0JK2qfcx12UFDAy/DY3l3b1qUDGVbZfcCDg15De3sdgAAmodGtztezzv1ncLrQiQZIdPIAICpq6bS5fSa0u7xpZVXKsVUMZb8wP35naTO9sb2gZ3L8OSaRBgaGopCobq6upKSklAoVH19PQDgtddeYzAY/v7+MTExjz766IYNG1xyrLEsYW1CqCq0q6wLIY+MlS0pgRRqBxUA0Ppjq+IjBe8sryWpZfHCxZ6Oy/VMTBMiGxk/FGjEoWqobCHb9pEQQMC1dD/0okgorCgWAMDH34fa5dhjfPXmVQ6GI5rdvWSMyFvUGNnYdLJJoVMAANjVbPX4+0x2cspIM+pa77duxojimkRYWVmJ2BGJRACAjIyM+vr6jIyMzs7OnTt3otFwFZvBIpKJ+kT9HP0cMEIekQRFBfnp/IxdRlO96cDUA8Q3iBMfmujpoNyC6E3Eq/GejgIahUwWE9/EDwgKsJUEjQviqDkIgrQr2nlGXtzEOABASGiIr8nXcZz2bdAR0AHsnqZNXTHVH+W//eD2jsIOtB4dP8n5AMa+YXlYgmJUzQt3b3Ki0+l+fn7DcGjDyBX6UKiGpAnwC/B0IP3CZDMtaMvtn2/nEnO3zto6sAEyIwLdl87UOn+RIQQNhlgixqAwRNrd1Yb5Ij4TYZY3lt+6cauZ3EwkEAEAZCpZj9bnl92dWaHWq6OV0SGzQu5pDg185vm81faW+pT6KPUox+ueQaT9xBaw6epeJwqPRHC090iDBvy/8dHkEXN73UxuHtc8Tj5zlL+xLzQ4VGvWmtVmDAX+2we5UmNdIxVPFYG7K2IDFFDRVZd+uuSN8Wb63/33S+Yjq8+sTxiXYP2Ym5lLw9MCeYEODZLiSDgW7mLnxShs1MBCEgQIEDNitBhx6CGdEHw252xLS8tjsx9zecswEY48aOqIyYIAAB1X16JpSZ2a6ulA3MuH7HMFe0Vbqg1PDPd0LNCoomhSYKmOF+rQJ0LpB+gYDQY/8W6HvN90P/wxvNakJWFJ7cp2WjZNHub8H1CsP3Y1WD3gkIgMIhmQxS3iUN+hWDp/z5U9iycsZuPYAecDQkFoWXRZfMBAenT7MJIuqdBIFDM3BlmIYFCj/z5JwVS0l4+YoXTnrp5rUbV4Ogro/ixNFiKX6FCIYWF4L/BIMSSG6O4Men4En46mp2WlHb15tHF3I0JGUha7a65UO769UXyf4d9NXU1Gi9Gh0IJY9ufs//y3z/t7oK72RVcXyffIa76pafdqN7PMeafyBhJxn+AdIeReXB8u12f0zDfqA9GfiC3FAgAsnRY0DQ1cOd/Xxa6fvD6xcOKFaxc6Hup4aeJLng4H6lVjR2O8Op473clfEMoLRV3q+NC9K6ALdxmXgkpBwhDRKlHPvVxF66XtbO7su857+9+L1cfyffkrn+5ecdpkMW34esNbnW/RzLS2sjb6fDoh7j6DbvIu53FJ3Hp2PaoBFf1itBARUr6m5NXkJQQnuOZMAADwjhCCXCUkKoSr4SIGpOPrDtWNYTGnMOd8zo0zNxwKm3KahIXCtsVtc2lzKRcojcpROK1z1Mi/kC/1kpLY/V3kOjw1PJ4Y77PUx61ZEABgYVksUksfFVQG1buadx/3f3xS46SyojJrYVpR2ocdH4pSRJqXNC+gX+g632WWm/toBADALmUro5WLn1oc8kJIoHcgjo0jTydPYE5w2ZkAAGAihCBXCfILsgBL2eGyCkNFx+UOcJ8/cLcrKynj5nAFeYKCogJboUqlMl8wZyVmRU6IZG1gzcbOvvLHFQ8GCfUtqDoIl/IAA1IIHAL3DS5xvGNXqstRfalkZV9Lb1fUVwA0YK9lF/sXqy52/1/YfqVdwVeQppOCmcHPPfLcAeRA/cH6Pl7lrWhWsAysuBlxKBQqkh1pLSQmENFMF2cu2DUKQa6BQqGaSc1hjWFV86oM6QbJacnkZZMBAPo6vbREKiPJIqdHDs0ou08yPyG2EeeXzK+PrieiiPhT+CvpV3hqXl5sHrYSy6fyH3v4MQAAmohGLUVNOzZNJVV5sb3u2yw0xIpyi8woc+zEWE8H4gTPj6fJ6Gvd/9aaVgvJEgACxi8cb/yPsauxS+mlTOlM4T3S/Z6Gh0MeDnwusOVAi26H7hD90NvPv+2Fd/wlrE+vL6eVryS5/V1+8I4QglyGGEIU+4kXJy1mL2Czi9idmk6AgKYjTZW3K8mZ5KwdWWcLzw6sZYO5v4vqpVWmTb8yfU3pmq6ArqnLpiYuTcTysXQa3RhjnHVn1lTN1KR1SbbKfhF+Nxg3ak4M/J2ukPvIbsua+E2ejsI5toDtZ/GTau6+YRvRI9pLWvC/5ZWMEqOWoQUACFnCi+yLnT92lvxQoiFpKL4U2y4RPhHJbyUHLAjYqN7YtqvNWHvvyBoE0OvpuISh+N8R3hFCkMskLk20fhEdG52bnlv9W3VQSFCnuXPyW5MJgID5EWM5ZbktvR0368HWHD/3xznmbWYZpSxxdWKUb19zvxAEkZySTGdO99now8F0z5Uet36c9QtTnMkiteAZ96yAw5vD8z7ujRgRFG4YD+8Zk7jt3K4FHnvbUd9QBJQBbWhoaPAO9pYVyD6+8fEG+QYGYBhxRto0GgCALCdjI7vzS/IjyafPn57bPJc018nDTlICiRHF2PfVvif/eFLwisBWLimWtCFt8ybNG4LTgXeEEOQWzIeZ4bXhmquapvAmIpaIwqICnwlUpajomfTmP5v7345Zbw7PD6dEUZLNydUXq/uufC793Bz9HNGTIhTGSVbDCrD4WMd14KZGTC1Bl9TeqO1/SNAQaG1qxVqwcTHD9z0tcqK8tb6143SH8k/l612ve03w2hW0S3VNZVFbAAA+Wh9uYPdg12hO9AtPvhDyZoggTuC0KTqRHrEoAlEilq67A3CaMprEPDEJ29+BQoMBEyEEuUVwZHATuYmqp85aOMtWGDsr9nzyeSQPsaj6GnFnhVgQxIhU/VpVgiuJXhEtT5DTW52va2VRWepP11fsqIjJilFOU2K8HmDWJhqFbglu0dwayHueIfepvFlZS63Foodvp52RZtQ16zQlmuPxx4V/FwoXCv/fyv93GXe59EipRqfhmDmioAcYubooclEWKkuSI7F+NBvM/HZ+xMwHeFHiYMBECEHuwlvOa0xupJFp9oXrZ64/hznXeOr+kxaa9jUpdiiI9UTNbA0AIDg6WKQXWV9tZk/Zqmz7sq2ysLI8tNz7Te9x08c9aJxJs5JoXTRDx3B/t9eYgq/FW0Lv/9+SB2E52Ii6iCZs0+b5m60lJCwpYW0CsZVYdr6sBdOCxT1AFseisYpghTJf2V7XXr6jXP6JvJRYOj54vHti73H0oTkMBI1BwYHBwYHBDoUEDAE1A4W9hDU1m7D8Xv8A1W1qQ4dha8RWlVH1W/xvAAA2hy0F0prqmuCQu20aLca8H/M6uZ3znplHxA5w0Hw4J/w76ncpP6SEvRY2nNcBGCNO/3WadYflr/EXTXbvXMBBYgvZ1AKqZobGft2ocN/wnyN/Ti1IvUO786ANJk9Pph2g6Q/pKwWVhAWEmeyZrgy3T/COEIKG2tqktV/hv5L+KEU0vb7CsDC9sJBWeHTl0T8e/8M26ULiJWkqvWcY4We/fhZkCFr41MIBZ0Gr+c/Ol2vll/7v0u2W223qtsE0BQ1GjbQmOiPay9tLvlLOY/E8HU5fBAECQAC+ib4O5SuWr8jB56g4D7ymRDQ/+iLp4p/8Pxc+tTCAEzCUK3rDO0IIGmp4DH7d0+vOHjg7Y+8M4XNCAsPJKlM0MU0/Q+9QqPXV0uvvPia8XHJ5adVS5hwmFj/YP2Q+lQ+eAcbvjDcP3nzH8s4bpjdANJi5bOYgm4UeVOaxzAnMCbHrhuPcQQcYbwz9FToK69iHgEPjol+IJuEGMshl2UvLqAQqCjXU/RIwEUKQB0T5RLFfZmf/Nxu/B18/pT5l9j2LI5cUl2At2KnJUx32Yoex6VXdiVDdoeb9xsP4Y6iTXfOWRz6fb9lkYf7MTG1PVYepLYWWxuRGIVfoksah/shryJsune79tLenA+kvNMl5n6KQNsBfGwaRcf9KbuCCRKjVatPS0kpLS6lU6pIlS4TCu9+CmzdvXrx4kcfjrVmzhkzuaz0eCBpruF7cxa8tzk3P5V7nIjMQ+wkP4htiMocchgpz2GVc5DjZaVnbhTZUEEr7i7aUVbr8ieUuDAnthaY+SwUIYKKYWfuz1IfV7E3sQXa6Qv1Xk1GDYWD8hf6eDmTMccEzwg0bNnz55ZdKpTI7OzsyMvLmzZvW8p9++mnJkiUmk+n48eOzZ882mz299iIEDT+JcxKlaGnR1SL7Qno7nRHt5F9jKoH6e8zvTTebwE8g2y974caFbokJBQAACesSgnXBDTsaLnx5Ia0ozYIM6xGMowOxjagVaT0dxVjkgjvCPXv2MBjdf7QkEmn37t2TJk1CEOSDDz7Ys2fPypUrTSZTZGTkn3/+uWjRosEfDoJGGXGkOC4nDvxvtqFcLQ8wBrBj2U4rb1q6SfOwprWp9dHAR90aFZ6ID3grQF4uN14z0k/SP0///In1T/hSHUdGONBmaglRBDQDjsIbCJqa5uPv4+koxiIX/L7asiAAAI/H4/F4AEBTU1NpaemCBQsAAFgs9qGHHrp48eLgjwVBo0/yrGSzwaz8VWnINQAAbt+5LcPLCORe39NGxpMDAwOHIDAUGsWKZI3bOM5ntc/j+sfLd5dXNFf0vUv9tfqSvJIhiG300Zq0ArPAL8jP04GMRa4cLFNaWvrDDz+kp6cDACQSCZVKpVC611fl8XiFhYW97SiVSnfv3n3s2DHrRy6X+8orrzitqdfrrYkWGpv0ej0AAIMZVe+755F4L3q/OKdmzsTyiTqVTlYlI3gTrGc6XPgB9kvsru+6Cg8VCl8R2s8buwcCGEZGVV2VW4MfHReBsuKyjtsdU56YYispqSvxQfkgeGR4/eiHH71ej8Fg+j+yFIvF3veK0a9EmJGRsXTp0p7l169fDw8Pt37d2Ni4aNGijz/+OCEhAQCAwWAslrsPFSwWSx+hYDAYGo3GZDKtH5lMJhrt/FYVjUb3tgkaC9D/4+lAXOztlW9LNVJxidg305eFYjFmMIbdOeJB0JNB1D3UgxcOPvvws06raGQaPMDjFDi3Bj86fgE68jq4rVz7E2mub0YT0Hw034NRjQjWX4D+J8L+1OxXIkxOTq6pcfKiFiq1e9x2c3PznDlzXnzxxRdeeMFawufz1Wp1V1eXtU5LSwuf3+sPmMlkPvXUU5MmTbpvJDgcDocbulmW0HBj/QUYZXeEAIAQdkgICAEiUFZYNkE3gT6B/kDLUw0ROsCkYGZlzrpQeMEsMi95conD9tbWVjMwM7VMt/6Rjo6LgLfMm2Ph6Iw6Krn7Kqpp1ejp+lFwau5m/QVw7VzDfv1jhcFg6M5Y/51pb2+fO3fuunXrtmzZYtvF19c3Jibm5MmTAAC9Xn/u3Ln58+e7MG4IGpV8F/nqaXosZfhlQQAAAPwZfNF0UUJMQlRdlN7s2IMnk8iqyFVkM9msH+wQ8bLGMq1plIyflEqkFZ9VaKruLmtu0pq8Dd7N6ObqyruvE8FJcTgezIKe4YK/t5deeqmxsTE/P3/VqlUAgLCwsO3btwMA/vWvfz377LN5eXm5ublBQUFz584d/LEgaHSjRdKoYa6ZIO8WKECaRiIBUllR2c1bN6cnTbffqG/XI0ykQddgrDEGRAYM5jiGHwyX8JemvDKFSWQOKuBhoCy9zKKz0H6moeejiQlEAEBNfk0TtglLwarr1eB/a8jQ1XS2yPlQYcjdXJAIt23btnHjRttHOr175YulS5eGhYX99ddf06ZNW7x48dCvmgNBI5HTVwkONwq+QponBUn3FGI6MVh/rEKpQMTIYBJhZXElARDCQfjlry4nvZAkoDl/iZ1Tp9NPp05PHdj6Xm7CaeDUzq599867/7z0T2GCEADQVdzVzG4WkAWmZpO1jtqoFpqFvoH3mZ0CuYkLEuGECRN62xQZGRkZGTn4Q0AQNKz4TfLDHseaLCb7F+ZR1BQMFyPtlBolxsE0Lr0ulXKkC59ciNqHatrdpH1SGyIK6c+OnerOpOtJGe0Zc1cPl/6nxrJGnUU3O3m2KFwk/UbKrGZSgil0KZ00mURD0Uw3uxPh4VOHl6CX4Oiwa9QzRvzgKwiChp4gQsBBcW6U3rAvZJlYfD8+2ZeMV9x/ekOHtsP5BjMQtgqZk5loIjr4tWA8H68+pO75Fkan7uTeUaAVYVVhmq7uB3IeXxBHck1Sya3EoXGR7MibzJvidLHmqkZn0kVFRYmCRGw9GzEjki8kqWWp+KQRPydk5IKJEIKgB4cCbaw2Sa7EVqDT6HAITsQXCQIF3rr7LBstkUuu7bzW2tlqK8lrzGuXtBsqDNIT0lpQOylqkvUosc/EYgAm90puH62VVpReOnYJAGAoNTSJmsop5VXfVV355co/D/yT8THjq5tfDeZEB0Pfqee38vlTugfMx8yNYbWx5NfkOwU7Q71DvX29uQg3+1R2lbaq87lO1lyWp+KEYCKEIGggSLEkoeTuCvuN9Y0tmBYMChMSEIJBMLIWWR/7Ft4snI5Mz/szz/pRY9CQviPpD+jFx8S3am6dDzhvexcdCoVqi2sj3ej1mR+CILW/10aXRre0tnA7uJxYjmCFQKwR0xpoL3S8IMaIORc5d/If+CWxA2QGrXta5WK59VPxweKb1JvJ45KtH5NDk894nTkedvzbdd+iUCiABlKc1L/YHzMHE8eLG6IIIWeG6ShtCIKGuYikCEm6pLmtmc/hAwDamtr0BD0AAIfGVXlVUW5QUpal9LYvphJTRC0KrA4ECAAokHMjh4lj+rzhU9JegtPiNnE22VeeNm9acV5x+ZXy8BnhPZs6dfvURN3EKmaV+Sezn8VPFC1Co9FRb0VZt5qaTPEX471Oe+kCdER6r6/RqJHXZDZkroleY//IM7Mgs/NMJ28ZLz4yvp/fE2mT1Cg36g7pdlB2TKROnNA5YfrL0+3HCT732nP29XFsnM6oS5nc6zcKGhrwjhCCoIHAYDFVXlXV17tnwmGLsFp698w/JBTB1jj+k40gyJc/f7nvxD7EggQpgvyX+6tR6pKMEgCAOd8sFUkJGEIcL2524GwuhWu/Iw6Nk6ZIyVfJt8tvO7RptBhr02qNIqP/Cv/wrvA6Sp3DojNYATb8qfB8Sn7BnwU9T8FisHRd7zqx58SVfVeo56gX9lzQFnefgtakRc4ggcRAznHOjfQbPfd1SlwpLiWVcuZztqC2xChjdHN1HAanj/ohi0JEa0T9bBxyH3hHCEHQAGnCNb4lvogZyTiQwVQx49d13znFTo4155mNBiMO393DaTAbzh04t7J9pdlivky57I3xjvGPuR5xfXLGZFO8KUgRhCztazhM6szUIlmR8Vdj+cZyX5Jvg7JBb9KHsELSK9NXmFYI5wsxHMwF/gW8v/PxJtQUqneat/Xu057qvEpSJGERWanjUlFY1NXqq4qTCrwIj6FiTv18Kh4dH/ZqWEFOgW+aryJWwWDf/52xXQ1depaelEgiJZI4oK8UaIXhjbY1kkYoeEcIQdAARSZFcrQc2ccyb5k37288HpNnLed58xpxjQW53Tdhuy/svr3jdmhHKG09rc6/Lio7qoH9/9u726AmzjwA4E9IQkwgxCUxSAgI4eUob0IZ3l+HBOcQYRwEx8LYDg7OaOuHu3bmpu19acdx2g/aqS+0RUaYzul4KIc6OjRQD0vhCjgxc6CcRhlByGsTFAjEkE2y92F7OYq2vBhcQv6/T5snz2b/sP/Zf3az+zwTCKGS0pIBnwH1GbWRbowIW2I+jYQ9CXx/vrxVbnPYeht6H557iBAa7R3FuThdSEcI7ajbUVhc+NJ1c9Nyp9H0wD8GBk8Mtp9vtzlsZPv0f6YbQhvy/pQXsDuAu4srOyKTM+WPWx/f7rudM5qDVWDIByVlJA1uGVT/Tb2cfwjzKdNP7LecnmBdgUIIAFgliUByLOqYvFge+2GsQPCrUVGeiZ7N/XsOIfTdve/Kb5eHxoXG/iWWG8zNqM74yfcnTgoHIcRj8dLq0jS4Zjx0fDmbE1WIyp6WfdTyUb4tP34+vqu/K0uXxSviLbkijUYzxZnE98XPeM+SnyS/d+Y9o8U4r5034+ZDJYdck2mw6Kzoimhfja/opmgyd3JL9C9TA2bVZM3PzT88/vAH+Q+/v6FAS2B4dPhy/hawrtCW+YDOmsrMzDx58uRyBt12jeINvJPFYmGxWBtv0O2NZ1w7jprQYPogrsS3h2yP3B/pestqt25i/P++lQemB4HsQKHf0hcSEUJjZ8dYP7N8831VJpVgWOBkOmM/jF3OigRBTM1NYf4Y/hA3tZrORJ/Z69w7rB2u/nP1op6Nf2/k8Xh7S/YubFSqlcYeY/xI/GTV5PbYX0ZF61f31/+r3vrUeunQJRqNZpw22k/Zt/51K83HA8YG8lxzc3McDse9Q5XBb4QAAPcLE4U9lj7e/s/tPj4+IXt/NUbawiqIEIoVLKuSkUIrQmduzGB5WLoj/fH9x4Y4Qyxa1uo0Gg3zxxBCzBjmppxNtT21dh97QHbAiz0P7jv4YuOb4jfRW6jvXJ+py0QWwkfGR6pvVV/QvrA77f2j/VmSLNV9lZ+vH8yj5Ing0igAYE1IsiSsVBZ3F5fGctuXd7qAztjDQDTEYDC473LzyvJW8SFYATYpmWQ4GNIc6YpWjPljTMLThMnZSafVOdM0k83NDjwYqA/Ua7o0CCHTE5MlwLLkh4B1CM4IAQBrJagkaOlOqxWMrf7cK/2t9PGfx1c6Njc/hK9mq+9/ez/JnKT30ScfSab70PlSvv9l/7n5uXn1PCMSjqgeyZPOCJ8/f3769GmqowBUunr16oMHD6iOAlBmZmamoaHh1T+HRqNtC9q2ihUDcgKSZpJ6w3rfOPgG3YeOEAr7Q9gUY2r4xHChtTApLenVYwO/r6WlZXR01L2f6UmF0Gg0fv3111RHAah0/fr1O3fuUB0FoMzExERTUxOFAURkRog/Eu+r3ifBJK7GqZfbDzMAAAdDSURBVJypZ/xn2LsYO2QdTf+0UV25cmVo6CXDI7wKOJEHAIBXUpxXjFbzYyVYLzzpjBAAAABwOyiEAAAAvNq6eKBeJBLR6XRf3yXmpXQ4HFqtNjQ09PVEBdYho9HI4XD8/GAUKy+F47jBYBCLxUt3BRuUwWDgcrkcDmeZ/aurq48ePfr7fdZFITQYDHNzc8vpOT8/z2Kx1joesG7hOE6n0xfNMAC8ChwEvJzNZmMymcsfWSY4OJjNXuImpnVRCAEAAACqwDdrAAAAXg0KIQAAAK8GhRAAAIBXg0IIAADAq3nMyDLPnz8/e/bskydPMjMzq6qq3DsZFVg/cBy/e/fu0NCQv79/ZWWlq50giIsXLyoUColEUldXt2nTL1P5TExMNDc3m83mPXv2ZGZmUhQ1cCeFQvH9999PTk7GxcXV1NS47hGdmppqbGzU6XQymWznzp2u/j09PdeuXcMw7MCBA8HBMAuSx9NqtdeuXRsZGeFwOFKptLCw0PVWR0dHR0fH1q1b6+rqAgMDycbfSozl85gzwl27dsnl8ujo6E8++eTTTz+lOhywVs6dO1dZWXn69OlFe/njjz/+7LPPoqOjr1+/XlFRQTYajcb09HSTyRQcHFxSUnLz5k0qQgbupNfrKyoqJicnQ0NDm5qaCgsLcRxHCNnt9oKCAvKb0OHDh7/55huy/40bN3bv3i0Wi9VqdUZGxvT0NKXhAzdQKBR3794NCwtjMBhVVVX19fVke3Nz84EDByIiIoaGhnJzc202G0LIbrfn5+ffuXNnUWKsDOEJ+vr6+Hy+1WolCEKpVPJ4vNnZWaqDAmvC4XAQBHHp0qWEhARX4/T0tL+//7179wiCsFgsPB5PqVQSBPH555/v3LmT7PPll19KpVIqQgbuZLfbbTYbuTw7O8tmswcGBgiCuHLlSkxMDJke7e3t27Zts9vtBEFkZ2c3NDSQ/YuKik6dOkVR4GBNfPXVV9nZ2QRBOJ3O6OjotrY2cjkxMfHixYsEQbS1tS1MjPDwcHJ5RTzjjLC7uzs/P5+8QpKSkuLr6zs4OEh1UGBNvPRheaVSGRAQEB8fjxBis9m5ubnd3d0IoR9//LG4uJjss2PHjp6eHgKei/VwdDqdyWSSyw6Hw263+/v7I4S6u7ulUimZHlKpdGJiYmxszGaz9fX1yWQysn9xcTGZGGBjwHF8YGAgMTERIaTT6R49ekTuaxqNJpPJyH29KDHGx8fHxsZWuiHPKIR6vX7Lli2ul0KhUKvVUhgPeM0WJUBQUBCZADqdztUuFAptNpvJZKImRLAG3n///ZKSkri4OPTrHPD19cUwTKfT6fV6giCEQiHZHhQUpNPpKAsXuM/IyEhkZOTmzZtVKtWJEycQQjqdjs1mc7lcsoPrIPDSxFjp5jyjEDIYDIfD4XqJ4/iSA5OCjeTFBCAvDzAYDLvdTjaSC5AYG8bRo0d7e3sbGxvJly89CJDnjq4cgCPDhhEREaFQKPr7+zEMO3z4MEKIyWSSF8PJDgsPAq9eHTyjEIaEhGg0GnLZ4XDo9XqRSERtSOB1EolEOp3O6XSSLzUaDXlzYEhIiOvagFqt9vPz4/F4lEUJ3Of48ePnz5+/deuW62xv4UHAbDabzWaRSCQUChkMhqvdlRjA09HpdAzDEhMTjx071tLSQhCESCTCcdxoNJIdFh4EXkyMlW7OMwphaWlpT0+PwWBACHV2dvJ4vJSUFKqDAq9PWloak8ns6upCCGm12v7+/tLSUoRQWVlZW1sb+X3w8uXLZWVlFAcK3OHkyZP19fWdnZ0Lq1pZWZlcLjebzQih1tbW5ORksVhMp9NLS0tbW1sRQjiOX716tby8nLK4gZtYLBbXskKhEIvFNBpNIBBkZWWR+9pisbS3t5P7elFipKSkhISErHiT7ry/Zy0dOXIkKiqqtrZWKBReuHCB6nDAWlEqlampqRKJhM1mp6amHjp0iGxvbm4WCoW1tbWRkZEffPAB2WixWNLT03Nzc/ft2ycUCsnbSoFHGx0dpdFo4eHhqf/T2dlJvlVZWZmQkPDOO+8IBAK5XE42KpVKgUBQXV2dlZWVl5c3Pz9PXezAPWpqavLy8vbv3y+VSgMDA9vb28n2rq4uPp//9ttvJycnl5eXO51Osr2ysjIxMZFMjI6OjlVs0ZNmn+jr6xsbG0tLS4uKiqI6FrBWZmdnVSqV6yWXy42JiSGXVSqVUqmUSCQZGRmuDjabraura2ZmRiaTuR6wBZ7LarUODw8vbJFIJBiGIYQIguju7tbr9Tk5OQvnJTUajbdu3dq8eXNRURGD4TGDhIDfYrVab9++rdFo+Hx+RkbGwt87NBpNT09PUFBQQUGB6w7z30qM5fOkQggAAAC4nWf8RggAAACsESiEAAAAvBoUQgAAAF4NCiEAAACvBoUQAACAV4NCCAAAwKtBIQQAAODVoBACAADwalAIAQAAeDUohAAAALwaFEIAAABe7b+XUcAKHsrOxQAAAABJRU5ErkJggg==", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "let \n", + " pz = plot(title = \"Hidden States Z\")\n", + " px = plot(title = \"Hidden States X\")\n", + " \n", + " plot!(pz, 1:n, z, label = \"z_i\", color = :orange)\n", + " plot!(pz, 1:n, mean.(mz_smoothing), ribbon = std.(mz_smoothing), label = \"estimated z_i\", color = :teal)\n", + " \n", + " plot!(px, 1:n, x, label = \"x_i\", color = :green)\n", + " plot!(px, 1:n, mean.(mx_smoothing), ribbon = std.(mx_smoothing), label = \"estimated x_i\", color = :violet)\n", + " \n", + " plot(pz, px, layout = @layout([ a; b ]))\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see from our plot, estimated signal resembles closely to the real hidden states and appears \"smoother\" compared to the filtering case. We maybe also interested in the values for Bethe Free Energy functional:" + ] + }, + { + "cell_type": "code", + "execution_count": 265, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3daXwUVb7/8VO9JB2ydgchYQthFUISISLLsIiAoiMMM0r4K46gqOMwo3jlKnj1dYe5rleuiMI4wqiMAWR1AwTZFERAUJYkshoE2UwI2ddOd3X9HxS0EQJ0QifVXfV5P+o+Vlf9umz6m3Pq1GlJURQBAIBRmbQuAAAALRGEAABDIwgBAIZGEAIADI0gBAAYGkEIADA0ghAAYGgEIQDA0AhCAIChEYQAAEML0CB86qmnZFnWugo/UxRFf29KW263mzUC/cvlcmldgt5wSv1LlmWPx+PffUqB+T0SERGRl5cXHh6udSH+JMtyTU1NWFiY1oXoR2Vlpc1mM5kC9O+5YFRWVhYZGal1FbrCKfUvp9MpSVJISIgf98k3CADA0AhCAIChEYQAAEMjCAEAhkYQAgAMjSAEABgaQQgAMDSCEABgaHoIwtUnlAKn1kUAAIKTHoJw0VHP2pN+XnEHAGAQFq0L8IMUh5RVGIgLxQFoGqtWrVqwYIHWVdRNlmWz2ax1FXrQu3fvp556qjH2rJMgnL2fHiFgXNu3b7daraNHj9a6EDSWQ4cOrVy5kiC8rBSHoEcIGFxycvKYMWO0rgKN5euvv16/fn0j7VwP1wjbhks1sjhbpXUdAIAgpIcgFEL0cEjZRXQKAQD1ppMgZL4MAKBhdBKEyXaCEADQEDoJwtRYghAA0BA6CcIedulQseLmHgoAQD3p4fYJIUQzi2gTLh0pVbrHSFrXAsDojh07NnfuXPVxTEzM6NGjr7/++its//XXX6empkZGRgohtm7d+txzz23ZsqW+B12+fPmOHTu8T8eNG5eWllbfnVxq/vz52dnZ3qft27d//PHHr323AUUnPUKhzpcpYHQUgPZOnjw5Z86cDh06JCYm5uXl9erVa/fu3VfYfty4cUePHlUfu1yu0tLSBhx0w4YNe/bsaX9BREREQ0q/xMqVK48cOeLdbXx8vF92G1B00iMUQiQ7pOwi5f9pXQYACCFCQ0MfeeQR9XFOTs7nn3+u9s/cbvfy5csPHTrUqVOne+65x2KxbNy4sby8/MMPP9y1a9fgwYO9L1m0aFFkZOTEiROjo6PVxuzs7LVr1yqK8oc//KFz586XHjQ1NbV2d+2zzz7r0qXLrl27srOz//73v1ut1o8//jgrK6tdu3bjxo2z2WzqZrt27dq0aZPVah07dmzbtm0v3W3fvn0v6gWePHly9+7d3bt3X7x4cVRU1MSJE6OiotT/tG/fvnXr1kmSdNddd3Xs2FEIsXfv3vLyckVR1q9ff++993bv3n3FihX79u3r27dvXFycy+Xq16/f+++//9vf/rZ58+bqThYsWHDbbbe1aNGigWe/nvTUIxSZ9AgBBJgjR45kZWUlJycLIWRZHjp06MqVKxMSElavXn25NeFyc3Mfe+yx5s2bb9u27be//a3auGzZsj/84Q8hISFms/mWW26ps4spy7LT6XQ6nTU1NUKIWbNmjRo1aufOnS1atJBl+fe//31GRka7du22bds2dOhQWZaFEP/85z8feOCB6Ojo6urqfv36eTumtXk8HvcFHo9HCLF///6//OUvTzzxRPPmzbds2eJ9IwsXLkxPTw8LCxNC3HzzzVlZWUKItWvXPvDAAzNnzmzRooWiKFOnTn3llVcSEhJWrlyZnp6+YsUKIcT69evfeecddSeZmZlPPfVUTEzMtZz2etFPjzDFIWUVal0EgMCw9EfPO4ebaPqcJMRbvzF3ivrVBIWioiKHw+HxeEpKSsaMGaPm2eLFiyVJWrx4sRBiwoQJSUlJ33777bBhwyIiIu66664bbrhBCHH69Ony8vIlS5ZER0dPnDgxJibm7Nmz11133eTJk1etWnXjjTcKIaKiol599dWlS5deVMncuXPnz58vhJAkqby8XAgxfPjwN998Uwixdu3a48eP792712QyTZw4sX///uvXrx80aNC0adMyMzPbt2+vvmrWrFmzZ8++aLfPP//8Sy+9pD6eOHHiP/7xDyFERUXF0qVLIyMjJ0yYEBMTU1xcHBkZ+R//8R+bNm1KSUkRQjRr1mzGjBnqYuhhYWEff/yxJEklJSVvvvnmkSNH2rZt+/DDD3t7wH/+85/vv//+p59+2mQyqdkcEhLiv/9FV6GfIEyMlEpdSoFTxIZqXQoArQ2ON8WGNtHUOUkS7SIuPpbdbi8oKBBCFBUV3XvvvU8//fRrr722Z8+eY8eODR8+XN2moKDg8OHDvXv3vui1iYmJ6nCozWaLjY3Nz893uVy5ubnTpk2TJEndp9vtvrSSSZMmvfHGG7Vb1OAUQuzZsyc/P/+2225Tn/7000+HDx+Oj4+vqqp6+OGH1cazZ8+2bNny0t3+7W9/e+655y5q7NSpkzq7Jzw8PCYmJj8/v6ioqKCgYMqUKeoGhYWF3p/d6N27t1r50aNH7Xa7dwD2pptuUruYAwYMiIiI2LRpU79+/ZYsWfLdd99dWkbj0U8QSkL0sEvfFyqD45k4ChhdXJiIax0QXwV2u33MmDEzZsx47bXXwsLChg8fPmPGDO9/bdas2aUvqf2zTZIkKYoSFhZmNpvff/997/Y+/rRTaOj5nkFYWFi/fv28w49qy08//WSz2ZYuXaqmlBDCYvE1FOos0mKxLFiwwHtQ7zbelqioqPLyco/HYzKZhBAlJSVqmgohHn300Xnz5h0/frxPnz6dOnXysQy/0M81QsFCawACj9PpXLNmjTq3ZcSIEWvWrHE6nXa73W63WywWRVGEEDExMYWFV7q043A40tLSli5dar/A6XTWq4zhw4dv2bKluLhYfbnNZnO73R07doyLi/vss8/UxpiYmPrutra4uLikpKQVK1ZcocjExMRWrVr9+9//FkKcPHny448/9v6n++6774svvnj99de9k4yaTD2C8Icffnj//fcXLFhw5syZ2u2bN2+eN2/e9u3bazcWFRUtWLAgIyNDHRzw2rlz57x58zZt2nQtRV9OMktvAwgMxcXFHTt27NixY/PmzQsLC9ULdQMHDpwyZUrPnj1Hjhw5dOjQpKSkc+fOCSEeffTRsWPHpqWlrVy58nI7zMjIyMjIuOmmm0aPHt2tWzf1Qp3vkpOTX3nllf79+99xxx233npr165df/rpJ4vFsmTJkhdeeGHAgAGjRo3q3LnzkiVLLn3tq6++2uqCSwdya1u0aNHcuXP79u37u9/9rmvXrv/6178u2sBsNi9atOh///d/O3bseNdddw0dOtQ7eTUqKio9Pb2oqGjUqFH1emt+oPhm8eLFdrv98ccff+ihh6Kjo7du3aq2T506tWPHjk888URCQsILL7ygNp45c6Z169bp6enjxo2Li4s7ceKE2j5jxow2bdpMnjy5a9euTzzxxBUOFx4erk63rZevcz19PnXV91VNxu12V1ZWal2FrlRUVMiyrHUVulJaWqp1CQ0xbdq0l19+WesqfuFyuQovqKmpuei/lpaWqrc01P5Pbre7sLCwurra5XKVlJR424uLi91ut/pYluWcnJwdO3acPXv20oOWlpaWlZXVbikrK3M6nbVbysvLv/vuu6ysrKqqqtrVHj58+JtvvikoKLh0t8XFxXm1nDt3TlGUmpqa2h8V9Zql94388MMPO3bsyM/PV1uqqqoqKiou2q1a6ogRI959911v4wMPPPDss89eWoOiKFu3bh0wYICiKNXV1Re9qWvnaxAOHDhw1qxZ6uPJkyePHz9eUZTc3Fybzfbjjz8qivL999+Hh4cXFxcrivLMM8+MHTtW3XjChAlPPvmkoijl5eXR0dHffvutoiinTp0KCws7efLk5Q7XsCAsrVEi/l0je+r7uiZCEPodQeh3BCEa29KlS1988cWMjIyHHnooMTFR/ao/cuTIa6+9Zrfbf/755zpf1ahB6OvQaFxcnHcIu6ioKC4uTgixadOmpKSkxMREIURSUlLr1q3VZYHWrFnjva1k9OjRa9asEUJs27YtOjpancLUunXrXr16+f3nhiOt4jqblFPK6CgABKg+ffpEREQcPHiwd+/ee/fuDQ8PF0Lk5+cXFhauW7dODZcm5usEoTfffDM9PX3btm1VVVUtWrRQh6dPnz7dqlUr7zatWrU6ffr0Re2tW7c+derUFTauk9vtnjFjhvc+kqSkpDvuuMOXOnvEiL357sQ65mFpT5Zll8vl+6QsXJXL5TKbzer0M/iFy+VyuVxaV1Fv6hR8BIWEhIRLVyvt379///79r/xCRVHUz6ckSd5prlfly1eEr1/KixYtKisre/bZZ6urq//+97+vWbMmPT1dUZTa1ZhMJvXjWLtdnVZ7UWPtjeukKEpxcbHValWflpSU+PhBT7FL2YVidNtA7BR6LtC6EP3gfPpdkJ5S9UsGuqd+PiVJ8v1T6ssfyj4FoaIo06dPX7t27YABA9SWF154IT09PT4+Pi8vz7tZbm6u2ueLj48/e/as2piXl+dtvGjjoUOHXu6IVqv1xRdfVLvM9XLDdZ5FOUpoqE932DQxWZYlSfLeT4NrJ8tyaGgoPUI/qqmpCcaPqI831SGoeb8/JUny77ozPn2DqEetqKhQn5aXl6vVDB48ODMzU42348eP//jjj2pSDh06dO3aterGa9euVQOvX79+ubm5hw8fFkIUFRXt2rXrlltu8eM7UXErIQCgXnwdGlVvnPjLX/5SVVU1Z86cmTNnCiHatWt333333XHHHenp6QsXLvzzn/983XXXqRv37t07IiLCYrEsWrRI/YmsmJiYxx9/fPTo0RMmTPjoo4/uvvtudWFy/+oUJZ2tVkpdIsrq930DAHRI8n1s/auvvtqxY4fFYhk6dKi6OKwQwuPxrFix4uDBgykpKaNHj/ZeBTxx4sSyZcs8Hk96erq6nKtq5cqVe/fu7dq165gxY64wmhEREZGXl9eAoVEhRJ9P3a/3NfdvGRCrK9Umy3JNTY26Ljv8orKy0mazMTTqR2VlZd4lr4LIc8899+9//1uTCYdXddH0CDRMeXl5XFzc5s2bnU6n34dG6xGETelagvDhrXKv5tKfuwXclyNB6HcEod8FaRAWFxfX+ftBgaCysrLOBUVRXy1btmzTpk1jBKEOp/KnOKRsLhMCRhITE6P+7G0ACtK/LQxFh39KM18GAOA7HQZhaqyUXRiQA74AgMCjwyCMCRHRIdLxMqIQAHB1OgxCIUSKQzA6CgDwhV6DUMq80o9cAgBwnm6DkImjAABf6DQIY5k4CgDwiT6DsEuUdKpCqXBrXQcAIODpMwgtJnF9jLS/iE4hAOAq9BmEgtvqAQC+0W0QJtsJQgDA1ek2COkRAgB8odsgTI2VMgtYaA0AcBW6DcLrbCLMIk5VEIUAgCvRbRCK86OjWhcBAAhsug9CeoQAgCvRcxAms9AaAOBq9ByEKQ4ps4AgBABciZ6DsFuMdLxcqZa1rgMAEMD0HIQhJtExSjrAQmsAgMvTcxAKIVKZLwMAuCKdB2GyQ8qmRwgAuDydByF3UAAArkz3QSiYOAoAuAKdB2GrZpIQIrdK6zoAAIFK50EohEjmbkIAwOXpPwi5TAgAuAJDBCELrQEALscQQUiPEABwOfoPwh526YdSpcajdR0AgICk/yAMNYuECOlwMZ1CAEAd9B+EgtFRAMDlGSIIkwlCAMBlGCIIWXobAHA5hgjCFIfIKtS6CABAQDJEELaLkKpkJb9a6zoAAIHHEEEohEi2c1s9AKAORglCJo4CAOpklCBk4igAoE5GCUImjgIA6mSUIOzhkA4WK24WWgMA/JpRgjDcIlqHSz+U0ikEAPyKUYJQMF8GAFAXAwUhd1AAAC5loCBMcYhMghAA8GuGCkKJhdYAABcxUBB2iJKKnUqRU+s6AACBxEBBKAnRwyFlFzE6CgD4hYGCUDBxFABwCWMFIRNHAQAXMVYQ0iMEAFzEYEEYK31fpHiIQgDABcYKwiiraG6TjrLQGgDgAmMFoWB0FADwa4YLwlSH4A4KAICX4YIwmfVlAAC1GC4IGRoFANRmuCDsFCXlViqlLq3rAAAEBsMFoVkS3e3Sfi4TAgCEEAYMQiFEikPKLCAIAQBCGDYImTgKAFAZNAiZLwMAUBk1CAsUkhAAIIwZhI5QERUi/VRGFAIADBmEQogUh2B0FAAgDByEUibrywAAjByE/EIvAEAYOQgZGgUACMMGYddo6WSFUunWug4AgNYMGoQWk+gazUJrAACjBqFgdBQAIIQQwlKvrbOysg4fPtyiRYs+ffrYbLbajT169OjWrZt3y6qqqi+++EJRlCFDhoSHh3vbDx8+nJWV1blz5xtuuMEvb6DBkglCAIDvPUJZlu+///4777xz+fLl//3f/71w4UK1/eWXX7799ttXr159yy23zJkzR208d+5camrqG2+88dZbb6WkpOTm5qrt8+bNGzRo0KpVq0aNGjV9+nR/v5f6oUcIABBCCMU3s2fPTk1NLS0tVZ96PB5FUc6dO9esWbMDBw4oivLtt99GR0eXlZUpijJ9+vSRI0eqW6anpz/zzDOKolRVVcXGxn711VeKohw9ejQsLCw3N/dyhwsPDy8vL/extoY5W6U4Mmoa9RAXcbvdlZWVTXlE3auoqJBlWesqdMX7bxz+win1r+rqaqfT6d99+tojXLhw4eTJkwsLC7/55puKigpJkoQQGzZs6Ny5szoieuONN8bGxm7ZskUIsXLlyrFjx6ovHDt27KeffiqE2LZtW2ho6MCBA4UQHTp0SElJ+fzzzxsj2n10nU2EmMSpCjqFAGBovl4jPHr06NKlS99+++3IyMhDhw6tXr36hhtuOH36dNu2bb3btG3b9tSpU0KIU6dOtWnTRm1s06bN6dOn1cY6N66TLMvvvvtuSEiI+jQ5Oblv3771fGtXl2wX+8554m1+33Hd5Aua6HgGoJ5PhRXU/YePqN9xSv1LlmVJknw/pSaTSe25XYGvQVhRUREeHr527VpJkp599tn//M//3Lhxo8vlMpvNv+zLYnG5XEIIt9vtbbdarTU1NUKIy21cJ1mWd+/ebbVa1adutzstLc3HUn2XFC3tO6cMa+nx+57rJMuyy+WyWOo3QQlXoH6oTCbjTn72O5fLdYV/mGgATql/uVwuSZKumm1eVqu1dvTUydcv5VatWg0bNkw99vDhw+fNmyeEiI+Pz8/P925z9uzZ+Ph4IURcXJy3/ezZs61atapz45tvvvlyhwsJCXnrrbdqTzdtDD1beNadUmy2kEY9ipcsyyaTyTvbFtfO4/HYbDaC0I9cLhcfUf/ilPqXmoLe8UK/8PUbZPDgwcePH1cfHzt2TM223/zmN3v27CkqKhJC/Pzzz0eOHOnXr58QYtCgQZs2bVI33rhxo3pdsE+fPidPnlR3Ul5evnPnTrVdQykOKZOJowBgbL72CKdMmTJ48ODo6OioqKgXX3zx9ddfF0J06tTpd7/73ejRo8eNGzd//vw//vGPakBOnjy5T58+LVq0sFgs8+bN27p1qxCiefPmDz300N133/3II48sW7Zs+PDh3bt3b7w35ovudulYmVItC9tV+s0AAN2SfJ9ocOjQoYULF3o8npEjR6o9PyGEy+V69913Dx48mJqaOn78eO9Q7IEDB9SNx40bl5ycrDbKsrxgwYK9e/d27dp14sSJoaGhlztWREREXl5eYw+NCiGSP3Rn3GzuGevrcPO1kGW5pqYmLCysCY5lEJWVlQyN+ldZWVlkZKTWVegKp9S/nE6n34dG6xGETanJgvC+zfLw1tL4zk3xTUoQ+h1B6Hd8a/sdp9S/GiMIjf4NkmznhwkBwNCMHoQstAYABkcQin0FBCEAGJfRg7B1uKQIkVeldR0AAI0YPQiFEMl27iYEAOMiCEVKLJcJAcC4CEKR4mDiKAAYF0HIxFEAMDSCUCTFSIdLlJom+gkKAEBgIQhFmEUkREhHSugUAoAREYRCMDoKAAZGEAohRLKdIAQAgyIIhRAiNVYQhABgTAShEOeHRrUuAgCgBYJQCCHaRUiVbuVctdZ1AACaHEEohBCSED3sUnYRo6MAYDgE4XkpDimLn6EAAOMhCM9L5g4KADAkgvC8VIIQAAyJIDwv2SEdLFZkohAADIYgPC/cIuKbST+w0BoAGAxB+AsWWgMAAyIIf5HsENxBAQBGQxD+IsUhZRZoXQQAoGkRhL9gaBQADIgg/EXHKKnIqRTXaF0HAKAJEYS/kIRIskvZdAoBwEgIwl9hdBQAjIYg/JVkBz1CADAWgvBX6BECgNEQhL+S4pCyixQPUQgAhkEQ/kp0iIgNlX4sIwkBwCgIwosxOgoAhkIQXiw1VhCEAGAcBOHFku1SdqHWRQAAmgpBeDGGRgHAUAjCi3WOln6uVMpcWtcBAGgSBOHFzJLoFiPt5/eYAMAYCMI6pDikTEZHAcAYCMI6pLDQGgAYBkFYh5RY5ssAgFEQhHVIdUhZhQpJCABGQBDWwREqIqzSiXKiEAD0jyCsW4qD9WUAwBAIwrqlOKQs1pcBAAMgCOuWbGe+DAAYAkFYt1QmjgKAMRCEdbs+WjpRrlS6ta4DANDICMK6WUyiS7R0oJhOIQDoHEF4WfwMBQAYAUF4WckEIQAYAEF4WSkOKauAIAQAnSMIL+sGfoMCAAyAILysFmHCahKnK8hCANAzgvBKWF8GAHSPILwSJo4CgO4RhFeS7JCyiwhCANAzgvBKUhxSJhNHAUDXCMIr6R4jHS1TnLLWdQAAGg1BeCWhZtEhUjrIQmsAoF8E4VWkMl8GAHSNILyKZIeUTRACgH4RhFfBHRQAoG8E4VWkOARBCAA6RhBeRZtwyeUReVVa1wEAaBwE4dXxe0wAoGME4dVxmRAAdIwgvLoUJo4CgH4RhFdHjxAAdIwgvLoedulwieLyaF0HAKAREIRXF2YRbcOlIyV0CgFAhwhCnzA6CgB6Ve8gzM3NPXXqVO2WEydObNy48cyZM7UbZVnevn37tm3bXC7XRS/fuHHj8ePHG1StZriDAgD0qn5BePz48S5duowcOdLb8tZbb6Wlpc2aNSslJSUjI0NtLCkp6d279+TJk6dMmZKWllZYWKi2L168uEePHrNmzbrppptmzZrlr/fQBFJZXwYAdKoeQagoyqOPPnr33Xd7W0pLS6dOnfr555+vXr36ww8/fPLJJ6urq4UQb7/9dmxs7K5du3bs2JGQkDB79mwhhMvlevLJJxctWrR69eovv/zyueee8wZk4EtxSFlBUywAoB7qEYTvvPNO27Zthw0b5m1Zt25dQkJCWlqaEGLw4MERERGbN28WQnz44Yf33XefJEmSJP3xj3/88MMPhRDbtm1TFOXWW28VQiQlJV1//fVr1qzx75tpPAmRUrlLKXBqXQcAwN8sPm535syZmTNnbt++fe3atd7GU6dOtW/f3vu0Xbt2J0+eFEKcPHkyISFBbUxISFCvKaqNkiR529WN6yTL8ocffmiz2dSnXbt2TU5O9v1dNYYeDinznHxzvNTgPXgu8GNVBsf59DtOqd9xSv3L4/FIkuT7KTWZrt7f8zUIJ02a9Pzzz9vt9tqN1dXVFssvewgNDa2qqhJCOJ1Oq9V6UWN1dbW3sXZ7ndQgNJvN6tMbb7yxY8eOPpbaSLpFWnbnKTdFyw3egyzLNTU1isK1Rr+prKz0eDy+fNDho6qqKu+/O/gFp9S/nE6nJElut9vH7W02W+2cqpNPQbhz586vvvrq+uuv/+677w4cOHDmzJlp06b9z//8T1xcXEFBgXezc+fOxcfHCyFqt+fn56uN8fHx586dq73xwIEDL3fEkJCQDz74IDw83JfymkavFp7vzikREQ3/QKtBGBYW5seqDM5kMtlsNoLQjxRFiYiI0LoKXeGU+pfVapUkKSQkxI/79OkbJD4+furUqXa73W63h4eHm81mu90uSVKfPn12795dXl4uhCgoKDh48OBNN90khOjbt++WLVvU127ZsqVv375CiLS0tGPHjql3WVRXV+/cubNfv35+fCeNLTWWOygAQIek+o7UffDBBzNmzNi7d6/69M477xRCTJgwYe7cudddd90HH3wghMjMzBw4cOBLL71ksVimTp26YcMGNSAfeOCBY8eO/fWvf120aFF5efmGDRsud5SIiIi8vLyA6hGWu0TcIlfJeKu5oVcJ6RH6XWVlJT1C/yorK4uMjNS6Cl3hlPqXOjSqQY+wtu7du0+YMMH7dOnSpf379//kk09uvfXW9957T21MTU1dv359dnb2nj171qxZo6agEOLtt98eNWrUJ5980qtXr48++sgf9TedCKuIaybllNIpBABdqXePsGkEYI9QCPGHjfI9HaUxiQ3sf9Aj9Dt6hH5H98XvOKX+FRA9QiNLcQh+mBAAdIYgrIdku5TJ+jIAoC8EYT3wGxQAoD8EYT10jJIKqpXiGq3rAAD4D0FYDyZJJNml7+kUAoCOEIT1w+goAOgMQVg/yQ4pu4ggBAD9IAjrhx4hAOgMQVg/KQ4pu1DxEIUAoBcEYf3EhAh7qHSsjCQEAJ0gCOstxSEYHQUA3SAI6y3VIWWxvgwA6AVBWG9MHAUAPSEI642JowCgJwRhvXWJls5UKOUuresAAPgDQVhvZklcHyPtZ3QUAHSBIGyIFIeUyegoAOgCQdgQ6m31WlcBAPADgrAhmC8DALpBEDZEaqyUVaiQhACgAwRhQ8SGimYW6WQ5UQgAQY8gbKAUh2B9GQDQAYKwgbhMCAD6QBA2UDJBCAC6QBA2UCpBCAC6QBA20PUx0vFypcqtdR0AgGtDEDaQ1SS6REkHiukUAkBwIwgbjvkyAKADBGHDMV8GAHSAIGw4eoQAoAMEYcOlxkqZBQQhAAQ3grDh4sKE2STOVJKFABDECMJrkuKQWGgNAIIaQXhNuEwIAMGOILwmyXZ+oRcAghtBeE1SHFImQQgAwYwgvCZJduloqVLj0dSTc8wAABG/SURBVLoOAEBDEYTXJNQs2kdIB1loDQCCFkF4rVJjmS8DAEGMILxWyQ7mywBAECMIrxV3UABAUCMIr1WKQxCEABC8CMJr1TZcqpHF2Sqt6wAANAhB6Ac9GB0FgKBFEPoBlwkBIHgRhH6Q4pCyiwhCAAhKBKEf0CMEgOBFEPpBsl06VKy4WWgNAIIQQegHYRbRJlw6UkqnEACCD0HoHykOKauAIASA4EMQ+kcylwkBIDgRhP6RyvoyABCcCEL/SHFIWYVaFwEAqD+C0D/aR0qlLqXAqXUdAIB6Igj9QxKih136ntFRAAg2BKHfcFs9AAQjgtBvmDgKAMGIIPQbeoQAEIwIQr9JcUj7ixSZKASAoEIQ+k2kVbQMk46y0BoABBWC0J8YHQWAoEMQ+lOKQ2QThAAQVAhCf0p2SJmsLwMAQYUg9CeGRgEg6BCE/tQpSjpXrZS6tK4DAOAzgtCfTJLobpe4TAgAQYQg9DNGRwEguBCEfpZMjxAAggpB6Gf0CAEguBCEfpYaK2UXKiQhAAQLgtDPYkJEdIh0rIwoBIDgQBD6X4pDMDoKAMGiHkFYUFCwb9++/Pz8i9qLi4t3795dWlp6UfuhQ4cOHjx4UWN5efnu3bsLC/W8/kpqrJSl5/cHALriaxCOGDGic+fOEydO7Ny588MPP+zxeNT2hQsXdujQ4fHHH+/QocPHH3+sNlZWVg4ZMmTUqFG///3vBwwYUFZWpravXr26ffv2jz32WOfOnefPn+/3NxMgmDgKAEHE1yD861//mpeXt3v37sOHD69cufLTTz8VQlRUVDz22GOffvrptm3bMjIyJk2aVFNTI4SYN2+e2+0+cODAgQMHbDbbP/7xDyGELMuTJk2aN2/e9u3bP//888mTJ1/aidSHlFgmjgJA0PA1CO+8806r1SqEaNmyZefOnXNzc4UQ69ata9my5cCBA4UQt99+u9ls3rJlixBi6dKlEyZMsFgsJpPpwQcfXLZsmRBi+/btVVVVo0ePFkL07t27Q4cOn332WSO9K211iZJOVSgVbq3rAAD4wFLfF+zbty87O/u2224TQpw4caJDhw5quyRJiYmJJ06cUNsTExPV9g4dOngb27dvbzKZLmqvk8fj+fLLL202m/q0Y8eO3h0GPotJXB8j7S9SbrpO0roWAMBV1C8If/755zFjxrz88stq/lVWVoaGhnr/a1hYWHl5udruzTCbzaY2VlRU1LlxnVwu14wZM8xms/q0b9++zzzzTL1K1Va3SOvO0zXdbHLtRlmWa2pq3G66in5TVVXlcrm8f13h2l3hXyUahlPqX06nU5KkkJAQH7e32WzqcOYV1CMI8/Pzhw0bNmHChEmTJqktLVu2rD3/s6CgID4+/qL2goKCuLg4IURcXFxRUVHtjX/zm99c7lihoaFr1qwJDw/3vbyAktbS80OZEhlprt2oBmFYWJhWVemP2Wy22WwEoX9FRkZqXYLecEr9KCQkpF5B6Atfv0GKi4tHjBhx9913P/vss97GG2+8cc+ePdXV1UKIkpKS/fv39+rVSwiRlpa2fft2dZvt27ffeOONQoiePXvm5OScO3dOCOFyuXbt2qW26xILrQFAsJAU35YDu+mmmyoqKiZPnqw+7dmzZ+/evYUQQ4YMadWq1UMPPTRnzhy3263OJt25c+dtt932z3/+02Kx/OlPf/rkk08GDRokhEhPT6+qqnryySczMjIOHz7sDctLRURE5OXlBW+P8Fy16LzMVXi/tfZFQnqEfqcOwtMj9KOysjK6L/7FKfWv+g6N+sLXb5A+ffoMGDBg9wWnT59W2z/66KP4+PhXX321S5cuCxcu9G68bNmyjz76aOnSpQsXLlRTUAjx3nvvpaamvvrqq3a7feXKlX58G4GmuU2EWcSpCjqFABDofO0RNrFg7xEKIUZ87n4syfzbtr/0CekR+h09Qr+j++J3nFL/0rJHiPriMiEABAWCsLEkE4QAEAwIwsaS6pCyCghCAAh0BGFj6RYjHS9XquWrbwkA0BBB2FisJtEpSjpQRKcQAAIaQdiImC8DAIGPIGxEzJcBgMBHEDYieoQAEPgIwkaU6pAyCUIACGwEYSOKbyZMkvi5Uus6AACXRxA2rmQ7o6MAENAIwsbFZUIACHAEYeNKdkjZBCEABDCCsHGlMF8GAAIbQdi4etilnFKlxqN1HQCAyyAIG1eoWSRESIeK6RQCQIAiCBtdaizzZQAgcBGEjS7ZznwZAAhcBGGj4w4KAAhkBGGjS3GIrEKtiwAAXAZB2OjaRUhVsnK2Sus6AAB1IQibQrJdyuYXegEgIBGETYHLhAAQsAjCppDCQmsAEKgIwqZAjxAAAhZB2BR6OKSDxYqbhdYAIPAQhE0h3CJah0s/lNIpBICAQxA2kRSHlF2kdREAgEsQhE0k2U4QAkAgIgibSGqsYL4MAAQggrCJpDik7CJJ6yoAABcjCJtIYqRU7FSKa8hCAAgsBGETkYRIsovvi7WuAwDwawRh00lxSN8X0yMEgMBCEDadtFjxzhHps5MKc2YAIHAQhE1nfGdpWrLnb7vlHivc7x3xOGWtCwIAEIRNySyJuxOU70Zb5g4wf3zc036Ja/oeudCpdVkAYGwEoQYGxEmrbrV8daelyCm6LndN3iH/VM5wKQBogyDUTOdo6Y1+5u/vstpDxY2fuEeud+88SxwCQFMjCDXWMkxM72U+NtY6rJUp/Qt5wCr3qhMe8hAAmgxBGBAirGJyD9OxsZapqaYX9npSP3LPO+SpZjYNADQ+gjCAmCQxsp1p5+8sb/U3rzrhSVzimr5HLmI2DQA0JoIwEKmzadbdbvmxVHRa5pq8Qz5ZwXApADQKgjBwpTikjJvN++8+P5smfZP8bT5xCAB+RhAGurgwMb2XOSfd+puW0l0bmU0DAH5GEAaHSKuY3MOUM9byyPWm//rW0/Mjd8YPHpdH67IAIPgRhMEkxCTu72zKvssyp795+TFPl+Xu/830FNdoXRYABDOCMCips2k+HmbeX6R0XOqavEM+xWwaAGgQgjCI3RArZdxs3j3aEmYRvT52379Z3l9EHAJA/RCEQa99pPRKb3POWGtac2nE5/Lwte5VJ7h4CAC+Igh1IsoqJvcwHR1r+WMn07Rdnl4fuzN+8LgJRAC4GoJQV9TZNN/fbfl7mmlBjqfLcvcb33sq3FqXBQABjCDUIUmIke1MG263rBhq3n1OabfYNXmHfKaSy4cAUAeCUM96NZcybjZ/N9oihOjxofv+zfLBYuIQAH6FINS/xEjpjX7mI2OsSXZp+Fp55Hr3xtPEIQCcRxAaRXObmJpqOppuGZNoemyHfOMn7owfPDKBCMDwCEJjCTWL+zub9t9l+Vsv07xDni7L3G9876lkNg0AAyMIjUj94cOvR1qWDTXvPqd0XOqavkc+V611WQCgBYLQ0NKaSxk3m78eaSlyii7LXfdvlg+XMFoKwFgsWhcA7XWMkt7oZ/6vG8yz98sDV7lvjjf9qZupfYSQpPMbRIdI3r+YIq3Cwp9PAHREUpRA7AFERETk5eWFh4drXYg/ybJcU1MTFhamdSFXUuEW7x32LD7qyav6pbGkRvGuUVPmEt4FayKswnohFJtZpNALj21mEXbhT6xQs2h24bHVJCIs59PVYhKR1vPtJklEh5x/LAkRE3IhgYWICRXeJ1FWYb5wiEirZJGE0+kMCQmRpF+290WYRdjM9XpFUzNLIirk6ps1hoqKCp39u1PV/uw1sfLy8oiICE0OrUtOpzM6VAoL9ee/EIKw6QRFENZLuUt4fxOx0q04Lzyucotq+fxjpyy8k3FqPKLCff7z5vaIMtf5do8iSi78mJQiRHHNL5/JYqfwPimpEd6fJC5zKW5FyLJsMpnqG4S1ywtMsiJKNfp1LY/HYzLpsMvv8ohytzbfdYqi1Pcjiiub00e5t4s/g5ChUTRchPWXx/ZQH/+p+/MbobKyxmaz6vKLWytlZWWRkZFaV6ErnFL/cjqdfv/Dgm8QAIChEYQAAEMjCAEAhkYQNp39+/evWrVK6yp0Zfny5Tk5OVpXoSv/93//5/HwO5Z+k5ub+/7772tdha5s3rx5x44d/t0nQdh0du3atWbNGq2r0JWVK1fu27dP6yp05bXXXqusrNS6Cv04cuTIkiVLtK5CV7744outW7f6d58EIQDA0AhCAIChEYQAAEML0JVlQkNDW7durbPlGMrLy6urq5s3b651Ifpx9uzZiIiIZs2aaV2Ifvz000/t2rXT2T89DTmdzsLCwvj4eK0L0Y+ioiJJkmJiYnzc/t57733++eevvE2Arixz9OjRmhqN1phqNB6PR5Zlq9V69U3hm5qaGqvVyre2HzmdztDQUK2r0BVOqX/JsiyEMJt9XS/Yl79CArRHCABA0+AaIQDA0AhCAIChEYQAAEMjCAEAhhags0Z1pqSkZPXq1VlZWc2aNRs1alTPnj21rkg/Fi9eHBkZeeedd2pdiB58//33y5cvLysrS0tLGzdunNblBL2cnJwlS5YUFxf37Nlz7NixFgvft/VWVVWVmZl54MCB+Pj422+/3dvucrnmz59/6NChHj16jB8/3vdJpHWiR9gUpk+fvmTJktjYWKfTOWjQoBUrVmhdkU4sX7780UcfnTlzptaF6MFHH300cODA6urqhISEdevWaV1O0Dt48GDPnj2rq6uTkpJmzZr14IMPal1RUHrxxRcnTJgwc+bMOXPm1G5/4IEHMjIyunTpMnfu3EmTJl3jUbh9oilUV1fbbDb18UsvvfTll19u2LBB25J0oKCgYNCgQWPGjPnqq6+++OILrcsJbpWVlW3btl28ePGtt96qdS068dprr23YsOHzzz8XQnz33XeDBg2qqKjgntf68ng8JpNp5syZmzZt+uyzz9TGY8eOde/e/dSpU7GxsT///HNiYuKxY8euZdUCeoRNwZuCQojq6urw8HANi9GNxx9//Jlnnrnuuuu0LkQPdu7c2axZs8TExNmzZy9YsKCqqkrrioJe9+7dc3JyysrKhBB79uzp3r07KdgAJlMdIbV169bU1NTY2FghRHx8fNeuXbdv335NR7mWF6O+cnJyZs+e/fTTT2tdSND77LPPCgsL77vvPq0L0Yljx4653e5x48aVlZUtXbq0T58+1dXVWhcV3G6//fbx48e3a9euS5cur7zyyvLly7WuSD9yc3Nr/wXcsmXLM2fOXMsOuXjbdPLy8kaOHPncc8/1799f61qCW0lJyZNPPrl27VqtC9EPk8mUm5u7bdu2Dh06eDyepKSkZcuW3X///VrXFcQ2bNjwr3/9a8mSJQkJCXPmzBk/fvzmzZvr7N+gviwWi7rQmsrlcoWEhFzTDq+5JPgkLy9vyJAh48ePnzJlita1BL0vvvgiLy8vPT1dCJGfn19UVNS3b99vvvlG67qCWOvWrW02W4cOHYQQJpOpW7duJ06c0Lqo4DZ//vz77rvvtttuE0LMnDkzPDz84MGDSUlJWtelB61btz59+rT36enTp1u1anUtO+TPk6aQn58/bNiwe+65Z9q0aVrXogdDhgzZtGnT3Llz586de88993Tt2vWtt97SuqjgNnDgwIiIiH379gkhampq1GtaWhcV3GJjY3/88Uf18U8//STLsnpNC9du2LBhOTk5hw4dEkJkZmbm5ubefPPN17RHBY3vkUcesVqtaReMHj1a64r0Y86cOUOGDNG6Cj145513WrVq9cgjj9xwww0jR46UZVnrioJbTk5OfHz8iBEj/vSnP7Vq1WrKlClaVxSU1qxZk5aW1qZNm+jo6LS0tOnTp6vtL774Yps2bR588MFWrVq9/vrr13gUbp9oCsePHy8oKPA+DQ0N7dGjh4b16Ik6NNqlSxetC9GDH374Yffu3QkJCX379mWK47WrqKjYtm1bSUlJUlISPeyGKSwsPHbsmPdpbGxs+/bt1cf79u07ePBgjx49kpOTr/EoBCEAwNC4RggAMDSCEABgaAQhAMDQCEIAgKERhAAAQyMIAQCGRhACAAyNIAQAGBpBCAAwNIIQAGBoBCEAwND+P7Jc/yS+plLoAAAAAElFTkSuQmCC", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(result_smoothing.free_energy, label = \"Bethe Free Energy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can also extract the marginals $q(\\kappa)$ and $q(\\omega)$ to get the appropximation of these parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 266, + "metadata": {}, + "outputs": [], + "source": [ + "q_ω = result_smoothing.posteriors[:ω]\n", + "q_κ = result_smoothing.posteriors[:κ];" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's visualize their marginal distributions." + ] + }, + { + "cell_type": "code", + "execution_count": 267, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1xTV/sA8JMdkhCGbGQvWWpBRVFUtIB11YVYLYqftqitWqrifh2ttlpX3VaLuBXE1SrKa0XUOpFSZQmCTNkaiBCy8/vjvm9efowkQJIb4Pn+0Q+5OTn3uUmTx3vvOechyGQyBAAAAPRWRLwDAAAAAPAEiRAAoFnv3r2TSCRq6aqmpkYt/QDQHCRCADqsqakpKCjo6NGj+Ibx8uXLkJCQoP/au3cvvvG0icPhLFiwID8/v/nG/Pz8cePGBQUFjR8/XvWuZDJZZGTk06dP1R0j6O3IeAcAer579+5t3boVuxt9/PhxGxubFg2EQuGcOXPq6uoQQjNmzFiwYAEOUXZD/fv3P3/+vFQqRQglJCQIBAK8I2pDbGyslZWVm5tb843Ozs7nz59/+/btypUrVe+KQCBMnjz5wIEDPj4+FApF3ZGC3gvOCIHGjRw5Ejt5CgoKSkhIaN3gzp07ffr0cXBwiI6O/uKLL7QeYIeRyeTZs2d/9NFHeAeCjI2NTUxMTExMGAwG3rG0obCw8NatWxEREa2fMjIyMjY27miHM2bM4HK5N27cUENwAPwXJEKgcQQCAfvJCwsLS05O5nA4LRpcunQpNDSUQqEYGBiQyd3gKgWFQpk/f/7gwYPxDkTXXbhwwdbW1sfHR10d6uvrBwUFnT17ViwWq6tPACARAu2xtLT08/O7du1a842pqamNjY2jRo3CKyqgIXV1dQ8ePAgODlZvt8HBwXV1dY8fP1Zvt6A36wb/+gY9SWho6Jo1a2bNmkWn07EtCQkJU6dObfNEUCAQpKWlPX/+PCcnp6qqSiaTWVtbBwcHjxs3jkqltmjM5XLnzJnD5/MRQqNHj163bh1CKDs7+9y5cxkZGSwWKzQ0dMqUKS1elZ+ff/Hixby8vJqaGnNz88DAwNDQ0IqKiq+++gohxGQyL168KL8dlZaWtnbtWuyeHEJo4sSJ3377bZuHWVZWFhkZKRKJIiIiZs2adfHixaSkpKqqKhMTk/79+8+dO9fMzKyLx6sd5eXlFy5cyM/PLykpYbFYHh4eM2bM8PDw2L17982bNxFCs2bNau9q9v3790UiUUBAgIr7OnLkyKVLl7C/KRRKTEyMpaVl62aurq4WFha3b99WvWcAFINECLTKzc3NwcEhKSnp008/RQgVFhbm5ORs2LChzcaPHj26d++ep6fnyJEj+/TpI5VKS0pKrl69+uTJkx9++IFEIjVvzGazz549KxQKExMTS0tLJRJJTExMSkpKWFhYZGRkcXHxkSNHSCTSpEmT5C+Ji4s7c+bMlClTQkJC+vTpU1hYmJSUdP/+/W+++YbBYMTExNDp9OaDMnx9fVUcnNK3b9/z58/v27ePx+Nt2bLFzc1t+fLlxsbGdXV1169fX7BgwcGDB62srLpyvFpw5cqV48ePf/zxx+Hh4dbW1tXV1RkZGatXr543bx5CaPr06TNmzDAyMmrv5enp6UZGRm0mszbNmDEjNTXVzMxsyZIlTCbTwMCgvZaenp5Pnz6VyWQEAqGjBwVAa5AIgbbNnDnzwIEDkyZNIhKJly5d+uSTT5hMZpstAwMDAwMDm2+xs7Pz9/ePiIjIycnx8vJq0Z7NZiOEWCxWfX39qlWrDA0Nf/31V319fYSQra2tn59f83WUnj17FhcXd+DAATs7O3nno0ePjouL27lzJ4FAMDExaR2SfHwHg8FQPErTwMCATqcnJibu3r3bwcEB22hlZeXh4bFjx47jx4+vX7++i8erUWlpaSdOnNi5c6d8wKetre2gQYPGjx+/cuVKsVgcEhLS5lskl52d7erqquLuCgsL//WvfwUEBHz55ZdKU76Li8udO3dKSkrknx0AXQH3CIG2DRkyhEqlPnz4kMPhpKSkTJ06tUMvJ5FIlpaWVVVVCtq8ePFi2LBh69evx7Ighkql0mg0+cP9+/cvXry49S9pWFhY63O1Tps8ebI8C8qNHTs2JydHxR5UOV5N+OWXX77++usW0x4QQubm5mvWrFE6sV0ikXA4HENDQ1X29ejRoxUrVsybN2/BggWqnPhi3b57906VzgFQCs4IgbYRCITQ0ND4+Pj8/PyhQ4daWFi011Iikdy7d+/27dvl5eU1NTU0Gs3U1NTDw6O6ulrxLgICAqZPn66gQW1tbW1tbXs3mQIDA3Nzc1U5FqXavLfHYrFEIlHr7Z0+XrWrra2tqalpcXoq169fP1tbW8U9NDY2ymQyVSZ1XLhw4fjx4+vWrVN9wBTWLZfLVbE9AIpBIgQ4GDt2bGxsbEJCwq5du9pr09jYuHz5cplMFhwc7OLigl2T/PDhQ3l5eXp6uuL+ld46Ki0ttbCwaG9SttJfeU3oyvGqHfb+KBiho/SaJHa5m8fjKW4mEokePnw4derUX3/91cnJqW/fvqqE19TUhBBisViqNAZAKUiEAAcUCmXZsmVlZWX9+vVrr82ePXucnJyWLVvW4lqZu7t7UlJSFwOwsbGprKwUiURt5sKysrIu9t8JGj3ejsLeH6FQ2F4uLC0tVZwLSSQSm82ur69XvCMymbxr1y4qlcpms5ctW/bzzz/b29srDQ/rtk+fPkpbAqAKuEcI8OHn56fg6qVEIklNTf3888/bvGOEzZHoCmw1lgcPHrT57N27d7vYf0dp+ng7ysTExNTUNCUlpc1n8/LyioqKlHbi7u7+5s0bxW0IBAKWa+fMmRMaGrpixYoWq5K2qaCgQE9PD5cTd9AjQSIEuohAIBCJxNb3xrhc7vfff6+WG3hLly49cOBAcXFxi+3x8fGlpaVd779DtHC8HRUVFXXw4MG8vLwW26urq7ds2aJ4vCjG29u7urpa9XoRoaGhc+fOXbly5atXrxS3zMrK8vb21v58EtBTwaVRoHHYAEKEEIfDoVKp+vr6LabPY8+KxeIPHz4IBAIajUYkEmfPnr1169Z58+Z5eXnRaLTq6urU1NRbt27NnDmzoaGhoaEBG5Qovx0okUiw0RM8Hk8gEDRfyI1KpbaeoTF48OCwsLAlS5ZMnTrVx8cHm0d48+bN2tra6OjojRs3tmgvk8mwZcExfD6fz+c334uBgQGRSGzeWCAQNDU11dfXN58SJxQK6+vrpVJp8/g7cbwdiqcTfH19IyIili9fHhIS4ufnZ21tXVVV9fLly0uXLs2ePbu8vFxpD4GBgTExMQ8fPmy9jgFCiMvlNo8fM3nyZB6Pt3Llyo0bNzo6OjY/XrmSkpKysrI5c+Z0+tAAaIEAFeqBph08ePDq1avyhyEhIStWrJA/TEpK2rlzp/yhq6vrwYMHsb8fPXp0+fLl4uJiHo9nZmY2ZMiQadOmmZubr1y5Ehs/EhUVNWHCBKzx3r17r1+/3mYANBrt9OnTbU79xlaWyc3NrampsbCwGDNmTGhoaHl5eVRUVPOYEUI3b97cvXu3gsMMDw+fO3cu9veVK1cOHTqE/U0kErds2SJfmHTDhg3y5cGax9/R4+1QPJ1WVlYWFxf3+vXr0tJSJpPp6ek5ffp0Ly+v3bt3m5iYKO1/7dq1dXV18rdCLj8/f/HixRKJhEKhJCYmyrc/efJkw4YN8h+lFu8PJiYm5saNGxcuXMBrtR3Q80AiBKClwsLC7777rkUiBM2pmAizsrKioqL27t3r4eGhlv3y+fzw8PBPP/30888/V0uHACC4RwhAa2VlZaampnhH0RN4enr6+/ufPn1aXR3+/vvvZDI5NDRUXR0CgCARAtCCVCq9fPmyv78/3oH0EAsXLszMzCwoKOh6VzKZLD4+fuHChc1XCAKg67QxWIbP5/fr1w+WgdBZRCLx2LFjHV3qrMfgcrkSiQQhJBaLi4qKzp07RyQS4cpbm/h8PjaZXSAQYGNz2Gy24tGblpaW+/fvV33pbQUIBMKWLVsUzD0FoHO0cY+wrq7O3t6+sLBQ0zsCnbNq1Spvb+8lS5bgHQgOCgsLFy1ahCVCMplsZ2c3cuTIsLAwGJrfpsjIyBZfZAVlmADoLrQ0fYJAICgo1wLwJS8N2As5ODjcunUL7yi6jaNHj+IdAgDqp1IiTEtLu3HjBoVCEQqFEydO9PX11XRYAAAAgHYoT4RSqTQjI2PNmjUUCkUikezYscPR0RFO7wAAAPQMykeNEonEiIgIbG1iEok0aNAguNsHAACgx+jY9AmpVJqamgqjtgAAAPQYqg6WkUgkhw8fLigoiIyMVFxss66uLisra/jw4eoIDwAAANAsVRMhiUT64osvMjIy7t27Z2tr23oJY7mEhITly5c7OTnJtzRfWFLu6D8nS7nK1+1Vo/FOQcOsB2lzj0VFRcbGxmw2W0P9x8TEUCiUrq8niRASCAQNDQ0SiUQoFOrp6XW9Q4RQbm6um5sb9ndcXFxycvLq1asdHBzabFxZWUmn0w0NDdWy6x5A9PqfptTb7NnReAcCEEKosbFRwY8e0KaOfhYMBkPp6vMdmD6hp6c3ZMgQY2PjS5cuKfjxtbS09Pb23rt3b/MtrZtZMM3f8VuuPa9RFsyWi2bxeLxt27ZlZ2e7uLig/5bCmTlzZv/+/dWyx/v37w8dOlRziXDAgAEtyjh0Go1GY7FYEolEIBAoPuNXUX5+/vXr1+UDjL/44gsikchgMNqrKi4QCM6fP/+vf/2r67vuGZooZKFUAkXYdYRMJoPPQkdo4rPo8M+opaVl6+IpzRGJRDab3XyKRZvt/fsOMWFotcC0g2HLgtoMBuP7779fv379li1bsC0NDQ3btm1js9mqlMnG3aBBWj3B7ZAzZ84oqLvbmqen55EjR0pLS21sbDQXFQAAtKY8EWZnZxOJRGyAjFQqPXPmTGBgoOYDwweLxYqIiLh79+78+fOxLU1NTSdOnCgpKUEI0Wi0uXPnOjo6ytu/f//+0KFDb9++1dfXp9PpAwYMCAkJYbFYPB5v+/btRUVFz58/l5/FR0ZGNr8wWF5efvLkycbGRrFYzGAwZs+e7ezsjD0lEom2b99eWFi4cOFCR0fHo0eP1tXV0Wi01atXY6drDx48SExM5PF4/fv3b72uh4KY2+y5tLS0vSuWLZSUlMTGxvL5fAqFYm1tHR4ePm/ePH9//6ioqOZ14woLC2tqary9vdvs5NGjR5s3b/by8oqMjJRfO0UITZ06NT4+fvny5apE0l1IZdL0qozUivTX799w+PUIyZhUpqOh3SCLgX5WPlQSFBICAH/KE6GdnV1CQsLly5fJZLJYLB4zZkx7P3A9g0QikV9QFovFGzdunDVr1qJFixBCHA5n165d4eHh8p/vPXv2hIWFeXl5IYR4PF50dLSvry+LxWIwGJs3bz516tTQoUNdXV1b76W8vHzPnj0rVqwwNzdHCNXW1u7ZsyciIgK7SEuhUNavX3/t2rWCgoKrV68uXrzY0tIyNzeXx+NhiTAgICAgIKCgoCAlJaVFz4pjbrPnr776SiwWK31nsJhXrVplYWGBEHrx4sXevXu9vb2/++67Fi1TUlKGDRvWZidSqfTJkycLFy5svbSpv7//rl27oqKiesbyZgKJ8Erejficaywq09XIydPUXZ/KRAg1ifmVjVWnM+O3Pdk70Sn4M89phjQDpb0BADRHeSJkMpnz5s3TQii6gMPhxMbGLl68GHt4/fr1oKAgHx8f7KGRkdHKlSt//vln+aVUmUwmv6PGYDBWr15tZWWlyo5OnjwZHR1tZmaGPTQxMVm1atX27du3bt3avFl6evqmTZuw0SvNT54UUBpz65719PRUWWXt1KlTy5cvx7IgQmjAgAFv3759/vx565aFhYVjxoxpvV0sFu/YsWPAgAHjxo1r/SydTmez2RUVFX379lUajI579PbZ7meHrViWczxnWLLMWzzrbOQwou/QOn7dX2VPw3//ev6Az6a6TiCglqXYAQDaoaW1RnVZTU3N+vXrEUIEAoFMJn/55ZfyH+LMzMwWpztsNptKpQqFQqw69tKlS48ePcrn8+l0uouLy9ixY1U8myksLNy3b1+Lja1L1cyYMaOjYziVxtzpnuvr61ukqCFDhrSZCIuKiqytrVtvP3DgAIlEanMUMcba2rqkpKRbJ0KhRPhL6q/PKtKnuE1wNGh5W7o5Q7rhROcQPyvfy7k3/ip9tmHEcjg1BAAXkAiRqalpi7MlOZlM1vzWF4ZIJGLFChBCZmZmWBLlcrk5OTkbN25csWKFKvfbzM3NN2/erHRQbycojVmNsIo8rTEYDIFA0Hr71KlT+Xz+vn37Wl9NxQgEgm69AjiHX7c65Xs6We8bny9oZJXu/5kyTL4aGH6n6F7kzWXbAzc6GNhqOkgAQAtQmFcRLy+vx48fN9/S0NDQ1NSEnUvV1dXJz4fYbLafn9/8+fPv3r0rb0wgtFvlytXV9cmTJ9qPuSucnZ1bxJyYmNhmS1tb27Kystbb7ezsxo8f36dPn1OnTrX5wrKyMhWH7eigqsbqRUnRffX7znT/VMUsiCESiEEOgaPtRnx7e212ba7mIgQAtAkSoSITJ05MSkp68eIF9rCurm779u3ykq0VFRXHjh2rra3FHjY1NSUnJzdff87e3v7Zs2fyXJiRkZGeno79HRYWdvXq1ZcvX8obp6amHj58WNMxd8Xs2bMTEhJu3brF5XKrqqpiYmKkUmmbLZ2dnRUsSDt37tx3797duHGjxfZ3797RaLRuup57VWPN4n+vHmLpM9Y+oHN3+waaeU1zm7g65XvIhQBomfoL8968eXP//v3NzxXq6uocHBw4HE7zZrVN7/Pet7wlplH+1oNbbOHxeDt27MjMzMTGoQQFBY0aNapFm6amptjY2PLycoQQmUz+/PPP5ZMcOBxOampqWloalgsFAsGUKVM+/vhj+WtlMtnx48efP39uampKJpNNTU1DQ0NNTEzkPZ8+fRo7c6JQKJaWllOmTMGezc7OPnfuXPPFVgYNGjRlyhTshRUVFQcPHkQINTY2vnv3ztbWFiE0YsQI+QgUBTG32XNycrKLi8uSJUuUTqgXiUSJiYnZ2dnYVFEfH59t27Zt2LChRTMul/vNN98cP34cW6sdIXT27Nl///vfGzZswJYcunTp0rFjxwYNGrRs2TJjY2N5GyKR+Nlnn7W3d51VJ6j/Ommlr0X/YdZDuthV3vuCy7nXf/l4q2VZBfev6+YL275oD7Tsw4cP+vr6eEcBENLMZ4FbInzP57zmaLGKhQz5Wflob3fdytKlS1VMhC0IhcI2EyFC6NChQy4uLkFBQSp2JRaLFy5cuHfv3m63kJVAIlx6e7W1vvXH9iPV0uHLmuw/C1MO2s1Bz1IgEeoISIS6QxOfBW6DZYzpRn6W3fIiGFDFzJkzd+3apXoifPz48dixY7tdFpQh2U+P9jApzLH2Aerqs7+pB6eJczLzQrjMTF19AgAUgHuEoDOEQuGPP/64adOmzMzMffv2tb6uYGJisnnzZtU79PPzCwsLU2uM2nA++/Kb+pIpruPVOwtwlO1wBkmvkFuixj4BAO2B6RMa9PDhw+vXr7e3EJoCp0+f/ve//71p06bmRTx0CpVKXbt2rdI2HeqwaxHh4GV11oXsK4t85pOJ6v8eDbHyrXtz7Y/8W5Oc21h8AACgRr06EbaoPoEJCwsbOHCgWvofPnz48OHD21wITbHw8HBV1jwDOOIKP2z+a8c0twkGNI1UF6EQSRZMs3Xpp71MPWByIQAa1asTYevqE42Njdu2bTMwMOi+s9mAdvz8ZL+HiZursbPmdkElUUMcAzc9+Pm3T/ZQSBTN7QiAXq5XJ8LWsIVV7969K0+ECmpEIISSk5NTUlKkUimXyzU0NFy8eLF8+VB1aa9WA8BR0pvkN5ziRT4Rmt6Rj8WA3Pf5v708s+ij+ZreFwC9FiTClioqKuSLsCiuEYEQsrOzW7NmDda+qKjo0KFDmzZtUmMwCmo1ALzUNr0/+HfMPO9ZJA3cGmxtssu4A89/G2Xj72EC/wwCQCNwS4TCwmxJ/Ttt7pFq704yNFHQgMPhPHr0KDk5WT7cUWmNiOaDWezt7dV7Y09xrQaAl11PDw629LVkWWhnd0wKc7xz0I+Pf4kdvw8ukAKgCbglwoZHN8SVWh0dzho9leHbRm2gmpqaNWvWIIQKCwv9/Px++ukn+QhGpTUiqqurb926VVZWJpPJbGxsWiwa0EVKazUA7UspeVhUX7LItwNjgLvO29QjoybnVFb8F/3naHO/APQS+E2onxON165bkFefaGpq2rNnT3p6up+fH/aU4hoRubm5sbGxn3322fTp0xFC1dXVf//9txoDU1qrAWhZo4i37/mx0H6fkgnaLh080Sn4QFpMkP1oW3Yb9a0AAF0BE+r/R09PLzo6Oj4+vrKyEtuiuEbE5cuX161bN2DAACaTyWQyHRwcaDSaGuNRWqsBaNmxf844GznYGeBQLpFN0w+089/17JD2dw1AjweJ8P+hUChLly6VV4FQXCOCTCaXlpZif3O53J07d2LrXKtXe7UagJblcwqTi+8HOwbiFcBQq8G1vHfJxQ/wCgCAnqpXjxrFqk/k5uauX79+2rRpPj4+CCE7OzsLC4vNmzevXbuWSqVu3rz59OnTCQkJ6L81IkJDQ7GXR0ZG7tu379ixY9gZYURERHV19YYNG6KiooyNjVvUiMDKEjWvEaHA2bNnU1JSRo78zyLOtra2+/fvf/z4cfNaDUCbZEi269mhj+1HMshdLevYaQQCYYJz8MG0GH/rwXRyNy5fDICuwa36BNAdna4+0XvcKX4Q+/Lcwo/mEwnqXFNUAb38V3r/PHs/Y26L7Qmvfnc3cf1qQLh2wgAYqD6hOzTxWcClUQCUEEiEh/+OneD0sdayoALBDoHX8m5WNlbjHQgAPQckQgCUuJBz2YplbqcbC36yafrDrAcd/jsW70AA6DkgEQKgyPsmTnzONRzHyLQ2vO/Ql9VZ2bV5eAcCQA8BiRAARY6/POdj3t+YrkNFpKkkyhj7kfvTfsM7EAB6CEiEALSrhFt2r/ThaLsReAfS0kfm/bkC7l9lT/EOBICeABIhAO06nH5yhM0wPd2bq0AkEIIcRh9OPyGVSfGOBYBuDxIhAG3Lrs3LfZc3zGoQ3oG0zdXYiU6iJRb8iXcgAHR7WppQz+fzt2/frp19gY5KS0uTF5YCcofTjwfaBZC1Umupc4IdRse+PBfsMJpKouIdCwDdmDa+5Gw2e9WqVe1NqJdKpVKplEzW3Z+bHi8gICAwUIdGReqC1Ir06sbaWe7T8A5EERu2taW+5ZW8G2HuUK4SgM7TRvohEokKytWKRCKJREKn69xtGNBryZDs139OjrELIOjADHrFxtoHxL44N8l5HIOC29pvAHR3KiXC/Pz82NhYJpNJJBLDw8OtraEQDOjJ/ip92iTie5m54x2IcuYMUydDh4u51+Z5zcI7FgC6K+WDZbhcbkxMzMaNG9euXbtkyZLffvtNvXXYAdApUpnstxenx9qPIiBdPx3EjLEfcTHn9w/CBrwDAaC7Up4Iq6urlyxZghVtZzKZAwcObF6iHYAe5m7JXwgR+vVxxjsQVfXRM3Y3cY3LuYp3IAB0V8oTobOzs5WVlfxhaWkpi8XSZEgA4EYqkx5/eW6sXQDegXRMoO3wK3k3uIIPeAcCQLfUsXmEGRkZFAoF7hGCnupO8X0aieps7Ih3IB1jSDf0NvU4n30Z70AA6JY6MGr09evXN2/eXL58ueJmJSUlf/75p5HR/9ZmPHLkyIQJE9prj40ahfuOugCrRyiV9tLFSqQyacw/Z4PtAvl8Pt6xIJJISJNIVY9kqLnv0YxTE+2CDKhsjQbWOzU2Nur+EOJeoqOfBYPBIBKVnPKpmgjz8vLi4+NXrlxJIpEUt7S1tR01alR8fLx8i4GBgYI4YPqE7pBIJBQKpdcW5v134V0mldnPTCfWFqBSqEQSUfXvBZ1OH2ju9Xtx0qKP5ms0sN5JJpPBLSEdoYnPQqVLo7m5uefOnYuOjsaGzChFoVCMmlGajQHAnVQmjc04H2ivc+trq26kjf/1/H/XCerxDgSAbkZ5inr16tXFixdXr15No9EQQtXV1aWlpZoPDACt+rPoHoPMcDSwwzuQzmPT9AeYecKdQgA6Svml0TNnzjAYjP3792MPa2trP/nkExsbGw0HBoD2SGSS4y/PT3IOwjuQrgqwGXYg7bfPPKYZ0gzwjgWAbkN5ItyyZYsW4gAAR3eK7jMpDAdDe7wD6SoDGnugmef5rMuLfOBOIQCqgrt3oLeTyqSxL8+PsRuOdyDqMcJm2PUCuFMIQAdAIgS93Z9F9xkUvR5wOogxoLG9TT0uZF3BOxAAug1IhKBXk8qkJzLOj7btxoNFWxtl6/9HQVK9gIt3IAB0D5AIQa92p/g+jURzMrLHOxB1wk4K47LhpBAAlUAiBL2XVCaNfXkh0K5HnQ5iRtoM+z0/CVYfBUAVkAhB73W35CGNRHY2csA7EPUzpBt4mfa78ApOCgFQDhIh6KWkMlnsy3OBtt2s0ITqAmz8r+Xd5ArhpBAAJSARgl4qpeQvMoHc7QpNqM6IbuBp0u/iq2t4BwKAroNECHoj7HRwtH0PmTvYnlG2wy/n3oCTQgAUg0QIeqOUkr+IBJKrkRPegWiWEd3Aw8QNTgoBUAwSIeh1/nN3sCcOFm1ttM3wK7mJH4QNeAcCgO6CRAh6nXslD4kEkqtxDz8dxBjpGXqYusXDSSEA7YNECHoXqUx2/OXZMXY9drBoa6Nshl+BO4UAtA8SIehd7pb8RSaSXHruYNHWsOGjcTlX8Q4EAB0FiRD0IlKZ9HiPnjvYnlG2w67mJcJCMwC0CRIh6EX+LLpPI1F78NzB9hjSDb1NPc5lXcI7EAB0ESRC0FtIZJLjL8+N7R2DRVvDSlJw+FCnEICWIBGC3uJWQTKbyuoxdQc7yoDGHmjmdSYzHu9AANA5kAhBryCSimMzzgf2psGirY209Y7Qo3sAACAASURBVL9VmFzLe4d3IADoFkiEoFe4np9kqtfHzqAv3oHgSZ/KGmQx8ETGBbwDAUC3QCIEPR9fLDiVGT/WYSTegeAvwGbY3ZKH5Q2VeAcCgA6BRAh6vku5f9iyra1YFngHgj8GRc/felDMizN4BwKADoFECHq4BmFjXM6VMXZwOvgf/tZ+qRX/FNYV4x0IALoCEiHo4c5lJfQzcTVl9ME7EF1BI1NH2vgfST+JdyAA6ApIhKAnq216fy3/VqBtL5072B4/q49ecwpeVmfhHQgAOgESIejJYl6cGWQx0IDGxjsQ3UIiksfajzz4d6wMyfCOBQD8QSIEPVZxfelfZU9G2frjHYguGmDm3SBseFD6BO9AAMAfJELQYx36OzbAxp9OpuMdiC4iEgghDoGH00+IpRK8YwEAZ5AIQc+UXpVRwCkcZuWLdyC6y9nY0YCqf/V1It6BAIAzSISgB5LKZPvTfgtyGE0ikvGORacFOwaeyohrEDbiHQgAeFI1EYrF4oyMDI2GAoC63HpzRyqTeJm54x2IrrNgmrn3cTmZCYuugV5NeSJsbGzctWvXrl27YmJitBAQAF3UJOYfe3F6vFMQARHwjqUbGGs/+mbBnbIP5XgHAgBulCdCJpP5zTffrFq1ytraWgsBAdBFpzLiHA3t+upb4R1I98CiMgJsh+1/fgzvQADAjUqXRul0GHcHuoe3Hyr+yE8KdgjEO5DuZJj14Dd1JU/L0/AOBAB8aGSwjEgk4jQjlUo1sRcAWtv7/NcAm6H6VBbegXQnZAJpgvPHv6T+KpKI8I4FAByof0xdcXHxvXv3HB0dsYckEunw4cOffPJJe+1FIpFEIhGLxWqPBHSURCIRCATd9x8uTyv/LqorDbIZzefz8Y6lq0giIU0i1dqB2DL6GlLZp17EhblO0c4eu5fGxkYCAW4564SOfhYMBoNIVHLKp/5EaGdn9/HHHycmqjo5CUuEcPVVF0gkEgqFwmAw8A6kM/hiwa+ZJye5jGPqMfGORQ2oFCqRRNTm92Ki67jDfx+f4BZswTTT2k67C5lMxmLBZQadoInPAuYRgh7iZMYFa31LJyN7vAPprozoBsP7Dtnz7DDegQCgbZAIQU/wpq74ekHSOMexeAfSvQ23GVrCLbtX8gjvQADQKuWXRnk83pEjRyQSSWZm5o4dOxBCoaGh9vb2Gg8NANVIZbJtT/YF2Y+GMTJdRCaQJruM/+X5r74WA1jUnnCFGQBVKE+EDAZj2bJlWggFgM65lPuHRCr2tRyIdyA9gZ1B3359XA7+HbNq6FK8YwFAS+DSKOjeyhsqT2Zc+NR1PKwjoy7B9oFPyv9Oq3yBdyAAaAkkQtCNSWWyHx/9MsrO30TPGO9Yeg4amfqp67htj/fyRE14xwKANkAiBN1YwqvfG0W8YVZD8A6kp3E1cnI0tNv3/CjegQCgDZAIQXdVVF96KjN+er+JRJjprAGfOH2cWvHPw7JneAcCgMZBIgTdkkgi2vTXjmCH0cZ0I7xj6ZmoJOr0fpN2PN3/vomDdywAaBYkQtAtHU6P1acyB8FIUU2yN7Dxtfhoy6PdUpkM71gA0CBIhKD7efQ2NaXk4RTX8XgH0vMF2g2vE3DPZSfgHQgAGgSJEHQzVY3V2x7vnek+RY8M69NqHJFADO03OT7n2svqLLxjAUBTIBGC7kQoEa67/+NIm2G27L54x9JbGNDY0/pN3PjXz+/gZiHooSARgu5k57NDTArTvy/Ml9AqVyOnQZYD19//USSFcmmgB4JECLqNizm/Z9W8mgq3BvEw2nY4iUDa/ewQ3oEAoH6QCEH38LQ87XRW/BzP6VQSFe9YeiMCIszoN+lFVVZc9hW8YwFAzSARgm4gn/Nm66Pdsz2nG9IN8Y6l96KSqOHeM8/nXHlQ+gTvWABQJ0iEQNdVNlavvPv9ROcQGCCDOwMa+3Ov0J+f7s+oycY7FgDUBhIh0Gnvmzjf/bl+RF8/L1N3vGMBCCFkxbIIdZu87t6P+ZxCvGMBQD0gEQLdVS/gRt1Z72XmPtR6EN6xgP9xNnac6BwcnbyxuL4U71gAUANIhEBH1Qu43/65zsnIIdB2BN6xgJa8TN2DHAOj7qyHXAh6AEiEQBe9b+Isvr3G0dA+yH4U3rGAtg008wqyHx315zq4Rgq6O0iEQOeUN1QuSor2MHb52H4k3rEARQaae41zGrvszr9gATbQrUEiBLol513eN0kr/fsOGWU3HO9YgHLeph4z+k1ed39rSslDvGMBoJMgEQId8mfhvZV3N092HTfY8iO8YwGqcjZyiOg/Z9/zoyczLsgQFGwC3Q8Z7wAAQAghiUxyJP3E3aK/5vefbcE0wzsc0DGWTLMFH0Wcy7qU975grf93TAoD74gA6AA4IwT4q2qsWfzvVRnVrxb6zocs2E3pU1lfDPxcimRfJkblvs/HOxwAOgASIcBZ0pu7X92MsjewDfcOZZD18A4HdB6ZQJrkHDLabsSK5A2nM+MlMgneEQGgErg0CnBT1Viz+9nhUu7bed6zLFkWeIcD1MPb1N2WbX01LzGl9NGaoUudjRzxjggAJeCMEOBAJBGdzUr4IvFbfZr+Qt/5kAV7GAMae6532EdmXt/d+dcvqUc/CBvwjggAReCMEGiVVCa7U3zv2D+nzRimC30ijOlGeEcENIKACD4WA/r1cf2z6N6c3xfM8Zwx1XUClNACugkSIdASiUxyp+jBqcw4CpH0qet4BwNbvCMCGseg6E12GTfUatCfRfcu5Fz9zGPaZOcQOpmOd1wA/D+QCIHG1Qu4NwpuX869bkgzCLYf7WwMN416FzOmyWzP6RUNlfdKHp/KiJvoFDzFbTwMDwa6AxIh0BSxVJJakZ745s/nFemeJv3C3Kda61viHRTAjSXLYpbH1Pd8zpO3f3+RGOVq5Dje+eOAvkPhBBHgTqVEyOfzjx49yuPxZDLZF198YWYG/5QD7eKJmtIq/3lQ+uTh22fmDFNvM49ov8XwYwcwxnSj8U5jQxxGZdXmXsm7sevpYR9z71G2/n7WvoY0A7yjA72USonw119/nTx5soODA5fL/fnnn7ds2aLpsED3whM1ZdfmvqjJTqv8p4BTZG9g42rktNj3SwMaG+/QgC4iEcn9zTz7m3nyxE2val/feHP7l+e/WjDMBlkOHGju7WnqBkkRaJPyRNjU1NTY2Ojg4IAQYrPZXl5emZmZXl5emo8N6CipTFrZWF3Kffumrvg1pyDvfUFN4ztrtpWtQV8/S9+Z/aZQSRS8YwTdA4Os52PR38eiv1QmLeG+LawrPp0VX1xfyqQw3YydXIydHA3t7A1sLFkWFCLcxwGaovz/rYqKCmdnZ/lDd3f3kpISNSbCysrKDx8+eHh4qKtD0Gnv378vKyv76KOPEEJNYj5XwOXw6+sE9Rx+fXVjbVVjdSWvurKhqpr3jk1lmTJMTJmm5np9prpONGeaEgkwJ1WdhCIh4jXhHYX2EAlEewMbewMbhJAMyd7x3pc3VBbVFz+vTK9qqOUI6ozoBhZMcwuWuSXTzETP2IRhbEBjG9ENDWhsTS9tyufz//nnn4CAAI3uBahCLBY/f/48MDBQvd0qT4R1dXVGRv+b7NWnT5/MzEwF7SUSSX19fVpamnyLm5sbi8Vqr33cpbicyryVK1eqFnDv0iBs7OhLeKKmFktbNYp4UpkUISSTyRpEjQghiVTCEzVJZbIPwgaJTNwo5AmlwiaxoKzqbT2/nlXAahDxyAQSk8JgUVn6VBaToqdP1densbxN3Uf29TfWMyTDP881rLi4hFn+tnfOsiQgggmjjwmjT3/kiW2RyKR1/DoOv76OX/+2oSL3XX6DqLFR1PhB2NgobBRIhAyKHpPC0Kew6GQ6nULTI9H1KHQKkcKgMChEMo1MxaYw6pHp2P+6BERgUZnNd0oikBiUtlf4y87OPnLkyD6Xfa2f0iPrkYjwT0DtKSoqWr52Webjl+rtVv0/Z5WVlVlZWV9++SX2kEgkbtq0afTo0e22l9aW2b/7+dF+tUfSA7T4rrZJJpM1r3yjR6KR/pOl/rOdQdYjEghYKyaFKUNSAoHIINMJCFnQTYiIyGAzKCQKjUh9VPzw5fMXWzasZ1KYkOrwVSfWkwlkdnRrvAPRGXo27T0jkUl4oqYmCb9B1CgQC4QSIV8i5Iv5EiThifkyiZQr/CCSiAgEIl8ikEjFBAJBhlCjiIcQIqD//Ecqk/DEfHmfBIQIBAL2d319PeEj+qmXca133SRukkilaj1OoIhAINDzM/jw4YPqL2EwGCQSSXEb5T92BgYG+fn/W0v+/fv3hoaGCtpbW1v7+/snJiaqGKUVMhNkNe5fuFfF9kBzyh8Vv/6Q42HljncgABVQmQ0ygnUfK7wDAejRo0fLdi3bu+ZHvAMBKCcnZ+q6qfq/6Ku3W+Un9ZaWlgUFBc3jsLWFNUEAAAD0EMrPCBkMhp6eXnFxsZ2dXUNDQ0ZGxsyZMxW0r6mpyczMXLBggYoRZGRkcLlc1dsDzcnLyysrK4PPQhcwaotdxBz4LHRBVVVVUVERfBa6oK6urqqqqkOfRUBAwOeff664DeH/32BqW1NT07FjxwQCgVQqnTdvnoWFoloBVVVVhw8ftrJS9ZJOfX29QCCASfq6oLGxkcvlWlrC+i/44/P5NTU1Njbt3hgDWiMSid6+fWtvb493IABJpdKioiJHxw4s0zh48GBsJLwCKiVCAAAAoKeCgb8AAAB6NUiEAAAAejVIhAAAAHo1jU+a7lzlCqh3oQmde1c3bNjAYPxnCSsTExP5Ugmgi8RicU5Ojre3t+ovge+FhnTis4DvhSbk5+fHxsYymUwikRgeHm5trdKCEmr4Xsg07Jdffnnz5o1MJquvr1+3bp1GXwUU69y7+tNPP2kyqN6ooaFh586d27Zt+/bbbzv0QvheqF2nPwv4XqhdfX396tWrBQKBTCZraGjYtGmTSCRS5YVd/15o9tJom5UrNPQqoBi8q7qDyWR+8803q1atUvEfvBj4BDWhc58F0ITq6uolS5ZQqVSEEJPJHDhwYPO1XNqjlu+FZhNhm5UrNPQqoFin31WJRJKcnHzgwIFTp07V1NRoLMDehU7vcKVi+F5oSCc+CwTfCw1wdnZuPgG9tLRUQbUGObV8LzSbCFtXruBwOBp6FVCs0+/qwIED6XT6/PnzAwMD9+/fD58FXuB7oVPge6FRGRkZFApFldN0tXwvYNQoUGLChAn+/v5MJtPGxmb+/Pk3btzAOyIA8AffC815/fr1zZs3tTn+SLOJ0MDAoHlyVlq5oiuvAoqp5V21tbWtqKhQa1xAVfC90FnwvVCjvLy8uLi4qKgopbWTMGr5Xmg2EXaucgXUu9AEtbyr5eXlMGQfL/C90FnwvVCX3Nzcc+fORUdHY0NmVKGW74VmE6G8cgVCCKtc4eXl1bxBamrqtGnT4uLiOvQq0Amd+ywePXokLy0pFovPnDkTHBystZh7Lfhe6A74XmjNq1evLl68uHr1ahqNhhCqrq4uLS1t3kBz3wuNT6hfsGCBvHLF4sWL5UWfNfEqoFgn3tVhw4bduHFj8+bNdDpdJBJNmjQJalN0HY/HO3LkiEQiyczM3LFjB0IoNDRUleIG8L1Qu859FvC90IQzZ84wGIz9+/djD2traz/55BNVCrB0/XsB1ScAAAD0ajBqFAAAQK8GiRAAAECvBokQAABArwaJEAAAQK8GiRAAAECvBokQAABArwaJEAAAQK+m8Qn1AABVxMXF/fHHHyKRqMXCGQAATYMzQgB0QlhY2JkzZygUCt6BANDrQCIEAADQq0EiBAAA0KtBIgRAFz19+nTKlCnjx48PDw/PzMzEOxwAejIYLAOALmIymSYmJtHR0W5ubnjHAkAPB4kQAJ1z7969uLi4rVu3mpub4x0LAD0fJEIAdIhMJrt48eKdO3d27drFZDLxDgeAXgHuEQKgQzgcDlZr+++//8Y7FgB6CzgjBECHGBoarlixgsPhrFq1ikQi+fv74x0RAD0fnBECoEOIRCJCyMjIaNu2bSdOnHj06BHeEQHQ80EiBEAXGRsb//jjj8ePH3/69CnesQDQw0EiBEAnxMfHz5s3TyQSybcUFBTU19dv3LgxIiLi5cuXOMYGQM9GkMlkeMcAAAAA4AbOCAEAAPRqkAgBAAD0apAIAQAA9GqQCAEAAPRqkAgBAAD0apAIAQAA9GqQCAEAAPRqkAgBAAD0apAIAQCa9e7dO4lEopauampq1NIPAM1BIgSgw5qamoKCgo4ePYpvGC9fvgwJCQn6r7179+IbT5s4HM6CBQvy8/O73pVMJouMjITFV4HaQRkmoHH37t3bunUrtpjf8ePHbWxsWjQQCoVz5sypq6tDCM2YMWPBggU4RNkN9e/f//z581KpFCGUkJAgEAjwjqgNsbGxVlZWbm5uXe+KQCBMnjz5wIEDPj4+FAql6x0CgIEzQqBxI0eOxE6egoKCEhISWje4c+dOnz59HBwcoqOjv/jiC60H2GFkMnn27NkfffQR3oEgY2NjExMTExMTBoOBdyxtKCwsvHXrVkREhLo6nDFjBpfLvXHjhro6BABBIgRaQCAQjI2NEUJhYWHJyckcDqdFg0uXLoWGhlIoFAMDAzK5G1yloFAo8+fPHzx4MN6B6LoLFy7Y2tr6+Pioq0N9ff2goKCzZ8+KxWJ19QkAJEKgPZaWln5+fteuXWu+MTU1tbGxcdSoUXhFBTSkrq7uwYMHwcHB6u02ODi4rq7u8ePH6u0W9Gbd4F/foCcJDQ1ds2bNrFmz6HQ6tiUhIWHq1KltnggKBIK0tLTnz5/n5ORUVVXJZDJra+vg4OBx48ZRqdQWjblc7pw5c/h8PkJo9OjR69atQwhlZ2efO3cuIyODxWKFhoZOmTKlxavy8/MvXryYl5dXU1Njbm4eGBgYGhpaUVHx1VdfIYSYTObFixflt6PS0tLWrl2L3ZNDCE2cOPHbb79t8zDLysoiIyNFIlFERMSsWbMuXryYlJRUVVVlYmLSv3//uXPnmpmZdfF4taO8vPzChQv5+fklJSUsFsvDw2PGjBkeHh67d+++efMmQmjWrFntXc2+f/++SCQKCAhosZ3D4Xz++edCoRAhRKFQTpw40fzdEAqFM2fObGxsRAiRSKT9+/e7uLg0f7mrq6uFhcXt27db9wxA50AiBFrl5ubm4OCQlJT06aefIoQKCwtzcnI2bNjQZuNHjx7du3fP09Nz5MiRffr0kUqlJSUlV69effLkyQ8//EAikZo3ZrPZZ8+eFQqFiYmJpaWlEokkJiYmJSUlLCwsMjKyuLj4yJEjJBJp0qRJ8pfExcWdOXNmypQpISEhffr0KSwsTEpKun///jfffMNgMGJiYuh0evNBGb6+vioOTunbt+/58+f37dvH4/G2bNni5ua2fPlyY2Pjurq669evL1iw4ODBg1ZWVl05Xi24cuXK8ePHP/744/DwcGtr6+rq6oyMjNWrV8+bNw8hNH369BkzZhgZGbX38vT0dCMjI0tLyxbbjYyMzp8/v2jRouXLlzs5ORkYGDR/lkqlnjlzprCwcOXKladPnzYxMWnds6en59OnT2UyGYFAUMeBgt4OEiHQtpkzZx44cGDSpElEIvHSpUuffPIJk8lss2VgYGBgYGDzLXZ2dv7+/hERETk5OV5eXi3as9lshBCLxaqvr1+1apWhoeGvv/6qr6+PELK1tfXz82tehvrZs2dxcXEHDhyws7OTdz569Oi4uLidO3cSCIQ2f4Kxm50IIQaDoXiUpoGBAZ1OT0xM3L17t4ODA7bRysrKw8Njx44dx48fX79+fRePV6PS0tJOnDixc+dO+YBPW1vbQYMGjR8/fuXKlWKxOCQkpM23SC47O9vV1bXNp9hstqenZ0VFhfz2YUVFhUwmw/5xwGKxampqXFxc2uvfxcXlzp07JSUl8s8OgK6Ae4RA24YMGUKlUh8+fMjhcFJSUqZOndqhl5NIJEtLy6qqKgVtXrx4MWzYsPXr12NZEEOlUmk0mvzh/v37Fy9e3PqXNCwsrPW5WqdNnjxZngXlxo4dm5OTo2IPqhyvJvzyyy9ff/1162kP5ubma9asUTqxXSKRcDgcQ0PD9hp4eHhkZWVhf8tksmXLli1evFg+BCY7O9vT07O912Ldvnv3TpUDAUApOCME2kYgEEJDQ+Pj4/Pz84cOHWphYdFeS4lEcu/evdu3b5eXl9fU1NBoNFNTUw8Pj+rqasW7CAgImD59uoIGtbW1tbW17d1kCgwMzM3NVeVYlGrz3h6LxRKJRK23d/p41a62trampqbF6alcv379bG1tFffQ2Ngok8kUTOrw8vK6cuUK9ndGRoZAIDAyMnr27Jm/vz9CKCcnZ9asWe29FuuWy+UqPRAAVAGJEOBg7NixsbGxCQkJu3btaq9NY2Pj8uXLZTJZcHCwi4sLdk3yw4cP5eXl6enpivtXeuuotLTUwsKivUnZSn/lNaErx6t22PujYISO0muS2OVuHo/XXgMHB4f3799zOBwjI6O7d+8GBARYWlreuXPH399fKBQWFBR4eHi099qmpiaEEIvFUn4kAKgAEiHAAYVCWbZsWVlZWb9+/dprs2fPHicnp2XLlrUYJOLu7p6UlNTFAGxsbCorK0UiUZu5sKysrIv9d4JGj7ejsPdHKBS2lwtLS0sV50ISicRms+vr6xU0cHd3z8rKGjZs2P379zds2GBlZXXmzJnGxsaioiITE5M+ffq091qsWwUNAOgQuEcI8OHn56fg6qVEIklNTf3888/bHCqJzZHoCmw1lgcPHrT57N27d7vYf0dp+ng7ysTExNTUNCUlpc1n8/LyioqKlHbi7u7+5s0bBQ08PT2zsrLS0tIoFIq3t7epqWm/fv0ePHiQk5Oj4AYhQqigoEBPTw+XE3fQI0EiBLqIQCAQicTW98a4XO7333+vlht4S5cuPXDgQHFxcYvt8fHxpaWlXe+/Q7RwvB0VFRV18ODBvLy8Fturq6u3bNmieLwoxtvbu7q6WsGwGiwR3r17d8yYMUQiESH08ccf37lzJzs7W8F1UYRQVlaWt7e39ueTgJ4KLo0CjcMGECKEOBwOlUrV19dvMX0ee1YsFn/48EEgENBoNCKROHv27K1bt86bN8/Ly4tGo1VXV6empt66dWvmzJkNDQ0NDQ3YoET57UCJRIKNnuDxeAKBoPlCblQqtfUMjcGDB4eFhS1ZsmTq1Kk+Pj7YPMKbN2/W1tZGR0dv3LixRXuZTIYtC47h8/l8Pr/5XgwMDLBfc3ljgUDQ1NRUX1/ffKqcUCisr6+XSqXN4+/E8XYonk7w9fWNiIhYvnx5SEiIn5+ftbV1VVXVy5cvL126NHv27PLycqU9BAYGxsTEPHz4sPU6Bhh3d/f8/PyioqLdu3djWwICAg4cOEChUGbPnt1etyUlJWVlZXPmzOnccQHQGqH5zCoANOHgwYNXr16VPwwJCVmxYoX8YVJS0s6dO+UPXV1dDx48iP396NGjy5cvFxcX83g8MzOzIUOGTJs2zdzcfOXKldj4kaioqAkTJmCN9+7de/369TYDoNFop0+fbnPqN7ayTG5ubk1NjYWFxZgxY0JDQ8vLy6OioprHjBC6efOm/Pe6TeHh4XPnzsX+vnLlyqFDh7C/iUTili1b5AuTbtiwQb48WPP4O3q8HYqn08rKyuLi4l6/fl1aWspkMj09PadPn+7l5bV7924TExOl/a9du7aurk7+VrSGrb8TGxsr3/LDDz88e/bs6tWr7Z3wxcTE3Lhx48KFC3ittgN6HkiEALRUWFj43XfftUiEoDkVE2FWVlZUVNTevXsVX+pUHZ/PDw8P//TTTz///HO1dAgAgnuEALRWVlZmamqKdxQ9gaenp7+//+nTp9XV4e+//04mk0NDQ9XVIQAIEiEALUil0suXL2PTukHXLVy4MDMzs6CgoOtdyWSy+Pj4hQsXNl8hCICu08ZgGT6f369fP1gGoruYNm3ab7/9hncU2sPlciUSCUJILBYXFRWdO3eOSCTClbc28fl8bDK7QCDAxuaw2WzFozctLS3379/feuntTiAQCFu2bFEw9xSAztHGPcK6ujp7e/vCwkJN7wh03V9//bVnz57k5GS8A9GSwsLCRYsWYYmQTCbb2dmNHDkyLCwMhua3KTIyssUXWUEZJgC6Cy1NnyAQCArKtQDd0duWrXJwcLh16xbeUXQbR48exTsEANQP7hECAADo1SARAgAA6NUgEQIAAOjVIBECAADo1dSfCOvq6h4+fKj2bgEAAABNUP+o0SdPnuzbty8xMVFxs6P/nCzlKl+3V43GOwUNsx6kzT0WFRUZGxuz2WwN9R8TE0OhULq+nqQqBAIBiURqsVi2YkprCDRXXl6up6fXU4cWNzQ09LbhuOoieJPFSTpnsWgr3oF0S3w+n0wmd+hr2zup/w1ScWKiBdP8Hb9OeTv1sWC2XDSLx+Nt27YtOzvbxcUF/bcUzsyZM/v376+WPd6/f3/o0KGaS4QDBgzQ2v/iMpmsQ1NOscWsW9dwaA+Hw4mJifnXv/7Vqeh0Hazo23lSCRJquxxjjwH/46kIt38p+PcdYsLQaoFpB8OWBbUZDMb333+/fv36LVu2YFsaGhq2bdvGZrPt7e21GVvnDBqk1RPcDjlz5oyCuruteXp6HjlypLS01MbGRnNRAQBAa3DK/P+wWKyIiIi7d+/Onz8f29LU1HTixImSkhKEEI1Gmzt3rqOjo7z9+/fvDx069PbtW319fTqdPmDAgJCQEBaLxePxtm/fXlRU9Pz5c3klvMjISAcHB/lry8vLT5482djYKBaLGQzG7NmznZ2dsadEItH27dsLCwsXLlzo6Oh49OjRuro6Go22evVqBoOBEHrw4EFiYiKPx+vfv3/rdT0UxKy0Z8VKSkpiY/8g/AAAIABJREFUY2P5fD6FQrG2tg4PD583b56/v39UVJS8Th5CqLCwsKamxtvbG3v45s2b1atXOzk5LV++XF7Q9ciRI3/++efMmTNnzpyJbZk6dWp8fPzy5cuVf05dUFhf8mfRvczqnA/CRhKR5GxkH2AzdKjVICIBBo4B0EtBImxJIpHIy5mKxeKNGzfOmjVr0aJFCCEOh7Nr167w8HA3NzeswZ49e8LCwry8vBBCPB4vOjra19eXxWIxGIzNmzefOnVq6NChrq6urfdSXl6+Z8+eFStWmJubI4Rqa2v37NkTERGBXaSlUCjr16+/du1aQUHB1atXFy9ebGlpmZuby+PxsHQVEBAQEBBQUFCQkpLSomfFMSvtWYGKioo9e/asWrXKwsICIfTixYu9e/d6e3t/9913LVqmpKQMGzZM/tDR0TE4OHj8+PEmJibYJVYikbhw4cLCwkJ5FkQI+fv779q1KyoqSkPLm1U0VO1LO5pd+/ojcy8fiwEMip5YKnnbUHE0/fT+tJglvl/6Ww/WxH4BADoO/hX8/3A4nNjY2LFjx2IPr1+/HhQU5OPjgz00MjJauXJl85oyMplMnj8YDMbq1atVvLJ38uTJ6OhoLAsihExMTFatWnXixIkWzdLT09evX48tWOzm5iY/nVJAacyd7vnMmTPLly/HsiBCaMCAAQMGDGizZWFhYd++fZtvcXFxycvLQwhduXIlOjoaISQUClvUEKDT6Ww2u6KiQmkknZBc/GDBrWUGNPaKIYuCHQJdjB2t9S3tDPr6Ww+O/GjuJw5jdj87/POT/SKJSBN7BwDoMjgjRDU1NevXr0cIEQgEMpn85Zdfyn/EMzMzW5zusNlsKpUqFAqx6thLly49evQon8+n0+kuLi5jx45V8WymsLBw3759LTa2LlUzY8YMPT29Dh2O0pg73TOXy22R3oYMGfL8+fPWLYuKiqytrZtvcXV1vX79+ujRo9PS0vT09LhcbmVlZfOLzBhra+uSkpIWe+m6s1kJl/Ouz/P+zJJl3mYDZ2PHb3y+uJx3/bvkDdtH/4tJUX6VGADQY0AiRKampvLBMi3IZLLmt74wRCIRK1aAEDIzM8OSKJfLzcnJ2bhx44oVK5rfCGyPubn55s2b5ddg1UhpzGqEVeRpjcFgCASC5lssLS0rKip4PB6RSBw7duyTJ0/EYjF2Hbg5gUBAp9PVG+TpzIs3Cv4dOXCePlXRBAYamRrmPvV6/q3lyRt+GbuFTlZzGAAAnQWXRhXx8vJ6/Phx8y0NDQ1NTU3YuVRdXZ38fIjNZvv5+c2fP//u3bvyxgRCu1WuXF1dnzx5ov2Yu8LJyalFzO3NFrW1tS0rK2uxUSaTpaamDhkyZMiQIampqQUFBa0TYVlZmSr/jFBdYsHta69vzu8/W3EWxBAJhEku41hU1sYH26UyqRrDAADoMkiEikycODEpKenFixfYw7q6uu3bt8tLtlZUVBw7dqy2thZ72NTUlJyc3LxqqL29/bNnz+S5MCMjIz09Hfs7LCzs6tWrL1++lDdOTU09fPiwpmPuirCwsISEhFu3bnG53KqqqpiYGKm07Wzh7OzcuvyklZXV1atXhw0bxmAwpFLp27dvzczMmjd49+4djUZT45z6zJpXh9NPhHvNVCULYgiIMMXlk/f8ul//OamuMAAAOq5XXxrl8Xg7duzIzc3FLm8GBQWNGjWqeQMKhbJ58+bY2NiLFy8ihMhk8rx58+STHCwsLKZPny7PhQKBYMqUKf7+/vKXjxgxIi8v7+uvvzY1NSWTyaampqGhodhTVCp18+bNp0+fTkhIwHZkaWkpfzY7O/vcuXOVlZV0Ov3atWsIoUGDBk2ZMgV7tqKi4uDBgwihxsbGd+/eYSlnxIgR48aNUxqz4p4V09PT++mnnxITEw8ePMhms319fX18fLZt29a65bhx47755psvv/ySQqHIN7q6uv7zzz/YqBxfX98HDx60eNWtW7c+/fRTVSJRRb2Au/HBtmluE0w7OF2VSCCGuU89nH7c29RjRF8/dcUDANBZ6q9Qf/Pmzf379ze/aFZXV+fg4MDhcJo3e8/nvOZosWa9DPlZ+Whvd93W3bt3f/jhh9YV6vl8PolEap7YEEJCoXDbtm0bNmxo3c+hQ4dcXFyCgoJU3K9YLF64cOHevXvl0y67aE3KD1QSNcRxTOdeXsp9ey77Usz4vSZ6xl0P5sOHD/r6+l3vpxcS5L/k3Dhp8e0uvAPplpqamigUCiyxphRub5Ax3cjPsmcuLAkQQjNnzty1a5fqifDx48djx45VVxa8VXCnhPt2gU9Ep3uwYVsPthz485N9PwduUktIAACdBfcIQWcIhcIff/xx06ZNmZmZ+/bta31dwcTEZPPmzap36OfnFxYWppbYOPy6Q+nHp7lNIBO6NDF/lO2Itx8qbhelqCUqAIDOglNmDXr48OH169fbWwitW6NSqWvXrlXapkMddi2i/9n//DcfiwGWLIsu9kMiED91HX8wLWao1SDVh9sAALqdXp0IW1SfwISFhQ0cOFAt/Q8fPnz48OFtLoQGNORFdVZ6dea3gyLV0ltffSt3E7ffXpz+bvAitXQIANBBvToRtq4+0djYuG3bNgMDA/XOZgPaIZXJ9qT+Os5xDJVEUd5aNWPtR+5NPTLFZXzr6iUAgJ6hVyfC1phM5rx58+7evStPhApqRCCEkpOTU1JSpFIpl8s1NDRcvHhxi7lxnaBirQbQ2q2CP4kEgrepuxr7ZJD1RtmO2P93zO4x36uxWwCA7uhAInzz5s22bdsmT548ceJEzQWEu4qKCvkiLIprRCCE7Ozs1qxZg7UvKio6dOjQpk2buhiAirUaQAsCiTDm5dmZ7irNiewQPyvf/c+PplW+8LVoe5FxAEC31oFEePny5a+//rr10lmdIyzMltS/U0tXKqLau5MMFdVY4HA4jx49Sk5Olg93xGpEyE/ysBoR27dv37p1K7bFyclJ/nJ7e3uxWKyWULFaDVZWVleuXHn48OGuXbta12oALVx69Yc129KGba28aQeRCMSxdiMPp8ce+2QPAbVcxxUA0N2pmghTU1MHDBigxt/ihkc3xJUl6upNFazRUxm+bUyvrqmpWbNmDUKosLDQz8/vp59+ko9gVFojorq6+tatW2VlZTKZzMbGpsWiAZ2mYq0GINco4l3IufzFADWsJNcmLzP3B6WP/yp9GmAzVEO7AADgRaVEKJFIkpOTV65c+erVK3Xt2HhOtLq66iJ59YmmpqY9e/akp6f7+f1nYS3FNSJyc3NjY2M/++yz6dOnI4Sqq6v//vtvtYSkYq0GIJeQ+7uzkZMpQ3lVxc4hIEKg/ciYl2dG2PjBSSEAPYxKE+pv3bo1bty41sV9ehg9Pb3o6Oj4+PjKykpsi+IaEZcvX163bt2AAQOYTCaTyXRwcFDjGbMqtRoAplHES8j5Y7TdcI3uxb2Pi0QmfVCqkZohAAAcKT8jbGpqev369YQJE1TssbKyMj09HTtJwsydO7eT0WkdhUJZunTp4cOHsduEYWFh69evZ7FY/fv3xxqkpqY+f/580aJFCCEymVxaWurh4YEQ4nK5R48eLS8vV1ckWK2GdevWtVerQXOkUimPx2uxsc21RnVEfO5VJ0M7fSKzRRFEtRthOeT4i3O+ffp39KSwqalJxYrNoAWxQCCRSFr/DwlUAWuNIoTodLrSyq/K36C//vrr7du3O3bsQAjV19d/+PBh+PDhCmrlGBkZWVpaNl8uy91dncPZ1ah59Ylp06b5+PgghOzs7CwsLDZv3rx27VrFNSIiIyP37dt37Ngx7IwwIiKiurp6w4YNUVFRxsbGimtEKKW0VoPmEAiENqvj6mYi5IsFV9/cjPD6TI1r07TH09z9/tvHGZycIZYdW8BdJBKpveBwLyGgUIhEIrx7nSOTySARqlL/vGPVJ3JycgoKChRPn1Cx+gTQTR2qPqELEnL/SCl+ONtzuvKm6vCyOutlTfah4J879CqoPtFpUH2iK+CMUEWw6DboxiQyyYXsKwG22hvJ6W3qUd1Yk1mjtlFjAADcdSARJiUlnT179vbt23BuB3RESvFDAxrbRl/9cwfbQyAQhtv4nc2+qLU9AgA0rQOnzCEhISEhIZoLBYCOOpudMKLvMC3v1Md8wM6nB0q5bzUxeR8AoH1waRR0V/9UZTSKmtz6OClvqlYUInmwpU9czlUt7xcAoCGQCEF3dT77yjDrQbhMbx9q5Ztc/IAr/KD9XQMA1A4SIeiW3n6oyH736iPz/rjsnUVlepi4/fE6CZe9AwDUCxIh6JYuvvpjkMVHFCJu48KHWQ+6lHtdIpPgFQAAQF209DvC5/O3b9+unX2Brmi+pLjO4omabhfeXTzoSxxjsGRZGNENHpQ+GW2r2aXdAACapo1EyGazV61apQuTLoRCoRbWH+nWjI2NIyMj8Y5CicQ3fzobOxjQ2PiG4WflG5dzFRIhAN2dNhIhkUjserlatYAFPnoAGZJdzr0+yTkY70CQh4nbzYI/8zlvnI2gQhYA3RjcI/y/9u48vKkyUQP4Sc7Jnqb7koautNBiS/eyKBS4eJUReRQZnDsq4MUreN3m6lXHccbR+3BHR4QHl3mKMkzBQbwsrahQdqVAAcFCId1X2rJ1oWvSpElOzv2jDiIDTZom+U6S9/dXE06Sl+85yZtzcs75wMOUXT0voIQx/tGkg1BCgTBXnVlYu5t0EAAYExQheJjCum9yI9NJp/hRljqjpPXEgElHOggAOA5FCJ6kXd95oaMqLSyFdJAfKcXy5ODEvU2HSQcBAMehCMGTfNOwPz08VUzz6IinbHXmrro9HDWKWVwAgFdQhOAxzFbL7ob9ueoM0kF+JsZ/nIASnr12gXQQAHAQihA8xrG2k2Hy0FB5COkgt8qOTC+qwyEzAJ4KRQgeo6h2T5aaL4fJ3CwjLLX8WkWXoZt0EABwhF3nEZaVle3Zs0ckEplMpvnz52dlZbk6FsAtWvraWvsvPTrpYdJBbkNMi1PDJu2uP7Bs8q9IZwGAUbNdhFarVavVvv766yKRiGXZ1atXx8fHBwYGuiEcwA1f1e/NikijBTzdh5GjzthauXNJ6mIhXxMCwJ3YftMKhcJly5aJRCKKomiazs7Obm5udn0wgJ8MsaYDzUdyeLlfdJhaGe4n9jt15QfSQQBg1Eb37dVqtZ45cyYpKclFaQBu67uW41EqTYA0gHSQkWSr07+s20M6BQCMmr3XGmVZNj8/v7Gx8emnn5bL5S7NBHCLXfV7ciIySaewITVs0t6mw+36jnBFGOksADAK9hYhTdPLly/XarUlJSXR0dEKheJOS7a1tZWWlmZm/vSx9eabb86dO3esSZ1Br9cLBAQmNPcCRqORpunhPeRudrG/7epAR0zCOKPR6P5XH5XU4KTCqt1Lkhffcj9WPIdZDAaWZXU6XMTOEQaDQSQSMQyxaTv5QC6XC4U29n2OYoBkMllubm5QUFBhYeGSJUvutJhGo0lNTf3ggw9u3JOcnMyTjUiO45RKJekUHolhGFJFeKDqSLY6XS7lxSo0sqnjcjZrv1iRvZQW0DffjxXPYUMymZGmMXqOGX7P+ngR2mPUA6RWq3t7e0dYQCgUqlQqnGIBTmG0GA9fPEp2Dl77hSlCAmWBJy6dnhE1jXQWALCX7YNlqqqqampqhv+2Wq1btmyZPXu2i1MB/Ohwy7HYgCjic/DaLysi7cu6YtIpAGAUbG8RxsTE7Ny5s6ioiGEYi8UyZ86c1NRUNyQDoCjqy7o9d4/LJZ1iFFJDk/c2HrqiuxapjCCdBQDsYrsIFQrF0qVL3RAF4Bb1PU3XDb2JgQmkg4wCI2TSIybvrt//dAbeNQCeAVfBAP7aVVecrZ4s9LTjLXMi0vc0HbJYWdJBAMAuKELgqUGz4UhLaXYEvyZdskeoPDhEHnz80inSQQDALihC4KlDF0vGB8X6iT3yuPmcCEzMBOAxUITAU0W1e7LD+Xtx0ZFNCk1q7m1t679MOggA2IYiBD6q6qrTmXXjg+JIB3EQI6CzI9K+bthHOggA2IYiBD7aVV+cHZEhoDzsMJmbZUdk7Gv8dog1kQ4CADagCIF3Bky6422nsnk86ZI9AmUBGpX6SMtx0kEAwAYUIfBOcdOhpOBEuUhGOshY5aozijAxEwDvoQiBXziK21VXnBvJ90mX7DExKLFj8Hp9TxPpIAAwEhQh8EvZ1fNCio5WjSMdxAkEAkGuOqOoFudRAPAaihD4pbDum9xIz/518GZZEeklrSf05kHSQQDgjlCEwCPt+s4LHVVpYSmkgziNUixPCko82FZCOggA3BGKEHhkV31xZthkMS0mHcSZcjWZu5sOWDmOdBAAuD0UIfCFiTXtaTiQo/GGw2RuFq0axwjpM1fPkg4CALdn1wz1DQ0NBQUFCoVCKBQ+8cQTGo3G1bHABx1uORbppw6RBZEO4nyZ4Wk7ar6eEplFOggA3IbtIuzv79+4cePbb78tFov1ev3777//xhtvMIxdDQpgvx01X82MmkY6hUukBCUduXS8rf9ylApfIgF4x/au0Y6Ojueff14sFlMUpVAo0tPTGxsbXR8MfIu2s0pnGkwMGk86iEswQiZLnVFYi5PrAfjIdhEmJCRERkbeuNnW1qZUeuTMOMBn26q/mqLO8uiLi45sqjrr4MXvcB4FAA+N7mAZrVYrEonwGyE4V7u+41y7Nks9mXQQF1JJ/BKDxu9uPEA6CADcahQ/9dXX1+/du/fll18eebGWlpZDhw4FBgbeuGf9+vUPPPCAgwGdSq/XCwReu83hUkajkaZpkUjkiiffWlGYFjzJarYazUZXPD9xRqNRIBBkh6Rtr9w1TzNHKMDR2vayGAwsy+p0OtJBPJLBYBCJRD5+SIdcLhcKbbzj7B2gurq67du3v/rqqzRNj7xkTExMXl7e9u3bh2/SNK1Sqex8FVfjOA77dR3DMIyLilBvHjzUdvTZzOVSqdTpT84THMdJpdJ4aazqkupsj3ZW9N2kE3mMIZnMSNN42zpm+D3r40VoD7u+mdbW1m7duvWVV14ZPmTGJpFIFPgP/GlB4KfdDfsTA+MDpP6kg7jD9HE5WysLSacAgJ+xXYQ1NTU7duz47W9/K5FIKIrq6Ohoa2tzfTDwCRYru6Pm67vHTSEdxE2Sgyf2DvVrO6tIBwGAn9jeZN6yZYtcLv/oo4+Gb3Z1dc2bNy8qKsrFwcAnfNd6LFAWoPFTkw7iJkKBYLomZ0vFzj/PfpN0FgD4ke0iXLVqlRtygA/iKO7zyp2zou8hHcStMiMmv//9Xy72tcX649skAC/g6DUg5tTlMjPLJgbFkw7iVoyQmRaZ/XnlDtJBAOBHKEIg5rOK/5sRNcWLT6K/kymarBOXz7TrO0gHAQCKQhECKeUdFdcNPamhk0gHIUDKSHPUGZ/j8FEAfkARAhkFF7bOiJrms9c3mK6ZcrjlaJehm3QQAEARAgmVXTWXBq6kh6eSDkKMUizPDJu8tXIn6SAAgCIEEv56/vOZUdNp377S2D3RU/c3f3fd0EM6CICv8+lPIiBC21nV1n8pMyKNdBDC/MTKjPC0v1fg8FEAwlCE4G6flH+W5/Obg8NmRk07dPFIx2AX6SAAPg0fRuBWP1wt79R3ZkR484xL9lOK5TmRGQUXtpIOAuDTUITgPhzF5ZcXzImdiXmIbpgxbuqxtlOt/ZdJBwHwXfg8Avf5tuW4mTWnhCaTDsIjUkY6I2rq+nObSAcB8F0oQnATM2v+9Nzm++Jm++ClZEY2TZNTfb1e21lNOgiAj0IRgpvsqPk6RB4UFxBLOgjvMELm3riZH5V9ylEc6SwAvghFCO7QY+z9oqrovrg5pIPwVFpYypDFdLD5COkgAL7I3iK0WCxardalUcCLrT+3KSM8NUQeTDoITwkowS/G35t/btOg2UA6C4DPsV2Eer1+zZo1a9as2bhxoxsCgfep6qo9daVsdswM0kF4LUqlGR8QV6DFqRQA7ma7CBUKxbPPPvvaa69pNBo3BAIvw3Lse9//5f64ORJGTDoL390XP2tf0+HG3oukgwD4Frt2jUqlUlfnAG+1o/prMc2khaeQDuIBFCLFvbGz/nzqIyuHo2YA3MclB8uYzeaem1itVle8CvDfFd21zyt3Lki8n3QQj5GlTmetlqK6b0gHAfAhjNOfsbW1taSkJD4+fvgmTdP5+fnz5s1z+gs5QK/X++wEeGNkNBppmhaJRPY/xMpxq0rXTlNnySmZ0Wh0XTb+MxqN9q9482L+peD8F+mBKRHyMJem8ggWg4FlWZ1ORzqIRzIYDCKRiGGc/znvQeRyuVBoY5PP+QMUHR09d+7c4uJipz/z2HEcp1QqSafwSAzDjLYId9R8bWANebH34MsHx3H2/74QKVXPir17bfknH9/7rtDnh25IJjPSNN62jhl+z/p4EdoD5xGCSzT3tW7Wbnsk6UG0oAOmReaaLENbqzBtL4A7oAjB+YZY0x+P/fn+uNlB0kDSWTySUCB4JOnBbdW7qq/Xkc4C4P1sbzIPDg6uX7+eZdmKiorVq1dTFPXLX/4yNjbW5dHAY31w5pNgWWCm2ten3h0Lf4lqQcK8t46999dfrPMTY8cggAvZLkK5XP7SSy+5IQp4h+KmQz9cO/9MxpOkg3i8u0Intva3rSpd886sN/FjIYDrYNcoOFPN9fr8s3/79aRHcPq8U9wXP6drsPtv5z8nHQTAm6EIwWk6B7t+V/K/D094IEwRQjqLlxAKhI9OWljcdBDX4wZwHRQhOIfOpP/vb/84TZOVFDyBdBavohTLn0hZ/GHZhvKOCtJZALwTihCcwGgZeu3I/4xTae4eN5V0Fi8Urgj7VfJDbx59p76niXQWAC+EIoSxMrGm35WskjKSefFzSWfxWnEBsQ8m3v/Kt39s7m0hnQXA26AIYUyGtwU5ils4YT6ObHSpu0KS7h8/978O/74B24UAToUiBMf1mwZ+c/gNWsgsmrgAV5Bxg8mhkx5I+NeXDr95vqOSdBYA74EiBAddHri6ct8r4fLQhyf8Ai3oNneFJC1KWvD7o3861FxCOguAl0ARgiNOXzn7zP5XpkRm3hc/R0ChBd0qITDu3yf/en35pvxzBSzHko4D4PFQhDA6Fiv76bnNfzq57t8mPZyjziAdx0eFK8JWZjxZ3l7xwsHftes7SccB8GwoQhiFxt6LK/a9XN5R+Z+Zy2P8o0nH8WlykeyJlEejVJH/sfc3xQ0HOQqT2gM4CPNUgV305sEvKor2X/z2vrg5mRG4mjYvCAWCmVHTE4MSvqj+cm/zty/lrIwLiCEdCsDzoAjBBjNr/qph32fabYmB8c9nrVCK5aQTwc+oFWErM5Z9f6XshUOv3zNu6pOTfx0mxyXuAEYBRQh3pDPpv2ncv736K7Ui/LHkRWplOKa65ieBQDBVk50WnnK87eSTe56fGTXt0eSHY/2jSOcC8Ax2fa4ZjcZPP/10cHCQ47jly5eHhYW5OhYQZOU4bWdVcePBY22nkoITH79rkVoZYTKZSOcCG2SM9N642XdHTT116YcXD/4uSqVZkHjfjKhpMkZKOhoAr9lVhJ988smCBQvi4uL6+/vfe++9VatWuToWuN8Qa7rQUXn80uljbSdljGRyWMpvcp7BjlCPI2dkc2Jn5MXcXd1V+1Xd3rWn12eGp86Mnp6rzgiSBZJOB8BHtovQYDDo9fq4uDiKolQqVUpKSkVFRUpKiuuzgct1DnbVdTdVX68rb9fWdzdpVJGJgXFLUx8NxY9MHo4WCFNCk1NCkwcthpqu+uLGQx/9sCFIFpAWlnJXaNLEoIQY/3G0gCYdE4AXbBfh1atXExISbtxMTk5ubW31xCIcGho6d+7czJkzSQchwGgxXjf0XDd0tw92XtN1tA5cudR3qaX/Mi0QjlNFqpXh2ZEZi5IWiOk7zqbb3t4uk8lCQlCQjqitrU1LSyNy/R05I8uMmJwZMZnjuCu6ay39bQeaj2y68EW3sSdSGRGl0kSpxmmU4WHy0FBFSJA0wF+icn/IEQwNDel0OtIpPFV9fX1oaKharSYdhO9sF2Fvb29g4E97VIKDgysqRpoXjWXZvr6+srKyG/dMnDhRqVTeaXmjxdjSf8m+tGNSUVGxevXqzSmb3fBao6Iz6e1ZjOXYQbPhxk2z1Wy0DFEUZbFaDBYjRVEDQzqz1TJoHhy0GA3mQZ3ZoDfp+00DA6YBASVQSfxUYpW/VOUvUQZKA++JmvKIIkwusnfPZ3FxcXh4+EMPPTT6/x9Qa9eu/fDDDwMCAghmEAgEGj+1xu/Hz0Sz1dKh7+wydHcNXm/sae4fGugb6u836Qxmg59E6SdWKEUKuUguZ2RKiVJCS2SMVMZIRLRIJBRJGQlFUYyQufnXRwktEdMie5KIadEIX7lu0VhxUnSpme1uGOV/FyiKot4rWDNp0qRHHnmEdBBn8peoIhROPk7F+QcBXrt2rbKy8qmnnhq+KRQK33rrrVmzZt1p+fOdlQVVXzg9xj8bHBwUzVa9d+IjN7zWqCjFijv9E8dxN06TpgX0Pz53OI6iGCEtpSUcRdECWkqLrRynFMtFAkYtC5PQYgktlTMyuUimZBR+YqXE7s+dOxH3CBUKSYxUM8bn8U2Dzf2RdFioNJR0kJ9JkN/mpEPWah0w63Rmnd5sMFoMRtakt+jNrNnEmntNvRaWZSl2yGISCAQWK2tkhwQURVECiqJM1iETaxl+EgFFjbD5a2LNJtbeY6/C+67P9qd5+Lb1CB0TBgZEFxpPXCEdxJmSghJWpi6zf3m5XE7TNn4FsF2E/v7+DQ0/fR3r7u4e+YutRqOZPn16cXGxnSnv8Zt6T7w7ZnM9derUC++/sPH0B254Le8jpSRKRqEJjiQdxCNZB9mIgPCI4AjSQTzP9zs/6/v+7xvn42026nICAAAGIklEQVTriKeeeiorK+uZ+c+QDsJ3ti+xplarGxsbb9ysrq6Ojsa1tQAAwEvY3iKUy+UymaylpSUmJkan02m12sWLF4+wfGdnZ0VFxYoVK5wX0jk6OjpaWlp4GMwjlJaW+vn51dXVkQ7ikQYGBl599VWZTEY6iOeRdF9OZwfwtnVMaWlpXV1deXk56SAkzZgx4/HHHx95GcFNP0LdkcFg2LBhw9DQkNVqXbp0aUTESHt42tvb8/PzIyN5tw/NbDZfvnw5NjaWdBCP1NHRIZFI/P39SQfxSA0NDePHj8esjQ4wmUxXr16NicE1VB3R3t4ul8v9/PxIByEpJycnI8PGPDl2FSEAAIC3wjRMAADg01CEAADg01CEAADg07x2Vh3HZswwmUwbN27s6+sTCoULFixISkpydU4eGstkI0eOHDl58qRQKExOTl6wYIHrQvKWY6NXVla2Z88ekUhkMpnmz5+flZXl6pw84dhwYT4cCmuac3Feat26dU1NTRzH9fX1vfHGG3Y+avPmzeXl5RzHsSz79ttv9/T0uDAiXzk2dBzHbdq0adu2bVar1WXRPIADo8eybEFBgclk4jjOYrG888473d3drk3JG46tbA6vot4Ea5oTeeeu0dvOmGHPA69cuZKWlkZRlFAoXLp06b59+1wblH8cHrqKigqGYRYvXuzLJwk4NnpCoXDZsmUikYiiKJqms7Ozm5ubXZ6VBxwbLodXUW+CNc25vLMIbztjxmifRKVS1dfXOzWXB3B46I4ePbpw4UKX5fIMY1/xrFbrmTNnfGSfvGPD5ZR3t6fDmuZc3vkb4WhnzLghNDS0uro6OTl5aGiooKBg+KuTT3F46CiKam1t3b17t8lkCg4OXr58uc0L3XqfsYwey7L5+fmNjY1PP/20XO4T8yE7NlxjGWSvgTXNuTy4CIuKim6+CCpFUUqlcsWKFUKh45u5jz/++IYNG3bv3s0wzIMPPnjgwIExx+QjVwxdd3d3SUnJiy++yDDMiRMnvvzyy0WLFo05KR+5YvQoiqJpevny5VqttqSkJDo6WqG445wkAGOBNe2feXARjrAjbrQzZtwgkUiee+654b97enq89euSK4ZOr9c/9thjDMNQFDV9+vR333137Dn5yRWjN0wmk+Xm5gYFBRUWFi5ZsmRMKT2BY8M1xkH2DljTnMs7fyN0yowZhYWFeXl5Ts3lARweuvHjxxsMP80b7JuHzDhlxVOr1b29vU7NxVOODRfmw6GwpjmbdxbhjRkzKIoanjEjJSXl5gXOnDmzcOHCbdu23fbhHMdt2rQpMDAwPj7eHXH5xOGhmzdv3meffTb8d2lp6cSJE90TmFccG72qqqqamprhv61W65YtW2bPnu22zAQ5Nlw2H+ULsKY5lwfvGh3ZihUrbsyY8dxzz9m5gbJt27a2tjaWZWfMmDF9+nRXh+Qnx4ZOo9Hk5eWtXbuWZdng4OClS5e6Oic/OTB6MTExO3fuLCoqYhjGYrHMmTMnNTXVDVH5wLGVzbFHeRmsaU6E2ScAAMCneeeuUQAAADuhCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKd57UW3ATxITU3NH/7wB5ZlQ0JCPv74Y7FYPHx/WVnZunXrOjs7J0yY8OGHH5INCeCtcNFtAF44e/bs6dOnV65cecv9Vqt1yZIlW7ZsIZIKwBdg1ygAL0ycOLG2tnb47/Ly8rfeestqtVIU1draGhMTQzQagJdDEQLwgkKhMBqNZrOZoqh9+/bV19dfuHCBoqja2tqkpCTS6QC8GYoQgC8SEhKamprMZrNWq125cmVJSQmFIgRwPRQhAF8kJydXV1eXlZWlp6dPmzatvLycZVkUIYCroQgB+GK4CEtKSvLy8hiGSU1NPX36tMlk8vPzIx0NwJuhCAH4IiYmprGxsaKiIjMzk6KoWbNmFRQUJCQkkM4F4OVwHiEAXwiFwqCgoLCwMIZhKIpKS0vr6enBflEAV8N5hAAA4NOwaxQAAHwaihAAAHwaihAAAHwaihAAAHwaihAAAHwaihAAAHza/wPrs71k3U2IawAAAABJRU5ErkJggg==", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.5\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "1.5\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "k\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0\n", + "\n", + "\n", + "1\n", + "\n", + "\n", + "2\n", + "\n", + "\n", + "3\n", + "\n", + "\n", + "Marginal q(k)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Posterior q(k)\n", + "\n", + "\n", + "\n", + "Real k\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "−0.9\n", + "\n", + "\n", + "−0.6\n", + "\n", + "\n", + "−0.3\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "w\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0\n", + "\n", + "\n", + "1\n", + "\n", + "\n", + "2\n", + "\n", + "\n", + "3\n", + "\n", + "\n", + "4\n", + "\n", + "\n", + "Marginal q(w)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Posterior q(w)\n", + "\n", + "\n", + "\n", + "Real w\n", + "\n", + "\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.5\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "1.5\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "k\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0\n", + "\n", + "\n", + "1\n", + "\n", + "\n", + "2\n", + "\n", + "\n", + "3\n", + "\n", + "\n", + "Marginal q(k)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Posterior q(k)\n", + "\n", + "\n", + "\n", + "Real k\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "−0.9\n", + "\n", + "\n", + "−0.6\n", + "\n", + "\n", + "−0.3\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "w\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0\n", + "\n", + "\n", + "1\n", + "\n", + "\n", + "2\n", + "\n", + "\n", + "3\n", + "\n", + "\n", + "4\n", + "\n", + "\n", + "Marginal q(w)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Posterior q(w)\n", + "\n", + "\n", + "\n", + "Real w\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "range_w = range(-1,0.5,length = 1000)\n", + "range_k = range(0,2,length = 1000)\n", + "let \n", + " pw = plot(title = \"Marginal q(w)\")\n", + " pk = plot(title = \"Marginal q(k)\")\n", + " \n", + " plot!(pw, range_w, (x) -> pdf(q_ω, x), fillalpha=0.3, fillrange = 0, label=\"Posterior q(w)\", c=3, legend_position=(0.1,0.95), fontfamily=\"monospace\",legendfontsize=9)\n", + " vline!([real_w], label=\"Real w\")\n", + " xlabel!(\"w\")\n", + " \n", + " \n", + " plot!(pk, range_k, (x) -> pdf(q_κ, x), fillalpha=0.3, fillrange = 0, label=\"Posterior q(k)\", c=3, legend_position=(0.1,0.95), fontfamily=\"monospace\",legendfontsize=9)\n", + " vline!([real_k], label=\"Real k\")\n", + " xlabel!(\"k\")\n", + " \n", + " plot(pk, pw, layout = @layout([ a; b ]))\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, the marginal $q(\\kappa)$ concentrates most of its mass around the true value, indicating a good approximation for $\\kappa$. However, the marginal $q(\\omega)$ is quite off the true position. " ] } ], "metadata": { "kernelspec": { - "display_name": "Julia 1.10.2", + "display_name": "Julia 1.11.0", "language": "julia", - "name": "julia-1.10" + "name": "julia-1.11" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "1.10.2" + "version": "1.11.0" } }, "nbformat": 4, From 4220815e515b5e64ef1b4fae63d3865581150958 Mon Sep 17 00:00:00 2001 From: HoangMHNguyen Date: Thu, 12 Dec 2024 15:51:20 +0100 Subject: [PATCH 2/4] tidy up HGF notebook --- .../Hierarchical Gaussian Filter.ipynb | 3210 +++++++---------- 1 file changed, 1334 insertions(+), 1876 deletions(-) diff --git a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb index da159ae42..954c730ef 100644 --- a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb +++ b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb @@ -10,574 +10,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 268, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m project at `~/RxInfer.jl/examples`\n", - "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m registry at `~/.julia/registries/General.toml`\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m InvertedIndices ──── v1.3.1\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m GR_jll ───────────── v0.73.9+0\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ZipFile ──────────── v0.10.1\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Fontconfig_jll ───── v2.15.0+0\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Accessors ────────── v0.1.39\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m HTTP ─────────────── v1.10.14\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Highlights ───────── v0.5.3\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m EpollShim_jll ────── v0.0.20230411+1\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m SentinelArrays ───── v1.4.8\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m CodecInflate64 ───── v0.1.3\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ZipArchives ──────── v2.4.0\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m InputBuffers ─────── v1.0.0\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m StatsModels ──────── v0.7.4\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Expat_jll ────────── v2.6.4+1\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m HarfBuzz_jll ─────── v8.5.0+0\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Atomix ───────────── v1.0.1\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m KernelAbstractions ─ v0.9.31\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m YAML ─────────────── v0.4.12\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Glib_jll ─────────── v2.82.2+1\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m StructArrays ─────── v0.6.21\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m XLSX ─────────────── v0.10.4\n", - "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m GR ───────────────── v0.73.9\n", - "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/RxInfer.jl/examples/Project.toml`\n", - " \u001b[90m[b4ee3484] \u001b[39m\u001b[92m+ BayesBase v1.5.0\u001b[39m\n", - " \u001b[90m[6e4b80f9] \u001b[39m\u001b[92m+ BenchmarkTools v1.5.0\u001b[39m\n", - " \u001b[90m[336ed68f] \u001b[39m\u001b[92m+ CSV v0.10.15\u001b[39m\n", - " \u001b[90m[a93c6f00] \u001b[39m\u001b[92m+ DataFrames v1.7.0\u001b[39m\n", - " \u001b[90m[31c24e10] \u001b[39m\u001b[92m+ Distributions v0.25.113\u001b[39m\n", - " \u001b[90m[62312e5e] \u001b[39m\u001b[92m+ ExponentialFamily v1.6.0\u001b[39m\n", - "\u001b[32m⌃\u001b[39m \u001b[90m[587475ba] \u001b[39m\u001b[92m+ Flux v0.14.25\u001b[39m\n", - " \u001b[90m[38e38edf] \u001b[39m\u001b[92m+ GLM v1.9.0\u001b[39m\n", - " \u001b[90m[b3f8163a] \u001b[39m\u001b[92m+ GraphPPL v4.4.1\u001b[39m\n", - " \u001b[90m[34004b35] \u001b[39m\u001b[92m+ HypergeometricFunctions v0.3.25\u001b[39m\n", - " \u001b[90m[7073ff75] \u001b[39m\u001b[92m+ IJulia v1.26.0\u001b[39m\n", - " \u001b[90m[4138dd39] \u001b[39m\u001b[92m+ JLD v0.13.5\u001b[39m\n", - " \u001b[90m[b964fa9f] \u001b[39m\u001b[92m+ LaTeXStrings v1.4.0\u001b[39m\n", - " \u001b[90m[429524aa] \u001b[39m\u001b[92m+ Optim v1.10.0\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[3bd65402] \u001b[39m\u001b[92m+ Optimisers v0.3.4\u001b[39m\n", - " \u001b[90m[d96e819e] \u001b[39m\u001b[92m+ Parameters v0.12.3\u001b[39m\n", - " \u001b[90m[91a5bcdd] \u001b[39m\u001b[92m+ Plots v1.40.9\u001b[39m\n", - " \u001b[90m[92933f4c] \u001b[39m\u001b[92m+ ProgressMeter v1.10.2\u001b[39m\n", - " \u001b[90m[a194aa59] \u001b[39m\u001b[92m+ ReactiveMP v4.4.5\u001b[39m\n", - " \u001b[90m[37e2e3b7] \u001b[39m\u001b[92m+ ReverseDiff v1.15.3\u001b[39m\n", - " \u001b[90m[df971d30] \u001b[39m\u001b[92m+ Rocket v1.8.1\u001b[39m\n", - " \u001b[90m[86711068] \u001b[39m\u001b[92m+ RxInfer v3.8.0\u001b[39m\n", - " \u001b[90m[276daf66] \u001b[39m\u001b[92m+ SpecialFunctions v2.5.0\u001b[39m\n", - " \u001b[90m[860ef19b] \u001b[39m\u001b[92m+ StableRNGs v1.0.2\u001b[39m\n", - " \u001b[90m[4c63d2b9] \u001b[39m\u001b[92m+ StatsFuns v1.3.2\u001b[39m\n", - " \u001b[90m[f3b207a7] \u001b[39m\u001b[92m+ StatsPlots v0.15.7\u001b[39m\n", - " \u001b[90m[44d3d7a6] \u001b[39m\u001b[92m+ Weave v0.10.12\u001b[39m\n", - " \u001b[90m[fdbf4ff8] \u001b[39m\u001b[92m+ XLSX v0.10.4\u001b[39m\n", - "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/RxInfer.jl/examples/Manifest.toml`\n", - " \u001b[90m[621f4979] \u001b[39m\u001b[92m+ AbstractFFTs v1.5.0\u001b[39m\n", - " \u001b[90m[7d9f7c33] \u001b[39m\u001b[92m+ Accessors v0.1.39\u001b[39m\n", - " \u001b[90m[79e6a3ab] \u001b[39m\u001b[92m+ Adapt v4.1.1\u001b[39m\n", - " \u001b[90m[66dad0bd] \u001b[39m\u001b[92m+ AliasTables v1.1.3\u001b[39m\n", - " \u001b[90m[dce04be8] \u001b[39m\u001b[92m+ ArgCheck v2.4.0\u001b[39m\n", - " \u001b[90m[ec485272] \u001b[39m\u001b[92m+ ArnoldiMethod v0.4.0\u001b[39m\n", - " \u001b[90m[7d9fca2a] \u001b[39m\u001b[92m+ Arpack v0.5.4\u001b[39m\n", - " \u001b[90m[4fba245c] \u001b[39m\u001b[92m+ ArrayInterface v7.17.1\u001b[39m\n", - " \u001b[90m[4c555306] \u001b[39m\u001b[92m+ ArrayLayouts v1.11.0\u001b[39m\n", - " \u001b[90m[a9b6321e] \u001b[39m\u001b[92m+ Atomix v1.0.1\u001b[39m\n", - " \u001b[90m[13072b0f] \u001b[39m\u001b[92m+ AxisAlgorithms v1.1.0\u001b[39m\n", - " \u001b[90m[198e06fe] \u001b[39m\u001b[92m+ BangBang v0.4.3\u001b[39m\n", - " \u001b[90m[9718e550] \u001b[39m\u001b[92m+ Baselet v0.1.1\u001b[39m\n", - " \u001b[90m[b4ee3484] \u001b[39m\u001b[92m+ BayesBase v1.5.0\u001b[39m\n", - " \u001b[90m[6e4b80f9] \u001b[39m\u001b[92m+ BenchmarkTools v1.5.0\u001b[39m\n", - " \u001b[90m[d1d4a3ce] \u001b[39m\u001b[92m+ BitFlags v0.1.9\u001b[39m\n", - " \u001b[90m[0f2f92aa] \u001b[39m\u001b[92m+ BitSetTuples v1.1.5\u001b[39m\n", - " \u001b[90m[62783981] \u001b[39m\u001b[92m+ BitTwiddlingConvenienceFunctions v0.1.6\u001b[39m\n", - " \u001b[90m[a74b3585] \u001b[39m\u001b[92m+ Blosc v0.7.3\u001b[39m\n", - " \u001b[90m[fa961155] \u001b[39m\u001b[92m+ CEnum v0.5.0\u001b[39m\n", - " \u001b[90m[2a0fbf3d] \u001b[39m\u001b[92m+ CPUSummary v0.2.6\u001b[39m\n", - " \u001b[90m[336ed68f] \u001b[39m\u001b[92m+ CSV v0.10.15\u001b[39m\n", - " \u001b[90m[082447d4] \u001b[39m\u001b[92m+ ChainRules v1.72.1\u001b[39m\n", - " \u001b[90m[d360d2e6] \u001b[39m\u001b[92m+ ChainRulesCore v1.25.0\u001b[39m\n", - " \u001b[90m[fb6a15b2] \u001b[39m\u001b[92m+ CloseOpenIntervals v0.1.13\u001b[39m\n", - " \u001b[90m[aaaa29a8] \u001b[39m\u001b[92m+ Clustering v0.15.7\u001b[39m\n", - " \u001b[90m[6309b1aa] \u001b[39m\u001b[92m+ CodecInflate64 v0.1.3\u001b[39m\n", - " \u001b[90m[944b1d66] \u001b[39m\u001b[92m+ CodecZlib v0.7.6\u001b[39m\n", - " \u001b[90m[35d6a980] \u001b[39m\u001b[92m+ ColorSchemes v3.27.1\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[3da002f7] \u001b[39m\u001b[92m+ ColorTypes v0.11.5\u001b[39m\n", - "\u001b[32m⌃\u001b[39m \u001b[90m[c3611d14] \u001b[39m\u001b[92m+ ColorVectorSpace v0.10.0\u001b[39m\n", - "\u001b[32m⌃\u001b[39m \u001b[90m[5ae59095] \u001b[39m\u001b[92m+ Colors v0.12.11\u001b[39m\n", - " \u001b[90m[861a8166] \u001b[39m\u001b[92m+ Combinatorics v1.0.2\u001b[39m\n", - " \u001b[90m[bbf7d656] \u001b[39m\u001b[92m+ CommonSubexpressions v0.3.1\u001b[39m\n", - " \u001b[90m[f70d9fcc] \u001b[39m\u001b[92m+ CommonWorldInvalidations v1.0.0\u001b[39m\n", - " \u001b[90m[34da2185] \u001b[39m\u001b[92m+ Compat v4.16.0\u001b[39m\n", - " \u001b[90m[b152e2b5] \u001b[39m\u001b[92m+ CompositeTypes v0.1.4\u001b[39m\n", - " \u001b[90m[a33af91c] \u001b[39m\u001b[92m+ CompositionsBase v0.1.2\u001b[39m\n", - " \u001b[90m[f0e56b4a] \u001b[39m\u001b[92m+ ConcurrentUtilities v2.4.2\u001b[39m\n", - " \u001b[90m[8f4d0f93] \u001b[39m\u001b[92m+ Conda v1.10.2\u001b[39m\n", - " \u001b[90m[187b0558] \u001b[39m\u001b[92m+ ConstructionBase v1.5.8\u001b[39m\n", - " \u001b[90m[6add18c4] \u001b[39m\u001b[92m+ ContextVariablesX v0.1.3\u001b[39m\n", - " \u001b[90m[d38c429a] \u001b[39m\u001b[92m+ Contour v0.6.3\u001b[39m\n", - " \u001b[90m[adafc99b] \u001b[39m\u001b[92m+ CpuId v0.3.1\u001b[39m\n", - " \u001b[90m[a8cc5b0e] \u001b[39m\u001b[92m+ Crayons v4.1.1\u001b[39m\n", - " \u001b[90m[9a962f9c] \u001b[39m\u001b[92m+ DataAPI v1.16.0\u001b[39m\n", - " \u001b[90m[a93c6f00] \u001b[39m\u001b[92m+ DataFrames v1.7.0\u001b[39m\n", - " \u001b[90m[864edb3b] \u001b[39m\u001b[92m+ DataStructures v0.18.20\u001b[39m\n", - " \u001b[90m[e2d170a0] \u001b[39m\u001b[92m+ DataValueInterfaces v1.0.0\u001b[39m\n", - " \u001b[90m[244e2a9f] \u001b[39m\u001b[92m+ DefineSingletons v0.1.2\u001b[39m\n", - " \u001b[90m[8bb1440f] \u001b[39m\u001b[92m+ DelimitedFiles v1.9.1\u001b[39m\n", - " \u001b[90m[85a47980] \u001b[39m\u001b[92m+ Dictionaries v0.4.3\u001b[39m\n", - " \u001b[90m[163ba53b] \u001b[39m\u001b[92m+ DiffResults v1.1.0\u001b[39m\n", - " \u001b[90m[b552c78f] \u001b[39m\u001b[92m+ DiffRules v1.15.1\u001b[39m\n", - " \u001b[90m[b4f34e82] \u001b[39m\u001b[92m+ Distances v0.10.12\u001b[39m\n", - " \u001b[90m[31c24e10] \u001b[39m\u001b[92m+ Distributions v0.25.113\u001b[39m\n", - " \u001b[90m[ffbed154] \u001b[39m\u001b[92m+ DocStringExtensions v0.9.3\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[cc6bae93] \u001b[39m\u001b[92m+ DomainIntegrals v0.4.6\u001b[39m\n", - " \u001b[90m[5b8099bc] \u001b[39m\u001b[92m+ DomainSets v0.7.14\u001b[39m\n", - " \u001b[90m[460bff9d] \u001b[39m\u001b[92m+ ExceptionUnwrapping v0.1.11\u001b[39m\n", - " \u001b[90m[62312e5e] \u001b[39m\u001b[92m+ ExponentialFamily v1.6.0\u001b[39m\n", - " \u001b[90m[8f5d6c58] \u001b[39m\u001b[92m+ EzXML v1.2.0\u001b[39m\n", - " \u001b[90m[c87230d0] \u001b[39m\u001b[92m+ FFMPEG v0.4.2\u001b[39m\n", - " \u001b[90m[7a1cc6ca] \u001b[39m\u001b[92m+ FFTW v1.8.0\u001b[39m\n", - " \u001b[90m[cc61a311] \u001b[39m\u001b[92m+ FLoops v0.2.2\u001b[39m\n", - " \u001b[90m[b9860ae5] \u001b[39m\u001b[92m+ FLoopsBase v0.1.1\u001b[39m\n", - " \u001b[90m[2d5283b6] \u001b[39m\u001b[92m+ FastCholesky v1.3.1\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[442a2c76] \u001b[39m\u001b[92m+ FastGaussQuadrature v0.5.1\u001b[39m\n", - " \u001b[90m[5789e2e9] \u001b[39m\u001b[92m+ FileIO v1.16.6\u001b[39m\n", - " \u001b[90m[48062228] \u001b[39m\u001b[92m+ FilePathsBase v0.9.22\u001b[39m\n", - " \u001b[90m[1a297f60] \u001b[39m\u001b[92m+ FillArrays v1.13.0\u001b[39m\n", - " \u001b[90m[6a86dc24] \u001b[39m\u001b[92m+ FiniteDiff v2.26.2\u001b[39m\n", - " \u001b[90m[4130a065] \u001b[39m\u001b[92m+ FixedArguments v0.1.1\u001b[39m\n", - " \u001b[90m[53c48c17] \u001b[39m\u001b[92m+ FixedPointNumbers v0.8.5\u001b[39m\n", - "\u001b[32m⌃\u001b[39m \u001b[90m[587475ba] \u001b[39m\u001b[92m+ Flux v0.14.25\u001b[39m\n", - " \u001b[90m[1fa38f19] \u001b[39m\u001b[92m+ Format v1.3.7\u001b[39m\n", - " \u001b[90m[f6369f11] \u001b[39m\u001b[92m+ ForwardDiff v0.10.38\u001b[39m\n", - " \u001b[90m[069b7b12] \u001b[39m\u001b[92m+ FunctionWrappers v1.1.3\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[d9f16b24] \u001b[39m\u001b[92m+ Functors v0.4.12\u001b[39m\n", - " \u001b[90m[38e38edf] \u001b[39m\u001b[92m+ GLM v1.9.0\u001b[39m\n", - " \u001b[90m[0c68f7d7] \u001b[39m\u001b[92m+ GPUArrays v11.1.0\u001b[39m\n", - " \u001b[90m[46192b85] \u001b[39m\u001b[92m+ GPUArraysCore v0.2.0\u001b[39m\n", - " \u001b[90m[28b8d3ca] \u001b[39m\u001b[92m+ GR v0.73.9\u001b[39m\n", - " \u001b[90m[d54b0c1a] \u001b[39m\u001b[92m+ GaussQuadrature v0.5.8\u001b[39m\n", - " \u001b[90m[b3f8163a] \u001b[39m\u001b[92m+ GraphPPL v4.4.1\u001b[39m\n", - " \u001b[90m[86223c79] \u001b[39m\u001b[92m+ Graphs v1.12.0\u001b[39m\n", - " \u001b[90m[42e2da0e] \u001b[39m\u001b[92m+ Grisu v1.0.2\u001b[39m\n", - " \u001b[90m[c8ec2601] \u001b[39m\u001b[92m+ H5Zblosc v0.1.2\u001b[39m\n", - " \u001b[90m[19dc6840] \u001b[39m\u001b[92m+ HCubature v1.7.0\u001b[39m\n", - " \u001b[90m[f67ccb44] \u001b[39m\u001b[92m+ HDF5 v0.17.2\u001b[39m\n", - " \u001b[90m[cd3eb016] \u001b[39m\u001b[92m+ HTTP v1.10.14\u001b[39m\n", - " \u001b[90m[eafb193a] \u001b[39m\u001b[92m+ Highlights v0.5.3\u001b[39m\n", - " \u001b[90m[3e5b6fbb] \u001b[39m\u001b[92m+ HostCPUFeatures v0.1.17\u001b[39m\n", - " \u001b[90m[34004b35] \u001b[39m\u001b[92m+ HypergeometricFunctions v0.3.25\u001b[39m\n", - " \u001b[90m[7073ff75] \u001b[39m\u001b[92m+ IJulia v1.26.0\u001b[39m\n", - " \u001b[90m[7869d1d1] \u001b[39m\u001b[92m+ IRTools v0.4.14\u001b[39m\n", - " \u001b[90m[615f187c] \u001b[39m\u001b[92m+ IfElse v0.1.1\u001b[39m\n", - " \u001b[90m[313cdc1a] \u001b[39m\u001b[92m+ Indexing v1.1.1\u001b[39m\n", - " \u001b[90m[d25df0c9] \u001b[39m\u001b[92m+ Inflate v0.1.5\u001b[39m\n", - " \u001b[90m[22cec73e] \u001b[39m\u001b[92m+ InitialValues v0.3.1\u001b[39m\n", - " \u001b[90m[842dd82b] \u001b[39m\u001b[92m+ InlineStrings v1.4.2\u001b[39m\n", - " \u001b[90m[0c81fc1b] \u001b[39m\u001b[92m+ InputBuffers v1.0.0\u001b[39m\n", - " \u001b[90m[a98d9a8b] \u001b[39m\u001b[92m+ Interpolations v0.15.1\u001b[39m\n", - " \u001b[90m[8197267c] \u001b[39m\u001b[92m+ IntervalSets v0.7.10\u001b[39m\n", - " \u001b[90m[3587e190] \u001b[39m\u001b[92m+ InverseFunctions v0.1.17\u001b[39m\n", - " \u001b[90m[41ab1584] \u001b[39m\u001b[92m+ InvertedIndices v1.3.1\u001b[39m\n", - " \u001b[90m[92d709cd] \u001b[39m\u001b[92m+ IrrationalConstants v0.2.2\u001b[39m\n", - " \u001b[90m[82899510] \u001b[39m\u001b[92m+ IteratorInterfaceExtensions v1.0.0\u001b[39m\n", - " \u001b[90m[4138dd39] \u001b[39m\u001b[92m+ JLD v0.13.5\u001b[39m\n", - " \u001b[90m[033835bb] \u001b[39m\u001b[92m+ JLD2 v0.5.10\u001b[39m\n", - " \u001b[90m[1019f520] \u001b[39m\u001b[92m+ JLFzf v0.1.9\u001b[39m\n", - " \u001b[90m[692b3bcd] \u001b[39m\u001b[92m+ JLLWrappers v1.6.1\u001b[39m\n", - " \u001b[90m[682c06a0] \u001b[39m\u001b[92m+ JSON v0.21.4\u001b[39m\n", - " \u001b[90m[b14d175d] \u001b[39m\u001b[92m+ JuliaVariables v0.2.4\u001b[39m\n", - " \u001b[90m[63c18a36] \u001b[39m\u001b[92m+ KernelAbstractions v0.9.31\u001b[39m\n", - " \u001b[90m[5ab0869b] \u001b[39m\u001b[92m+ KernelDensity v0.6.9\u001b[39m\n", - " \u001b[90m[929cbde3] \u001b[39m\u001b[92m+ LLVM v9.1.3\u001b[39m\n", - " \u001b[90m[b964fa9f] \u001b[39m\u001b[92m+ LaTeXStrings v1.4.0\u001b[39m\n", - " \u001b[90m[23fbe1c1] \u001b[39m\u001b[92m+ Latexify v0.16.5\u001b[39m\n", - " \u001b[90m[10f19ff3] \u001b[39m\u001b[92m+ LayoutPointers v0.1.17\u001b[39m\n", - " \u001b[90m[5078a376] \u001b[39m\u001b[92m+ LazyArrays v2.3.1\u001b[39m\n", - " \u001b[90m[d3d80556] \u001b[39m\u001b[92m+ LineSearches v7.3.0\u001b[39m\n", - " \u001b[90m[2ab3a3ac] \u001b[39m\u001b[92m+ LogExpFunctions v0.3.29\u001b[39m\n", - " \u001b[90m[e6f89c97] \u001b[39m\u001b[92m+ LoggingExtras v1.1.0\u001b[39m\n", - " \u001b[90m[bdcacae8] \u001b[39m\u001b[92m+ LoopVectorization v0.12.171\u001b[39m\n", - "\u001b[32m⌃\u001b[39m \u001b[90m[7e8f7934] \u001b[39m\u001b[92m+ MLDataDevices v1.5.3\u001b[39m\n", - " \u001b[90m[d8e11817] \u001b[39m\u001b[92m+ MLStyle v0.4.17\u001b[39m\n", - " \u001b[90m[f1d291b0] \u001b[39m\u001b[92m+ MLUtils v0.4.4\u001b[39m\n", - " \u001b[90m[3da0fdf6] \u001b[39m\u001b[92m+ MPIPreferences v0.1.11\u001b[39m\n", - " \u001b[90m[1914dd2f] \u001b[39m\u001b[92m+ MacroTools v0.5.13\u001b[39m\n", - " \u001b[90m[d125e4d3] \u001b[39m\u001b[92m+ ManualMemory v0.1.8\u001b[39m\n", - " \u001b[90m[41f81499] \u001b[39m\u001b[92m+ MatrixCorrectionTools v1.2.0\u001b[39m\n", - " \u001b[90m[739be429] \u001b[39m\u001b[92m+ MbedTLS v1.1.9\u001b[39m\n", - " \u001b[90m[442fdcdd] \u001b[39m\u001b[92m+ Measures v0.3.2\u001b[39m\n", - " \u001b[90m[fa8bd995] \u001b[39m\u001b[92m+ MetaGraphsNext v0.7.1\u001b[39m\n", - " \u001b[90m[128add7d] \u001b[39m\u001b[92m+ MicroCollections v0.2.0\u001b[39m\n", - " \u001b[90m[e1d29d7a] \u001b[39m\u001b[92m+ Missings v1.2.0\u001b[39m\n", - " \u001b[90m[6f286f6a] \u001b[39m\u001b[92m+ MultivariateStats v0.10.3\u001b[39m\n", - " \u001b[90m[ffc61752] \u001b[39m\u001b[92m+ Mustache v1.0.20\u001b[39m\n", - " \u001b[90m[d41bc354] \u001b[39m\u001b[92m+ NLSolversBase v7.8.3\u001b[39m\n", - " \u001b[90m[872c559c] \u001b[39m\u001b[92m+ NNlib v0.9.26\u001b[39m\n", - " \u001b[90m[77ba4419] \u001b[39m\u001b[92m+ NaNMath v1.0.2\u001b[39m\n", - " \u001b[90m[71a1bf82] \u001b[39m\u001b[92m+ NameResolution v0.1.5\u001b[39m\n", - " \u001b[90m[d9ec5142] \u001b[39m\u001b[92m+ NamedTupleTools v0.14.3\u001b[39m\n", - " \u001b[90m[b8a86587] \u001b[39m\u001b[92m+ NearestNeighbors v0.4.21\u001b[39m\n", - " \u001b[90m[510215fc] \u001b[39m\u001b[92m+ Observables v0.5.5\u001b[39m\n", - " \u001b[90m[6fe1bfb0] \u001b[39m\u001b[92m+ OffsetArrays v1.14.2\u001b[39m\n", - " \u001b[90m[0b1bfda6] \u001b[39m\u001b[92m+ OneHotArrays v0.2.6\u001b[39m\n", - " \u001b[90m[4d8831e6] \u001b[39m\u001b[92m+ OpenSSL v1.4.3\u001b[39m\n", - " \u001b[90m[429524aa] \u001b[39m\u001b[92m+ Optim v1.10.0\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[3bd65402] \u001b[39m\u001b[92m+ Optimisers v0.3.4\u001b[39m\n", - " \u001b[90m[bac558e1] \u001b[39m\u001b[92m+ OrderedCollections v1.7.0\u001b[39m\n", - " \u001b[90m[90014a1f] \u001b[39m\u001b[92m+ PDMats v0.11.31\u001b[39m\n", - " \u001b[90m[d96e819e] \u001b[39m\u001b[92m+ Parameters v0.12.3\u001b[39m\n", - " \u001b[90m[69de0a69] \u001b[39m\u001b[92m+ Parsers v2.8.1\u001b[39m\n", - " \u001b[90m[b98c9c47] \u001b[39m\u001b[92m+ Pipe v1.3.0\u001b[39m\n", - " \u001b[90m[ccf2f8ad] \u001b[39m\u001b[92m+ PlotThemes v3.3.0\u001b[39m\n", - " \u001b[90m[995b91a9] \u001b[39m\u001b[92m+ PlotUtils v1.4.3\u001b[39m\n", - " \u001b[90m[91a5bcdd] \u001b[39m\u001b[92m+ Plots v1.40.9\u001b[39m\n", - " \u001b[90m[1d0040c9] \u001b[39m\u001b[92m+ PolyesterWeave v0.2.2\u001b[39m\n", - " \u001b[90m[2dfb63ee] \u001b[39m\u001b[92m+ PooledArrays v1.4.3\u001b[39m\n", - " \u001b[90m[85a6dd25] \u001b[39m\u001b[92m+ PositiveFactorizations v0.2.4\u001b[39m\n", - " \u001b[90m[aea7be01] \u001b[39m\u001b[92m+ PrecompileTools v1.2.1\u001b[39m\n", - " \u001b[90m[21216c6a] \u001b[39m\u001b[92m+ Preferences v1.4.3\u001b[39m\n", - " \u001b[90m[8162dcfd] \u001b[39m\u001b[92m+ PrettyPrint v0.2.0\u001b[39m\n", - " \u001b[90m[08abe8d2] \u001b[39m\u001b[92m+ PrettyTables v2.4.0\u001b[39m\n", - " \u001b[90m[33c8b6b6] \u001b[39m\u001b[92m+ ProgressLogging v0.1.4\u001b[39m\n", - " \u001b[90m[92933f4c] \u001b[39m\u001b[92m+ ProgressMeter v1.10.2\u001b[39m\n", - " \u001b[90m[43287f4e] \u001b[39m\u001b[92m+ PtrArrays v1.2.1\u001b[39m\n", - " \u001b[90m[1fd47b50] \u001b[39m\u001b[92m+ QuadGK v2.11.1\u001b[39m\n", - " \u001b[90m[c84ed2f1] \u001b[39m\u001b[92m+ Ratios v0.4.5\u001b[39m\n", - " \u001b[90m[a194aa59] \u001b[39m\u001b[92m+ ReactiveMP v4.4.5\u001b[39m\n", - " \u001b[90m[c1ae055f] \u001b[39m\u001b[92m+ RealDot v0.1.0\u001b[39m\n", - " \u001b[90m[3cdcf5f2] \u001b[39m\u001b[92m+ RecipesBase v1.3.4\u001b[39m\n", - " \u001b[90m[01d81517] \u001b[39m\u001b[92m+ RecipesPipeline v0.6.12\u001b[39m\n", - " \u001b[90m[189a3867] \u001b[39m\u001b[92m+ Reexport v1.2.2\u001b[39m\n", - " \u001b[90m[05181044] \u001b[39m\u001b[92m+ RelocatableFolders v1.0.1\u001b[39m\n", - " \u001b[90m[ae029012] \u001b[39m\u001b[92m+ Requires v1.3.0\u001b[39m\n", - " \u001b[90m[37e2e3b7] \u001b[39m\u001b[92m+ ReverseDiff v1.15.3\u001b[39m\n", - " \u001b[90m[79098fc4] \u001b[39m\u001b[92m+ Rmath v0.8.0\u001b[39m\n", - " \u001b[90m[df971d30] \u001b[39m\u001b[92m+ Rocket v1.8.1\u001b[39m\n", - " \u001b[90m[86711068] \u001b[39m\u001b[92m+ RxInfer v3.8.0\u001b[39m\n", - " \u001b[90m[94e857df] \u001b[39m\u001b[92m+ SIMDTypes v0.1.0\u001b[39m\n", - " \u001b[90m[476501e8] \u001b[39m\u001b[92m+ SLEEFPirates v0.6.43\u001b[39m\n", - " \u001b[90m[6c6a2e73] \u001b[39m\u001b[92m+ Scratch v1.2.1\u001b[39m\n", - " \u001b[90m[91c51154] \u001b[39m\u001b[92m+ SentinelArrays v1.4.8\u001b[39m\n", - " \u001b[90m[efcf1570] \u001b[39m\u001b[92m+ Setfield v1.1.1\u001b[39m\n", - " \u001b[90m[1277b4bf] \u001b[39m\u001b[92m+ ShiftedArrays v2.0.0\u001b[39m\n", - " \u001b[90m[605ecd9f] \u001b[39m\u001b[92m+ ShowCases v0.1.0\u001b[39m\n", - " \u001b[90m[992d4aef] \u001b[39m\u001b[92m+ Showoff v1.0.3\u001b[39m\n", - " \u001b[90m[777ac1f9] \u001b[39m\u001b[92m+ SimpleBufferStream v1.2.0\u001b[39m\n", - " \u001b[90m[699a6c99] \u001b[39m\u001b[92m+ SimpleTraits v0.9.4\u001b[39m\n", - " \u001b[90m[b85f4697] \u001b[39m\u001b[92m+ SoftGlobalScope v1.1.0\u001b[39m\n", - " \u001b[90m[a2af1166] \u001b[39m\u001b[92m+ SortingAlgorithms v1.2.1\u001b[39m\n", - " \u001b[90m[dc90abb0] \u001b[39m\u001b[92m+ SparseInverseSubset v0.1.2\u001b[39m\n", - " \u001b[90m[276daf66] \u001b[39m\u001b[92m+ SpecialFunctions v2.5.0\u001b[39m\n", - " \u001b[90m[171d559e] \u001b[39m\u001b[92m+ SplittablesBase v0.1.15\u001b[39m\n", - " \u001b[90m[860ef19b] \u001b[39m\u001b[92m+ StableRNGs v1.0.2\u001b[39m\n", - " \u001b[90m[aedffcd0] \u001b[39m\u001b[92m+ Static v1.1.1\u001b[39m\n", - " \u001b[90m[0d7ed370] \u001b[39m\u001b[92m+ StaticArrayInterface v1.8.0\u001b[39m\n", - " \u001b[90m[90137ffa] \u001b[39m\u001b[92m+ StaticArrays v1.9.8\u001b[39m\n", - " \u001b[90m[1e83bf80] \u001b[39m\u001b[92m+ StaticArraysCore v1.4.3\u001b[39m\n", - " \u001b[90m[10745b16] \u001b[39m\u001b[92m+ Statistics v1.11.1\u001b[39m\n", - " \u001b[90m[82ae8749] \u001b[39m\u001b[92m+ StatsAPI v1.7.0\u001b[39m\n", - " \u001b[90m[2913bbd2] \u001b[39m\u001b[92m+ StatsBase v0.34.3\u001b[39m\n", - " \u001b[90m[4c63d2b9] \u001b[39m\u001b[92m+ StatsFuns v1.3.2\u001b[39m\n", - " \u001b[90m[3eaba693] \u001b[39m\u001b[92m+ StatsModels v0.7.4\u001b[39m\n", - " \u001b[90m[f3b207a7] \u001b[39m\u001b[92m+ StatsPlots v0.15.7\u001b[39m\n", - " \u001b[90m[69024149] \u001b[39m\u001b[92m+ StringEncodings v0.3.7\u001b[39m\n", - " \u001b[90m[892a3eda] \u001b[39m\u001b[92m+ StringManipulation v0.4.0\u001b[39m\n", - "\u001b[32m⌃\u001b[39m \u001b[90m[09ab397b] \u001b[39m\u001b[92m+ StructArrays v0.6.21\u001b[39m\n", - " \u001b[90m[ab02a1b2] \u001b[39m\u001b[92m+ TableOperations v1.2.0\u001b[39m\n", - " \u001b[90m[3783bdb8] \u001b[39m\u001b[92m+ TableTraits v1.0.1\u001b[39m\n", - " \u001b[90m[bd369af6] \u001b[39m\u001b[92m+ Tables v1.12.0\u001b[39m\n", - " \u001b[90m[62fd8b95] \u001b[39m\u001b[92m+ TensorCore v0.1.1\u001b[39m\n", - " \u001b[90m[8290d209] \u001b[39m\u001b[92m+ ThreadingUtilities v0.5.2\u001b[39m\n", - " \u001b[90m[783c9a47] \u001b[39m\u001b[92m+ TinyHugeNumbers v1.0.2\u001b[39m\n", - " \u001b[90m[3bb67fe8] \u001b[39m\u001b[92m+ TranscodingStreams v0.11.3\u001b[39m\n", - " \u001b[90m[28d57a85] \u001b[39m\u001b[92m+ Transducers v0.4.84\u001b[39m\n", - " \u001b[90m[9d95972d] \u001b[39m\u001b[92m+ TupleTools v1.6.0\u001b[39m\n", - " \u001b[90m[5c2747f8] \u001b[39m\u001b[92m+ URIs v1.5.1\u001b[39m\n", - " \u001b[90m[3a884ed6] \u001b[39m\u001b[92m+ UnPack v1.0.2\u001b[39m\n", - " \u001b[90m[1cfade01] \u001b[39m\u001b[92m+ UnicodeFun v0.4.1\u001b[39m\n", - " \u001b[90m[1986cc42] \u001b[39m\u001b[92m+ Unitful v1.21.1\u001b[39m\n", - " \u001b[90m[45397f5d] \u001b[39m\u001b[92m+ UnitfulLatexify v1.6.4\u001b[39m\n", - " \u001b[90m[9602ed7d] \u001b[39m\u001b[92m+ Unrolled v0.1.5\u001b[39m\n", - " \u001b[90m[013be700] \u001b[39m\u001b[92m+ UnsafeAtomics v0.2.1\u001b[39m\n", - " \u001b[90m[41fe7b60] \u001b[39m\u001b[92m+ Unzip v0.2.0\u001b[39m\n", - " \u001b[90m[3d5dd08c] \u001b[39m\u001b[92m+ VectorizationBase v0.21.71\u001b[39m\n", - " \u001b[90m[81def892] \u001b[39m\u001b[92m+ VersionParsing v1.3.0\u001b[39m\n", - " \u001b[90m[ea10d353] \u001b[39m\u001b[92m+ WeakRefStrings v1.4.2\u001b[39m\n", - " \u001b[90m[44d3d7a6] \u001b[39m\u001b[92m+ Weave v0.10.12\u001b[39m\n", - " \u001b[90m[cc8bc4a8] \u001b[39m\u001b[92m+ Widgets v0.6.7\u001b[39m\n", - " \u001b[90m[efce3f68] \u001b[39m\u001b[92m+ WoodburyMatrices v1.0.0\u001b[39m\n", - " \u001b[90m[76eceee3] \u001b[39m\u001b[92m+ WorkerUtilities v1.6.1\u001b[39m\n", - " \u001b[90m[fdbf4ff8] \u001b[39m\u001b[92m+ XLSX v0.10.4\u001b[39m\n", - " \u001b[90m[ddb6d928] \u001b[39m\u001b[92m+ YAML v0.4.12\u001b[39m\n", - " \u001b[90m[c2297ded] \u001b[39m\u001b[92m+ ZMQ v1.4.0\u001b[39m\n", - " \u001b[90m[49080126] \u001b[39m\u001b[92m+ ZipArchives v2.4.0\u001b[39m\n", - " \u001b[90m[a5390f91] \u001b[39m\u001b[92m+ ZipFile v0.10.1\u001b[39m\n", - " \u001b[90m[e88e6eb3] \u001b[39m\u001b[92m+ Zygote v0.6.73\u001b[39m\n", - " \u001b[90m[700de1a5] \u001b[39m\u001b[92m+ ZygoteRules v0.2.5\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[68821587] \u001b[39m\u001b[92m+ Arpack_jll v3.5.1+1\u001b[39m\n", - " \u001b[90m[0b7ba130] \u001b[39m\u001b[92m+ Blosc_jll v1.21.6+0\u001b[39m\n", - " \u001b[90m[6e34b625] \u001b[39m\u001b[92m+ Bzip2_jll v1.0.8+2\u001b[39m\n", - " \u001b[90m[83423d85] \u001b[39m\u001b[92m+ Cairo_jll v1.18.2+1\u001b[39m\n", - " \u001b[90m[ee1fde0b] \u001b[39m\u001b[92m+ Dbus_jll v1.14.10+0\u001b[39m\n", - " \u001b[90m[2702e6a9] \u001b[39m\u001b[92m+ EpollShim_jll v0.0.20230411+1\u001b[39m\n", - " \u001b[90m[2e619515] \u001b[39m\u001b[92m+ Expat_jll v2.6.4+1\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[b22a6f82] \u001b[39m\u001b[92m+ FFMPEG_jll v4.4.4+1\u001b[39m\n", - " \u001b[90m[f5851436] \u001b[39m\u001b[92m+ FFTW_jll v3.3.10+1\u001b[39m\n", - " \u001b[90m[a3f928ae] \u001b[39m\u001b[92m+ Fontconfig_jll v2.15.0+0\u001b[39m\n", - " \u001b[90m[d7e528f0] \u001b[39m\u001b[92m+ FreeType2_jll v2.13.3+1\u001b[39m\n", - " \u001b[90m[559328eb] \u001b[39m\u001b[92m+ FriBidi_jll v1.0.14+0\u001b[39m\n", - " \u001b[90m[0656b61e] \u001b[39m\u001b[92m+ GLFW_jll v3.4.0+1\u001b[39m\n", - " \u001b[90m[d2c73de3] \u001b[39m\u001b[92m+ GR_jll v0.73.9+0\u001b[39m\n", - " \u001b[90m[78b55507] \u001b[39m\u001b[92m+ Gettext_jll v0.21.0+0\u001b[39m\n", - " \u001b[90m[7746bdde] \u001b[39m\u001b[92m+ Glib_jll v2.82.2+1\u001b[39m\n", - " \u001b[90m[3b182d85] \u001b[39m\u001b[92m+ Graphite2_jll v1.3.14+1\u001b[39m\n", - "\u001b[32m⌃\u001b[39m \u001b[90m[0234f1f7] \u001b[39m\u001b[92m+ HDF5_jll v1.14.2+1\u001b[39m\n", - " \u001b[90m[2e76f6c2] \u001b[39m\u001b[92m+ HarfBuzz_jll v8.5.0+0\u001b[39m\n", - " \u001b[90m[e33a78d0] \u001b[39m\u001b[92m+ Hwloc_jll v2.11.2+1\u001b[39m\n", - " \u001b[90m[1d5cc7b8] \u001b[39m\u001b[92m+ IntelOpenMP_jll v2024.2.1+0\u001b[39m\n", - " \u001b[90m[aacddb02] \u001b[39m\u001b[92m+ JpegTurbo_jll v3.0.4+0\u001b[39m\n", - " \u001b[90m[c1c5ebd0] \u001b[39m\u001b[92m+ LAME_jll v3.100.2+0\u001b[39m\n", - " \u001b[90m[88015f11] \u001b[39m\u001b[92m+ LERC_jll v4.0.0+0\u001b[39m\n", - " \u001b[90m[dad2f222] \u001b[39m\u001b[92m+ LLVMExtra_jll v0.0.34+0\u001b[39m\n", - " \u001b[90m[1d63c593] \u001b[39m\u001b[92m+ LLVMOpenMP_jll v18.1.7+0\u001b[39m\n", - " \u001b[90m[dd4b983a] \u001b[39m\u001b[92m+ LZO_jll v2.10.2+1\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[e9f186c6] \u001b[39m\u001b[92m+ Libffi_jll v3.2.2+1\u001b[39m\n", - " \u001b[90m[d4300ac3] \u001b[39m\u001b[92m+ Libgcrypt_jll v1.11.0+0\u001b[39m\n", - " \u001b[90m[7e76a0d4] \u001b[39m\u001b[92m+ Libglvnd_jll v1.7.0+0\u001b[39m\n", - " \u001b[90m[7add5ba3] \u001b[39m\u001b[92m+ Libgpg_error_jll v1.50.0+0\u001b[39m\n", - " \u001b[90m[94ce4f54] \u001b[39m\u001b[92m+ Libiconv_jll v1.17.0+1\u001b[39m\n", - " \u001b[90m[4b2f31a3] \u001b[39m\u001b[92m+ Libmount_jll v2.40.2+0\u001b[39m\n", - " \u001b[90m[89763e89] \u001b[39m\u001b[92m+ Libtiff_jll v4.7.0+0\u001b[39m\n", - " \u001b[90m[38a345b3] \u001b[39m\u001b[92m+ Libuuid_jll v2.40.2+0\u001b[39m\n", - " \u001b[90m[5ced341a] \u001b[39m\u001b[92m+ Lz4_jll v1.10.0+1\u001b[39m\n", - " \u001b[90m[856f044c] \u001b[39m\u001b[92m+ MKL_jll v2024.2.0+0\u001b[39m\n", - " \u001b[90m[7cb0a576] \u001b[39m\u001b[92m+ MPICH_jll v4.2.3+0\u001b[39m\n", - " \u001b[90m[f1f71cc9] \u001b[39m\u001b[92m+ MPItrampoline_jll v5.5.1+0\u001b[39m\n", - " \u001b[90m[9237b28f] \u001b[39m\u001b[92m+ MicrosoftMPI_jll v10.1.4+3\u001b[39m\n", - " \u001b[90m[e7412a2a] \u001b[39m\u001b[92m+ Ogg_jll v1.3.5+1\u001b[39m\n", - " \u001b[90m[fe0851c0] \u001b[39m\u001b[92m+ OpenMPI_jll v5.0.6+0\u001b[39m\n", - " \u001b[90m[458c3c95] \u001b[39m\u001b[92m+ OpenSSL_jll v3.0.15+1\u001b[39m\n", - " \u001b[90m[efe28fd5] \u001b[39m\u001b[92m+ OpenSpecFun_jll v0.5.5+0\u001b[39m\n", - " \u001b[90m[91d4177d] \u001b[39m\u001b[92m+ Opus_jll v1.3.3+0\u001b[39m\n", - " \u001b[90m[36c8627f] \u001b[39m\u001b[92m+ Pango_jll v1.54.1+0\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[30392449] \u001b[39m\u001b[92m+ Pixman_jll v0.43.4+0\u001b[39m\n", - " \u001b[90m[c0090381] \u001b[39m\u001b[92m+ Qt6Base_jll v6.7.1+1\u001b[39m\n", - " \u001b[90m[629bc702] \u001b[39m\u001b[92m+ Qt6Declarative_jll v6.7.1+2\u001b[39m\n", - " \u001b[90m[ce943373] \u001b[39m\u001b[92m+ Qt6ShaderTools_jll v6.7.1+1\u001b[39m\n", - " \u001b[90m[e99dba38] \u001b[39m\u001b[92m+ Qt6Wayland_jll v6.7.1+1\u001b[39m\n", - " \u001b[90m[f50d1b31] \u001b[39m\u001b[92m+ Rmath_jll v0.5.1+0\u001b[39m\n", - " \u001b[90m[a44049a8] \u001b[39m\u001b[92m+ Vulkan_Loader_jll v1.3.243+0\u001b[39m\n", - " \u001b[90m[a2964d1f] \u001b[39m\u001b[92m+ Wayland_jll v1.21.0+1\u001b[39m\n", - " \u001b[90m[2381bf8a] \u001b[39m\u001b[92m+ Wayland_protocols_jll v1.31.0+0\u001b[39m\n", - " \u001b[90m[02c8fc9c] \u001b[39m\u001b[92m+ XML2_jll v2.13.5+0\u001b[39m\n", - " \u001b[90m[aed1982a] \u001b[39m\u001b[92m+ XSLT_jll v1.1.42+0\u001b[39m\n", - " \u001b[90m[ffd25f8a] \u001b[39m\u001b[92m+ XZ_jll v5.6.3+0\u001b[39m\n", - " \u001b[90m[f67eecfb] \u001b[39m\u001b[92m+ Xorg_libICE_jll v1.1.1+0\u001b[39m\n", - " \u001b[90m[c834827a] \u001b[39m\u001b[92m+ Xorg_libSM_jll v1.2.4+0\u001b[39m\n", - " \u001b[90m[4f6342f7] \u001b[39m\u001b[92m+ Xorg_libX11_jll v1.8.6+1\u001b[39m\n", - " \u001b[90m[0c0b7dd1] \u001b[39m\u001b[92m+ Xorg_libXau_jll v1.0.11+1\u001b[39m\n", - " \u001b[90m[935fb764] \u001b[39m\u001b[92m+ Xorg_libXcursor_jll v1.2.0+4\u001b[39m\n", - " \u001b[90m[a3789734] \u001b[39m\u001b[92m+ Xorg_libXdmcp_jll v1.1.4+1\u001b[39m\n", - " \u001b[90m[1082639a] \u001b[39m\u001b[92m+ Xorg_libXext_jll v1.3.6+1\u001b[39m\n", - " \u001b[90m[d091e8ba] \u001b[39m\u001b[92m+ Xorg_libXfixes_jll v5.0.3+4\u001b[39m\n", - " \u001b[90m[a51aa0fd] \u001b[39m\u001b[92m+ Xorg_libXi_jll v1.7.10+4\u001b[39m\n", - " \u001b[90m[d1454406] \u001b[39m\u001b[92m+ Xorg_libXinerama_jll v1.1.4+4\u001b[39m\n", - " \u001b[90m[ec84b674] \u001b[39m\u001b[92m+ Xorg_libXrandr_jll v1.5.2+4\u001b[39m\n", - " \u001b[90m[ea2f1a96] \u001b[39m\u001b[92m+ Xorg_libXrender_jll v0.9.11+0\u001b[39m\n", - " \u001b[90m[14d82f49] \u001b[39m\u001b[92m+ Xorg_libpthread_stubs_jll v0.1.1+1\u001b[39m\n", - " \u001b[90m[c7cfdc94] \u001b[39m\u001b[92m+ Xorg_libxcb_jll v1.17.0+1\u001b[39m\n", - " \u001b[90m[cc61e674] \u001b[39m\u001b[92m+ Xorg_libxkbfile_jll v1.1.2+0\u001b[39m\n", - " \u001b[90m[e920d4aa] \u001b[39m\u001b[92m+ Xorg_xcb_util_cursor_jll v0.1.4+0\u001b[39m\n", - " \u001b[90m[12413925] \u001b[39m\u001b[92m+ Xorg_xcb_util_image_jll v0.4.0+1\u001b[39m\n", - " \u001b[90m[2def613f] \u001b[39m\u001b[92m+ Xorg_xcb_util_jll v0.4.0+1\u001b[39m\n", - " \u001b[90m[975044d2] \u001b[39m\u001b[92m+ Xorg_xcb_util_keysyms_jll v0.4.0+1\u001b[39m\n", - " \u001b[90m[0d47668e] \u001b[39m\u001b[92m+ Xorg_xcb_util_renderutil_jll v0.3.9+1\u001b[39m\n", - " \u001b[90m[c22f9ab0] \u001b[39m\u001b[92m+ Xorg_xcb_util_wm_jll v0.4.1+1\u001b[39m\n", - " \u001b[90m[35661453] \u001b[39m\u001b[92m+ Xorg_xkbcomp_jll v1.4.6+0\u001b[39m\n", - " \u001b[90m[33bec58e] \u001b[39m\u001b[92m+ Xorg_xkeyboard_config_jll v2.39.0+0\u001b[39m\n", - " \u001b[90m[c5fb5394] \u001b[39m\u001b[92m+ Xorg_xtrans_jll v1.5.0+1\u001b[39m\n", - " \u001b[90m[8f1865be] \u001b[39m\u001b[92m+ ZeroMQ_jll v4.3.5+1\u001b[39m\n", - " \u001b[90m[3161d3a3] \u001b[39m\u001b[92m+ Zstd_jll v1.5.6+1\u001b[39m\n", - " \u001b[90m[35ca27e7] \u001b[39m\u001b[92m+ eudev_jll v3.2.9+0\u001b[39m\n", - " \u001b[90m[214eeab7] \u001b[39m\u001b[92m+ fzf_jll v0.56.3+0\u001b[39m\n", - " \u001b[90m[1a1c6b14] \u001b[39m\u001b[92m+ gperf_jll v3.1.1+1\u001b[39m\n", - " \u001b[90m[477f73a3] \u001b[39m\u001b[92m+ libaec_jll v1.1.2+0\u001b[39m\n", - " \u001b[90m[a4ae2306] \u001b[39m\u001b[92m+ libaom_jll v3.9.0+0\u001b[39m\n", - " \u001b[90m[0ac62f75] \u001b[39m\u001b[92m+ libass_jll v0.15.2+0\u001b[39m\n", - " \u001b[90m[1183f4f0] \u001b[39m\u001b[92m+ libdecor_jll v0.2.2+0\u001b[39m\n", - " \u001b[90m[2db6ffa8] \u001b[39m\u001b[92m+ libevdev_jll v1.11.0+0\u001b[39m\n", - " \u001b[90m[f638f0a6] \u001b[39m\u001b[92m+ libfdk_aac_jll v2.0.3+0\u001b[39m\n", - " \u001b[90m[36db933b] \u001b[39m\u001b[92m+ libinput_jll v1.18.0+0\u001b[39m\n", - " \u001b[90m[b53b4c65] \u001b[39m\u001b[92m+ libpng_jll v1.6.44+0\u001b[39m\n", - " \u001b[90m[a9144af2] \u001b[39m\u001b[92m+ libsodium_jll v1.0.20+1\u001b[39m\n", - " \u001b[90m[f27f6e37] \u001b[39m\u001b[92m+ libvorbis_jll v1.3.7+2\u001b[39m\n", - " \u001b[90m[009596ad] \u001b[39m\u001b[92m+ mtdev_jll v1.1.6+0\u001b[39m\n", - " \u001b[90m[1317d2d5] \u001b[39m\u001b[92m+ oneTBB_jll v2021.12.0+0\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[1270edf5] \u001b[39m\u001b[92m+ x264_jll v2021.5.5+0\u001b[39m\n", - "\u001b[33m⌅\u001b[39m \u001b[90m[dfaa095f] \u001b[39m\u001b[92m+ x265_jll v3.5.0+0\u001b[39m\n", - " \u001b[90m[d8fb68d0] \u001b[39m\u001b[92m+ xkbcommon_jll v1.4.1+1\u001b[39m\n", - " \u001b[90m[0dad84c5] \u001b[39m\u001b[92m+ ArgTools v1.1.2\u001b[39m\n", - " \u001b[90m[56f22d72] \u001b[39m\u001b[92m+ Artifacts v1.11.0\u001b[39m\n", - " \u001b[90m[2a0f44e3] \u001b[39m\u001b[92m+ Base64 v1.11.0\u001b[39m\n", - " \u001b[90m[ade2ca70] \u001b[39m\u001b[92m+ Dates v1.11.0\u001b[39m\n", - " \u001b[90m[8ba89e20] \u001b[39m\u001b[92m+ Distributed v1.11.0\u001b[39m\n", - " \u001b[90m[f43a241f] \u001b[39m\u001b[92m+ Downloads v1.6.0\u001b[39m\n", - " \u001b[90m[7b1f6079] \u001b[39m\u001b[92m+ FileWatching v1.11.0\u001b[39m\n", - " \u001b[90m[9fa8497b] \u001b[39m\u001b[92m+ Future v1.11.0\u001b[39m\n", - " \u001b[90m[b77e0a4c] \u001b[39m\u001b[92m+ InteractiveUtils v1.11.0\u001b[39m\n", - " \u001b[90m[4af54fe1] \u001b[39m\u001b[92m+ LazyArtifacts v1.11.0\u001b[39m\n", - " \u001b[90m[b27032c2] \u001b[39m\u001b[92m+ LibCURL v0.6.4\u001b[39m\n", - " \u001b[90m[76f85450] \u001b[39m\u001b[92m+ LibGit2 v1.11.0\u001b[39m\n", - " \u001b[90m[8f399da3] \u001b[39m\u001b[92m+ Libdl v1.11.0\u001b[39m\n", - " \u001b[90m[37e2e46d] \u001b[39m\u001b[92m+ LinearAlgebra v1.11.0\u001b[39m\n", - " \u001b[90m[56ddb016] \u001b[39m\u001b[92m+ Logging v1.11.0\u001b[39m\n", - " \u001b[90m[d6f4376e] \u001b[39m\u001b[92m+ Markdown v1.11.0\u001b[39m\n", - " \u001b[90m[a63ad114] \u001b[39m\u001b[92m+ Mmap v1.11.0\u001b[39m\n", - " \u001b[90m[ca575930] \u001b[39m\u001b[92m+ NetworkOptions v1.2.0\u001b[39m\n", - " \u001b[90m[44cfe95a] \u001b[39m\u001b[92m+ Pkg v1.11.0\u001b[39m\n", - " \u001b[90m[de0858da] \u001b[39m\u001b[92m+ Printf v1.11.0\u001b[39m\n", - " \u001b[90m[9abbd945] \u001b[39m\u001b[92m+ Profile v1.11.0\u001b[39m\n", - " \u001b[90m[3fa0cd96] \u001b[39m\u001b[92m+ REPL v1.11.0\u001b[39m\n", - " \u001b[90m[9a3f8284] \u001b[39m\u001b[92m+ Random v1.11.0\u001b[39m\n", - " \u001b[90m[ea8e919c] \u001b[39m\u001b[92m+ SHA v0.7.0\u001b[39m\n", - " \u001b[90m[9e88b42a] \u001b[39m\u001b[92m+ Serialization v1.11.0\u001b[39m\n", - " \u001b[90m[1a1011a3] \u001b[39m\u001b[92m+ SharedArrays v1.11.0\u001b[39m\n", - " \u001b[90m[6462fe0b] \u001b[39m\u001b[92m+ Sockets v1.11.0\u001b[39m\n", - " \u001b[90m[2f01184e] \u001b[39m\u001b[92m+ SparseArrays v1.11.0\u001b[39m\n", - " \u001b[90m[f489334b] \u001b[39m\u001b[92m+ StyledStrings v1.11.0\u001b[39m\n", - " \u001b[90m[4607b0f0] \u001b[39m\u001b[92m+ SuiteSparse\u001b[39m\n", - " \u001b[90m[fa267f1f] \u001b[39m\u001b[92m+ TOML v1.0.3\u001b[39m\n", - " \u001b[90m[a4e569a6] \u001b[39m\u001b[92m+ Tar v1.10.0\u001b[39m\n", - " \u001b[90m[8dfed614] \u001b[39m\u001b[92m+ Test v1.11.0\u001b[39m\n", - " \u001b[90m[cf7118a7] \u001b[39m\u001b[92m+ UUIDs v1.11.0\u001b[39m\n", - " \u001b[90m[4ec0a83e] \u001b[39m\u001b[92m+ Unicode v1.11.0\u001b[39m\n", - " \u001b[90m[e66e0078] \u001b[39m\u001b[92m+ CompilerSupportLibraries_jll v1.1.1+0\u001b[39m\n", - " \u001b[90m[deac9b47] \u001b[39m\u001b[92m+ LibCURL_jll v8.6.0+0\u001b[39m\n", - " \u001b[90m[e37daf67] \u001b[39m\u001b[92m+ LibGit2_jll v1.7.2+0\u001b[39m\n", - " \u001b[90m[29816b5a] \u001b[39m\u001b[92m+ LibSSH2_jll v1.11.0+1\u001b[39m\n", - " \u001b[90m[c8ffd9c3] \u001b[39m\u001b[92m+ MbedTLS_jll v2.28.6+0\u001b[39m\n", - " \u001b[90m[14a3606d] \u001b[39m\u001b[92m+ MozillaCACerts_jll v2023.12.12\u001b[39m\n", - " \u001b[90m[4536629a] \u001b[39m\u001b[92m+ OpenBLAS_jll v0.3.27+1\u001b[39m\n", - " \u001b[90m[05823500] \u001b[39m\u001b[92m+ OpenLibm_jll v0.8.1+2\u001b[39m\n", - " \u001b[90m[efcefdf7] \u001b[39m\u001b[92m+ PCRE2_jll v10.42.0+1\u001b[39m\n", - " \u001b[90m[bea87d4a] \u001b[39m\u001b[92m+ SuiteSparse_jll v7.7.0+0\u001b[39m\n", - " \u001b[90m[83775a58] \u001b[39m\u001b[92m+ Zlib_jll v1.2.13+1\u001b[39m\n", - " \u001b[90m[8e850b90] \u001b[39m\u001b[92m+ libblastrampoline_jll v5.11.0+0\u001b[39m\n", - " \u001b[90m[8e850ede] \u001b[39m\u001b[92m+ nghttp2_jll v1.59.0+0\u001b[39m\n", - " \u001b[90m[3f19e933] \u001b[39m\u001b[92m+ p7zip_jll v17.4.0+2\u001b[39m\n", - "\u001b[36m\u001b[1m Info\u001b[22m\u001b[39m Packages marked with \u001b[32m⌃\u001b[39m and \u001b[33m⌅\u001b[39m have new versions available. Those with \u001b[32m⌃\u001b[39m may be upgradable, but those with \u001b[33m⌅\u001b[39m are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`\n", - "\u001b[92m\u001b[1mPrecompiling\u001b[22m\u001b[39m project...\n", - " 4354.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mInvertedIndices\u001b[39m\n", - " 3058.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mShiftedArrays\u001b[39m\n", - " 3049.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mAtomix\u001b[39m\n", - " 3045.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mInputBuffers\u001b[39m\n", - " 3021.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mCodecInflate64\u001b[39m\n", - " 2955.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mZipFile\u001b[39m\n", - " 2941.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mMustache\u001b[39m\n", - " 963.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mEpollShim_jll\u001b[39m\n", - " 972.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mLogExpFunctions → LogExpFunctionsInverseFunctionsExt\u001b[39m\n", - " 986.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mExpat_jll\u001b[39m\n", - " 1157.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mWidgets\u001b[39m\n", - " 1585.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mLogExpFunctions → LogExpFunctionsChainRulesCoreExt\u001b[39m\n", - " 3318.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mSentinelArrays\u001b[39m\n", - " 2797.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mStringEncodings\u001b[39m\n", - " 2804.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mEzXML\u001b[39m\n", - " 2238.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays\u001b[39m\n", - " 1782.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mGlib_jll\u001b[39m\n", - " 5849.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mHighlights\u001b[39m\n", - " 2774.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors\u001b[39m\n", - " 6943.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mInterpolations\u001b[39m\n", - " 4660.0 ms\u001b[32m ✓ \u001b[39mIJulia\n", - " 2421.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mFontconfig_jll\u001b[39m\n", - " 5386.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mH5Zblosc\u001b[39m\n", - " 4120.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mColorVectorSpace → SpecialFunctionsExt\u001b[39m\n", - " 4284.8 ms\u001b[32m ✓ \u001b[39mSpecialFunctions → SpecialFunctionsChainRulesCoreExt\n", - " 4698.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mClustering\u001b[39m\n", - " 3614.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mTableOperations\u001b[39m\n", - " 7374.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelAbstractions\u001b[39m\n", - " 8902.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mZipArchives\u001b[39m\n", - " 910.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysLinearAlgebraExt\u001b[39m\n", - " 15009.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mHTTP\u001b[39m\n", - " 2989.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mYAML\u001b[39m\n", - " 3017.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsIntervalSetsExt\u001b[39m\n", - " 3113.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsTestExt\u001b[39m\n", - " 2294.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsDatesExt\u001b[39m\n", - " 4117.6 ms\u001b[32m ✓ \u001b[39mStatsFuns → StatsFunsInverseFunctionsExt\n", - " 6434.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mInterpolations → InterpolationsUnitfulExt\u001b[39m\n", - " 4621.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mCairo_jll\u001b[39m\n", - " 4500.2 ms\u001b[32m ✓ \u001b[39mStatsFuns → StatsFunsChainRulesCoreExt\n", - " 4699.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mQt6Base_jll\u001b[39m\n", - " 2571.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelAbstractions → LinearAlgebraExt\u001b[39m\n", - " 2792.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysAdaptExt\u001b[39m\n", - " 5956.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysStaticArraysExt\u001b[39m\n", - " 14531.3 ms\u001b[32m ✓ \u001b[39mCSV\n", - " 4294.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysSparseArraysExt\u001b[39m\n", - " 6871.7 ms\u001b[32m ✓ \u001b[39mXLSX\n", - " 3846.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsStructArraysExt\u001b[39m\n", - " 1229.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsStaticArraysExt\u001b[39m\n", - " 1574.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mAccessors → AccessorsUnitfulExt\u001b[39m\n", - " 5023.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mFileIO → HTTPExt\u001b[39m\n", - " 4859.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mHarfBuzz_jll\u001b[39m\n", - " 4953.6 ms\u001b[32m ✓ \u001b[39mDistributions → DistributionsTestExt\n", - " 7020.2 ms\u001b[32m ✓ \u001b[39mDistributions → DistributionsChainRulesCoreExt\n", - " 10803.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mStatsModels\u001b[39m\n", - " 19591.8 ms\u001b[32m ✓ \u001b[39mReverseDiff\n", - " 12657.7 ms\u001b[32m ✓ \u001b[39mWeave\n", - " 7220.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mQt6ShaderTools_jll\u001b[39m\n", - " 6782.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelAbstractions → SparseArraysExt\u001b[39m\n", - " 1104.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang\u001b[39m\n", - " 4287.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mStructArrays → StructArraysGPUArraysCoreExt\u001b[39m\n", - " 4944.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mlibass_jll\u001b[39m\n", - " 4774.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mPango_jll\u001b[39m\n", - " 32365.2 ms\u001b[32m ✓ \u001b[39mDataFrames\n", - " 6177.0 ms\u001b[32m ✓ \u001b[39mJLD\n", - " 5217.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mMultivariateStats\u001b[39m\n", - " 7332.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mKernelDensity\u001b[39m\n", - " 3913.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesReverseDiffExt\u001b[39m\n", - " 3929.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mArrayInterface → ArrayInterfaceReverseDiffExt\u001b[39m\n", - " 3842.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mQt6Declarative_jll\u001b[39m\n", - " 5315.0 ms\u001b[32m ✓ \u001b[39mGLM\n", - " 632.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangChainRulesCoreExt\u001b[39m\n", - " 639.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangTablesExt\u001b[39m\n", - " 1963.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangStaticArraysExt\u001b[39m\n", - " 3458.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangStructArraysExt\u001b[39m\n", - " 3497.4 ms\u001b[32m ✓ \u001b[39m\u001b[90mLatexify → DataFramesExt\u001b[39m\n", - " 7818.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mGPUArrays\u001b[39m\n", - " 4708.9 ms\u001b[32m ✓ \u001b[39m\u001b[90mFFMPEG_jll\u001b[39m\n", - " 5447.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mChainRules\u001b[39m\n", - " 9637.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mNNlib\u001b[39m\n", - " 5803.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mBangBang → BangBangDataFramesExt\u001b[39m\n", - " 2197.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mFFMPEG\u001b[39m\n", - " 2489.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesGPUArraysExt\u001b[39m\n", - " 2756.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mGR_jll\u001b[39m\n", - " 799.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mMicroCollections\u001b[39m\n", - " 2203.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mArrayInterface → ArrayInterfaceChainRulesExt\u001b[39m\n", - " 2186.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesChainRulesExt\u001b[39m\n", - " 2693.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mNNlib → NNlibForwardDiffExt\u001b[39m\n", - " 3767.0 ms\u001b[32m ✓ \u001b[39m\u001b[90mNNlib → NNlibFFTWExt\u001b[39m\n", - " 3033.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers\u001b[39m\n", - " 1272.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mOneHotArrays\u001b[39m\n", - " 4369.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mGR\u001b[39m\n", - " 4136.7 ms\u001b[32m ✓ \u001b[39m\u001b[90mLoopVectorization → ForwardDiffExt\u001b[39m\n", - " 3705.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers → TransducersLazyArraysExt\u001b[39m\n", - " 3398.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers → TransducersAdaptExt\u001b[39m\n", - " 3971.3 ms\u001b[32m ✓ \u001b[39m\u001b[90mTransducers → TransducersDataFramesExt\u001b[39m\n", - " 3508.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesOneHotArraysExt\u001b[39m\n", - " 3065.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mFLoops\u001b[39m\n", - " 7541.0 ms\u001b[32m ✓ \u001b[39mReactiveMP → ReactiveMPOptimisersExt\n", - " 25047.6 ms\u001b[32m ✓ \u001b[39m\u001b[90mZygote\u001b[39m\n", - " 13152.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLUtils\u001b[39m\n", - " 3710.5 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesZygoteExt\u001b[39m\n", - " 3833.1 ms\u001b[32m ✓ \u001b[39m\u001b[90mZygote → ZygoteDistancesExt\u001b[39m\n", - " 3821.8 ms\u001b[32m ✓ \u001b[39m\u001b[90mZygote → ZygoteColorsExt\u001b[39m\n", - " 4821.2 ms\u001b[32m ✓ \u001b[39m\u001b[90mMLDataDevices → MLDataDevicesMLUtilsExt\u001b[39m\n", - " 13269.0 ms\u001b[32m ✓ \u001b[39mRxInfer\n", - " 8197.8 ms\u001b[32m ✓ \u001b[39mFlux\n", - " 46285.3 ms\u001b[32m ✓ \u001b[39mPlots\n", - " 3945.6 ms\u001b[32m ✓ \u001b[39mPlots → UnitfulExt\n", - " 3294.9 ms\u001b[32m ✓ \u001b[39mPlots → FileIOExt\n", - " 3546.0 ms\u001b[32m ✓ \u001b[39mPlots → IJuliaExt\n", - " 6700.8 ms\u001b[32m ✓ \u001b[39mStatsPlots\n", - " 111 dependencies successfully precompiled in 137 seconds. 372 already precompiled.\n" + "\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m project at `~/RxInfer.jl/examples`\n" ] } ], @@ -623,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 269, "metadata": {}, "outputs": [], "source": [ @@ -640,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 270, "metadata": {}, "outputs": [ { @@ -679,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 260, + "execution_count": 271, "metadata": {}, "outputs": [], "source": [ @@ -710,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 272, "metadata": {}, "outputs": [ { @@ -720,759 +160,759 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1509,7 +949,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 273, "metadata": {}, "outputs": [ { @@ -1561,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 274, "metadata": {}, "outputs": [ { @@ -1615,7 +1055,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 275, "metadata": {}, "outputs": [], "source": [ @@ -1627,7 +1067,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 276, "metadata": {}, "outputs": [ { @@ -1637,161 +1077,161 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1823,7 +1263,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 277, "metadata": {}, "outputs": [ { @@ -1833,101 +1273,101 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1957,7 +1397,7 @@ }, { "cell_type": "code", - "execution_count": 261, + "execution_count": 349, "metadata": {}, "outputs": [ { @@ -1979,8 +1419,8 @@ " x_prev ~ Normal(mean = 0., variance = 5.0)\n", "\n", " # Priors on κ and ω\n", - " κ ~ Normal(mean = 2.0, variance = 1.0)\n", - " ω ~ Normal(mean = 0.0, variance = 0.5)\n", + " κ ~ Normal(mean = 1.5, variance = 1.0)\n", + " ω ~ Normal(mean = 0.0, variance = 0.05)\n", "\n", " for i in eachindex(y)\n", " # Higher layer \n", @@ -2018,7 +1458,7 @@ }, { "cell_type": "code", - "execution_count": 262, + "execution_count": 350, "metadata": {}, "outputs": [ { @@ -2036,18 +1476,18 @@ " @initialization function hgf_init_smoothing()\n", " q(x) = NormalMeanVariance(0.0,5.0)\n", " q(z) = NormalMeanVariance(0.0,5.0)\n", - " q(κ) = NormalMeanVariance(1.5,0.5)\n", + " q(κ) = NormalMeanVariance(1.5,1.0)\n", " q(ω) = NormalMeanVariance(0.0,0.05)\n", " end\n", "\n", - " #Let's do inference with 10 iterations \n", + " #Let's do inference with 20 iterations \n", " return infer(\n", " model = hgf_smoothing(z_variance = z_variance, y_variance = y_variance,),\n", " data = (y = data,),\n", " meta = hgfmeta_smoothing(),\n", " constraints = hgfconstraints_smoothing(),\n", " initialization = hgf_init_smoothing(),\n", - " iterations = 10,\n", + " iterations = 20,\n", " returnvars = (x = KeepLast(), z = KeepLast(),ω=KeepLast(),κ=KeepLast(),),\n", " free_energy = true \n", " )\n", @@ -2063,7 +1503,7 @@ }, { "cell_type": "code", - "execution_count": 263, + "execution_count": 351, "metadata": {}, "outputs": [], "source": [ @@ -2074,171 +1514,171 @@ }, { "cell_type": "code", - "execution_count": 264, + "execution_count": 352, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9d2Bb5b3w/z3a05I1LHlPee/YSSAJWYQkQFghBcpIoZTRBZe2t9y3t5dL+2vf99629xZaKARoSwgrISQhEBKSkD0cx46nvGR5yLKsLVl7nHN+f8hDliVZduzYjs/nL+s5zznnOfLR832e70RwHAcCAgICAoKlCmm+B0BAQEBAQDCfEIKQYAnx85///Lnnnpuy265du5599tn+/v7o3Q4fPvzss8/W1NTM0uimgcPhaGhouHDhQnt7u81mu/EDICC4mSAEIcEiZteuXTQa7cknnwx7VCKR0Gi0gYGBsZaPP/74n//855SXPXHixK5duwwGQ/RudXV1u3bt6urqms6Qr5fe3t4HH3yQz+dXVFSsXr26oKCAx+OVlpb+5je/GetjNpt37dp19OjRmd2ip6dn165dly9fnqUhT011dTUyFXq9/oaNh2CpQZnvARAQzBwURX0+n9/vD3vU6/X6fL5gK/iqVausVuuNGt3s09/fv3LlSq1Wm5OT88ADDyQmJup0uo6OjmPHjn3yySf/8R//Eeg2ODj47LPP3n333Vu2bJnBXerq6p599tmf//znK1eunNXhR2T58uV8Pj/soY6ODpVKxWKxGAzGjRkMwRKEEIQES4i9e/fO9xCui9/97ndarfb+++/ft28fmUwea7fZbGfOnJnHgV0nb7zxRtj2np6ewGbxvffe43K5N3hUBEsHQhASLCGam5v9fn9FRUVwo8/nO378eHt7O5/P37RpU2pqathzcRw/d+7ctWvX6HT6mjVrioqKIt3F4XCcPHmyp6eHRCKVlJTcdtttJNK4DcLr9TY3N3M4nLy8PLPZfOTIEY1Gk5aWtmXLlri4uOjjP3fuHAD89Kc/DZaCAMDlcu++++7A32q1Wi6XA4DVaq2rqws0SiSSlJSUwN9DQ0M1NTX9/f0oimZlZW3YsIHD4Yxdqru7W6lUBrqNnZ6eni4Sicb69PX1nTlzRqvVCoXCdevWZWVlhYzT6/WeP3++p6fHarWKRCKZTLZ8+fKQMU+J3W6/5557jEbjyy+//PDDD0/rXAKC6YETECxa3nzzTQB47LHHwh4NaNv6+/vHWpKSkuh0enAfpVJZXFw89nOgUCh//OMfd+zYAQB1dXVj3SwWy8aNG4N/OM8+++yvf/1rAPjggw+CL7h7926hUBjcs6ysTKFQjHUI+OCsWbPmwIEDwZJPIpFcu3Yt+vOWlpYCwLFjx6L0+eUvfzn5Z/6LX/wicHTz5s0IggQfEggEBw4cGDv9nnvumXz6e++9FzjqdDqffPLJYLlOIpF++MMfBlTQAerq6tLS0kKuUF1dHf3RQsAw7MEHHwSATZs2+f3+aZ1LQDBdCEFIsIi5TkHodrsLCgoA4Mknn2xsbOzt7f3zn//MZDKTkpJCBGFgv7Vp06bLly/39/d/+OGHYrE40C1YEO7ZswdBEKlU+tZbbzU0NNTW1r700kskEikrK2t4eDjQJyAIExMT2Wz2yy+/fPbs2bNnzz7yyCMAUFxcjGFYlOd94oknAKCkpKSmpiZSn66urnfffRcAVq5ceXyUzs7OwNHVq1e/+uqrgR1wbW3t7373Ow6HQ6fT29raAh0aGhoCtsYdO3aMna5Wq3EcR1F069atALB+/fojR460t7cfPXo0YEd86aWXAqdjGCaTychk8m9/+9vm5ub+/v6ampq//e1vTz31VJTnmswrr7wCADKZzGw2T+tEAoIZQAhCgkVMQBCKRKKV4Qjo4qIIwrfeegsA7rjjjuBrvv7664FNzJggDCgks7Ky3G73WLcTJ04Euo0JQrvdLhAI2Gx2R0dH8AV/8YtfAMCf/vSnwMexqIw333xzrA+KogGRLJfLozxvR0eHWCwOnJ6UlLRjx44///nPwdvNAC0tLQBw9913T/X94TiOv//++wDw4osvjrXs27cPAH7+85+H9Pz0008BYMOGDSiKjjU6nc7MzEwqlTowMDD2dJs3b47l1pE4ePAgiUTicrktLS3Xcx0CghghwicIFj1Wq7U1HCiKRj/x4MGDAPCzn/0suPHpp58O8WAMdPvxj39Mp9PHGjdu3Bhia/zqq69MJtN3vvOd3Nzc4PYf/vCHAPD1118HN/J4vGeeeWbsI4lEuv322wGgp6cnyoBzc3PlcvmPfvQjiUQyODi4b9++F198MScnZ9WqVe3t7dEfNhL33nsvAFy5cmXKnh988AEA/OpXvwpWjTKZzKeeeipgZw08F4IgnZ2dRqNxZuNpb2/fuXMnjuN///vfoxhiCQhmEcJZhmDR89BDDwXm6BDi4+MtFkuUEwNOJWVlZcGNTCYzLy8vOEw+bDcAKC8vv3bt2tjHwN99fX0vv/xycDccxxEE6e3tDW7MyckJcR6RSCQAoNVqowwYAEQi0V//+tfXX3+9oaGhpqbm5MmTX3755cWLF2+77bbGxsbExMTopxsMhv/+7/8OaDuDI/NikVuBBzx48OA333wT3N7a2goAgQeMi4vbvn37Z599lpmZuXXr1vXr12/evDkzM3PKiwcwm83btm2zWq2vvvpqwEZIQHADIAQhwdLFbrcjCBLsDxkgISEh+GMgdUtI4+QWs9kMADU1NcHSMQCfz6dSqcEtLBYrpE/AhwXDsFhGTiKRKisrKysrn3/++Y6OjrVr12q12jfffPO3v/1tlLMMBkN1dXVvb29lZeXjjz8eHx8fGNXLL78cKRYzmMCqYs+ePZMPxcfHj/29Z8+e0tLSf/7zn3v37g3Eq6xYseKNN95YtmxZ9OtjGPbYY48pFIp777333//936ccDwHBbEEIQoKlC4fDMZlMer1eKpUGt4dsywIRbFqtNti/NFK3V199NUTXOtfk5eU9//zz//mf/zkW7RCJN954o7e396WXXvrTn/401jg0NBSyhY0El8t1OBxtbW2BzWsk6HT6r3/961//+tednZ3ffvvtp59+evr06TvuuEMul0c/8eWXXz5y5Eh+fv7u3buDta8EBHMN8bYRLF0Cgi1kA+dwOELsbWG7AUB9fX3wx4DJ8OLFi3Mx1OgEsq6MCY/APm/yJq+xsREAQmLyQp4iyunTfcDc3Nznnnvu1KlT27dvN5lMp06ditJ5//79f/zjH+Pj4w8fPjxlPCUBwexCCEKCpcsDDzwAo/6cY427du0aHh6e3O2NN95wuVxjjceOHWtqagruds8994hEoi+++CKsqLDb7dc/4I8++mjydZxO58cffwwAVVVVgZbk5GQAUKlUIT0DSuDgZOIoigYnKY1+eiCn629/+1un0xlyyO12+3w+AHC5XJN9lAKWS4/HE+m5Ghsbd+7ciSDInj17cnJyInUjIJgjCNUowdLl8ccff/3110+ePPnoo4++8MILHA7n8OHDr776ampqarAYWLly5fbt2/fv379ly5ZXXnklOTn5/Pnz//qv/5qWlhYsVDgczttvv71jx45Nmza99NJLa9asSUxMHBgYkMvlH3zwwSOPPBI21H1a/P73v3/++efvu+++tWvXZmZmut3ujo6OXbt2BdSVAfdUAGCz2QUFBa2trU8++WRFRQWDwSgrK1uxYsX69evfeeedF154wefzVVRUqFSq//qv/5qczDo/Pz/wVbz44osymYxKpa5duzYvL+/BBx8MfA/V1dUvvvhiSUkJhULp7e09f/78Bx980NzcnJSUVFdX98gjj3zve99buXJlZmam1+s9fvz4O++8ExcXFynxKYqi9957r8PhSEtLO3To0KFDh8J2e/7558vLy6/zCyQgCM/8Rm8QEFwP159ZRqVSBTtxUKnUv/71r5Mzy9jt9m3btgX/cF544YVA4HlIZpkjR45kZ2eH/MoyMzMPHz4c6DCWWSZktL/73e8A4N13343yvK+++urkDROCIBs2bGhvbw/uWVtbW15ePpZEJpBZBsOw559/PjizTH5+fltbGwBkZ2cHn37o0KHgxGljmWW8Xu/LL78c4ulDJpNvu+22QOR7U1PTZK+izMzMM2fORHoot9sdy0z1+eefR/lmCAiuBwQnKtQTLFqsVqtOp4uLiwvrhaFUKlEUzczMpFBGNB89PT0YhoUIKhRFz58/397eHhcXt379eqlUqtVqHQ5HcnJycOAgANTV1V27do1Go9166605OTlms9lsNickJATn6gxcsK6uTi6XezyexMTE7Ozs4Hg4v9/f39/PYDACiWnGsFgsJpNJLBZPmV1aqVR2dHRoNBqfz5eQkFBVVRUpP6rX6x0aGvL7/Xw+XyAQBBo7Ozvr6+vtdrtMJlu9ejWZTFYqlVQqdfJFXC7X0NAQjuMho7JarRcvXgw8RWJiYkVFxViYPwDgOC6Xy7u6urRabVxcXFZWVlVVVZREoziOR4+eDCCRSNhs9pTdCAhmACEICQgICAiWNISzDAEBAQHBkoYQhAQEBAQESxpCEBIQEBAQLGkIQUhAQEBAsKQhBCEBAQEBwZKGEIQEBAQEBEsaQhASEBAQECxpCEFIQEBAQLCkIQQhAQEBAcGShhCEBAQEBARLmgUhCN98883JKfDDEksdbYKbGBRFiaSASxxiEljizMULsCAE4e7du5VKZSw9gwvCESxBPB4PhmHzPQqC+YSYBJY4Ho9n1lfDC0IQEhAQEBAQzBeEICQgICAgWNIQgpCAgICAIDz+pWGJIAThosSHYXUaDeE2QkBAMHfUazRv1Na2GwzzPZA5hzLfAyCYNn1W6+GODoPT6fB6b0tPn+/hEBAQ3IQYnM6jCoUXRT9padmUlbUqLW2+RzSHEIJw0YDjeJ/Vekml6jAaAy2nenokbHaeSDS/AyMgILjJwHH8YHu7F0UDH48rlYAgq1JT53dUcwchCBcHeodjb2ur3ukMbsQBDra3P1dVxWMw5mtgBAQENx+tev3A8HBwywmlkk2llkul8zWkOWUObYRnzpzZvHmzVCpdt27d3N1lKdCi071bXx8iBQO4/P79bW0YYSwkICCYJfwYdrKnJ6QRx/HDnZ03q71wDgUhi8X6/ve//9JLLw1PXFkQxI7R6fyoufkzudwzqqOYTL/Veq6//0aOioCA4Cbm8sCAOVzWAhTD9ra2XlGrb/yQ5po5VI1WV1dXV1d/9NFHc3eLmxUcxwdstrrBwSatNpbd3pne3hyBIJnLvQFjIyAguImxuN1nensjHcVw/EhXl9Zu3yqTUUg3T9DBgrAR+v1+tVo9lmWNzWZLJJL5HdI84vL5PmpuVk1nG43h+H65/OnKShaVOncDIyAguOk50tXlmyp2sE6jMblcT5SXIzdmTHPPghCEKpXqxz/+MZ1OD3zMyso6dOhQ2J4OhwNBbpovPwwOn+8TuVzrcEz3xCGvd3d9/cMFBTfTMm0yTqfT5/ORyeT5HgjBvHHTTwLzSLNO16LRxNKzQ6c7q1Asmw/fGafTiWFY7O8Ag8GgUKaQdAtCEGZmZr722msrVqyYsieO4xwO5wYMaV7otVj2t7fbfD4ajTaD04dcri97e+/Lz+fM6PRFAYlEotPphCBcytzck8A8Yna5TqvVsU8+FzWaitTUuNENzA0DQRAWizW7i6GbefewiLC43Qfb23c3Nto8nuu5jsJkerO2ts9ima2BERAQLAX8GLa/rS2KU95kPCg62bl0kTKHglCn0+3bt6+mpsZisezbt+/cuXNzd69Fig/Dukymva2tr9fUNAwNzUoUhNPn+7ilZchuv/5LERAQLBC6zWb99C0mMRKISB6Y5JfgxzBX1OJ/TUNDM7DjLEDmUDUaEIQAUFVVtW/fvvLy8jVr1szd7RYdF/r7T/X2zkVOW7ff/2Fz8w8qK2+81iJWMB8Mt4NHD+I1QCIcfAgIImJ2u48qFB0GAwBwaTQunQ4Awx6PmMXKio9n0WhUEknEYkk4HPJMtYXHu7tbdLrJ7Yc7O/sslp3ZnHh+GlDjJnfAAU50dz9aWjqz+y4c5lAQFhcX7927d+6uv3gJuCBfHRyc8RVQHK8bHKxKSiJFePVtHs+nra3fKyujLkxzWstvQPk+oC5YvRck6+d7NAQECxGrx3O6t7cxSFdk83ptXm/gb7vX2xNkBKGTyXki0eacHPY0XcfP9/dfVKkmt/daLH0Wyy0pif9s7/iezBkvXR729C6TadBmS1rksVuEjfBGg2LY521t1yMFfRj2SUvLyZ6e6JGt6uHhA+3tC7SKynA7VPwBkreBvXu+h0JAsODQORxHFYq/1NRc02hitJh4ULRJq32rtrbfao3xLjjA2b6+sHY+DMe/6urakpOzgqlbzVJ/2mOPMpPULv4Qe0IQ3mi+6OwMq4WIEavH835DA5tK/X5Fxbn+fofPF6WzXK/f3djoGF1CLiBsCuDmACcL7DeJsZ2A4PoZ9nj2y+V/uXLlzdraywMDM1jF2rze3Y2NsSRCs3u97zc0fNvTE7aaW7vBwKZS80UiMF6pTs9PINu/6uqKdKkWnc4VdSJa+BCC8IZSr9E0Dg3N7FwPil4dHHy3vr5QLL43Ly+BzS6TSE6OZiGIRL/V+kZt7bWFVrzQ3g3cHOBmEztCAoIALp9vT1NTs05nDJdVOHb8GLa3tfVUT08UOTpos+2qq+uN7F5er9EsS0oCuxJIZBBWb2O3DdqGayPosXwY1qjVXs+Y5x1CEN44DE7n15FXVdFRDQ+/dvlyj8XycHHxrampgRiatRkZXSbTlA6iTp/vUEfH4c7OhZKb2z0EJAZQecDJAvsUgpyAYCng9vs/am7WzZIHJobjZ/r63qyt/banp9diGcsU48OwbrN5b2vru/X1w5Ejtawej8ZuLxCJwKUBTjYgFCqN93BOwtm+vr4IetdatXphTC4zZEEE1C8FcBz/srNzytxFYTG5XHtbW7cXFmbHxwe308nk9RkZRxWK75WXT3mReo3G6fPdnZs7/+H2w13AlQEAIQgJCADA6fN90Niome2QJ5PLdbav72xfH5lEiqPRAGDY40FjWA1f02hKEhIoJBKgLiAzAQCYifGY4YGCgr2trXdkZ5dNSoFpdLnken2RWDy7j3DDWJQ7woWl5YuNJq02iiIiCgPDw7sbG9dnZIRIwQAViYkeFJXr9bFcqt1g+EtNTc3AwDx/gfZu4GYDANDFgPnAS4T/L3I8Rmj57XwPYrGisdneqa+fdSkYDIphZrfb7HbHIgX9GHZtaKgyMREAAHUDmQEAwEwElyaTz/9eefmF/v5DHR2T1/Tn+voW48wcYFEKws/b2xeiA0hkXH7/N93TNoa5/f4TSuWnra1bZbKR93ISCMDWnJxj3d0xpoTwoOjXCsWnra3RvWzmloCnTABiU3gTYOuA5t+Axzh1z643Qf7/5n5AiwaN3f73hoawNY/mi9rBwWQuN4HNBoDgHSG4NAAgZrF+sGwZAvD21avOiXPIkN3eZTLNw4hng0UpCHstll319UcVinqNpk6j0S74LCrHFIppCZ56jWZ/W9tfrlxx+f3PLluWJxRG6ZzG48kEgim9ZoJpNxj+fOnSse5u73QyKs0adgVwCEF4E+E1A+4H9eGpe6q/hOGOuR/QouGYQuGbl99gBLwoelGlWp+ZOfIZdY8IQoYUPAbwOwCASiLdk5eXwedfHhgIOf2kUrlQHBGmyaIUhABgdbsvDwx80dFxuKPjo+Zm5wJ23u02mablUlU7OFijVucIBM8sW7YtNpPe7VlZ7QZDt9kc+118GHZJpXq3vv46XdRmQuiOkHAcXeR4TEDlwsDBKbrhftCfB8/NWeJ8BrTp9TMzl8wdF1Wq7Ph4MYs18nlsR0iigrAKNN+M9VzNUl8dHAxRRGkdjuuJkJ5HFqsgDMbq8Rxoa1uYKxE/hn3V1RW76nzQZjvT2/tQUVGZRMKLOUEag0J5sLDwQFvbdPP+6RyO965dm1P7RBhsihFnGSB2hDcFXhOk3A/a04EdQ0SMVwH1EIIwgB/Djk9Hi3MDMLvdtYODG8a2gxAQhIyRvxPWgbNvJPDXY+Cbz8p4zMmh9Kd6ehbytiQSN4MgBIAuk2mfXL4As6ic7+83xWwAaDMYPmpu3paXJ2Ayp3ujNB5vq0z2YVPTdKWa0+d7v6FBFXM2iuvFrQMSBWijjj+cbEIQLno8JuBkgWgFaI5F66Y7DdJN4I7Jseum52xfX+wzw43hSFfXqolllRDUTaONVrwiUSHpThj8CnAUzNcAYLWUVaNWhzjgzMwfYt65SQQhALTp9e83Ns5WIM6sYHK5LoRL4hcABwhIbofP16zT7WlqOt7d/d2SkugWwSgUicVbZbI9TU0dxhjcFoJw+/27GxtvkKHbrgRO9vhHThZYW8HSfCNuTTBHeE1AF4B0E+jPR+umPQ1pO4gdIQDonc4L/f3TOqXPap1WjaTp0m4wDHs8K1NSgtrwAsrgtvzi8QZuLtBFoD8P5iZgJYkpvgQ2u22Sy3qjVqucjplmIXBTxRGqrNa3rl6tTk6+LS2NPd/Rcn4M+0wuj2QJt7jdn7S0GJxOColEQpBUHq9cKs0Xia6zvnyBSMSj0z9sbn6yvFw0puiPgUD+0mWJiavS0mJXyc4EpwrYaeMfudkgex7ObIPUB6Dyf+bwvgRzh9cENAEgJDDVR+yD+cBwCVZ9BFd+AJgXSPMdzDp/4Dj+ZUdHLJEMAVAc/6qzs9tsRjFsZUpKEpeLIIje4ZBwOGlxcbNSnxbF8W+6u7fl5QUn8Seh7g18k0ia2Dtsqxuz/CVtgc43gZkEDAmgzqqk7MsDA8UJCaEP2Nn5XFUVbWFm/A/HTSUIAQDD8ZqBgYahoRQul0mlbsjMnIGacVY43NExaLOFPdRjsXze1rY6LW1FcrLb76eTyTN4m/kMhsXtntyexOVuysraJ5c/XVlJnY5YRTHsilp9dXAwnc8vEIlKEhKYEdLYm93uOBqNPOnieoejQaulkcnxDEYil0tGEKvH06zVWtxumUBQlJAQR6eDcwBYwatOBIp/DRmPwvHVUPkngNmsOk1wg/CYgBYPZAa4IzuFWZqAnQE0AdCE4DEAM+kGjm9h0aTVRsrPMplOo/GEUpnAZv+outridl8dHFSazTiAkMms02gCUWQojsfR6blC4arUVAZlJlN6zcBAApudyecHN5YLGSInAwA2Z2d3m0wjsw2VD4lbgMYD5wD4XXkJwqMKhc7hGAm3GMXkch3v7r4rN3cGg5kXbjZBGMDj9wdcKPut1ifKyqa1N5oVvu3pieQpemlg4KJKtb2gIIPPB4CZvbjZAsH9+fmv19SEjX8ol0p7LZYvOzvvz8+f7pUxHO8xm3vM5uNKpZTDoZHJCWx2Oo9HI5O9KGpyuRQmU4/FwqHRisViIYvFodFoZPKwx6M0m1t0ukguS0qz+Zvu7lQejz84RKJL9XV15YmJ1UmjsyEnC8hMsMqBVwiXnwLDZWCnw/qj0x08wfwQ2BFSOOCJnE3e2gr8EgAAhmgpC0K33x+jj4zN6/2ys9Pscm3KzpYJBACQwGbfKZMF9xn2eMgkEglBrG537eDgX69ceay0VMrhRLhkeKwezwWV6vsVFSHtVQIyaOMBgEYmb5XJPm4etV8IKgEAPEbwGEgIUpmYeHVwMGRgAHBVo8kXi8OmAVmA3JyCcIxhj+fDpqZnq6pmJm9mRiCtUdhDbQZDrVp9nSVzpRzOjsJCBoVSkZhYMymUJ8DdubnvXbt2Ra1enpw8s7v4UDTgQdNtMl2aZOm0eTyXItw6EjhAv9Xab7QDLw0oNrXNZvN41mdkjOyGpRth6AS4tWC6Cqv3wcn14FQDa4aDJ7ihBGyEtHhwRd4RBlY5AEAXL2Uz4ZednfbIyUCadbp6jYZLo9m83iG7fUVy8neKiqKU2x2bRpgczrbc3Oz4+L2trc8sWxb7dIfh+H65fHVaWojmjEujJVKsQBMEPuYJhfki0YSiFhQWOF0AUCGVvnX16h3Z2SFmHRzHjyoUP6yqmhXl7Vxz8zjLRMLsdn/RceNieC8NDHwbrr4XANi83q86O7cXFl6PFEzkcp8oKwu86CtTUiIV5qWQSA8VFZ3r74+UMH7e8A0DlRf482xf33gqcMlGGDoJXW+D7HngF0PyXaA+NJ/jJIgdjwloQqAJwWfFMJ/L5wujqLC2Aq8IAIAuWrKOo1cHB6OUYBuy248pFMuTk7MFgjVpaT9dsWJdRsa0is4XisV5ItGB9vbY47VO9fbSKZSVk5bLuUIhEtjoj7ItL48b7HhBZoLfCQBxdHoSl9sWrvCT3uHoWWCBkpG4+QUhAMj1+hsQ5onj+EWVKorr8JGururk5OSZlnLm0Gi3pac/UVrKGjXdxTMYBSJRpP58BuOpioq6wcGD7e1uv39mN519fMNAHf8G6jWava2tfgwD6UbQnYah45DxKABA8r2gmipAm2AhgGPgGwYaHxAS0IU1ytb/unDhLzU15hAD9viOULQ0d4Q6h+NY5MnB7vXuk8u3ymQFIlGZRJIVH8+ckRJrU1aWx+8/E0EjFUKLTtei092fnz9505YnEoHXMh7mBMCmUrcXFo6vvMksQEdycVQkJjZEqC4XvXj4wmFJCEIA+Ka7e06jdhw+3yetrd90d0daiw3abIM22+q0tLBHp4RBofygsnJDZua4A8vAF4D5VkW9YDyD8f3KShqZ/GZtrWJBpAHEwe8IFoQA0G4wfNTc7KXEAycHUh8Y2S8mbgbjlcWVj3thpnSYc3xWoHIAIQMAMBKaBnsBwOb1ftDYOK4D9DvBPQScLIAlKgj9GLa/rS2SD7nSbN5VV1chlV5/9QYSguwoKmoYGmqdKhG/anj4qELxSHExa5JPHJVEyuTzwWsOFoQAkMHnP1JcPOJVTmECOjKj5otEQ3Z7WN+9TqMxbPtCY6kIQi+KHmhvR+cg4h7FsDqN5q81NR1Rq0Kf6u29LT19WoqOYO7IzuYxGOOfvRY4dz9ceCiJTc8WCCKfB1QS6U6ZbHth4aGOjnqNZsG1m5QAACAASURBVGZ3jwjunyKZSAg+G1BYk986pdn81tWrAzmvQNG/jTRRWCBZB4NfzdJA5xyP37+rrk49PDzfA7nhBCnQ9OQUzfBIDKvJ5To8ZpIYbgeubFRYLkUb4Tfd3WFTIg/abP9oaPiys/P+goIZr5JDYFOpDxcXH1MoogQxtxkMn7a0PFBQEOLtGSBbIKCSySOm34nIhMIfVldXJSUhZFZANQoAZAQpk0jCbv4wHF8U8fVLRRACgMpq3T+rmdj8GHZCqfyfS5cOd3S4ouoeVcPDBqezQiqd2Y0KxeLQc41XQHQL4DhceXZVauqUV0jn8Z4sL7+oUn3S0jKbOQeGToL6y2n09w0DNS7sEZPL9fdB/j8VtksqlcZux3AcRCvB0jQ745x76jSaIbv9Hw0N6ggxMzctnnFB2ORLCV4YdRiNI77Tw3KIKxxppYvAs7RshHWDg2GFBI7jB9vbSxISfrJiRUjoQngwH5gbY7mjlMN5urJSrte/U1/fqtcHT3oOn++Ljo6jCsVjpaVZEVw6RzzsJu0IA9AplLtzc+8tLAUcA3xk3rslNbVhaCjsNCjX6yP59C0cbnKv0RDkev3+trb78/OvM24dAAxO52dy+ZTV4QNcUqlWpaZGcmyJAoIgq1NTN2RlhZ5pvAziNVD8KziQklX5v5nx8T1TpXIQMJnPV1fXqtW7GxsrEhPXpqdf75fgGwZz/UhO3thPiSAIAQDD8V6LJZCGmE6hpLnZEq8qPmEwkcuVsNmTwxYXDn4MC2Ti92PYFx0dzyxbNuOt/+JjdN+AAzS5BAATfhFfd3WlxsUJLK3ALxppWmKqUaXZfEShCHuo02SikslVSTFHkujPg/4CeI0g2TBl3zg6/emKii6T6dLAwFGFIk8o5NLpWru9x2KpTEz8YXU1PUK0u5TDGRGQE51lQiiVSE7SqTa/K2Dp4NJo+SLRFbV6bXr65M7fdHdnxseH3X0uEJaWIASAVp1u2ON5qKhoxoXacRy/Ojj4TXd3jOXmrR5Pr8Vy3zRD+hgUioTN3pSdnRIXTnIYLkPOs0DhgHQjDBzanL19V13dlJtdMoKsTEkpkUiOdHW9WVu7MSurUCSauXOz/hwIqsBUN56ifkqiCsJgPH5/l5PaZUahs3Ns8IVi8e2pqXOZ9maG1AwMDHs8gb+1dvv5/v6w08HNyeh02W4wWIEToip3+/2ftLQ87WijZe8caVpK4RM6h2Nva2ski8z5/v5Y1Dkj+IbBdBVynob+/UCNA0HVlGcgCJIrFOYKhQanU2k2O3w+mVB4T15e9OCKW8eGFGFHGICEIKUc7wXUOWbyX5WW9o9r11ampEwWsSiOf61Q7Cwrm3LM88XCXWXPHSqr9W+1tc3TKY00ht7pfL+x8auurhilIABcUavLpdLYsw0hCPK98vKXV69+sqIivBQEHAw1IFoJAJC2A/r3STmcigiVeyfDplJ3FBbek5d3vr8/0lp1alAXWFpAvBoYUnCFdxgLQ1DsxNSQWWPWeABAcbxZp/ugpcW4wFIVn+3rOzExYOZsX1+kpEI3FZgXcGxMNXpRpQIKe1wQDreB5igA6OzDB3tNOC9oR7g0wiesbveHzc2RHLb7rFaXzxfF6zsU7UkQVANDChmPgPYU+KaRJV/EYi1PTl6fkVEhlUaXgvFM5rjDjifajhAAyuPJwb9QIZOZJxKdihA81mM2y6fy35lHFr0gRHE8dpk0hsPn29/Wtns6SbpxHL+kUr199eq0Soj5MKxhaKh6OlHtxWJxRnSDwXAn0HjAkAAAJN8N+vPgtWzKypJMR/OQwec/WV6uHh6O0dM6FJcGmFIgM4EpBXfMPjgx7wgBACjMMWv8GBq7/e26unP9/WM7sPnlbF/ftz09Ia7CKIbtb2ubn6LHN5KrP4WO1wOq0X6rVWW1AoUDfjsAgL0b1F/BcCcMt4HutJxUfNE6qjOgi2KqZb/IsXm9u5uarJEdJs/3969KS4tVH+M1ga0bxLcCANAEIFoJg1/P0kgnsD4jY9wGEXVHCABidlwKfULFpY2ZmS06XaRJ9ahCEaMt6caziAWhxm7fVVf3/86f/+uVKzObFpVm89t1dbH4Uppcrj1NTce6u6db6elCf3+OQBAf7PAZFQaFckdOzhSdDJdBuHLk7xHt6AEGhfJoaem08mXTyORHS0sbh4aaIwf5RsSlAYYUAICROM0dYcyCMChQKRg/hp1UKv/38uW/Xb36eVvbgfb2v1+7dlGliiR48EkRLThAh9E4cN0enu0GQ6T1r9Hp/Kqr6zqvv9BxD4H6MHhNQIu/GHBQDOwIUReoPof0hyD1AVB/CaYGSLrrpFI5EsBDZgCJCr6b2b3W4HT+89q1KCWvh+x2ncNRKpHEekX9BRBWjWcqF90KHj04IzqFzgwph1MSPCSvKbogBLqwhDNB0rOo1HUZGV92doY10gx7PO9duxYlpcA8svhshA1DQ/vlcgzHm3W6rTk5BWLxFbX6o+bmpyoqZpDsHMWwLzo6dA7HuoyMyUoDFMN6LZY2g6FhaGgGxQ6HPZ7awcFnly0Le5RNo5EAbEH5lqQczoOFhRPSN3S/CxQOpD884UzDxRG9aICcH8C1X0LW9+Lo9J3l5e83NFhjXhawqdRHSkreb2iIZzAiqGEj4B4aqTLPlE5RfCcYn3V6O0LUDYCHzcSN47jWbh9zSe+3Wk/19KTyePEMBg4QR6dLORwUw0wuV4NW6/b7M/n8QPyJ3etVWa2BoFIxiyVis+MZjAQ2u1Asntb702+1ft7WFsUq2zg0lMLlTksZsMjwGMFYA9Q4A7NkJHYosCO0tgE7E1ipAADiVUAXAYWN4finLS3fLS3N5PNHIihifxMWFQqTaZ9c7onqRn6+v39lSkqsHlV+G1jb4st+bh7bfSFkYGeCWzvyJc8SGzIzxwcU0HlSomZppgsL8eGjbgj+FSxLTGwzGM729YU1k/tQ9PO2NgaFkhM16OvGs/gEYRKXm8Tlmt3ukUpDfvstHLOVz3+nvv6evLzUac3mo1weGGjUaosTEoRMJpdOpyCIyeUaGB7uNpuvJyfLCaWyKilpPKGatQWYSQG1eyqPt6OwkEmhNGhU1sGLTL8uqWBnKo8X6skp/wMIKicIQswDAweh8JfjLYlboPHfQf0lJG8TMJlPVlS8V19vi5zPMAQxi3Vvfv6nra2PlpRMI12vawjEawAA6GLwWQHzASl8qQq332/zesUsFnhNANh0pj8SkGiAumP0xPFhWJQqaGHXoXqnUz+6bL88MPDdkpIYs9+phoc/bG6eUvl5VKEQsViZiyTv8LTxGIGZBJqjFykPjEyFFBb4XWBpGl+oiW4d6+7DsI+bm+/NyysKRFAE4utvOk4qldGl4JDd3me13pOXF+sVjVeyk4sfvmVdu15/uLNz5K2jxYN3Nmv+iVgsWbBw8ky1HQQAmpDrGkzn84OtRQiC3J+f/3ZdXXZ8fNi1NYbj++TynWVlSTPNsTUXLD5BmMBm35Kaahvb9Nh7QHd2S+6P2g2Gfa2tTCo1jccTMJkun6/bbF6ZklIysVZWJFw+X+2sZgMKKN+2Bb/uhhpgp9GSt6zLyBhLE1rdvhNwFEx1cMtPACFNKNVmrAGPAYy1AACoC+T/BcX/AaqDwC8NnUSK/g+0/h6StwEAn8G4Kzf3k5aW2IcqEwjuksn2NDXdm58vi2WlhvnAZwWGCAAAIQFdBG4tsFL6rNaLKhWPTk+Oi5MJBHig6ISiC3CUx+RUcR2FnEIKDiaXU2EypcTFTb0HpbCm4ZJ6fQzZ7e/U1T1cUjJlDrxrQ0NfdXbGoiFAcfyj5uZHSkoiBWwtbrwmyH7a1vyHJivAyL+IdMWT5naTZOLwvlteFN0nl3e7ytcZWuOEK27kYG8MeodDE9UMhuP4ka6u9RkZMaofSAgs9357+6a3KCRSiUQiEwoHbTYUx5Mt2r7OQ01iMRs1xjmaneLNzTqdI+bl72SqkpImGCzd2hEvhCjQhWBtLkpLCHGb4NBot2dlnezpieQm6vH7dzc2frekJI0Xs+vcHLNobYRe80gsp0cPXhPgWL5I9C+33HJvXl4Cmx0wGa5OSzumUGjno2a90+cLZIuYUBHQo0esbY+Wlt46HlOIg6ke1h0BhgQcfQAAFx8Hxa6R/j0fQP6L4DGA1wTaU9D8Ksj/L3S/C9lPh94v5T7wGMFUF/iULxIVTjNXU75ItL2w8IRSuauurkatjqJcVZhMf7t69Wt3kds/KgmYieDWdBqN+1pb84RCIYvVYTC8VlPzZm1t3eDgw+nUl/gXb0uRtJusf+xh/+7cuY+am4fs9k9aWkLTUU6GHMZfZu6web3/uHbt6uBgpECUfqv145aWQ+3tsevJfRj28ewmMVgo4OA1QeZjl92pftKICRzD8dPOFCclYU9za5TfXT2W99rV5i9jW0wsLqY0tzfpdBiOx5hbQ8RiPZOBbxEOUwQlgRYGhZIVHy8TCFj8nAK87aGioruZrbcZXtuSk/NMZWXyjPRhAEAjk8tDhuRST6wbGg66EDzGApFocoR0SUKC1e2OYoZ3+/17mpq+7emxRZ5qDE5ni06nGh4GABTDnD5fpJ7Xz+LbEY6gPgz8UogvB48BcAy8JqCLkFHF6VgvFMP2trY+V1U1rRK11wmO4wfa28ul0gl6Wp8VSLQVbH063g8w8lqDWwtkJlDjgJsDNgVwssDSCKarkP19wDHo2wtbroD2NBivguYY5P4EOv4KgEHqfaG3REggvR3050EwYo+8Uybrt1qjFHyZTCaf/9yyZd1ms1yvP9vXJ2ax0ng8D4oKmMxMPt/t92vs9g6DweJ2b05AFFbWazU1CWy2gMlkocI+1bANur5bUhL48lcEG8Z0ZwGwXOfpXJ7Wl/sClTSyEK4dHPy0peX70asHR/CXmTv8GPZlZ+cllaoyKSmJw6FTKE6fT+dwqG02ldUa3SfL7feH9U33oej+trYfVFZefxqHBYRvGMhMJzO7ln3fWEiM2mbjUfAtsnzxMPWYQvFEpLgxdjqqP391cFBjtz9cXMydaUTvQgPH8ehBWS6//4RS+UhxcSRn0ez4+C0yWa1abfN64+j0DRkZ9IaXQl0EAnCywa4EALA0g00BXguPwX+kuDhSjdLolE0OqwgtoB0OuhA8Bg6Nlhkf3z0xlTEJQValpZ3t6/tuSUmks70oerav74JKJRMI8kUiFpXqRVGNzeb2+1Ec77VYxpKU8uh0p88HCLIuPf2W2CMvp8McCkK9Xr9z586zZ88KBII//OEPDz300Gxe3WMA1yDEl4NbD7R48BiAHiYipzghodNoPNvXtzEzczbvHpVTvb1+DFufkTGh1a3ncwQbC2QwcGCkQikA2JXAzQYA4OSArQska8HRD/Hl0P8ZmK6CoBLYGSCsAlMtDB6F1Z9C8p1g6wZSODtWwKM674XAJw6Ntr2g4IOmpmmllEMQJEcgyBEIUBzvMhq1DoeARtM5HFcHB5kUSgKbvTw5OUcgoGi+yktL3BBXrrXbzW630+lbh/dkFz0a/seNukC0EoxXIL58TAoCQHVS0sDw8OGOjgcKCiIOKGBzuuEYXa7j00yQ2G02fyaXP11ZKWSGUeRq7fajCsXdi6dg99R4jEAXXh4Y8CbePdamMJlypFnATqtkwxW1usNozBMKw5xLFwHmB59VPQzv1dc/XloqvOGls+eCfqs1upLjhFJZKBZHso3RyORteXl8BmO8yC2OQv8+2HQuXG8+IBTwGMDSBBQ2mOtBsoFDo92amnq6t3daw2ZQKGEcW5xqYE7l5zWaJKgkIaF7Uk7/cqn0TG/v5OL1IaAY1m4wtEdN1DymoDquVCIIUjYHjjZzuET92c9+JhQKTSbTxx9//PTTTw/MYro51A0+G7gGAcfAZ4G4vPFcFagT+j4J7ntHdna9RnPDorDrNJomrXbHWL0S3A+GSwAAHt0tSQnU1PtAdWC8t60bONkAAFwZ2BUw3AmcTCj6P3DlGRg6Cas+AgAQVEP/PvDbIL4MErdA7o/C31i0EgyXgxsy4+O35OTMIK8bAJARJF8kWpueviI5eVtu7o+qq5+qqLg7NzdfJKKAH+zdwExmUigZfH6FVLoqMz8H+hA8wjoUdQJdCCn3g3B5yJFtubkGp/NylBeDzLzBO8IZ0zg0lMjhfBw5gPrq4OB0heuCxmN0UUQhKTQVJlPAGxABuCM7+4RSGXEVxkkHRy8AWNzuv1+7NmWphEVBlCTXANBvtXYZjRsirMgpJNJWmYwfEmelvwCs5BH37MlwssCmAEszpD04Zha5NTV1ujmzNmZlhTnFFcOOkJUKzgHA0QKRaLJehzxavH5ag5mS0729w9dhCo3EXAlCu92+d+/eX/3qVzQabdWqVevXr9+zZ8+sXd2jA4YY3Drw6IHKA4Z0PI2vaxBsXRDk0Muh0dakpX3V2Rl7scqZgeP46d7eiyrVzvLy8comHgNovgGfheHVlafkgvhW8BjBdHXkqL17xO0loBodboO4Aki+C/J+ChuOj6R1EFaDuRESN4eNIhiHKwO/DVwTYiKXJyc/XlY242Ry4Rk4BFwZMIOcIRAK0OLBHcE64ncBmQlxeZOzVFBIpIeKiy+oVJ3GCBHWlButGp0ZPgzrMpm2FxZmCwRRcu1fUKm+VijmogTKPOA1nndnBEt9h89ncrnGzAHZ8fFMCqU1ks2MnTFiFAdw+Hz7Wls/bGpa1CZDjc3WFbnSmd3r3d/Wti0vLyj9GAZ+OxlBsgWCFSkpP6quDmM4tDROCJQKgZMF2lNAjQPpJjCOTCk0Mvn2rGm44yZxucvCOjY51cCaakdIZgJdDE4VnULJC5cipzIxsUWnm0HCkyh4UfRkhODd62GuBKFKpcIwLG/UZ7K4uLgrcnwxjuM2m808imfKMDiXFpiJQBOAtRXoImCIwG0YP4Rj4JvguLUiJcWDog0zyqkWIy6//5PWVqXZ/FRFxYTw+YCLs1VeQe6kC4oBIUPRv0HTKyNHg3eEtq7R4qUIlP4W6KM6JXY6MBIgcfNUQ0BAuCJkUwgAmXz+D6urpxG6Gx1THfiskLgltJ2ZGDG/DOoEckTFF49Of7i4+FBHR3i7Onl+VKPTpcNgSImLY1Op6zMyOozGKPqxmoGB3U1N8+LANbtYbforzgkvVbfJlMnnB2sg1mZknOnrC78AZaeDXTlWuwAAukymfa2ti7em47n+/khLbRTHP21trUpKmuCSbW0HxTtFQu7jpaVbc3LiAxr1oeOgfD+oTxvERTYccLJg4CDwS0GwbGxHCABlEklMtSwAEIA7ZbLwSqNYbIQwOnEBhJ1h4uj0VB5v1iPoTXNQ4HCubIQmk4nNZo/ZhOPi4uRyeaTOSqXygQceII+ulXJzc0+cOBG2p91uBwDUoUHJ8QgdEHMjxi1CkTiax+D1egAQimOQBOBzGnDmBEPanVlZH8nl6RzOLG6PMBzvMJkcXq/GbldYLGVi8f0yGQnHvUE7d7LTQGJIwNxSzbliJ6fhNhskfIfd8n/dqlMov4pl7fQkP47abICLuY4+v+GaL/E+/6Q0lZSS11Deenyq9JU0bgWiOetHWQjq8CdsCj60KSVFTKUe6+m5zomGaqj1J2zEfSjABEUomZqA2NV+dnGYU/xOP0bBI2szxHT6tpycj5ubV6emLpNIIOhnScKpJJ/dH3Suz+dDUZS0wLxOGoeGCkQir9dLAqiQSM709t4ZeVXepdO9ptMlstkVUmlhOJ2S0+/vMBrjGYyMBeNcPpnjvYNunI4G/WuuaTTlEknwy5/KZtNJpAaNpmjydgGJozBSEcW7/qQH8dHQ0maNxuV2b8vJiZ4P077w0nQpzOaGgQGIYIY42dvLolBWTPxyyA4NGXWV6d+z2WRjjYyez0jWJqf4gcBHlrnFI7oTjfDDp1KSGMZab86/eEDKcesdJhVOHZF/65KSuvV6/1Q/9lKxmIcgtnDX5zhUDpQ/5ZzDYKSj+hYfe6WURuOQyePFz3GU5OxFXANlwvzzanVRfHykL2cGeHDcZrPFXi2AwWBQJxUfDmGuBKFIJLLb7TiOB4ZrsVgSIsfzZWdnv/baaytWxBRXxOVyyX4jmVsJfg5Ym8hsCZnBBTKdhniAGgc+PdCFVHDCRIGXTKOtSE4+0NX1RFnZrHiQ+jDsgFzu9PmSuNy0+PgtublsKhV0pyFh7QQdJjYMgopk81EBiw3xo/VWSn7N6v4TrPsSXH2shBJgcgG4wJBQDGco5b+BybZ0bji3sckkr4OLj9L6dwMtHrK7QlSpa7jcNJHouFI589RiHj1gTio/J4ySlpsCGjkt7CIDdVOZPCBHW3/kJyQkcLmft7VdGBhIiYsTs9lCJlPMZrMQFtXvZ1GpY4tWBEEoFMrMK2bMAXqnU2O37ygqCkSGrUpP/0tNzbqMjFB7z0SMPt8JleqMWp3C4/HpdKfPhyAICUEMTqfe4cABEARZkZy8OTt7QT1sAKvHI7e4yHQOefQ/bnS5DC5XsVQaki1ls0z2mVxeJJGECZtL3w7681TNfsh5dqyt3+H4uLNzbUaGTCCYXDl9DO5CisU2u93fqFS0CKkYukymDpPpuaoqWoh0R83izM3Z1v8F7xMwFlJpl4Olnsskj6R0sXeypMuAGeFhxUUAOE1SRYvjgbCS4+0Awe2BI1wud+eyZR+3tETRNguZzG1FRey2/wSEDIW/BEpQMg2fFUhkTnwMefwFhVSXisHlAsD6nJzxUsxDx8GuBCqvAC6cB5lieHi6AV1RoNNoXC53dn8Xc7WyTk1NpdFora2tgY9NTU15sWdSmBK3FugiYCYBANDFAKP+S7gfvBbgZIdNzb4mLU3EYu1rbUWvW/1i83rfb2hgUihPlpdvzcmpTkpiU6mAo6A9E5pE0WsGmrAgtRTGsu8DQObjYKwBSwv47cAcNQxwc8Bvh7jr+JZEK0G6CbZeAzID9BcnH0/n85+urHy8tHRa6bkBdUPvh+AxgKUZ+CXhTZUMKbh1AJN/dThgHiBPnWpVwGQ+XVn5zLJlpRIJjUzusViOdHV90Kl/W5P4+3Pn/nz58rv19dN1h7sxHO/uXpOePjbRMymUFSkp38ZmxvBhWI/ZfG1oqMNobDcY5Hq9zuEIvJ04jl8eGJhhSvQ55opajfldwRrvq4ODFZOkIACkxsVl8vkRn0K8GoAEw23BbSaX60Bb258uXjzd23v9P9W5BsPxz+RyV4QQN53Dcai9fXthYZg9rlu/LLMS8l6AnjHnCRwsTcCVgeEiAIDHCJhngjE+hIB7Aa8EACC+Ekz1wQezBYKHi4uZEfbWiRzOU5WVbBoNtKdBdxaOlAIapG+MUS8Ko84NAABQJpGM69tcQyC9HdJ2ID7LZgkcVyoX+L9yrgQhi8X67ne/+8orr1it1iNHjpw/f/7RRx+dnUtjHvBagSYAhgTIzJGoCboYXIPg1gNdALT4sCl9EQTZlptLIZE+am72XEdlgB6L5Z26unyR6N68vAnq9UDefe/E2hReM9DjC8qfgvx/GW8kMyDju9D078DJHJcrXBlwsmKRGRGhcODWPcBOg8zHoecDQF3Q/J/BZpgA2QLBs1VVd+XmMqdSF4ygPgyYB3o/BEvTeOBHCCQaULngmZTzCXUBmT6Fm08QcXR6oVi8Ji3t/vz8H1RW/rSq+Geihn9bs+Z75eVbcnI6jMYLC6zUdY/FYnS5Qmqr3pqa2muxzEolpjN9fY1DMec0vyF4UbRucBBQ51jGHz+GNWm1yyIUmN2Und0wNBTRLCpZB9rTAKGzJIrjp3t737xypV6jWch1PGrVanUEFYvZ7f6wuXlLTs6EeGL3EGA+AJziM5ZmLgPJRtB+O3LIrgQaH1LvB90ZABhxnYsCKxVEt44snfnFYG0NOZ4jEPxo+fLiSaq4ZUlJT1ZUsAM/f48eVrwDzOSRmwaIXRByxgUhhUS6JWX0rEA8G0KG5G3pjgtSDieac/gCYA5tLX/4wx8YDIZMJnv55Zc/+eQTaWzJFKZmuAtoAkBIgJCh4GcjCckElWCsAacKGFKg8cAbvlgXCUF2FBUJmcx/XLtmmb7F1Y9hR7q6Dra335efv3pyCRWfDSBEEGLgtUr4SUJJGUgnGO0g+wcw8MWIp0wATg7wor73sZPxKKg+g7P3QfOrYO+dfJyEINVJST+qrp46taa5AbxGyHwCBMuARB+pOBGWsJXHJ+4bpg2ZBaiLjCB8BiMlLu7RkpJGne58ZK+EGwyG40cVituzskJ2QlQSaX1mZhT30djBcfxgR0dEl5P5oF6jcfv9gLqAwhxrSePxIlU+YVOpm7KyDra3h7dPc2VAosJwZ9hzjS7XFx0dvz937n8uXfqwufnbnp4LKlWDTtek1bbqdK06XYtO1zA01Gk0muajSqXN6/1WqQBn/+RDjVrte/X1a9PTQ+VQ/z6wNILXlMvGWYw4iC8H1xC4hwAAzI3AL4OEtaA9DQBgbZtiQkDIcMeFkRy/vKLJghAAODTag4WF3ysvzxUK4+j0HIHgibKybbm545pqtx7oYki6c0Jdp1iCCANws8HRA6OhUytTU0UsFmBeQF0jWYUZEvDbNmVlXVSp5jQ1zHUyhwH1fD7/ww8/nP3rDrcDc/TdQkb/nQwJsDNAexoS1gCVF6VqZcBR6opa/W59/QMFBbEngcRx/GB7O4rjz1dVhTfmB3aEviBB6B0GKqdQEm6lzC8G0YoJgjDjEZCsj3EwU8BKgfgKoAlAsg7sykhxSBwa7b78/A+amqJNspZmkGwEhALi1SC6JdpN6WLw6AEmqnaD9g0zASEDiQyYJ5BDgEOjPV5cfKCjQ22zrU5LS+ZyEQTBcFxjt0vY7NjztnhR9FRvL41MXpmSEkl3FAtX1GoOjRa2tmq5VHpFrW7R6Savx6cLjuOnenqMTue9+fmx1iuYM4bs+rDOpgAAIABJREFU9pNKJcD4EgfD8Ysq1XeKRjT/dDLZh2EhMq9cKm0zGM709YVmmQjAKwK7MrpRYNjjGfZ4uoxGAPB6vWGt0QIms0gsrkhMFITLaTDrYDh+oK3NM6wA1QEo+EWgEcfxIwpFu8EQR6c/VloamsXeowevGYY7gcItTxAAACAkkKwF7SlIfwTMjRBfBqJbwdwAfufUO8JgeIUw3A44BkiYX0EGnx++xCnmBdQJND4kbYXzD8GyP4+0xxJEGGA0ggLYGQBARpA7ZbLdl48CXTiiB0IogFAENKQ4IeFMX9/WKWvMzROLMMWaYBkkhItZlqwHqxwY0uiCMMDy5GQJh7OvtfVOmSxGK+6p3t5hj2dneXnEychvBxJ1wo7Qa6Iz+FWRasdX/GHCbomZNGL1nBXWfA4UNtQ+B45oxqqs+PgVycnRtBYew4gVFoKWHWGhiwIh0hO4/pTZZBb4nUAb2W1wabSd5eWXBga+7Ow0u91cGs3h87GpVAzHt+Tk5AgEIb7gbr//hFLp8PnKpdI4Ot2HokN2e41ancHne1H0z5cvMygUNpVaLpWWS6XTKsNk93rP9fc/VVER9igCcJdMtre1VSYU0qdfHWwyTVqtzePZUVQUxYVkrnF4vZ+0tIyEhY0ucRq1WhGLNZYtpUwqXZ6c/GVnZ0gi5m25ue/W1wuZzDB+9qwUsEwjR3wkTC7Xuf7+y2r19oKC/Ngrv8+U40ql0mwGmwL8zpEYIY9xyENWms3fr6gI7yo13A78Uhhu53ITc1JH/YolG2DoW0h/BCyNkPk4UFggqISe98HaBtKNsY6GwgG6GBw9gPnh4qOw5erUpwCAxwA0IQAC8WXgt4N9NJrLqQZBZay3DkRQsDMCn7Li45dx7XXBeb4obPA71qanv1Fbuzw5OWzqpXlnEQpCTiawh2ByrCFNAOkPAzsVEApgXsD9gER7unQe7/Gysg+bmnwYVhYpzM49BF6znpJ+VKFw+nyPl5ZGW5L7bMBMmrgjNN+SwGZHCtgQr44yvOuFygUA4GSNJCSMzMbMzG6TSR+2iCjmA9QJtNic+Omi8UQBY/idU5Q0mxIKO6RAKBlB1qSlrUlLc/v9dq+XRaWyqFSFyfRtT8/nbW18BsPu9XLp9DQez+P3K83mArE4TyisGRhw+/1kEknK4dwpk2XHxwPAlpwcl89ndLlqBgbkev3O8vIYN1yBdLLVSUlRftUpcXE5AsGpnp4ts7QK7rFY3q6r21FYOL3KkbPH4c7OcYMC6gIKC8fxC/39wSVW0ng8EYu1JSfnrasTXgYOjfZYaen7jY0IgoQWhGEmgkcPuB88RujdA7wiEK0aeYGnjw9F97a23puXVzZbtphwXB0cvBTII2PrAgob3DpgZ4Bqv9LGz+EVRHQYHu4A6Ubw2cocX5J4PxlplKyH9v8FADA3QsUfAQCW74JvbwevCarfmMaY+MVgaQGbAqwRA9VC8RiAEVjmIpC0FQaPQO5PAACcA5ByT6wXCfjLBJl+7oxT6/nCcX0xhQN+O4st3JCZ+Zlc/v2KigWYdHfBDWhaJHO523Jzx/OIcmUjwo8aBz7rlNnFJGz2zvLyb3t6msLF2mM4XtfX/naL6oPGRplA8IPKyikW4347sFKDd4Rs1HTL/NZljUEQUsnkBwoLyWFfTa8RaIJYXV3C2ghRVzKbvik7O2Q1wKbRwt9xMqKVMHRisjMFADAoFBGLFfin5AgEzyxb9tMVK+4vKHi+uvoumYzPYGTw+Y+Vlm7NySmXSp8oK3tm2bLvV1TcNSoFAYBKIsXR6Zl8/kNFRWQSKXav1DN9fRiOr52o6Jv8RJuys1v1etWM41UmYXW7P21tnRfnkcahoZGEkD4b4BhgPiDRu81mGpmcHhTvGHAMkXI4kyuDilisx0pLz/X17W1tnWDSQyjASADXIFiagZsHqBu0J69nqBiOf9HZGaU45XXSotN91dkJAOA1A+aDuPxRQW5QYklZrssjVpIQ/DbwmoCdzhbkrSY3Aa9wpJ1XCLgfzmwDr3HEETQuDzZ+C5KNY9usmAiYCTVfA+qKtVShWz+eojlxCwweG/nbqQJmbKrRwGgHDgUr4cjDbd8pyB2PUqOwwe8AgGWJiUIm89iCTDS4iAUhlUR6qLh4WVLSmvT0O7KzJ7or8GRMz0+WL5+yLomQyXy8tDSwmdA6HAFvUhTH6zWaN2pr5VbfFlbHv6yoGisfGA2/HVjJ4LONRRFs4KjovOzoJ80t7MwJglD5jwm/ELcOMC8AJHI4d+fmhonL8RjHE9xMCZnBo+DPFSVvLywsTkigkEhUMrmI7dyZE7cqNfWFFSvuksnSeLyKxMTvFBW9dMstK2JcIvCKgcwYKco4FSwqVcJms6nUlLi4W1JSyqXS6Al/x0AQ5IGCgmsaTcRkb0FcUasbhoa2FxQEf18IgkwutcqkUO6UyaZVtmlKbB5P9JyWc4HZ5fpaoQAAQN3Q8WdwqgJ60Stq9fKg/yOPTueNboaqw/1/JWz2s1VVUg7n79eufdraOp6hjZUCzgGwtoJwOYhXgSOM+8m0CJSdmcUlyBhyvf5Aeztu6wJbJ9i6gJsDDDG49eDW+mniARdkJKSD7uxIbxwFxTtgvgaAgfYMcHMBSBuLNzBIeJD9D4EtVyHzCVj2+riFjyuDtV+ENfhFhFcExhow1gI7HVyxZfgMNnwkrAHDJQAc/I4pTbYTyHkG2BnwVTEYr4y02Do4woL8MZMThTO2MtiWl6c0m+ULL7XsIhaEq9LSxpweb01N/cmKFbelp69OS9uWl/eCjPRosieeybwrUgKhIEQs1o+WLxeyWHtbW//n0qVXz5z5/86ebTcY7snLe5zfmU73Is7Y5h2fDag8oLAD7qPJXG4l3hgxYe6NIXhHaGmGmqdB+Y/xo5ceh96PAn9WSKV35uSEflPhanogCLIyJSV+kvKHjCA7UshStK8kIeHBwsJfSFr+rTpvh1BPYwgBgEYmVycnP1VRcW9eXqFYTEaQtenpsdbfSdw6PrPMGWwq9eHi4i86OtSRwx48KHqsu/uKWv1kRUVIiiIJm10mkUx2jSkQiaQczuyGA17s749eEGp28aHoXrl8RGj5LIBjoDkKZKbZ7VbbbMGPHFxntVAsDqtBISPIbenpL65cyaPTdzc2ugKXZaWA8SqQqMBIAPr/z955x7dVXv//c7W3rWlLlrfseCbeWQ7ZO9AwwggQCqSMttB+C2V10RYo/dF+O/iyQgmrECgQSAkhA7ITZ3glju3EI957alh7/P64ii3LkldkO47v+4+8pEfPvfdxfH2PznnO+RwZHGbYDYALXafHvWyz3f5+cfGIDQLHRElb2+dlZQ6nEz3FqP8c7Ych0ICtgKUDxqZ6qEP4fHbIImhL3d84u/NBY6LjJC69CpsOytUqoTA9Ngtr8gfFftlyRGxCzA+vanFByWj6BtK5EMaN2hB6eIScELDE0F1E1xkEzxlDHRdDgJw3kf06jtyE3vNwOaGvgjB+YL/pikcIgE2n35qYuKeychxJ+xPKdDWEEi53weDGVBIud1l09IqYmEylUixSkV8qVUJhlp/yJk+YNNriyMjHcnKezc393eLFv73hhs2pqZEiAWy9EM/pVwceAbsBTAFYwbD20ghifUQQYWyE2E9LtsmBLYXL5f6bPPccwm8ZUDJ0WtBxHNqBJIXssLCf5uRkqVQeiuHeHiGLTr85IWGNRvNQZmZaaGi/JZNwubcnJ6sVMe7iaJedff4ZWuMuWP36lGwGY/UoN884Crjsgwp+JwaVULgxIWFHSYmXOqLd6bzU1bW3qurV06dNNtsD6elDSwXIrgurNZqhukVrNJqilhbfu7DjwuZ07q7wXW8QcFwu1+7Kypb+LwfWXgiiYdOBwSOL6D33e8I9DCGDRvO79Q4waLQ1Gk2MWPx+cbHRZgNXDWvPFdEJAjw1jA0w1KB574Ce/tixO51flJV9VFLSrNdfvdZ5UWvrl/1FINYeRN4FSfaAR2hqvmwLjhGLQedCNg+Nu2DpQvtxqNZCsxXKVYjaDDp3RUwMAUCcdpWL8QFZa6FaC64KxtEZQnPHlT1CAIBsPjpOouME5AvGfPWwG5H1Kg6uRsnzYEvB4MeIxe7ng4dHCEAlFOZGRPyntPRqirkDzjRMlgGyVap5avVwOX6CWLTsJV/eEBlZ1NIyJgV0d5DQ0gWWGIKYQaWmfnHBbgSDTxrCeWq1Svs9VGuGT9iZDEin0GGCthTry/BNEroLIclA5yk4bV776lIeb0N8PNnUt6StrauhQaZe2c0U12u1ch4vUS7vN5NcJnNjQgIAo82mt1hkPB6dRkN3gvuEXfmw96FlH6zdwwRXUxSKopaW6tHs5TCDYesFfQLTH0g0Esnm1NSvLl7Mb24mc1Db+voqurpUQmGMWPxAerq/1HzSEApZrGSFonhwCbyAxVocFfVNRcV9c+YESheqoquruLXVu6v4BPDd5cuDKvqtveAoIIx3GRtLmtq8Wu9GDBZHzVSp8oYto14RE0On0d4rLt4yZ46AJUbQFa1afgT6GuAwgsGFvnIgfDcuKru6Kru66DRaTHDwipiYEK+ShlFgcziO1tcPKmC19oAbCkE0ANBYcDmdhstlOsVt4VIAkC2Ey4mqNyFKAicEABkIjZVIRl+vNWboXMgXIOxGmNvHEBr1LFWUz0dnHkzN0Dw0ngVEbIIgBhdegGwhABpBzA4NPVFf7+kRksxTq3vN5n+fP3/v7NljStWeOKb6MT0ubhjaRtIL1WoU/gJOG2hMAYuVHRZ2chzbKpZ2sOXghcPUOmIOKux9oHMAGpjBcpp2WXQ0ju1G1F1jvmjAIQ1h1dtI+Q3oHERvQc37kGSg9SDCbxnarQIAjSDchUfnD2L2drDETpfLX4SZTNp0vwlKQu0OAGg7hMg70fwtuEqwhttlXB8f//rZsyNvobGCYe0drpw/cKiEwoezsqq6u+t6ewFEBgWt9NmwzQM2nd6fG5KpVBYP0YLJUipL29sP1tYGsEH03qqqyKAg8YQlo7uAQzU13vuRtl4wgyGbV9PdIWDVyzwa6orYbC8bI+PxIoOD6wbXUXixNCqKSaO9U1R0Z8qDIewrG7q8cDTvgU0H5Rr0FEE2dgdlCA6ns7K7u6q7WyUURonFMh5PxGYTgFIoHKaW1OVylXd2fnf58qDsHocJcA2qC+LIz/c4grl8dxkJQYNiMYLngD4QOaARxIS3B19xFAB4Kn8CBQCwJxUxDyLh5wAZGr1h4CPZfFx6FeY2zHtvnAuQZOKGgX6rc0JCTtTXgykYmj20OjZ2X3X162fPLouOTg0J6X+49JjNLDqdVL3pNZuLW1vlfH5y4HRK/TEtDeHIcEIhSkD7YTKpd2F4eH5z8xhy7XQXIYh1xw3IfQtjE/jDWl+7gQz6C/mSW4UXGC4L2o9g/vvDHTI5CKJR/zn0lxB1DwBE34d9c5H0NNoOIuU3aNoNm953qrqpBXQOWbcw2u6+8lz01UJbirZDmPUYdBfRXTR8ug0Z0B5ZhIU0hJMFnSBmSaW+u6v7IkYs7k8ZDQ8KChEI2gZ3SCAI4vbk5HeKioI5HN/t3zywO50nGxrIev9hppnt9k9LSx9IT5+I79R9NtuX5eVVQxvsWXvJVMaSjm6visA5oaFD75IMpXJ4QwggNyJCzOV+eO7c5tRUtyHhhcHSBWEsgpPdaZBXWY16BRfQpNd7bgMLWKx1cXGJMpmXs66zWMo7O4taWlqHNruw9njW8wBwsRXHzOybUqIGTWMN1LCTuVT+etMHGK7KrU0zFFMzjM2o/hcsHZjzokf5BAAgOBXGRnCV4FytCgSJgs9Xi0SNtl4vjxAAQRBrNJoUheLA5cvf19QkymQMGq1Jr+80Gu1Op4DFstjtDpcrVaE4WFPTqNMN1W8KLNepIQQQvhENX5GGkM9i5UZEjFIHGS4HGr6EbC4sne5YDUcBS9cIhtBmAEMQLRbfOitDkPcyClkQp3v9tUwNghiU/wUZ/+uWYhJEY9ZPcWIzes9BsQiiBOjKh/aOBwDdJQjjx3YtGgtxj6Ls/6HrFBSfQbkG3YVD+/F6MV+truvtvTR8uiYZGr1WSe5PGOnOh9OaqYzcQ3bfdBhhM5CPFR6TeXdq6gfnzvWazcuio/39Tdf09u6uqAgVCDqNRr3VuiI6ephoaqvB8NXFi7cmJQX2GVHR1fXfS5cMPjtn2XrBCrY7nRc7O738G587gkky2QEWy/epPEiWyxk02qelpVszMoQsFggGeCoEzwHBAD8K2jI4rRDEuMOMAcVgtf6ntFTM5SZIpXwWy+50tvX1Nev12mGyOay9Xn/aJdYQIasv0n/brOXR0ZMQx3bDVfkNjXYchyIXc9/BrmikPj8oWQYAwYA0B/yIAK4lXals1Hb7ricB1CLR/Wlp7X19Vd3dLiBbpSKVEDqNRi6TKWAyCYJYYrf/99Kl18+eXaPRxAlpcFjACvd5tqthuibLjIx6I5p29defLYyI8AzjDEdfPZgidOejr8H9dYkphN13HjafxSKfU4TdsEDGvHf2bIFyERZ+DGP91eaABQpBLFgSaH40MJL8K8AJSSboXAQl+S2/1V4YKHUaPXGPoP4ziBLADIJyNejcEQvqCYK4OTHRW4zKi8n1CMcEh8EY8B0rXkfefXPkEg6DAVsvqrej9UD/TAmX+1BmZrNe/9qZM0fr6jyjbS0GQ35z85cXL3518eIajWZTUtL9aWm1vb0nR5IqLuvoeL+4WB+IJFKb01nW0fFucfHHJSUDpsvag1oPoURrL5jBFzs7VUKhZ7hYLRL5/PtijuTX9jNLKp0bFvbv8+fd/y3RW9y3nygezXvQeQqGCaw/6zGZ8hobv7t8+XBtbXlHx3BWEPBSeHC6XEc6nEvi/KbFRQYHL4wIpHUZgeEM4QnIFoItgyAGvedh7vTef435ISIDuaGTolAw6SwQdDj93qIKPn9BePjC8PAkuZxGEDSCUPD5wiuPVg6DcXty8vq4uK8vXbxc/gWadgdwef1cvx6hMA7MYHSdJd0dOkGsj4v7gNTVdJhQ/zmi7/V9oL4SwamAE+3H3ftbTBGMPp5HGonkzpQUq8Oht1r5VScEuNJ8MmRpwFRDr56QxVj+3aBmYwQduf+BqRXAcIaw8xRClo35cmwZou91h0PlC5D5j9EcxGEwHkxP31ddfb6tzXcEmyUebY3wpJMklzP7g5OdeQCNXfdupiD2xIV3EZQE/aDdGh6TeU9qapNeX9Le/m5xMY/JDOZwtGaz1eGIEYtJ1RtSko3DYNyRnPx2YWG4SBQxbIfeeq32veLiB0cUfPCPw+XaX1VV2NpqG/qfb+lyt5InGO7EXTrnTFO5V852uv94b3ZY2ImGBn+NijxZEB7OpNPfKSrKjYhIlstFbAYABKdBEAdtiT+vYgqw9g50TwOKWltJ9Qafcxk02o3x8ZMqEctVwtQGuHxIYXScQNY/AUA2F515sHZ510f5eyqOFzadnqxQFJP5MqRQorEBvDG7dDFBgluFlz7Xxm1lnJdZA1+GeP0aQgChy9FxvD/uFy0WL42KOlhTA2svDJfJVBofR+krEX4L2DIwBO6CVobI3VmCxN4HghYtU92RksKg0Rg0Go/JhK31qloJThw0NsRD9DA5oe7EE1ESqrb5PrAzDym/Gs8V+3WhCMYgT3RYmHT6hvj4DfHxBqvV4nCYbDaywozHZMLlMpl7dB2/Oi0QNE6YXMi4GQgJWrpgasHy73FozVwX55T61w6+Bt35gNMz9EIQhFokUotEazSaFr1eb7VyGIwIkWhoCFTEZm9MSPi8rOzukVpIdplMH5eUbJkzZxz7hT0m086LFxu0fuR5bTq4nDC3gRtGxkVbDAadxTLLQ8xTyGINUynBptNzwsKOjE61J1uliggKOt3Y+FZ9fYpCsTImhkGjgSkEnQ+zD/mnqcHa059saXc6j9bV9WuOe0FKzo42FhUoaCwwRTB3eG/12Q3QXYIkEwCkc9H4FRh838/AgDJPrS4mKyhYEjgtqN6O5GfdXYNGj7EukkcsCI75qtnxy56zwKgV4EbHdW0IJVlo3uM5cENkZLfJVFxJyiN1+9hysPXCYXY3w5RkuQeZokENDtuPpEj4G1N/M0gxz9SEkCWB/gEmnuBk6Hx5hOY2WHshShjPOa+uYkTAYgkAeCVDikTgdofHhr5WqL1W2hEBAKQ83oC71pkHaQ4kmUj5tUixOKWNc661FQwBrFqfu8UEMGL2RKxYvFqj+eDcuR/MmhU/bPJOo073XnHxXampo5UpABxO59nm5oM1NcPlkZHSWaYWcMPIuOjpxsbssDBPo50bGTm8euQCtbqwpWWU8dsQPv+mWbPMdvvuioptBQULIyLiJBIawWPZ+2iAw+XqNpksJlOn0dhqMDTr9W0Gg8PlYtJoKqEwLTR0TkhIYHuX+8AjWeZYfb1aJArz9XskCGJDXNwwvvIEwlPB1OxtCDtPQZxGNnKBdC7yHwNvMgQgQwWCGAHzMpkvQwai7H0Y5V1q6QCNBWYQ+uogiJqnUBe3NJY0n/Pt714F17UhlGbjwh/cr7vOou0QQpffNCsDLfuL4csQupzoyvehBeNhCOk02lJu5UKxlPD6yzfUjE0Y8BqBHw1LF7SlV2qZr9B5CrK5gb3VrhZBtNzVuiI6+kAgVFoIgghIh7/5avXAY7czz92patbPAOSy+s63trpYEq8tpbGSLJcHcziflZY26HRLo6KGyeBt1uu35efnRkbODgkZvr2U1eEo6+jw2qf0jU0HrgqmFgCw9upo4oquLk8lBCGLNWIeLJvBWBkTs7O8fPhpnnAYjNuSkqq6u880Ne2tqoLLaXWoWU0nbA6HiM0WsdkSLjdUIJgTEhIqEDBoNIvD0aDVHq2ry29u3pyaOpE9Opyw6cAMBtBpNOY3Nz+SleX58YqYGAmXa7bbNRLJyP0+Jwhym9CrbL/jxIDQf1ASaMyrLNAcPQsUvMvdBgBut95uGO1fRMdJwAX1RvTVIWQpAazSzNpZrvtHxxmWYl4AV3hdG0JhPMwdsHaj7QjyfwpeOKxdNEnmD6TdHG7zKcvgNEVtGVr2gS2Fap33eegcuBxw2mh01n1z5kR8fwp9Qxq1Gy67BXOnFwQN2a/j8HqsOjmoCVT/M/3agR8FQ21GaBLBYHxXUzPIjLUfBS9sUHPHYaETxKbkZADfXb5sdTisDseA6OVYELLZg1IBO08i6Zn+d3I+P1mhuNAsgaV79GvzSZhQ+FBm5hfl5TvLy29NShrm64neav22svK76upMlSpLpZJwuW7D6XLi0j+cs37eqNMVtbaWtrePtprIpoNollswyNZ7sFuQHRbmaWVz1OrRNBNIVSgKW1pqRyql8EIjkZBKBbDpXNX/smgeZzMYNl/9CNl0ukYiiRWL91++/HVFxR1+YpUBwKoFUwiC5nS5vq6oGKoUqJFIRsj8mgR85st0nRmolCdokGSBOUnrjJVKQ7V9rYC7BfGQagq/WLpgaYfDBFMbqQMeKxZHSpQX7KpRt4kaFde1ISRokGSguwC1H2LOC6Bz0LgLAGFuWaMWsZ3NbsEYlwNNu2FsQMQmv+0omSLYdHMj0yK4TpjbYBycvGDpBEG/JoolxkHU3eirQ94WLPtuYLAzDym/nro1+YIfhb5ayDAvLEzG4xW0tDTqdC5AKRDMbvr4dJu6xZAD+Q1DNRLVIpGcxzvf3k6KbCkFguUxMeTjlczVNtls312+XNjaOlYfcZ6nDXDZ0V0A6VzPCTdERpaWil3WIdV4Y4fHZG5OTf3o/PlvKio2xI9Q1mJzOk81Np5qbKTTaAIWi8tgMBw6WtGHba2JFoxaQ9J9Lh1E8eg4DpejxWCoNvAfSxnIdCCA2aPrPEwQxKakpO3FxV3jk5pj8Am70XdD7MFXWRET807+6YKyvZlJa8ZzoRG5Ehc9cPkyi07PHqzgyKLTR6nzPrH4NITd+ZC+PfBWNs9tliYegh+5jHfwYyyBqQ3ckLEYwk6wxGg7CE5I/3bmPbMz05UBrqC4fssnSCRZaNnvVlHhR7pVQ00tCFm8lHl+rloNhxk1H8Jlg+bh4ZoyM4VC9C2JioKuHMHJMDYMagxkqJmW7mA/ib9Ez/kByX+nDd2FXs/0qUcQ1d/4d5ZMtjk19amFC59euHBLnDSNq31w88e5wl5p9SusnrNqkcid2W/Txvd9t2XOnB8kJPxs7txHsrJ+uXDhw1lZbifjClwm88ZZs3w2mh8GEZs96CHYewG8CM8aagAKPj8hRIlAGEIAdIK4MyWlTqsdlSgdAMDhdGrN5laDobG7td4WZNE3AEB3/mjlcwHYtGBJwJK4Ok7u6+AsiYrwzMeJFouD/PXeGwKfxbo7NXWcmSMEHTQmHCMFcgF6X80tnLMHOxldI0Z9x4elE2xpQUtLZVfXrYmJXvuRSoFgtOoTE0pQMloODBrpqwPBGBT1iXsEs34+SesJWx+v/TpCwIalA4KY0SYAO4wgAOlcdBeMUMZ91VzvhlCajYrXoFwJZhAZWwMAUwsUi6GvXBUbG975GTghCL91+OwppYC/OdzBptOhLYckG3QuPCOr0zQu2g+NifCbUf8f99vGryDJAHNqur/6RRjnWziqpxjiOQyuYsX61x/b/PZz+NvWcNMTCxY8nJX1lLx4s/lN8sEtYrNDBQK+/62j5TExgxoKukaIHK7VaAalaOrKfZZdLtakEoEr/GDR6YsjI4+NY5eUTHsmvYSus+g8OaqjHGYQdNBY4CpLGsptLFlG2KDn0Vib30q43EezstbFxY3efA4wRLLSN41fyaI3LOXV7SwvdwZiG9gbS+cxnfh4ff1dqalDPVT1sIUuk0fEbbAbUP/ZwEjXWUizB83hhSN4yBbPBMGWQzp3mWM/mCKwxKP1CM2dYMsQlAirVXuXAAAgAElEQVSCThnCq0OSBYfJXSLKCXUnhZqaIc6Aw0TXV2wivhFFrvOXFUIQxCyZ7NbExB9phEpXK0A+7xLBCx/UMm26G0IAkXeg7lP360v/dDeqvqYQJbl3qrzoPTeQFCCIQfabyLuXsOmUAgGv8VNYtaOM/0i53Iz+x7q2lIyi+2OWVJropX+oq/BZPxMakhzvqvbZWHh8JCsUequ13l+1gz/sejAFMDbBboBNh776UX0rt2nJ70MmfsIBc8L6WcmefycsOn2sbjQAOo2WExb2s7lzV8fGji29czSG0GGG0wpBdJagV8Cg7a2qCkhKlCenO62lOjyYni71pfLqM310CiDoyPw7ip4a8KG7870N4SQTeUdU/f9qJBKvZhTDYe0EWwYaGxF3uPXNJ4zr3RAKoqH5kTv/haCBF46+Glg6wQ2BMA4X/iCKWHvX7Ayf1Vc8JvOulJS7UlJSQ0JofLW7pl5bDlEi+BEwehnCCZbTnWgUi2Fqgr4K3YUw1iN841QvaAj8cNi0xFCJn57iQb2u1DchdBUKfoaec3CaochFb+kor7A0Otqd5mftGeZvVSkU3pyY6D3qT5GOzl0sNhC2gHWIJYCF4eFHx+oU2gwQxsPU7L5XRQnoLRnFUTrSEH7T4kgOUXkVe0QFB49b5pRGEPPDw5dERY3hmNEYwv4OmgzBLbGKFoNhT0BtYZfJdLRXcEdivD8R9mvFEAJQLIYofkCHpevsQD3YlKC+GQ7z8ugogiEYrUdo6XRLmgg1ICa2ScX1bggB5GwbSKDgR6LrLFgSEAwI41H3CaLuUQqF98yeLR+8dREVHPxIVtZA5RYvDKYmANCWISgRvAh4duu9DjxCgo6ozTj6A5x+EHE/nvruUT4gIEogdBe9h3vOIXiwulXGX9FxAmcfQcQdCErx7LkIAHYDDL5VZ3lM5saEBAKATefvbzVMKLx39mwfWRt63x4hAJVYmcgPZDPFOaGhvWZz5VBF7GGw68ELA0GgpxiCaIjT0FM88lE2HZhBZ5qaukymFTHed/jVdxRaHBmZPYp2oW58ehLdBah4dcDh9jCEbKfx3tmzu4zGtwsLK7u7x6C57web0/lleekSfoNY6NsPFrJY4wn5ThzyXHQXAIDLiZ7CKTaErGBEb1FG3JCkUI7WI7QMEb6ZMK7B591Ewo9EZ567Xl4YB66K1EKLCAp6JCuruqeHlJhi0GjxMtmgqA1PDWMj7EZY2sGPAi8cfQ2w9qD4GeS8eT0YQgBpL0N9M7rzrxWV1KGIEmmGS8CigRG7AaZmbwvE4GP+BziwCNlvoPOU+1nQT91/UPcJlu33eYUYsXhJVNShOh0cg5IbyX492WFhab56LAAu6Cv8apQLY5eLdJc6lFffG5aEThBrNJpvq6pisrNHK7dt04MhBFcFXQXC1oMlhd0ImxbMYfe0bLoqq+hoS92DGRlDayQC0lpvXVyc3eUqamkZeepQj7D5Gxgb4TCTBhvwaCXNEMBuYNHp986eXd7ZebSurs1gUPD56+PjleOqbTDZ7R+XlMhYtCyOX4OaPLoE2slDnI6KVwFAXwmWdPg+MJPB3LcBrOJ2Vp3VjUpbof9rzcQz0wxhFBo+BzcMAJSrwQtzi6gBdBptOOUObhiMjaj/FMI4EHTww9FTiMavULUNyjUwtYA3iaK6EwTBgHwh5Auneh3+CUoivLYJe88jKMlH2EQ2DzdWQBANuwE1Hwz6yNiArlNwOfwFWxZHRYkKq74xOMnSQgaNlhMWtiA8fLiWhKYW0HleKaMDcFVSR1uGcsnZpqZhf7wB5oaFmez2821+RcU0EomMxzvZ0LBolGrOdj2YQnDDYGp1h5vYElh7hzeEF3pM+7oEd81OFQ9xdIRstjwQymEEQdwYH2+x28s6RhKQZPDduiQk1h5oyzDrZ6j9GNbuK4awE+LZwID7SBBEklyeJJe7XK6S9vaPS0pCBYJwkYjPYnEZDAGLFSIQsEcK8Lb39X1aWpokly8L6iWMvh/NDBptUpW1R4MkA91FANB+9NopCw4SyJbxar4dscOrywGbbtJq0maaIYxE7wVIsgGM7aHPCYG1F5dedatI8yLQV4/6L6DeiKInwVNNgmQfBYKSaC2HBo30nPOWz+iH3LUNSoa2bJAgk7ERNj16zkHityQ3HaWJ4u7q+AgmOygiKGjE8jXoLkHkv7aPEwpd+YqE6Jqens5RVNGtiInJjYiwO529ZvMwSTHr4+K2FRRoJJJRuTikRyiKH7hRmUFu+TQ/nG5qOtnJ3pIQKve17xUdHBwoJTMaQdySmGi22y8PXxbi5RF2nYYkAzQW2BJYusGPBjx8CKbAS6WdIIjZISHxUmltb2+TXt+i1xttNr3VarLZ7ktL86dLZ7bbC1paTjY0rNFoUhUKtB7wp8aSqVSOXtxukuCqQNBgbETLtwi/dapXM0B2sKOMR9QNX95i7QYzuN9RmWhmwB6hJ/wouBzu0OiYIGjYUIq1BVAsBgB+BPQV6DiGedsBXA9x0WlBUBLNcGnQSE+RX0NIwhKDKUCfx4ausQH8CHSe8HuI0wprD4evTBa54qXSka0gyEwZ/5LrXCVMLWwG4/bk5BGzS3IjInIjIgAwaLTbk5P5/p+tIjZ7XVzcF2VlI+9+uZxwmMHggRM64Bn4N4QGq/XrioqC5uYHZdVyoe8wSUDiov0waLRNSUliX3mYHpM8DKHDjJ7zkOQAAEvitnkuJ2y97v6XflITOQxGgky2PDp6Q3z87cnJD6anpyuV7xcXdwz+guIC2vv6vq2q+ufp0+19ffenpaWSYU8/wTo6jZYbObH5/eNEnI6u02g7BOWqqV7KADSO4s5o/gjKA8YmzxYfE83M8wiB8RhCYJBKFlcJqxaqtWCJkfJr6CsDszyK4eFHEZZ22PtAv1Lj2F2ImPtHOCooGdrSgXajxkZE3I6OE35LREzN4IaCo4Clc7TSaPqK4TxCbiip1ang8++ZPfuzsjKf8tNBbHa6UrnY43kqYLE2xMd/euHC0MkkSXL55Z6eneXldyQnD+ef2Q1g8L1rhFgimNv735W0t5Pq1Z1GY5NOl65UPpCezrm032c5KZ0gvEQJrh4uk7kpKWl7UZHd304qgw/HFUPYUwxhHJhCAGBJ3PlQ1h4wRe6IN4MP26gyMhaGh3MZjPeLi+OkUpVQSPYcbtbrhSxWakjIj7OzB4XELZ3g+DCEs6TSa84dJJGko+L/IIyfNFnRUcEJ4do67pm96pMLF5r1et9z9JVjbgx+Fcwwj5AXBhpzkLzC+CA7aJPRhpj7Meelq18axcgQdCdfQ+ivOIVOG3Tl3imjQwlKQe/5gbfGRkTeiY5+j9DlVpT2nMBTgy2HpXO0CxveI+Qo+2sZI4KCHsrImB8e7rnrxmEwbk1K+p/585dERXnZs0SZbHhJ63VxcVaH48Dly8Mtj9wg9IIZBKvbIzzd1HS4tpbLZJJyOT/JyVkZE8OBCTS2z5h/olw+3I7peFEJhXelpvo9s6eT13sOkiuRAJbYrd3j6a6NPkcfyFAqf5qTo+Dz2/v6uk2mRRERTy1c+PjcuUujogYtxmH2pxadMSUtJkaDOB1th6FaO9XrGAwnBOY2EZu9NSNjWXR0v3RtEJt9Z0rKythYLp2A4TJfmviDhISAf+XyyQzzCAk6eOoAGEIA6X+FcnUAzkMxFpzBafSaDyDLBgBtKfhRYIyUshG6DGV/RtLTAGDTAU5IMuG0o68O/Eg078W5Z7HWo5aANIQ0NsxjMYQjeIQDWR5CNnt1bOzq2NhOo7FBq2XS6eFBQUH+2xRsiI/nMBgnGhp8fkojiNuTk/9VWBgqEMz21xSQ3CD04kpo9HRT06nGxvvT0rxbJVh7/aUqjKHmYYzEisWPZmefqK8vaWvTW62DPqOx4XTAZScsnbD3kc1ewkSi1KhQedcvWRlvdZbkHbdJ3YJPo6/aBgBwGIz5av8KiyS6ixDEDnUegtjswAaKAwm5Ea6cGNnVccMJIdtQ0AjihsjI+Wp1rVbLotGUQiG5d7CAVW00aJkLl5OiDW8XFEyUYN4VZphHCGDhJyPsKo2SiNt8fMummGBsKS+h4yjO/w4gNwhHoUEfugK9F9xun7GR1LCHIhdthwGg+RvvskJjE7hhYMu8PcKqt1D5ho/zGxth00IY53cBdC7obAwRWpPxeOlKZYpCMYwVBEAQxMrY2NuTk4V+pnEYjDtSUvZXV7ca/Dz6bb49QqdNt7eqqqC5+YdDrSBIQ+gjDzaEz4/00409IPCZzFWxsT+fPz87bEi3PJYYugqavlQiT5mvDn80K+tHGRnzohJiudZwlindcepHaUluB4LOgcsO13iainjTV+8OverKIRoipACkK5XXhL6oTwQxSPifKdaUGQo3BKaBjGgmnR4nkUR66DMQLd/y1avItxwG487UVOYoOpxcDTPPEEpzqAzP6YuLKXYu2YeaD9BxAt2FkKSPfAyNjbANaPgCuOLtAYi43V1W0bQb9r5BVspEhkaHGML6L9B+zMf5m7+Bcs0Iyhce0dHxkSSX/zgrS+InnUTO422Ij/+opKRR50vCxldotM5geat7do/J+GBGhm9LbOslu+554cM+TQB0glgfF3dHSkqsWMxnMsODgmLF4pS0+9Yb3vgF48PHl21ardGE9KfLCjXoOIH2o5yIH9ySmOguh2Dw3XqbpCbUuDFcRtNuWLrQVzfU7xey2fNGdCWnEgIZ/zvRsixjhhMCS/twE5r3eIZz5Tzemjj/XzQDwQSGRsvLyz/88MPz58+Hh4e/8Yavr9IUFOOALUfyc7jwAuz60SaFR2xC+V8R/1MYG8APBwD1TTj7YzTtBkFDUDL6agfCgMZGyBbA2gtD9cAZnFZ0nvBuX0zS9A2iNo+wADJfxpc/MXq4TOZtSUnvFBY6fGmGJchkDBptx4UL89XqLJVqULKrTe+pWVza0XGivt5st68QdSfFZcJfIqu1d+gmAofB8BuAnQASZbLBcqZzEM6wX/gLxIO/AAliUfIHqG8GU8gD5oeHH66tBUMAYyO0ZeAohmssMyJ2A+hc1H4IfqS7vbsHazSaUeUVU3jCj/QtoE9iboOxyV3kdoVMpbKis/NSV5e/g66SCfQIq6urbTabWq0+ffr0xF2FYiYScx+0peg6O9oot3IVes/D3DoQGqWxEXkXzjwM1XoIotxtiWo/gqnlSrLMYI+w6ww4Sh9/vQ4T2o+MvFvMVQ4qBh8vKqFwsX99To1E8kB6eqfR+M/Tpw9cvqy1WNwG84pH2GE0flpaerSubll09GM5OUkiYrhSQl+h0bTQ0HHriwYG5RrTvC+9B4Ua9J5H7APku/lqNY/JBEOAjhNgywbp448DuwEhy+ByQeTdXWSWVJosv5ayMacL4gwYLsPix6p1HId84dAKwlUazcSFoCfwu8yGDRs2bNjw8ccfnzlzZuKuQjETobGQ9BQu/cOvmIv3fDbUN6H2ExgbIc1xD8b8EBWvImw9mva4DWHxs+CFo68OPDWc9kGGsO0wwm9G9XaY28FRAIC5FR15ACBOG1n/gqv0zk0dLzlhYcfr6/3VDkq53I0JCTqL5URDw7aCApPNxqDRmFBx2tpBdDmczgyl8rakJLcwG2vYmvorHWj7IQhicuKiY0aogTC+Xx+DzWAsiYraUyuA7hJitqDu00GKCmPFbgBbAs1WMAbVvUm5XB/a6xSjgcaEPBfth31HdEhDOAQpl5seGlowGjW+sUM59RTTE81DY1ODi96CwifBUSDiyt+eJANzXkDIMmjL0FcLSxdsOnBD0HUaXCXshkGGsP0wEn6BjuPQV7oNYeWbqP4XTK1Ie3nkq3NCYQ7MHzCHwUgNCSloHtJ/3AMRm71Wo1mr0QCwOhz2i38zRf3ISTBlXO6g8gymyL8hdMGu9xJgi5dKffYemnrUGyFO8zR1WSpVoUDQagoFPxpMEUyt46weBplzK/BKu+UzmT77EVKMltBlaD3o2xC2H3MLeA1hSXT0+fZhNxfHy1X9ImtqaoqKioaO33zzzWOSX6qurl65ciX9SsglPj7++++/9zmzr68vUMJOFNMRo9Fos9nctwozDv7yJIfCy+JbOqGvMs36g7P/qMifwWhl0EMY2sO2llMsUbI59XWmMM3aZybsXJ65o4+c6bTwO08beelsTpSj84KNOwcAr/5LS8Z7Tm64iyUZcRkMQszQ55tHv9phSQoKyqutHeVkwmnmwc5gcgHYbDbPj2gEn2Zus3tVKZBH2XVMOtdqcwCOK5OJ+QqFIUA/wtXg+yFAj/T6LSxNWPQhwpxWK4MT5tLVOOjjlJxm2fusThY8/pfiJJL1Gg3H6bwW/jemKTThPE7Fm8Yh/4GE3cDTXuxjJ/j8myKAFLG4srPTYDCM3hBwOBzGSF9ZrsoQVlVVffLJJ0PHN27cOCZzFR0d/dJLL2VmZpJv2Ww2z4+er8vlEoxLPJ7i+oBGo7HZbPr4tqmit6D0RZ4sHqzBt5A0AVWNDHMFpBn84FCk/ZYFwMWFTSfgc0HQ0XwUwbP5wUpIkhjWerZAgL5aWNq44ctGq4UojkZTR6BuXYFAoJHLR9ub19wDVhDLZ5U6VwrduSEfueCwwNYHltjzo5ywsKhro7vCKB8Cs2YtX8uLP1BdDWEUdJX08SkAOEygs1jsAT84mMPZkpk52qYfFP7gz8OpXgGt153HZOlwa9+05kGaKRD5/dayctasFoNBIBAE1iO6KkO4cuXKlStXXv0iaDSaUCgUX7NFqRTXBzFbUPWmj21FfiT66tB7DvLcgUGCDlYwrN1gy1H1FmIfBABhHBp2AkDjfxG2YQyKwJzQqyyf8OKGyMh/nz8/8jxguF5LZF2z0zIoGbIzD11nIM3xrJ0QsFhja6J7bbAwPNxos52w9qDVd4RpZOyGksJuXfGO/oFEufwvR44EZn0znNpQHN4ESTZav0NfHVJ+A4JAywGAjoI/+zxi+fLlWVlZOROwUT2BMW673a7X6/v6+hwOR09PD5PJpJw5iqlEGI+bqn2Ms2VwWtF+HHE/8R63dMJuRMdJLNgBAMI4t65s4y4k/HwMlw5csgyJRiKJDA6u6+0FAIcZFa8i5oe+9SRtWrD8GEI6B4JoaMsHkm9dTnSeBj8Crd/3fy0ggFsSE3nMaVl9uzImZpZUerzupSYG+sZRXm8zHNlVsem2DOGVFhw0u71n+C4ZFKMkaB1cTpidCN6AYCd6ewAC7HQQNPj6Hy4oKGhqasrKyoqfAJdpAg3hmTNn7r33XvJ1VlbW4sWLt2/fPnGXo6AYGX++ET8SuosIThk0yJbB3ImWfYi+xy3kJoyDvgpdZ9BThNAVY7guSwyHCQ4z6IHoYG5sQsWrS6Oeea+4GAAs7XA5UPcpND8aWugGq86ncLaboFR0FwwYQm0J2FKE3wIMaNMvjY6+diXERkFEUNBmpQGzQy47Qr8sL/dWbhseuwEE8avnnlNf01XzM4JXX321srISwESkiUygIVywYEF1ta8v4BQU1xr8SMAF+uCUSLYM53+N3hKsynOPMEVg8HF4HRZ86D15ROS5qNqGWY+73556ALMeH6faX8dRVG+PSns5SS4v6+iAuQNBySBoaDmAsA3ek21acDR+TyWKR9PXsBvAEABARx6UKwCCTOdj0mgbZs2aM4kV9BMFLxx9DTHKxEezsy92drb19dkdDofL1dbX16rX+5An6MduGH/dBcX0gUr/paAA+FE+nMWozeirx/wPB1o4AVCuRtgGqNaP+RLZr2P/QoTd6O4Y3LQbdC6yXxvParsLYOmATbcuLq6mt9dEljaKElH1FsLWez+4h9kjBEAwIJoFbSmkc2HphNMCgdtqshmMe1JTw4OGa2E/beCHw9gAgMdkenWKOFxbe3iYFFzKEM4MZp7WKAXFUFRrELHJezBiExKfGGQFAcx/38fM0SCMQ9IvUfg/AGDphKMP9Z/BOZYwXT/dBSBoMFwWsFirYmJgaQdbAaYIDAFMQ+oLbbrhDCEAUSJ0l3hMJttc6zbSAJfB2HzdWEEAPLchHMriqKhY/41+gl06Jo0yhNc/lEdIQQGE3TgZV9E8hAt/hMsBbRnE6SAYaP4W6h+M8SwudBdBvhCGaojT0kJDS5xVlzm3AoBQA30VuGGDJtv0w+0RAhDEMBq/uCcpJuTC35s163rlSWw6PVYiua4qBHjh6Dzp8xMCuC0paWdZWWV3d/8gh8GQcLlzw8JSneV/neC+BxTXApQhpKCYLJhB4IZBWw5tGYKSIJ2L2n+P2RDqq8AKhnQu9NUACEvbjcKaN9hBVocDwji0fgfF4oHJNj0YvBHKPGjMNWECleEU2g+HZ/49nHdNFAsGGF44+hoAoPhp8KMQ96jnh6T7W9TaWtPTQ6fR5oaFKa/kiKKgdQxFMhTTFsoQUlBMIpIsdOdDWwZREsJvQcHPxnyG7kJIMiCIRU8RAPReEEvjlkdHf1tVBV44LF1wGEG/okcxYlwUWBgRkWW9AeX/DywJeNeklOjVw1O7Q6OtB2HthuYhr85EBEFkKJU+Gs2bW0EEItGX4tqG+rJDQTGJSLPQdRa6cgQlgiUGwYC1d2xn6C6AJBPCWHeXKG0pglJywsI0EgkIOgRRg1pk2LTDx0Wzw8JWREcjbB06TyFk6Th+oOkBLxzGRjit0JWDGYSmb0Z1lNMK23RNlsnLy/vd73431auYNlCGkIJiEpFmuz3CoCQA4CrHLMbdUwhxBgQxZGgUvRcQnEIQxMaEBCGbDUk2Ok8CVyoC/FfTcxiMmxMS1sfFEQQBYTyEGoQuG//PdY3DFILGQPtRCGKR+CQq/jmqo8xtboH1aQiNRhtRYJOiH+p/ioJiEglOQ28JaEy3xCLZp9CzYa+xEcc3gWAg5oduXTdPqrej5xykOWAFwdwKpwUdx6B5CICAxbo/Le2jEnpX2yFoy92G1tINbqjXObhM5sLw8EyViuv5oFz8NQQxgf95rx144Wj8CtIsRNyGkt9hBwOKG7D84HCH6KshiAJqJmmFo6a2ttbpdPa/jYiIGGrzkpKSlEMjvRR+oAwhBcUkwuBBFA8axx1wGyq91nUWdC6Sn8XJeyDJgnjOlQ9cyH8cbQex8ijYUgDgqVHxBug8SN29vCVc7gNpaYeca4ou/NdBGkJrl9siXkHAYt07e3bIULFDUUKAf9JrDV44Gnch+VnQWLixEnYjvpDCZQfh/xmoK4co8Ro0hL///e/7+voA9PT0fPfdd42NjWFD5Df37dv3xhtv+GvjQ+EFZQgpKCYXSRZcV9rqDjWE+kuQZCF0JdL/grx7seasWzWt6Cl0ncWqU2SveQAQxODC75H1qufRfBZrw7zNi1pfOBbkKNIxCGsnOHJSYpMAEuXyFTExkmuzp+BEwwtH8x5I3C1uwOCBq4LhMoTxfg9xO9Z7vMfrdlxt1/sxEXkH+FGeA++++y4Am822du3aZ599dqgVpBgrlCGkoJhcYh+A80pfQM6QPULdRcgXAUD0vbi8HU17EH4zGv+L5j1YeXzACgIQxEJbiog7hlyACJKlbhC3bUi9CW0HsXwXCJrZbne4XPzpKZwdGPjhoDERPGdgRDQLukvDGUJduQ/JOgBOG6yTpbvtp3jD5XJt3bpVIpG88MILk7SS6xrKEFJQTC6yBQOvuaHoKRz0qe4SYre6X4euROcJhN+Mln2I3QrWYOVr5RrI5oHmy7aJ09BTjKBECGLJJynVSx28cAQlDxI9Jw3hMFoKZHLvUKK3BH55Y+QPf/hDeXn54cOHaVS9fyCY8X8eFBRTyNDQqO4SRLPcr+ULUfQ0AHQcQ+wD3seqb/J7WnEaLv4d0iwI4wK42OlNyHLvShJRArry/c63aWHTuXOarjE+/fTTDz74IC8vz18Dc4qxQhlCCoqpw8sQmtsAYqCtoDQH2gswNsLYMLY+FeI09BRCVzFgUyl4Yd5yAcJ41H7kd762HKKEa7CIUKvV3nfffevWrfvf//1fcuSZZ54JDh7SbppiLFCGkIJi6uAMNoS6S4OyN+lcBKfi4l8hm++lhDICXBUIBtoPI+rugC31+kOUAO1Fv5+6U0avOTgczocffug5wmKxhk5bsGBBaKh35QyFPyhDSEExdbCC4bTCYXJ3N/SMi5LIc1H5BpJ/NeYzi+eg9XukPh+QZV6fcJVwWmHtBstX9wmtnw3CqYbNZm/aNHL/E5VKpVKpJmE91weUIaSgmFK4oTC1uIvZ9UMN4UKU/wUhi30eOhziNLTsHy4lkgKAKB66S5DN9/GRrhyxP5r0BY2HTz755IMPPvAcyc3Nfe6556ZqPdMRyhBSUEwpZHSUNIS6S4jNHfSpfCHYUkiyxnza4DlgBk1fhbBJQpQA3UXfhlBbhqDpITKwbt26BQsWeI5QSTRjhUq9paCYUvrzZex96DnnrfDCluPmJtB8bAKNgDwXkXcGZoXXMaJZgzTK+7H2wtIBgWbSFzQeRCJRxGBkMhkAh8Oh1Wr7p3344YdvvfXW1VzIYrGQijajpKKi4r777hvHhWw22+rVq63WcbWtHheUIaSgmFJI3W1zK75bAuVKH3mepLLMWOFHIOfNq1/ddQ4vHKYmH+M9xQiePd07EZaXlyclDQjsCQQCkWjYFs0j8fbbbz/00EOjn6/T6U6cODG+aymVSmISW0NToVEKiimFq0RHHi7+AzFbkPLbqV7NDIOr8q7jJOkphDh90lczBoxG45kzZywWy7x584KC3A1GKisrL1y4wGKxMjMzQ0NDL168aLPZCgoKAMyePXvevHkOhwOAXq9vaGiIjIw8ePBgcHBwbm6u0+k8fPiww+FYtmwZqd/tcDgKCgoaGhrUanVOTg5BEEajsaGhobu7u6CggMPhJCcnA+jt7T179iydTl+wYAGH4xYr6O3tPXnypFgsZvpSMqqpqenu7u5/GxERIWyGFqQAACAASURBVJfLveYwGIzHHntsMrtnUIaQgmJK4Spx/rfIfg2ah6d6KTOPoYIGJN1F13JTqrKyso0bN6anp3O53EceeWT37t3Jycnvvffe73//+5tuusloNL7zzjs7d+7ctWtXX1/ftm3bALzyyitvvPGGXq//29/+lp+f/8ADD0RGRsbExBw6dOiuu+4qLy8XCoVlZWWRkZFffPEFgKeeeqq6ulqtVhcUFEil0q+//rqjo+PEiRNtbW3btm1TKpXJycmHDx/+4Q9/uHTpUr1e/9hjjx06dEihUFRVVS1dujQ3N9dut3savH5279597NgxAC6X67///e///d///ehH3klJFoslKyvLaDRyJ0sXlzKEFBRTimodln6L0JVTvY4ZiT9D2FOExCf8HfR2YWG1r0f8BLE1I0MjGVTg8dOf/vTpp59+8MEHAbz99tu//vWvv/zyy88+++zPf/7z7bff3j/t6aefPnjwoM99webm5kOHDkVFRZ05c2bu3Lm7d+9ev369wWBQKBStra2hoaGvvPIKKd7mdDrT09OPHz++aNGiO++8My8vjzyhw+G4//7733vvvSVLlpDXeuWVV1555ZXnn3/+3nvvfemllwD87Gc/q6ur87r0Y4899thjjwH4zW9+09raumXL1OvVgTKEFBRTDCeEsoJTBksMh3GgjpPEbkRfLYKS/R0UzOGIJ7GDB3twhNBut584cSIhIaGyshJAR0dHYWEhgDVr1vzkJz85cuTI2rVrV69e7TMs2U9MTExUVBSAuLg4AEuXLgUgEAhCQ0ObmppCQ0MvX7788ssvl5eXWyyWhoaGqqqqRYsWeZ6hrq6uoaHh22+/3bt3L4DKykoyMefUqVM/+clPyDkbNmz45ptvfC5gx44dO3bsyMvLY7PHtQUeaChDSEFBMWMhwAmFuW1Qn6PecxAl+lYzBwBsSkry99Ek4HA4HA7HkiVLJFfcRNKpeuyxx5YsWfL1118/99xzL7744vHjx4c5Sb/5Id0+z7dky9/169c//vjjL7/8skQiuemmm4YmcFqtViaTuWLFCjKlZcWKFeRWpdPp7E9yodN9yyEdPXr0iSeeOHz48NDdwamCMoQUFBQzGK4SpuZBhrC7EJKMKVvPSLDZ7IyMDK1W2x8Fdblc5L+pqampqalPPvkkn89va2vj8/kmk2kclzCbzZWVlVu2bBEKhTqd7vTp0zfeeCMAPp9vNBrJObGxsSKRiMFgkN5k/zLS09MPHTo0b948AAcPHhx68osXL95+++07duyIj7+G1B4oQ0hBQTGDGbpN2FM0HgWDSeT111+/5ZZb8vLyoqOjq6qqGAzGO++8s27duqioqMjIyDNnzsyfP1+pVDocDqVSuX79erVa/corr4z+/BwOZ/ny5bfccssNN9ywZ88ehcIty7Bo0aJf/vKX99xzj0ajef755//1r3/dfffdt956q1wuLykpSU5Ofv7553/729+uWrWqtbXV4XCcOXNm6Ml//OMfi8XiTz755JNPPgFw1113kbuMUwtlCCkoKGYwQw1h1xnE/XiKVjMqsrKyzp8/f/DgwdbW1oyMDNIne+utt06ePNnV1fXggw+uXr2aIAgGg1FQUFBYWGg0GjkczpYtW+x2O4C0tLQ333TXmPL5/AMHDvQ3NXz//fdnzZoF4Ouvv/7qq696e3t37Nih1+vJMKxGoykvLy8rKyNlvm+88casrKyjR492d3c/+uijubm5AObMmZOfn79//36JRPLHP/6xrKzMa/F//vOfPcv8NRofqgUsFuvbb7+dzO1DgvRnp5Z58+b94x//mDt37ogz9Xq9UCgccRrF9YrRaGSz2f72HihmAgF+CJS+CLsRc150v7X3YWcobuvu3yMMDw/Py8tTq6/FxoQzildffbWysvKf//xnX18fj8cLbLk95RFSUFDMYLgqtB8beNudj+DZw2TKUASWqqqqrVu3eo6wWKz9+/dP8jIoQ0hBQTGD8QqNdp2BLGfqVjPjiI6OJkv4+5lMZbV+JtAQHj58+N///nd5eblUKt2yZcttt902cdeioKCgGA8cJUzNA2+7zkK9cepWM+Og0+lSqXSqVzGRhnDXrl2zZ89+4IEHampqtm7dSqPRbrnllom7HAUFBcWYGeoRznlp6lZDMTVMoCH829/+Rr5YsGDBmTNnvvnmG8oQUlBQXFtw5LDp4LSBxoS5HTY9hLFTvSaKyWaS+oxcuHAhNpa6vSgoKK41CHDkMLcCQN0nkM0HpmCPimJquSqPsKen59KlS0PHMzMzPZXu3nzzzerq6q+++srfeerq6rZs2dLfVVmtVn/88cdDp5lMptdee+3JJ5+8mjVTTGs+++yz1NTUhITp0TqcIuDo9fp333338ccfD+A5eSyFteGwiyXlXnjRuHC/U6/3/NTlcj3zzDN8Pj+AV6QYB6WlpampqXq9/sMPP1y0aBGplToaOBzO8MqruEpDeOHChWeffXbo+FdffUW2SAbw2Wef/eEPf/j++++HKf1RqVSPP/54SkoK+VYmk/mc3NPTs3379t///vdXs2aKac2BAwcYDEZ2dvZUL4Riaqivr//oo49+9atfBfKkiT/jXngBfXVYuocfMsfrwzfeeKOlxVeHCorJJTMzc/78+UKh8Ntvv1WpVKmpqQE8+VUZwkWLFg0v7bpr167HH3983759iYmJw0xjMpkJCQmZmZlXsxgKCgqK8RC9BdFbvHtQXIGU2aS4vpnAZJm9e/c+/PDDu3fvnj179sRdhYKCgiIA+LKCFDOECUyWeeGFF9ra2rKzswmCIAhi3bp1E3ctCgoKCgqK8XFNaI2qVCo6nU4KuQ6Dw+Fobm4ODw+fnFVRXIN0dHTweDwqc2HGYrPZ2traKOXPmUxbW5tQKOxPrhyRzZs3//GPfxx+zjVhCNva2vr6+kYz02KxXCMdjSmmBJvNRqfT+8XyKWYg1ENghkP2BB69EptSqeRyR4h7XxOGkIKCgoKCYqqgvllTUFBQUMxoKENIQUFBQTGjoQwhBQUFBcWMhjKEFBQUFBQzmmnTmNdkMm3btq2urm7evHmbNm2akuaNFJOAzWYrKSk5f/68QCDw7GHpcrl27NiRn58fExOzdetWDodDjjc0NLz77rt6vf7WW2+dN2/eFK2aIpDk5+cfOHCgq6srKSnp7rvv7s8R7e3tffvtt1taWlasWOFZl3zs2LFdu3aJxeIHHnhAqVRO0aopAkZzc/OuXbuqqqp4PN7y5cuXLFnS/9G+ffv27dsXGhq6detWiURCDvq7MUbPtPEIN2zYsHfv3ri4uOeff56SG72Oeeedd2677bZXX33V67f83HPP/elPf4qLi/v666/7+3l1dHTk5OR0dnYqlcq1a9d+9913U7FkikDS2tp6yy23dHV1hYeHb9++fcmSJTabDYDdbl+8eDH5TejRRx998803yfm7d+/euHGjWq1ubGycO3euVqud0uVTBID8/PySkpKIiAgGg7Fp06bXXnuNHH/33XcfeOCB6Ojo8+fP5+bmWq1WAHa7/YYbbigoKPC6McaGazqQl5cnlUrNZrPL5SosLAwKCjIYDFO9KIoJweFwuFyu//znPykpKf2DWq1WIBBcuHDB5XIZjcagoKDCwkKXy/Xyyy+vW7eOnPP3v/99+fLlU7FkikBit9utViv52mAwcLnc06dPu1yuL7/8Mj4+nrw99uzZExkZabfbXS7XggUL3nrrLXL+smXL/vnPf07RwikmhNdff33BggUul8vpdMbFxe3cuZN8nZqaumPHDpfLtXPnTs8bIyoqinw9JqaHR3jkyJEbbriBjJCkp6ezWKxz585N9aIoJgSfxfKFhYUikSg5ORkAl8vNzc09cuQIgKNHj65cuZKcs2rVqmPHjrmouthpDp1O72+a43A47Ha7QCAAcOTIkeXLl5O3x/LlyxsaGmpra61Wa15e3ooVK8j5K1euJG8MiusDm812+vRpstFES0tLZWUl+bsmCGLFihXk79rrxqivr6+trR3rhaaHIWxtbZXL5f1vFQpFc3PzFK6HYpLxugFCQkLIG6ClpaV/XKFQWK3Wzs7OqVkixQTwi1/8Yu3atUlJSRh8D7BYLLFY3NLS0tra6nK5FAoFOR4SEkK1TLo+qKqqio2NDQ4OvnTp0l//+lcALS0tXC63v0Nf/0PA540x1stND0PIYDAcDkf/W5vNNqIwKcX1xNAbgAwPMBgMu91ODpIvqBvjuuGPf/zj8ePH3377bfKtz4cA6Tv23wPUk+G6ITo6Oj8//9SpU2Kx+NFHHwXAZDLJYDg5wfMhcPXWYXoYwrCwsKamJvK1w+FobW1VqVRTuySKyUSlUrW0tDidTvJtU1MTmRwYFhbWHxtobGzk8/lBQUFTtkqKwPGXv/zl3//+96FDh/q9Pc+HgF6v1+v1KpVKoVAwGIz+8f4bg2K6Q6fTxWJxamrqiy+++Omnn7pcLpVKZbPZOjo6yAmeD4GhN8ZYLzc9DOH69euPHTvW1tYGYP/+/UFBQenp6VO9KIrJIzs7m8lkHjx4EEBzc/OpU6fWr18P4MYbb9y5cyf5ffCzzz6jeqheH/zjH/947bXX9u/f72nVbrzxxr179+r1egCff/55WlqaWq2m0+nr16///PPPAdhstq+++uqmm26asnVTBAij0dj/Oj8/X61WEwQhk8nmz59P/q6NRuOePXvI37XXjZGenh4WFjbmSwYyv2ci+elPf6rRaO6//36FQvHRRx9N9XIoJorCwsLMzMyYmBgul5uZmfnII4+Q4++++65Cobj//vtjY2OfeOIJctBoNObk5OTm5t55550KhYJMK6WY1tTU1BAEERUVlXmF/fv3kx/ddtttKSkp9913n0wm27t3LzlYWFgok8k2b948f/78RYsWWSyWqVs7RWC4++67Fy1adO+99y5fvlwikezZs4ccP3jwoFQq3bJlS1pa2k033eR0Osnx2267LTU1lbwx9u3bN44rTqfuE3l5ebW1tdnZ2RqNZqrXQjFRGAyGS5cu9b8VCoXx8fHk60uXLhUWFsbExMydO7d/gtVqPXjwoE6nW7FiRX+BLcX0xWw2l5aWeo7ExMSIxWIALpfryJEjra2tCxcu9OxL2tHRcejQoeDg4GXLljEY00YkhMIfZrP5zJkzTU1NUql07ty5nvsdTU1Nx44dCwkJWbx4cX+Gub8bY/RMJ0NIQUFBQUERcKbHHiEFBQUFBcUEQRlCCgoKCooZDWUIKSgoKChmNJQhpKCgoKCY0VCGkIKCgoJiRkMZQgoKCgqKGQ1lCCkoKCgoZjSUIaSgoKCgmNFQhpCCgoKCYkZDGUIKCgoKihkNZQgpKCgoKGY0lCGkoKCgoJjRUIaQgoKCgmJGQxlCipmC1Wp98MEHf/e7340484UXXnj44YfNZvPw0955552HH364pqYmQAscA1qttqCg4MSJE5WVlSaTafIXQEFxPUEZQoppzNNPP81isV588cWhH3V3d7NYLKFQ2D9it9u3b9++c+fOEU/7xRdfbNu2zWazDT/t0KFD27Zta2trG+uyr4aioqLly5eLxeKsrKzc3Nz4+HihUDh37txt27b1z6mtrd22bVteXt74LlFcXLxt27by8vIALXlkXnrpJYIgVq5cObQr3DvvvEMQREZGxoi/DgqKcUMZQoppjN1ut9lsDodj6Ecul8tms1mt1v4ROp2+ZMmSnJycSVxggDlz5kxubu7BgwfT09N//etf/+1vf3vyySdXrVpVVFS0e/fu/mnFxcUPP/zwf/7zn/FdZe/evQ8//PCRI0cCtOqReeqpp7Kzs7/77rvt27d7jjc1Nf3yl79ks9nvv/8+k8mctPVQzDSobs4UMwU2m33o0KGpXsVV8cwzzxiNxieeeOIvf/mL53hHR8e5c+emalVXD4PBeP/99zMyMn7xi1+sXLkyIiICgMvl2rp1a09Pz5/+9KfU1NSpXiPF9QxlCClmCi6Xq7CwkMvlJiUleY4bjcY9e/bU1dWFhISsWbNGJpP5PNxutx84cODixYsikWjFihWRkZH+LtTd3f399983NDRwOJycnJysrCzPT/V6fUVFhUwmi4yMbG5u3rt3b09Pj0ajWbt2LYvFGn79J06cAPDzn//c6yO5XL5ixQrydXV1dXV1NYC2traCggJyMCIiQi6Xk68vX75cVFTU2NhIEERCQsKSJUs8r1taWtrU1ASgvr6+//BZs2YJBIL+OeXl5SdPnuzq6lKpVMuXL1cqlV7rMfx/9u47sKlyfxj4k72a2TSjSdO9aGnpoFDKpgiyQUEQRUXhOlEBvcpV7+sVFQeiFy4oXn4qAqICgggCpchoKbSl0L3bdKUradI0e533j/SGkKaltEnT8Xz+ap7znOd8T8f59jzneZ6jUl27dq2urk6n07HZ7PHjx8fExKBQqD7OLjIy8r333tu2bdv69evT0tJQKNT+/fvPnTsXHx+/ZcuWPnaEIBdAIGjE2rx5MwDg/fff77lJKpUCAPB4vK1ErVYDAKKjo+2r3bx5UygU2v4cKBTKzz//PGHCBACAUqm0Vaurq4uJibFVw2AwH3/88dq1awEAWVlZ9g3u2LGDQqHY/4nNmTOnvb3dVuHSpUsAgPXr1+/evdu+uy8iIqKhoaGPkzWbzdaWq6ur+6i2YsWKnn/mX3/9NYIgBoMhMjLSYZNIJLI/BYf/EqyuXLli3drW1rZgwQL7TQQC4cMPP7QP4MyZMywWy6GFNWvW9BGzldFotHZc79+/XywWU6lUAoFQWFh43x0haJBgIoRGsEEmwtbWVjabjUKhtm3bVl5eXlFR8Y9//INEInl7e9snQr1eb82CTz755J07d8Ri8e7du8lksq+vr0MifP/99wEAoaGhhw8fLi4uzsjIsCbLqVOnms1max1rIgwICPDy8vrkk09u3ryZlpY2a9YsAMDSpUv7Pt+UlBQAwOzZs8vKynqrk5+fbw1jxYoVaf/T2NiIIIhOp4uKitq5c+fly5crKiqysrK2bNmCxWJ9fHw6Ojqsu1+/fv3ZZ58FALz66qu23eVyOYIgGo3G+n147LHH0tPTy8rKTpw4ERYWBgDYu3evdXeFQkGj0chk8t69e0tLS+vr6zMyMj799NO3336771OzKi4uJhAINBotOTkZALBjx47+7AVBgwQTITSCWROhUCic3IO1Q7LvRLh161YAwIsvvmjf5qZNm6w3MbZEaB3BMWvWLIvFYqv29ddfW6vZEmFNTQ0WixUIBDKZzL7B5cuXAwBOnTpl/WhNhACAtLQ0Wx2lUslgMDAYjFar7eN8L1++TCaTrbsHBwc/+eST+/fvb2pqcqj222+/AQBee+21+33/EARB3n33XQDAnj17bCUff/wxAGDfvn0ONa2jczds2GBfKJFIaDSaj4+PTqdDECQ9Pb3nt/SBWI8OAJg0aZLJZBpwOxDUf3DUKDTitbe3F/dQVlZ23x1PnjwJAHB4BNXziZS12ubNm+2fcj399NMOTxN/+uknk8n04osvOnQMvvjiiwCAs2fP2hfGxcXZnuoBAKhUanJystlsrq+v7yPgGTNmFBUVrV27lsFgVFdX//jjjxs3bhQKhUuWLGlpabnv+Tq1ZMkSAEB2dvZ9ax46dAgA8M4779gX8vn85cuXt7e35+bmAgCYTCYAID8/X6PRDCwe2xPHZcuWYTCYgTUCQQ8EDpaBRrxt27a99957DoUymay3YS9Wer2+urqaSqUGBQXZl4tEIm9vb5lMZispKSkBAMTGxtpXIxAIkZGR165ds5Xcvn0bAJCXl/fWW2/Z15TL5QAAsVhsXxgeHu4QD5fLBQC0trZaOxt7ExgYeOjQIaPRmJ2dnZOTc/78+QsXLpw+fXr27Nl5eXlEIrGPfa1h7NixIyMjo6mpSaFQ2MqtPcl90Gg0ZWVlBAJh7969DpuqqqqsLaekpMTExCQmJmZmZvr7+y9atGjmzJnz5s3j8Xh9N27T1NT0+uuv4/F4FAr10UcfrV69OiAgoJ/7QtCAwUQIjVFqtRpBENtYSnscDsc+EapUKgBAz5ocDsf+ozXhpaWl2To/bZhMJhZ7z9+arYfTBo1GAwAsFkt/gsfhcCkpKSkpKa+99lpGRsbcuXNLS0t/+eWXdevW9bFXWVnZlClTOjs7p06dumDBAiaTiUajpVLp559/7nQupr3Ozk4EQUwmk/3MffsTtLaAwWDS0tLef//9o0ePfv/9999//z0ajZ43b96ePXsc/uFwauPGjXK5fPv27Wg0etu2bc8+++zFixf7Hm4KQYMHEyE0RlEoFBQK1dbW1nOTw2Ix1pkDbW1t1vltvVWzrmJz8ODBpUuXuj7c3k2dOvXRRx89dOhQbm5u34nwww8/lMvl//nPf6y9tVYZGRkOsxKdsp6dl5eXVCq15uzeMBiMXbt27dy5s7Cw8NKlSwcPHvzzzz8ffvjhgoICAoHQx47ffffd2bNn4+Li3nzzTRQK9dtvv126dOnAgQPPPffcfcODoMGAzwihMYpAIISGhqpUqoqKCvvy2trajo4O+5Lo6Gjwv55PG51OZ+0ytYmLiwMAXL9+3V0R986aYGxP1KyzMkwmk0M166T7NWvW2Bfm5eU5VLNOK3S4R/Ty8goNDe3s7CwuLu5PSGg0OjY29vXXX8/NzY2Pj6+oqCgsLOyjvkQi2bJlCx6Pty4iY51iTyQSt2zZ0tDQ0J8jQtCAwUQIjV3WKXc7d+60L+x5e2SrhtithHngwAGHfPnEE0/gcLhvv/22pqbGoQWLxWIdszpI3333nf2icVYtLS1nzpwBACQkJFhLBAIBAKBn/rA+NLUfj6NSqT777DOHatZpIY2NjQ7lzzzzDADgnXfe6dmPau09tn6B3LteKAaDsfYh6/X6Pk7NuojMe++9Z1tEJjIyctu2bUqlcv369UiPNUghyJU8OmYVggZlkPMIpVKpdYjKa6+9dvv27Tt37mzevJlMJlsfB9qmTxiNRmuOWblyZVZWVnFx8aeffkokEq09pfbzCD/99FMAgI+PzyeffHLp0qWCgoLff//9/fffDwoKOn78uLWObUK9Q8Dr168HAFy+fLmP8yUQCBwO58UXXzx06NBff/31+++/b9++3bogQFRUlHUCg/VMaTQaDofbtGnTnj17vvnmm5KSEgRB/vWvf1lr/vHHH+Xl5adOnYqLi7M+ups3b57tKBUVFWg0msFgvP322/v27fvmm28kEgmCIFqt1jrhPSUl5ccff8zNzc3Kyjpy5MjTTz/t4+Nj3fe7776LiIjYsWPH+fPny8rKsrOzrf2cAQEBer2+t/P673//CwCIi4szGAz25bbv/Pfff9/HtwWCBgkmQmgEG/zKMnfu3LEfxEGlUk+ePNlzZRmJRGK/WjcWi921a5fTlWX+7//+z5pc7Y0fPz43N9daYTCJcOPGjdbbNXsYDObRRx9tbm62r3n69Ong4GBbHevKMlqtdtGiRfb7pqSkZGRkOCRCBEH27dtnP9TTtrKM9f7MYeAPgUCwLQVw5swZOp3uEOGECROsmdipxsZGJpOJx+MLCgp6bs3Pz8fj8XQ6ve9ldyBoMFAI7HOARiypVCqXy729vXuu6WWxWKqrq9FotC0fIAhSVVVFIBAcxrzo9fq//vqrrq6OzWanpqbS6fTGxkaDwRAQEGA/KsRisWRmZpaWlnp5ec2aNYvP57e1talUKoFA4DAGRK/X37x5s6qqymKx8Hi8cePG2edarVbb3NxMpVIdhqG2t7d3dXX5+vr2PQUCQZDS0tKamhpr5hMKhYmJiQ7jV+2P1dLSgiAIm82m0WjWwjt37hQUFFgslnHjxk2cONFkMjU0NJBIpJ5LhnZ1dbW3twMAHKJqa2u7fv16S0sLhUIRCoUJCQm2xgEAZrM5Pz+/pqZGJpN5e3uHhoY6zDxx0NnZKZPJiERizxxv1dTUpNfr7U8BglwLJkIIgiBoTIODZSAIgqAxDSZCCIIgaEyDiRCCIAga02AihCAIgsY0mAghCIKgMQ0mQgiCIGhMg4kQgiAIGtNgIoQgCILGNJgIIQiCoDENJkIIgiBoTBsWiXDv3r3WJQ3vq+cr1qAxxWw2w0UBxzh4ERjj3PELMCwS4cGDB3u+ws0prVbr7mCg4Uyv11ssFk9HAXkSvAiMcdb3ebm2zWGRCCEIgiDIU2AihCAIgsY0NyZCs9n8xRdfLFiwYP369eXl5a5t3KKG/WMQBEGQC2DvX2Wgtm/ffvLkyc8++ywzM3PmzJlVVVUUCmXwzRrFRsXPCowBI0uShc4LHXyDEARBTr388stHjhzxdBRQt61bt27bts0dLbsrERqNxr179x47dmzatGmpqannzp07evTos88+O/iWLxsuH6AcCBOGrc9bD+bCzl0IgtxFIpH8+9//XrhwoacDgcC3337b2NjopsbdlQgbGhqkUmlycrL1Y0pKyq1bt1ySCOeGzZ0bNldlUN369BbpJombzB18mxAEQU5RKBQmk+npKCBAIpHc17i7EmFrayuVSsViu9v39vbuY4JEfX39unXryGSy9WNwcPB3333ntKZKpbJ9nRuQ63/Nvyu6y3VRQ8OdVqs1GAwYDMbTgUAeY38RcDez2Txkx4Luy2g0dnV1aTQas9mMQqH6uReRSMThcH3XcVci9PLy0ul0to8ajYZKpfZWmcfjvfrqq9HR0daPVCq1j8q2TfMemmfabyKZSViGG590QsMKBoMhEAgwEY5xfVwfXAv+pg0rOByOSqWi0Wgymdz/RNgf7kohAoHAaDRKJBJfX18AQG1tbUBAQG+V8Xh8REREQkLCAx0imhOdjknHiXH+E/wHGS0EQRA0ZrlrqAmLxUpNTf32228BABKJ5OzZs6tWrXL5URRkhVQsdXmzEARB0Njhxk7Fzz//fOHChWfOnBGLxX/7299iYmJcfgij8b1eUgAAIABJREFUj9HUAhcehCAIggbOjYlw/PjxVVVVZWVlHA6Hx+O54xA0IY18k9zb1v93+f8tCF2QJEhyx6EhCIKGLYPBUFdXFxoKZ1r3i3tn4eHx+JiYGDdlQQCAKEjE1rNBL+uv0nPpeXfy3HRoCIKgYau6unr69OmejmLEGNnT0cN9wxWIQteh67nJYDbM1s2m1LhgLRsIgqCRJSgoKD093dNRjBgjOxHi0DgJTlJXXddzU0VrhRARCpSCoY8KgiDITf7888833njD+h6impqaJ598UqFQ9Kwmk8n27ds35NGNVCM7EQIAuqhdinonvwcN1Q0d+I4IS0RdRx0AANEjFfsrSs6UDHmAEARBLpOampqZmfnll18ajca1a9cmJCQwGIye1To7O48dOzb04Y1QI34qutnHTGmgGKuNuECcfVpXNag6mB1GubG+pJ4VwerY31GHqgtvDW+f2O7D8fFcvBAEjWDvXHrnw2sfDtnhdj60c3PyZvsSHA53+PDhyZMnX7lyhcPhvPrqq0MWzCg24hMhI4zRUdnR/EszwkD8n/cH/1ttgNRGQgejlSilqlpVnFfcSmud/8L8zAOZ6CPoma/N9GTEEASNWNtnb98+e7tnYwgMDFy3bt3OnTurqqpcu8DKmDXiu0bnTJgDngDp89Jb5a1n9501WozWcraG7RPkQwwiBjUG8ZX8GetmEDCE5CeSA1QBf2X95dmYIQiCBqywsPCHH35YsWLFm2++6elYRokRnwgBANP9pz8T/0zkC5FR8qgrV68AAFR6lcgsEoYIA8cHBloC28a1MWgMAACJTOqc0Im9jLXlSwiCoBFErVavXr36888/P3z4cE1Nzd69ez0d0WgwGhKhFZVJrRtfx7vJAwBUVlZ2YjqxBCydQ5eNl01cOtFWLXZBrAAIfjv/m+cihSAIGqDPP/98xowZ69atIxAIR48e3b9/v1gs7lmNQCDA2fT9N+KfEdqLnxdfVVAluykz3DZoKVprYciykHsqoQEqGSXIFJjnmzEouLQ8BEEjyT//+U/b12FhYXfu3HFaLSgo6OrVq0MV1Ig3qhKhF8Hrgt+FDRc2aNHakMdDeqsWOCMQZIKc2zmT4yc/UPtlVWW16bUP/+3hQUcKQRDkGp2dnQ5veyUSiZGRkZ6KZyQaVYkQABA7NTbmUMzex/YKA4W9VkIBsVCMykKB+AdrvP5K/aS2STVlNUERQYOME4IgyCWqqqq++uor+xJfX98dO3Z4Kp6RaLQlwtSg1MNPH57uf59F9oSzhMSDRIvegiY8wFNSQasgm5LNPc8FEYOLEoIgyEUSEhIOHjzYd53Ozs7m5uaIiCG9ct26dSs2NhaLfeAsgyBIbm5uYmLikE0OGT2DZawwKMx9syAAIFQUWo4pr7ha0Xc1i8piqu9+zVNNdQ3BQhj39DhaF01Zp3RBrBAEQW7z7rvvKpXdV6qrV68+99xzg2mtoaHh888/f6BdJk6caAvggej1+qSkJJ3OySLSbjLaEmH/NYQ3YO7cZ7BMyS8l7T+2mzpNAADxdbGYJRaxRH95/9V0pmlIYoQgCBqgnTt3dnV1Wb+ePXv20aNHB9OaRCLZv3+/K+K6PwKBUFFRQSQSh+ZwYCwnwukzp1v0Fk2jprcKKpWKLqFfIVyp/G9lc36zb4MvJY4CAEhakkTuIMsl8iEMFoIgqFtaWtqSJUsmT568detWtVoNADAajW+//fakSZOSkpKeeuopBEHef/99g8Hw/PPPr1q16tatW6WlpdY1uHU63apVq9LS0mbPnj1lypRz585VVFQsW7Zs8uTJtjxXVFS0du3aiRMnpqam/vjjj9bCf/zjH83NzatWrVq1apX1Xu3IkSPz5s1LSUn56KOPTKbunrPff/991qxZM2fOPHfuXM/ICwoK1q9fr9VqAQDt7e1r165tbGzsWc1kMr355ptG4xDO9kaGgUmTJt24caM/NZVKpQuP+/2/vy88UNjb1lOHT2V+kSnXyC9/fLnkg5Lz/z5vMBm6N3196tp/rrkwEqif1Gq1yWTydBSQJ7n2ItC35cuXnzhxYsgO1x/p6ekBAQGXL1+ur6//29/+tmbNGgRB9uzZ89BDD4nF4qampmPHjpnNZolEQiQSr1+/Xl1drVarf//995SUFARBrPeIq1evLisrO3z4MJ1OX7p06a1btzIyMuh0emlpKYIgOTk5aWlpEokkKysrODj4r7/+QhDkxIkTAQEB1dXV1dXVZrP522+/jY+Pz83Nra6uXrRo0bvvvosgSG5urre3d1paWk1NzbJlywAAMpnMIf4nnnhi48aNFotl8eLFb775ptNztGZKjUZjX/jvf//7lVdeQRBEpVJZLBbXflfdOFimurq6trbW9nH69Ol4PN59hxsAv1l+zJPM0vLS/6v+v00RmwRsAZrWfYss1UhFtSKfpT4MEmPa36ehUehIcHc48pRHp2j3aRtaGvx4fh6KHYIgD9D+pdVlDN2zK9JcEnHyPT2Eu3bteuedd2bMmGH9mslk6vV6tVqNIIjZbPb393/kkUcAAHw+H4VCiUQigcDJq+g++uijwMDA8PDwN954Y926dfHx8QCAadOmZWdnR0REJCYmyuXy4uJinU43ZcqU8+fPz5w509fXF4fDBQV1D5jfuXPnvn37EhISAACffvrpggUL/vWvf33//ffr169PTU0FAHz44YcnT57seei9e/cmJCQsXry4o6Nj+3YPr9pq48ZEePDgwe+//z4sLMz6ceLEicMtEc6KmvXTmZ9m/TLrbfC2Jk/TQejwft0bhUUBAM6dP5eMTRZECwAAaJRjBzLbm33D60bHzQ6/pTARQtAYQppFIs0ieTCAmpqaTz/91PauwejoaJlM9vzzz1dVVSUlJXG53A0bNrz22mt9N2LLjl5eXr6+vravVSoVAODEiRObN2+eMWMGl8ttaGggEAg9W6itrd20aZPtks7hcAAADQ0NDz/cPc06ODjY6aGpVOqrr7768ssvp6en43C4Bzp393Hv9IkVK1bs2rXLrYcYDBQKNWnjJCKJyCQwMyoycMdxk65MYs1hGcyGiJII1Ky+Ru6iAlGoWrjuOwRBQ8rX13f16tXPPvusQ/n+/fv37dt3+fLlxx9/PC4ubsaMGWg0GkGQARzik08+2bt374IFCwAAL7/8sl6vBwA4tMbn83fv3m29MbXhcrkSicT6dVOT8xGFjY2NH3zwwYYNG7Zu3ZqVleU0yw499w6WaWpqOn78eE5OzsB+HkMgmBnMJDIBCiwJX5IzLkd3U4fokIwLGV4Yr6DkvmbNhyWEiVQivVk/ZKFCEARt3Ljxo48+KigoAAAoFIoTJ04AAC5fviwWizEYTGxsLJlMRqPRAAChUHjlyhWZTPago05IJFJRUREA4ObNmz/99JO1UCAQtLS0FBYWyuVyBEE2btz497//va6uDgDQ0tJy9uxZAMBjjz124MCB6upqg8HwwQcf9GzZZDKtWbPm1Vdf3b9/v7VjdlDfC9dx4x0hFottb28/evRoTk6OUCg8d+6cl5eX05pyufyHH35IT0+3fuRyuevWrXNa02g0um8o0ctzXz5fen7u53PHI+Mrp1QaTX0dyIvrRUFRrhdcnxo91U3xQD0ZjUY0Gm2xWDwdCOQxbr0IOBiG/8GvXLlSp9M988wzLS0tFApl+fLlK1assHZUdnR0kMnkF154Ydq0aQCAPXv2fPHFF7t27dq1axeDwbDOpkej0QkJCbaJ6lFRURQKxfp1YGCgtYfziy++eO6557788su4uLi33nrLekfo6+v70UcfvfLKKyqV6urVq2+++SYej1+0aJFUKmWz2dZJirNnz/773/+empqKwWDefvvtoqIih9n0P//8c0BAwN///ncAwL59+1asWJGXl2d9QmkPjUbHx8db07k9i8Vi/J/+z7XHYDA9m3KAGsxP+r///e9nn33mUEgmk2/fvg0AQBDEGqter582bdqiRYvee+89p+2EhIRMnjyZz+dbP3I4nE2bNjmt2dXVRaVSBxzwfd1uuV1SVxLHixvnP+6+lQv/W1jqVbpq9Sr3xQM50Gg0BAIBg4GrpY9d7r4I2Hvssceeeuqp5cuXD83hoD7s3r27rKzsiy++UKvVZDK5/4kQi8Xe94oxqDvCRx99dNasWQ6FttxrC5RAICxYsKCwsLC3dths9iuvvDJp0qT7HtFgMLi1T3my/+TJ/v1diZsWSaPmUPF4fF8/EgQY6404/+HyTHikM5vNMBGOce6+CNi7750ENEhqtdp642SDRqOnTJnitDIGgyEQCCaTiUAguHb1tUElQgaDwWAw+lMzOzs7KipqMMcahoLjgolZxLMlZxdGLXRewww6fuwATYD1FgvASzcEQdC95HL5oUOH7EtwOFxvidB93PiMcM6cOVFRUT4+PleuXCkrKztw4ID7juURGCbGwDW0n2tHxiFO/z0p2lfUqmilI3RcPY4aOESdORAEQSOFUCj8+uuvPR2FO0eNfvDBBwEBAWaz+amnniovL7c9AhxNAlYGpGpTL96+2HPTkd+O4JX48JfDayg1tYW1PStAEARBw4Eb7winTJky9He4QwxLxyojleFnw3Ov50Y9EUVidM+0PVFyIqYkhrGAwWFwTH4mk9jk2TghCIKg3sBHwYM17pFxuEdxWq329tG7j3xL0koYdAYnjgMACIwK9O7y9lyAEARBUF9G24t5PYIfwTfTzcgBpK29jePDqWyrXN21mvMUx7o1ITyhCqmSS+RMX6Zn44Qg6EGp1Wq5HL5qxvOsK3G7CUyEriHkC6+wrmhPaudvmF98vjjYKxjv170KHx6DbyA1aAo0ib6Jng0SgqAH4uvru2nTpt6mNUNDbOvWrW5qGSZCl4lYGmH6znTz25uxrbHGZfesfKEX6HU1Q7diPQRBLrFnz549e/Z4OgrI7eAzQpfhCrjmReaurq5sYnZYdJj9JmGkkKHo14RLCIIgaIjBO0JXEk0QiSaIjBbHhRDHR49v+b2lQ97BYrI8EhgEQRDUG3hH6Ho4tOOCajgMTkKUFOUXeSQeCIIgqA8wEQ4RnY9OUaXwdBQQBEGQI5gIhwgngkNrp3k6CgiCIMgRTIRDJHR8aLApuFXV6ulAIAiCoHvARDhEsBSsDqfLK8rzdCAQBEHQPWAiHDqdjE55DVyiAoIgaHiBiXDoYEVYSgvF01FAEARB94CJcOgII4Q8DQ9BEE8HMoJVdFSk16bLdfDGGoIgl4GJcOiw/dkiRFTdXu3pQEYqlUF15vAZ7jFu3Wd1J26c8HQ4EASNEjARDiEMaCe0V5fBRDhAaT+nPWF+Iiw1zGecD+cS58DtA56OCIKg0cDtiVAikeh0cL3pbmqWWiVWeTqKEamuvC5BnGBZYcHH4QXLBRFeERXnKvKa4ShcCIIGywWJsLS0dOHChVwul0K5ZyRITU3N+PHjk5OT+Xz+rl27Bn+gUYAQQKC2UT0dxYhUe6O2gFfAFXEBAAANGKsYb4A3rh++rjW58S1lEASNBS5IhEQice3atbt373Yo37Jly9y5c+vq6rKzs//5z39WVlYO/lgjXUBkgEAngONlBoDcRqYE3/1PC8vDMjcw55vmX/n5ikNNpV7Zc91zCIKg3rggEQYGBj7++OPBwcH2hZ2dnX/88Yf1hZahoaHz588/cuTI4I810rEELC/gVVJb4ulARhoE8PV8h5dbYdgY+TQ5o9Hx/VZrj69948IbQxgcBEEjm7ueETY0NKDR6ICAAOvHsLCw2tra3iqbTKampqaa/2ltHc3rkNUx6lqyWzwdxQhTW12rRCkFHIFDeXR8tMgg6lR32kpMFtPTtU8vvLXwdt3tNnXbtfprQxspBEEjT7/eR1hdXf3NN9/0LN+yZQuXy3W6i1KpJJPJto8UCqWzs9NpTQBAQ0PDyy+/TCAQrB/DwsKOHTvmtKZKNeJHmmiCNJxCTldXl6cDGRl0Kh3Ri1hVUIUmo0VdIq1WazAYMBiMrUIzvll2XZY8Odn68VbDrWQkuZPVif8RX4oqzcPkTXhpgodih9xiFFwEoMHQaDRmsxmFQvWzPpFIxOEcX43noF+JkEAg8Hg8Jztje92dw+EolUqLxYJGowEAcrmcw+H0VjkwMPCrr76aNGlSf4KhUkf2YJP4qfH6W3oiiojzus/PZixDNAiKjEIsSOu/W0uDSjEdGJPARKVSMRgMgUCwT4Rqvlpfo6fO7f6tkBZLGVRG7Auxv536LYmaFJIVokJUfBr/nsYRpP9/RdAwNNIvAtBgoNFoMpns2j/hfiVCoVC4efPmB2rXz8+PRqPdunVr4sSJAICcnJyVK1cOJMBRh0PjnMafjrwZGTInxL68VFpaIatYGr7UU4ENH7fSb/nc8BG8KSjOLcYCbEB1gAEY1FPVTivzxvPwf+JtH33EPsYYIwqFWrFsBQCgILdAVijjp3Qnwsb8RuV5pYKsmPLylCE4EQiCRgQXPCPUarW//vrrxYsXzWbzr7/+evbsWQAAgUB47rnntm7dWlRU9PXXXxcUFDz++OODP9bo0ChoNJY6DmvM+DkD+ys2sz7TIyENLzlAj+hv/35bn62vDaltiG2gIbTIyEindUOiQ0RmUUVLBQBAq9YG64LDk8NtW+Xecm1l9/yKyvxK5DRST6/nKZx0b0AQNGa5LBHeunVryZIltkQIANi+fXtycvIzzzxz+vTp8+fPMxiOo/vGLOE4IUV5z5zLkpKS+R3z4yhx+UfyW1RjeihNzu0chonRmNrIKePwlLzY1NiUxSnmp814PN5pfTQO3cHsqP6x2mQ21f9aX0GooNHuvgAZH4pntbEAAIgZsZyxFEUXzds4zwRMzY3NQ3Q+EAQNe/3qGu0bi8X65ZdfepYTCIQdO3YMvv3RJyE0wXjWiKgRFAUFAAAIQJ9Gl4eWz1o4a8nuJZk3Mx+Z84inY/QY2V8yS6hl5qSZaVfSzDjzw94PAwD4fvw+dhm3YRx6F7rhkwaVRYVZgbHfFBobqr+qt5gsuUdzTRjTvKXzUChUI7mRUEDgC/kAgMr8yq70rvjN8W49KQgaicpl5TKNbIrf6H+OANca9QBfqm8tqlZSK7F+bMhvUBlVUx6ZgqFi6vh16Pqx+0MpqC2I1kTHLYxDoVCMVQz2cnZ/9kIT0JznOUXsIs4LnBnjZthvYjPYTeimqgNVPrU+jEcZaBQaAKDz1VnEFmsF1UWVn9pPo9O4/FwgaKQrvlTccnJMdFCN3WuuZ3V6dTZXd/fOSbOkFYIKMo4MAMD54kgKUj8baVG1fHPLybSWkUv8p1jCkeC98ACApMCkiYET+7kjm8FevHGxn7dfz00NzAZNm6ZyceW44HHWEk4Ex7vTGwDQXtNO09IaMA0lhXCJAwhyRFAQfLt8PR3FUICJ0DMQLqKX6AEAiBHhyDj+U/yt5T7+Piwtq5+NZN3K8jnnY0bM7opyaElkkgmyCWFLw+5f9UFQUimlS0ofmvCQrSQqKopqoqrb1W1/tOXycjtZnW0Vba49KASNAhgtRmQWqQ3OB2yPJjAReoZPoA+5kwwAaMhuKEYVJ4d1zwcXBgiFZqHO2K/3dZgrzbMsswpKCtwYqDN/if/KaswyWUyuahDRI9Vp1eLvxBKGhMF18aCq+WHz18SusS8h4Ui1+FrdNzqpUhq7MJYYRCS2EHvb/UzJmVHzrwYEPRCyjkwCpIrKCk8H4nYwEXpGeHg418hFLIg2R1sfUG99dgUAwBFxSoyytq7X5ejssWXsemy9Jmuon28pjiqKfyqO2h3lklxYV14n/kLckdOBpqDDVrv4drA3podMZ6afCXglIIIfERYdJtAInGa7krKS+OPx13LgOm3QWORl8mrBtrTVjv7+EheMGoUGgM1gl6HL5L/JgQrEPhJrv0lGlJnqTJEhzqfN2WiN2mBDcNmcsoi/Iswyc9fZLnWrWgEUUVujBhmbWqPO+SFHtFAUJArqubVT2znZOJnCokySTrpcezk1OHUwx6oQV5B+JVUEV8x6bBYWPXS/jbPjZtu+9vb17kJ1FdUUxQbf84MACAC/gxZMC5KJgKQhCw2CPCwzMzMxKZGAI7DMLLGvGJGM/rflwDtCj5GRZNwSbnly+US/e4aEaGlaXfP9u0bLissUGEVyYnKVpUr5jfKPxj8OsA54ab0UHQqHmojpwX6Pi64U+cv8sQexv5/7vefWqooqOVZO20ijECnl18sfqGXHwBCk9Hhps7B57pq5Q5kFe2r3aq8qqrJ9/LPqz8ePP15xqKLD0MHdwA1RhbS3tXswPAgaMnW1dWGXwkqLSlVaFQmQKGEUqmL0L2gHE6HH0EPpLaEtK+ascChH89B4WffkcalGKtfJne4uLZO20du88F4HeQefBE8q5ijeW/9eI76xuqzavlpDdkPtV/3qaLUhlhDzo/NN00y8W7yeHYayGpnMSwYAIKQQJtRNsPaOqo3qk4UnH/Q9iz/f/DlRl5iwMuGB9nIHRjiDW8RV6VUAAK1J+8nvn7wjfkdZp7yedN3Xx7eYUVx1tuq+jUDQKND+e7sZmOUSubRNKkPLRKEivqGvWbyjA0yEHhO9ODp6dXTPcm+RN11Dt3598uDJ04dPO92d0kxBghAAwLTEadNnTH856WUAgIqh6hTf85aPritddA1dr9T3MyqzwszQMsanjA+aFiRABFeKHV97i25G6zl6AIBgooCP4qdnpW+/uv2tL95KPplcXv9gN4jGy0ZjqBFDwdy/qpuFzgul4+m3frhlqDSUflP6s+bngPCA4NeDX099HQDASGUIGgXZt7J77vjVza9uNN4Y8nghyC1aKlpYXawcXo6p1SSXypVYJZfHRSGo5uZRvhITfEY47PgH+mtNWsSMSPXSqe1TiSiiVqclER0nF/qqfY3RRgDA+rj1tkK0AI2rxgEAjn1zjOhFjI2PRelRebg87i1uzKyY/hy9/mp9Fi7rcZ/HAQAKH0X5jfLZ0bPtKzC6GCDRejBQHVAddimMS+aKgKiN0FZXUhfhH9HP0yxrKZtlnOW7YHjMUkID73XexG+JDb805KPyuc9wyQIyGXS/R2xy5OS8xDz6n/SvDV8/n/y8baezJWctFyxnQs9MXj3ZQ3FDkCu1/9leJCzicrm4clyXrMuMNwMAmonN6HI0nz+a7wvhHeGww6AyxDjx5ZOXL16+iCagG4gNxX8WO9QxGoxEhBgkdBzMwg/me6u9VVpVUltSdG206bipQlTR5delKXcysvTH8z9mV997l2MGuBJcS1j3WhL8eL5fq59SrwQASDukV09eRcyIwCAIDAu0Vpi+ejplBSU8IZz+HL1N2Gaue4BpBlUZVa3UVrTXcPkN9OX6qp9TNz/ZvGzzMoHA8Q3A8fPjmUHMhEsJRbVFAADEiDSfa446HvUY5bHJNZNdOJMEgjxF06qhdlGTFiV5C7xpWppBaTCQDQAABU/R8yUBo8xwuQxB9nwW+fiV+lHyKZZoS0dih0+pD7g3xbS3t3egOzAox07FsJAwhpmRnZ7dRmjDrsdWkCpSlqbwxvN8ZD49jxJyK6ThUoN9SVtmW42lZnJi9/0NM5qZCBIP5BwAABT8XBBdGH3nxJ12VLs3w9tagYAhcKI4pJkkjDeGFcpiyfu7FAAAgFvNNYw39L/+EJjAmzBVNJVJZDrdylnDIfgRaIdpir2Kzi86G/Mac+Nz+S/zJ1gmZJVnDXGoEORy4jPiDFpGMDvYL8CPY+KgOlEWLwsAgDOBw+8YzbeDACbC4SkkOsTENE0xTQmbETZ7yuxGS2NHVYd9BVm7TIlR9twRj8NLsBJBvqArtEvoK5y3ZR6bzk6ISjBZTHLJPYNu2rvaA82BwjahBeledbNeXq+8phTHim1r7KJIKAwbI8uQ3am6EyoNvRp9VVgmbCE5X3swJDpEZBJp9P2a1KhsVbKN7NiU2PtXHT5QIGZdzJmwM293vf0i7cUDMQceWfgICo+S+Ejkmc4HNEHQSIFoEHoznTWDBQBg0VidqE5aBw1LwwIAYqNijYhR1ijzdIxuBBPhMBWyMoSQQEBT0FQ8tY3SJq4Q22/tknVp8M5TjtxLzrQwY2befSJIwBBqvGpqs+4ZO1pYVNiB6/BFfPOq8+Rt8qyvsiT/kSBUZN3CdfbVmIuZLyEvgZ9AFbdq6bKlh+mHm4RNTo9LJBGlOGlJSb8W7azKqMqn5JOJ5P5UHlZeWPXCi8+8GBYZtnvBbmsJcwYzsiUSsYz+uVbQKCbOEeegcx4a370SYTuu3V/nT2KSAAA4NK7Kq6o2uxYxIWb56FxlCQ6WGaawHCx1Qff0HRPXZJDc04uoUWosRIvTHc1Cc7mufBpzmn2hMdHoc8Wnq6OLyupuU1GuIHgTNAZN9c1qY7MRwSLhU8PpcXTHMHyx1GeojQcbxz8yHoVCrX1urW0RnJ7kNLm2Qgvi7n92BonB4u88/uFvPGf8eM5428eQiJASUNJY3+gX4GTJbwgaERQlCqVQaZvOq6KocAYcndV9QdAF6xiljPZ/txstRsFWxyfoowC8IxwBWCIWUXHPYpjmTjNCcX4LMnPRzIjnHYduLpm2JI+VV/Hd3TUDae00cjCZMp4SUxPjY/CZ+NJE1kwWhu5kJoMXz2vimxPZ3mwAgA/Zx5vk3VucaH80oZnQnzOiqWk+/k4eW45QHfiOtubRvwwVNIoxO5iiGJHto5FlBACwOd3vQYuIjzAajP8x/kehU9SX13smRHeCiXAECAkP4Rq4wC7xYTQYp0kLAEDEEX2oTnLMQ889RNKTcm7kAAB0Jl2QLig0NjR8YrgPyofyMAWHw7kgzgkh/ir/+68YbgYsIys0JHTwRxwmNGSNss3JI1sIGhEUTQqNRTMpapKthMQl6YDOh9V9JYn2jT405dDGFzc2CZsqLo7CNbhdkAgtFsvhw4c3b968atWq6uq7y5r88suot05NAAAgAElEQVQvq+wolfBKMUAitqgD1dHa1GorweqwZMaDPWAj4UkSoaTzTicAoKCswIK2eHl7oUlo1gssfpxrhoTxBXw1Vp2Zldl3tbbGtmZUM4/Oc8lBhwMj3QhG80gCaFjQFGradrUhRiddQXWn6yTZkgG3XHmrUuwlJmHvTlb2DvDOx+TbekpRKNSHsz8UUAUTH54YLA8Wd4gHfKzhyQWJ0GQyHTlyxMvL6/Tp0x0ddwc3FhcXq9Xqlf9DIPSr0wzqCYVCtRHbaivujnYhG8g0Fu1B2/FL8hPKhACAmpwaOaN7oCPa25W9Aip/lfrOfd5e1lDTICVKXXhQj8OxcNgu+LgdcqNWcav8lLxSVVl/0knPpL5YX3O7ZsCNW2otpsB75sKODxyvWe5kOB6Ty9SQNNevXB/wsYYnF/z14vH4M2fOAAC+/PJLh01hYWErV64c/CEgHVNnbrg7XotmojF8Hvi9feER4WWgLPtWdnxTPG3VA+fR/oiYFsH6ntWp76QTHMfd2Kgb1RrGUL86yq3oPDqu0AV9yxDUm8afGlsDW3VhOv/z/ppWDZl7t0NII9OwjewBd7kZDUbfLl9m/D3TZ3Fo3IpIx2WQrZQCJanFcaGrkc69zwgvXLiwcOHC559/Pj8/360HGvVIQhJO1n2pNVlMDITh4zOQwSZN3k24czg1Sc0Lc0vPJFPIRGPRp690r4/qdMkVTAcGxxtVaYPny/M29TqGCIIGSWfQCUyCh1Y9tGLiigxWRv6pey6nZdlledg8H/19LghmuRkxOOlWvfTjJTFRHCbq76tAvQReZNXIm/jUt/7eEWZmOnnwExwczOP1ej1NTEwMDg7mcDjXrl2bPHlyZmZmfHy805q1tbXLly+39Z2GhYUdO3bMaU2VStXPgEcZH4EPNgcrk8vwWHyrrBULsBrtQG6qCBGEgGsB9dPqu7q6XB6kFTocHZsd+4XmC0OHgdRKeualZ1AolH0FppoJeGBgAWi1WoPBgMF4fp1ue1QyVYNo5O1yLBF2kLrdGLwIlFeXkzAkio4CdIAfyyddJdn/+RjLjR2BHaZKU4O4geHtpKNIp9M1n2wWtAgUvgrOKo79pkvFl+Kb4y2rLf3/e2T4MIx6o/suIPel0WjMZrPDVaUPRCLxvoMB+/t3+49//KNn4euvv7506dLedlm8eLH1i/nz50skkm+//Xbfvn1Oa/r5+W3btm3ChAnWjxQKhUrt9Q1YfWwaxaKio+6cvZP9Z/bDjz8sbhBbsJYAasAA2pkyfUqWKislKcXVAd5FXU5tw7c9cfsJE9aENqPbutpCBCG2rWajmWlm+kX7UYkD+TliMBgCgTDcEiEAoAZTw1Vw/ULhVMKhMNYuAsp2pZ6gj6JGAQASExKVl5RYLJZEIgEAgAX4qnypU6gtdS2EZoLTyazXv7/O0DIOxx1edmcZSoXy4nvZNqGuotSh6oiQ/q6VDwDwCvHCI3gN0HCp3MGe2ICg0Wgymdz/RNgf/U2Ely9fHsxhhEJhVVWvb3TDYrECgSAoyMn70CEb1nIW6yiroaVBIVNgcAPMBGg0OmWRG7OgFWchxzLFgqKhbu26JS+T2yfCmtwaFVoVR+zHrPsRRYFXYJuxMBFC7qBuVaPp3Y+xKERKKba0ubg5PjEeAFBbUtuOak8SJaXR0jT1GpDsuO+vl36d3DnZe5P3JNqkIw1Hoo5Hxb7cvbRhs7Q5Th/HX/xgg8ZRWJQCo+is6+RGeyYRuoMbnxHm5uZa39RaU1Nz8ODBmTNnuu9YY4EoVNTAa6g4WqGRawzE4bVcdU9oJhqFQWnYGr1YDwBAEAQxI4W3ConpxMYJjZ6OzvW0JK2qfcx12UFDAy/DY3l3b1qUDGVbZfcCDg15De3sdgAAmodGtztezzv1ncLrQiQZIdPIAICpq6bS5fSa0u7xpZVXKsVUMZb8wP35naTO9sb2gZ3L8OSaRBgaGopCobq6upKSklAoVH19PQDgtddeYzAY/v7+MTExjz766IYNG1xyrLEsYW1CqCq0q6wLIY+MlS0pgRRqBxUA0Ppjq+IjBe8sryWpZfHCxZ6Oy/VMTBMiGxk/FGjEoWqobCHb9pEQQMC1dD/0okgorCgWAMDH34fa5dhjfPXmVQ6GI5rdvWSMyFvUGNnYdLJJoVMAANjVbPX4+0x2cspIM+pa77duxojimkRYWVmJ2BGJRACAjIyM+vr6jIyMzs7OnTt3otFwFZvBIpKJ+kT9HP0cMEIekQRFBfnp/IxdRlO96cDUA8Q3iBMfmujpoNyC6E3Eq/GejgIahUwWE9/EDwgKsJUEjQviqDkIgrQr2nlGXtzEOABASGiIr8nXcZz2bdAR0AHsnqZNXTHVH+W//eD2jsIOtB4dP8n5AMa+YXlYgmJUzQt3b3Ki0+l+fn7DcGjDyBX6UKiGpAnwC/B0IP3CZDMtaMvtn2/nEnO3zto6sAEyIwLdl87UOn+RIQQNhlgixqAwRNrd1Yb5Ij4TYZY3lt+6cauZ3EwkEAEAZCpZj9bnl92dWaHWq6OV0SGzQu5pDg185vm81faW+pT6KPUox+ueQaT9xBaw6epeJwqPRHC090iDBvy/8dHkEXN73UxuHtc8Tj5zlL+xLzQ4VGvWmtVmDAX+2we5UmNdIxVPFYG7K2IDFFDRVZd+uuSN8Wb63/33S+Yjq8+sTxiXYP2Ym5lLw9MCeYEODZLiSDgW7mLnxShs1MBCEgQIEDNitBhx6CGdEHw252xLS8tjsx9zecswEY48aOqIyYIAAB1X16JpSZ2a6ulA3MuH7HMFe0Vbqg1PDPd0LNCoomhSYKmOF+rQJ0LpB+gYDQY/8W6HvN90P/wxvNakJWFJ7cp2WjZNHub8H1CsP3Y1WD3gkIgMIhmQxS3iUN+hWDp/z5U9iycsZuPYAecDQkFoWXRZfMBAenT7MJIuqdBIFDM3BlmIYFCj/z5JwVS0l4+YoXTnrp5rUbV4Ogro/ixNFiKX6FCIYWF4L/BIMSSG6O4Men4En46mp2WlHb15tHF3I0JGUha7a65UO769UXyf4d9NXU1Gi9Gh0IJY9ufs//y3z/t7oK72RVcXyffIa76pafdqN7PMeafyBhJxn+AdIeReXB8u12f0zDfqA9GfiC3FAgAsnRY0DQ1cOd/Xxa6fvD6xcOKFaxc6Hup4aeJLng4H6lVjR2O8Op473clfEMoLRV3q+NC9K6ALdxmXgkpBwhDRKlHPvVxF66XtbO7su857+9+L1cfyffkrn+5ecdpkMW34esNbnW/RzLS2sjb6fDoh7j6DbvIu53FJ3Hp2PaoBFf1itBARUr6m5NXkJQQnuOZMAADwjhCCXCUkKoSr4SIGpOPrDtWNYTGnMOd8zo0zNxwKm3KahIXCtsVtc2lzKRcojcpROK1z1Mi/kC/1kpLY/V3kOjw1PJ4Y77PUx61ZEABgYVksUksfFVQG1buadx/3f3xS46SyojJrYVpR2ocdH4pSRJqXNC+gX+g632WWm/toBADALmUro5WLn1oc8kJIoHcgjo0jTydPYE5w2ZkAAGAihCBXCfILsgBL2eGyCkNFx+UOcJ8/cLcrKynj5nAFeYKCogJboUqlMl8wZyVmRU6IZG1gzcbOvvLHFQ8GCfUtqDoIl/IAA1IIHAL3DS5xvGNXqstRfalkZV9Lb1fUVwA0YK9lF/sXqy52/1/YfqVdwVeQppOCmcHPPfLcAeRA/cH6Pl7lrWhWsAysuBlxKBQqkh1pLSQmENFMF2cu2DUKQa6BQqGaSc1hjWFV86oM6QbJacnkZZMBAPo6vbREKiPJIqdHDs0ou08yPyG2EeeXzK+PrieiiPhT+CvpV3hqXl5sHrYSy6fyH3v4MQAAmohGLUVNOzZNJVV5sb3u2yw0xIpyi8woc+zEWE8H4gTPj6fJ6Gvd/9aaVgvJEgACxi8cb/yPsauxS+mlTOlM4T3S/Z6Gh0MeDnwusOVAi26H7hD90NvPv+2Fd/wlrE+vL6eVryS5/V1+8I4QglyGGEIU+4kXJy1mL2Czi9idmk6AgKYjTZW3K8mZ5KwdWWcLzw6sZYO5v4vqpVWmTb8yfU3pmq6ArqnLpiYuTcTysXQa3RhjnHVn1lTN1KR1SbbKfhF+Nxg3ak4M/J2ukPvIbsua+E2ejsI5toDtZ/GTau6+YRvRI9pLWvC/5ZWMEqOWoQUACFnCi+yLnT92lvxQoiFpKL4U2y4RPhHJbyUHLAjYqN7YtqvNWHvvyBoE0OvpuISh+N8R3hFCkMskLk20fhEdG52bnlv9W3VQSFCnuXPyW5MJgID5EWM5ZbktvR0368HWHD/3xznmbWYZpSxxdWKUb19zvxAEkZySTGdO99now8F0z5Uet36c9QtTnMkiteAZ96yAw5vD8z7ujRgRFG4YD+8Zk7jt3K4FHnvbUd9QBJQBbWhoaPAO9pYVyD6+8fEG+QYGYBhxRto0GgCALCdjI7vzS/IjyafPn57bPJc018nDTlICiRHF2PfVvif/eFLwisBWLimWtCFt8ybNG4LTgXeEEOQWzIeZ4bXhmquapvAmIpaIwqICnwlUpajomfTmP5v7345Zbw7PD6dEUZLNydUXq/uufC793Bz9HNGTIhTGSVbDCrD4WMd14KZGTC1Bl9TeqO1/SNAQaG1qxVqwcTHD9z0tcqK8tb6143SH8k/l612ve03w2hW0S3VNZVFbAAA+Wh9uYPdg12hO9AtPvhDyZoggTuC0KTqRHrEoAlEilq67A3CaMprEPDEJ29+BQoMBEyEEuUVwZHATuYmqp85aOMtWGDsr9nzyeSQPsaj6GnFnhVgQxIhU/VpVgiuJXhEtT5DTW52va2VRWepP11fsqIjJilFOU2K8HmDWJhqFbglu0dwayHueIfepvFlZS63Foodvp52RZtQ16zQlmuPxx4V/FwoXCv/fyv93GXe59EipRqfhmDmioAcYubooclEWKkuSI7F+NBvM/HZ+xMwHeFHiYMBECEHuwlvOa0xupJFp9oXrZ64/hznXeOr+kxaa9jUpdiiI9UTNbA0AIDg6WKQXWV9tZk/Zqmz7sq2ysLI8tNz7Te9x08c9aJxJs5JoXTRDx3B/t9eYgq/FW0Lv/9+SB2E52Ii6iCZs0+b5m60lJCwpYW0CsZVYdr6sBdOCxT1AFseisYpghTJf2V7XXr6jXP6JvJRYOj54vHti73H0oTkMBI1BwYHBwYHBDoUEDAE1A4W9hDU1m7D8Xv8A1W1qQ4dha8RWlVH1W/xvAAA2hy0F0prqmuCQu20aLca8H/M6uZ3znplHxA5w0Hw4J/w76ncpP6SEvRY2nNcBGCNO/3WadYflr/EXTXbvXMBBYgvZ1AKqZobGft2ocN/wnyN/Ti1IvUO786ANJk9Pph2g6Q/pKwWVhAWEmeyZrgy3T/COEIKG2tqktV/hv5L+KEU0vb7CsDC9sJBWeHTl0T8e/8M26ULiJWkqvWcY4We/fhZkCFr41MIBZ0Gr+c/Ol2vll/7v0u2W223qtsE0BQ1GjbQmOiPay9tLvlLOY/E8HU5fBAECQAC+ib4O5SuWr8jB56g4D7ymRDQ/+iLp4p/8Pxc+tTCAEzCUK3rDO0IIGmp4DH7d0+vOHjg7Y+8M4XNCAsPJKlM0MU0/Q+9QqPXV0uvvPia8XHJ5adVS5hwmFj/YP2Q+lQ+eAcbvjDcP3nzH8s4bpjdANJi5bOYgm4UeVOaxzAnMCbHrhuPcQQcYbwz9FToK69iHgEPjol+IJuEGMshl2UvLqAQqCjXU/RIwEUKQB0T5RLFfZmf/Nxu/B18/pT5l9j2LI5cUl2At2KnJUx32Yoex6VXdiVDdoeb9xsP4Y6iTXfOWRz6fb9lkYf7MTG1PVYepLYWWxuRGIVfoksah/shryJsune79tLenA+kvNMl5n6KQNsBfGwaRcf9KbuCCRKjVatPS0kpLS6lU6pIlS4TCu9+CmzdvXrx4kcfjrVmzhkzuaz0eCBpruF7cxa8tzk3P5V7nIjMQ+wkP4htiMocchgpz2GVc5DjZaVnbhTZUEEr7i7aUVbr8ieUuDAnthaY+SwUIYKKYWfuz1IfV7E3sQXa6Qv1Xk1GDYWD8hf6eDmTMccEzwg0bNnz55ZdKpTI7OzsyMvLmzZvW8p9++mnJkiUmk+n48eOzZ882mz299iIEDT+JcxKlaGnR1SL7Qno7nRHt5F9jKoH6e8zvTTebwE8g2y974caFbokJBQAACesSgnXBDTsaLnx5Ia0ozYIM6xGMowOxjagVaT0dxVjkgjvCPXv2MBjdf7QkEmn37t2TJk1CEOSDDz7Ys2fPypUrTSZTZGTkn3/+uWjRosEfDoJGGXGkOC4nDvxvtqFcLQ8wBrBj2U4rb1q6SfOwprWp9dHAR90aFZ6ID3grQF4uN14z0k/SP0///In1T/hSHUdGONBmaglRBDQDjsIbCJqa5uPv4+koxiIX/L7asiAAAI/H4/F4AEBTU1NpaemCBQsAAFgs9qGHHrp48eLgjwVBo0/yrGSzwaz8VWnINQAAbt+5LcPLCORe39NGxpMDAwOHIDAUGsWKZI3bOM5ntc/j+sfLd5dXNFf0vUv9tfqSvJIhiG300Zq0ArPAL8jP04GMRa4cLFNaWvrDDz+kp6cDACQSCZVKpVC611fl8XiFhYW97SiVSnfv3n3s2DHrRy6X+8orrzitqdfrrYkWGpv0ej0AAIMZVe+755F4L3q/OKdmzsTyiTqVTlYlI3gTrGc6XPgB9kvsru+6Cg8VCl8R2s8buwcCGEZGVV2VW4MfHReBsuKyjtsdU56YYispqSvxQfkgeGR4/eiHH71ej8Fg+j+yFIvF3veK0a9EmJGRsXTp0p7l169fDw8Pt37d2Ni4aNGijz/+OCEhAQCAwWAslrsPFSwWSx+hYDAYGo3GZDKtH5lMJhrt/FYVjUb3tgkaC9D/4+lAXOztlW9LNVJxidg305eFYjFmMIbdOeJB0JNB1D3UgxcOPvvws06raGQaPMDjFDi3Bj86fgE68jq4rVz7E2mub0YT0Hw034NRjQjWX4D+J8L+1OxXIkxOTq6pcfKiFiq1e9x2c3PznDlzXnzxxRdeeMFawufz1Wp1V1eXtU5LSwuf3+sPmMlkPvXUU5MmTbpvJDgcDocbulmW0HBj/QUYZXeEAIAQdkgICAEiUFZYNkE3gT6B/kDLUw0ROsCkYGZlzrpQeMEsMi95conD9tbWVjMwM7VMt/6Rjo6LgLfMm2Ph6Iw6Krn7Kqpp1ejp+lFwau5m/QVw7VzDfv1jhcFg6M5Y/51pb2+fO3fuunXrtmzZYtvF19c3Jibm5MmTAAC9Xn/u3Ln58+e7MG4IGpV8F/nqaXosZfhlQQAAAPwZfNF0UUJMQlRdlN7s2IMnk8iqyFVkM9msH+wQ8bLGMq1plIyflEqkFZ9VaKruLmtu0pq8Dd7N6ObqyruvE8FJcTgezIKe4YK/t5deeqmxsTE/P3/VqlUAgLCwsO3btwMA/vWvfz377LN5eXm5ublBQUFz584d/LEgaHSjRdKoYa6ZIO8WKECaRiIBUllR2c1bN6cnTbffqG/XI0ykQddgrDEGRAYM5jiGHwyX8JemvDKFSWQOKuBhoCy9zKKz0H6moeejiQlEAEBNfk0TtglLwarr1eB/a8jQ1XS2yPlQYcjdXJAIt23btnHjRttHOr175YulS5eGhYX99ddf06ZNW7x48dCvmgNBI5HTVwkONwq+QponBUn3FGI6MVh/rEKpQMTIYBJhZXElARDCQfjlry4nvZAkoDl/iZ1Tp9NPp05PHdj6Xm7CaeDUzq599867/7z0T2GCEADQVdzVzG4WkAWmZpO1jtqoFpqFvoH3mZ0CuYkLEuGECRN62xQZGRkZGTn4Q0AQNKz4TfLDHseaLCb7F+ZR1BQMFyPtlBolxsE0Lr0ulXKkC59ciNqHatrdpH1SGyIK6c+OnerOpOtJGe0Zc1cPl/6nxrJGnUU3O3m2KFwk/UbKrGZSgil0KZ00mURD0Uw3uxPh4VOHl6CX4Oiwa9QzRvzgKwiChp4gQsBBcW6U3rAvZJlYfD8+2ZeMV9x/ekOHtsP5BjMQtgqZk5loIjr4tWA8H68+pO75Fkan7uTeUaAVYVVhmq7uB3IeXxBHck1Sya3EoXGR7MibzJvidLHmqkZn0kVFRYmCRGw9GzEjki8kqWWp+KQRPydk5IKJEIKgB4cCbaw2Sa7EVqDT6HAITsQXCQIF3rr7LBstkUuu7bzW2tlqK8lrzGuXtBsqDNIT0lpQOylqkvUosc/EYgAm90puH62VVpReOnYJAGAoNTSJmsop5VXfVV355co/D/yT8THjq5tfDeZEB0Pfqee38vlTugfMx8yNYbWx5NfkOwU7Q71DvX29uQg3+1R2lbaq87lO1lyWp+KEYCKEIGggSLEkoeTuCvuN9Y0tmBYMChMSEIJBMLIWWR/7Ft4snI5Mz/szz/pRY9CQviPpD+jFx8S3am6dDzhvexcdCoVqi2sj3ej1mR+CILW/10aXRre0tnA7uJxYjmCFQKwR0xpoL3S8IMaIORc5d/If+CWxA2QGrXta5WK59VPxweKb1JvJ45KtH5NDk894nTkedvzbdd+iUCiABlKc1L/YHzMHE8eLG6IIIWeG6ShtCIKGuYikCEm6pLmtmc/hAwDamtr0BD0AAIfGVXlVUW5QUpal9LYvphJTRC0KrA4ECAAokHMjh4lj+rzhU9JegtPiNnE22VeeNm9acV5x+ZXy8BnhPZs6dfvURN3EKmaV+Sezn8VPFC1Co9FRb0VZt5qaTPEX471Oe+kCdER6r6/RqJHXZDZkroleY//IM7Mgs/NMJ28ZLz4yvp/fE2mT1Cg36g7pdlB2TKROnNA5YfrL0+3HCT732nP29XFsnM6oS5nc6zcKGhrwjhCCoIHAYDFVXlXV17tnwmGLsFp698w/JBTB1jj+k40gyJc/f7nvxD7EggQpgvyX+6tR6pKMEgCAOd8sFUkJGEIcL2524GwuhWu/Iw6Nk6ZIyVfJt8tvO7RptBhr02qNIqP/Cv/wrvA6Sp3DojNYATb8qfB8Sn7BnwU9T8FisHRd7zqx58SVfVeo56gX9lzQFnefgtakRc4ggcRAznHOjfQbPfd1SlwpLiWVcuZztqC2xChjdHN1HAanj/ohi0JEa0T9bBxyH3hHCEHQAGnCNb4lvogZyTiQwVQx49d13znFTo4155mNBiMO393DaTAbzh04t7J9pdlivky57I3xjvGPuR5xfXLGZFO8KUgRhCztazhM6szUIlmR8Vdj+cZyX5Jvg7JBb9KHsELSK9NXmFYI5wsxHMwF/gW8v/PxJtQUqneat/Xu057qvEpSJGERWanjUlFY1NXqq4qTCrwIj6FiTv18Kh4dH/ZqWEFOgW+aryJWwWDf/52xXQ1depaelEgiJZI4oK8UaIXhjbY1kkYoeEcIQdAARSZFcrQc2ccyb5k37288HpNnLed58xpxjQW53Tdhuy/svr3jdmhHKG09rc6/Lio7qoH9/9u726AmzjwA4E9IQkwgxCUxSAgI4eUob0IZ3l+HBOcQYRwEx8LYDg7OaOuHu3bmpu19acdx2g/aqS+0RUaYzul4KIc6OjRQD0vhCjgxc6CcRhlByGsTFAjEkE2y92F7OYq2vBhcQv6/T5snz2b/sP/Zf3az+zwTCKGS0pIBnwH1GbWRbowIW2I+jYQ9CXx/vrxVbnPYeht6H557iBAa7R3FuThdSEcI7ajbUVhc+NJ1c9Nyp9H0wD8GBk8Mtp9vtzlsZPv0f6YbQhvy/pQXsDuAu4srOyKTM+WPWx/f7rudM5qDVWDIByVlJA1uGVT/Tb2cfwjzKdNP7LecnmBdgUIIAFgliUByLOqYvFge+2GsQPCrUVGeiZ7N/XsOIfTdve/Kb5eHxoXG/iWWG8zNqM74yfcnTgoHIcRj8dLq0jS4Zjx0fDmbE1WIyp6WfdTyUb4tP34+vqu/K0uXxSviLbkijUYzxZnE98XPeM+SnyS/d+Y9o8U4r5034+ZDJYdck2mw6Kzoimhfja/opmgyd3JL9C9TA2bVZM3PzT88/vAH+Q+/v6FAS2B4dPhy/hawrtCW+YDOmsrMzDx58uRyBt12jeINvJPFYmGxWBtv0O2NZ1w7jprQYPogrsS3h2yP3B/pestqt25i/P++lQemB4HsQKHf0hcSEUJjZ8dYP7N8831VJpVgWOBkOmM/jF3OigRBTM1NYf4Y/hA3tZrORJ/Z69w7rB2u/nP1op6Nf2/k8Xh7S/YubFSqlcYeY/xI/GTV5PbYX0ZF61f31/+r3vrUeunQJRqNZpw22k/Zt/51K83HA8YG8lxzc3McDse9Q5XBb4QAAPcLE4U9lj7e/s/tPj4+IXt/NUbawiqIEIoVLKuSkUIrQmduzGB5WLoj/fH9x4Y4Qyxa1uo0Gg3zxxBCzBjmppxNtT21dh97QHbAiz0P7jv4YuOb4jfRW6jvXJ+py0QWwkfGR6pvVV/QvrA77f2j/VmSLNV9lZ+vH8yj5Ing0igAYE1IsiSsVBZ3F5fGctuXd7qAztjDQDTEYDC473LzyvJW8SFYATYpmWQ4GNIc6YpWjPljTMLThMnZSafVOdM0k83NDjwYqA/Ua7o0CCHTE5MlwLLkh4B1CM4IAQBrJagkaOlOqxWMrf7cK/2t9PGfx1c6Njc/hK9mq+9/ez/JnKT30ScfSab70PlSvv9l/7n5uXn1PCMSjqgeyZPOCJ8/f3769GmqowBUunr16oMHD6iOAlBmZmamoaHh1T+HRqNtC9q2ihUDcgKSZpJ6w3rfOPgG3YeOEAr7Q9gUY2r4xHChtTApLenVYwO/r6WlZXR01L2f6UmF0Gg0fv3111RHAah0/fr1O3fuUB0FoMzExERTUxOFAURkRog/Eu+r3ifBJK7GqZfbDzMAAAdDSURBVJypZ/xn2LsYO2QdTf+0UV25cmVo6CXDI7wKOJEHAIBXUpxXjFbzYyVYLzzpjBAAAABwOyiEAAAAvNq6eKBeJBLR6XRf3yXmpXQ4HFqtNjQ09PVEBdYho9HI4XD8/GAUKy+F47jBYBCLxUt3BRuUwWDgcrkcDmeZ/aurq48ePfr7fdZFITQYDHNzc8vpOT8/z2Kx1joesG7hOE6n0xfNMAC8ChwEvJzNZmMymcsfWSY4OJjNXuImpnVRCAEAAACqwDdrAAAAXg0KIQAAAK8GhRAAAIBXg0IIAADAq3nMyDLPnz8/e/bskydPMjMzq6qq3DsZFVg/cBy/e/fu0NCQv79/ZWWlq50giIsXLyoUColEUldXt2nTL1P5TExMNDc3m83mPXv2ZGZmUhQ1cCeFQvH9999PTk7GxcXV1NS47hGdmppqbGzU6XQymWznzp2u/j09PdeuXcMw7MCBA8HBMAuSx9NqtdeuXRsZGeFwOFKptLCw0PVWR0dHR0fH1q1b6+rqAgMDycbfSozl85gzwl27dsnl8ujo6E8++eTTTz+lOhywVs6dO1dZWXn69OlFe/njjz/+7LPPoqOjr1+/XlFRQTYajcb09HSTyRQcHFxSUnLz5k0qQgbupNfrKyoqJicnQ0NDm5qaCgsLcRxHCNnt9oKCAvKb0OHDh7/55huy/40bN3bv3i0Wi9VqdUZGxvT0NKXhAzdQKBR3794NCwtjMBhVVVX19fVke3Nz84EDByIiIoaGhnJzc202G0LIbrfn5+ffuXNnUWKsDOEJ+vr6+Hy+1WolCEKpVPJ4vNnZWaqDAmvC4XAQBHHp0qWEhARX4/T0tL+//7179wiCsFgsPB5PqVQSBPH555/v3LmT7PPll19KpVIqQgbuZLfbbTYbuTw7O8tmswcGBgiCuHLlSkxMDJke7e3t27Zts9vtBEFkZ2c3NDSQ/YuKik6dOkVR4GBNfPXVV9nZ2QRBOJ3O6OjotrY2cjkxMfHixYsEQbS1tS1MjPDwcHJ5RTzjjLC7uzs/P5+8QpKSkuLr6zs4OEh1UGBNvPRheaVSGRAQEB8fjxBis9m5ubnd3d0IoR9//LG4uJjss2PHjp6eHgKei/VwdDqdyWSSyw6Hw263+/v7I4S6u7ulUimZHlKpdGJiYmxszGaz9fX1yWQysn9xcTGZGGBjwHF8YGAgMTERIaTT6R49ekTuaxqNJpPJyH29KDHGx8fHxsZWuiHPKIR6vX7Lli2ul0KhUKvVUhgPeM0WJUBQUBCZADqdztUuFAptNpvJZKImRLAG3n///ZKSkri4OPTrHPD19cUwTKfT6fV6giCEQiHZHhQUpNPpKAsXuM/IyEhkZOTmzZtVKtWJEycQQjqdjs1mc7lcsoPrIPDSxFjp5jyjEDIYDIfD4XqJ4/iSA5OCjeTFBCAvDzAYDLvdTjaSC5AYG8bRo0d7e3sbGxvJly89CJDnjq4cgCPDhhEREaFQKPr7+zEMO3z4MEKIyWSSF8PJDgsPAq9eHTyjEIaEhGg0GnLZ4XDo9XqRSERtSOB1EolEOp3O6XSSLzUaDXlzYEhIiOvagFqt9vPz4/F4lEUJ3Of48ePnz5+/deuW62xv4UHAbDabzWaRSCQUChkMhqvdlRjA09HpdAzDEhMTjx071tLSQhCESCTCcdxoNJIdFh4EXkyMlW7OMwphaWlpT0+PwWBACHV2dvJ4vJSUFKqDAq9PWloak8ns6upCCGm12v7+/tLSUoRQWVlZW1sb+X3w8uXLZWVlFAcK3OHkyZP19fWdnZ0Lq1pZWZlcLjebzQih1tbW5ORksVhMp9NLS0tbW1sRQjiOX716tby8nLK4gZtYLBbXskKhEIvFNBpNIBBkZWWR+9pisbS3t5P7elFipKSkhISErHiT7ry/Zy0dOXIkKiqqtrZWKBReuHCB6nDAWlEqlampqRKJhM1mp6amHjp0iGxvbm4WCoW1tbWRkZEffPAB2WixWNLT03Nzc/ft2ycUCsnbSoFHGx0dpdFo4eHhqf/T2dlJvlVZWZmQkPDOO+8IBAK5XE42KpVKgUBQXV2dlZWVl5c3Pz9PXezAPWpqavLy8vbv3y+VSgMDA9vb28n2rq4uPp//9ttvJycnl5eXO51Osr2ysjIxMZFMjI6OjlVs0ZNmn+jr6xsbG0tLS4uKiqI6FrBWZmdnVSqV6yWXy42JiSGXVSqVUqmUSCQZGRmuDjabraura2ZmRiaTuR6wBZ7LarUODw8vbJFIJBiGIYQIguju7tbr9Tk5OQvnJTUajbdu3dq8eXNRURGD4TGDhIDfYrVab9++rdFo+Hx+RkbGwt87NBpNT09PUFBQQUGB6w7z30qM5fOkQggAAAC4nWf8RggAAACsESiEAAAAvBoUQgAAAF4NCiEAAACvBoUQAACAV4NCCAAAwKtBIQQAAODVoBACAADwalAIAQAAeDUohAAAALwaFEIAAABe7b+XUcAKHsrOxQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9eWBb5ZX//b3ad1uWvMj7viV2YmeHhAAhCWEvS9sUKIR2hkI7LS9tp7y/aafD9KX9tdPOtAzQEnYS1kAhUEICCWRPHMfxvtuyLS+SLGu1dunqvn9ItmVbkuXdse/nL+ve514915Luuec853wPQVEUaGhoaGhoViqMxZ4ADQ0NDQ3NYkIbQpoVxM9+9rMf/OAHUw7bv3//o48+qlKpIg/79NNPH3300YqKijma3TSw2Ww1NTXnzp1raWkZHh5e+AnQ0CwnaENIcxWzf/9+Doezb9++kHsTExM5HE5fX9/olnfeeef111+f8rTHjx/fv3//0NBQ5GFVVVX79+9vb2+fzpRnS3d397333hsbG1tWVrZ169aioqKYmJjS0tL//M//HB1jNBr3799/9OjRmb1FV1fX/v37L168OEdTnpoNGzYQU6HT6RZsPjQrDdZiT4CGZuaQJOnxeLxeb8i9brfb4/EEr4Jfe+21ZrN5oWY396hUqs2bN2u12tzc3LvvvluhUAwODra2th47duzdd9/993//d/+wgYGBRx999Lbbbrv55ptn8C5VVVWPPvroz372s82bN8/p9MOycePG2NjYkLtaW1t7e3sFAgGPx1uYydCsQGhDSLOCeP/99xd7CrPimWee0Wq13/jGNw4dOsRkMke3Dw8Pnzp1ahEnNkuef/75kNu7urr8zuIrr7wiFosXeFY0KwfaENKsIOrr671eb1lZWfBGj8fz5ZdftrS0xMbG7ty5My0tLeSxFEWdOXOmurqay+Vu27Zt1apV4d7FZrOdOHGiq6uLwWCUlJRcd911DMbYGoTb7a6vrxeJRAUFBUaj8ciRI2q1Oj09/eabb5ZIJJHnf+bMGQA//vGPg60gALFYfNttt/n/7u/vb2pqAmA2m6uqqvwbExMTU1NT/X9rNJqKigqVSkWSZHZ29o033igSiUZP1dnZqVQq/cNGD8/IyJDL5aNjenp6Tp06pdVqZTLZ9ddfn52dPWGebrf77NmzXV1dZrNZLpfn5eVt3LhxwpynxGq13nHHHXq9/qmnnvr2t789rWNpaKYHRUNz1fLCCy8AeOCBB0Lu9UfbVCrV6Jbk5GQulxs8RqlUrl69evTnwGKx/vjHP953330AqqqqRoeZTKYdO3YE/3AeffTRX/3qVwAOHDgQfMI333xTJpMFj1yzZk1HR8foAH8OzrZt2z766KNgy5eYmFhdXR35ektLSwEcO3Yswphf/OIXk3/mP//5z/17d+/eTRBE8K64uLiPPvpo9PA77rhj8uGvvPKKf6/dbt+3b1+wXWcwGI8//rg/BO2nqqoqPT19whk2bNgQ+dIm4PP57r33XgA7d+70er3TOpaGZrrQhpDmKmaWhtDpdBYVFQHYt29fbW1td3f3n//8Zz6fn5ycPMEQ+v2tnTt3Xrx4UaVSvfXWW/Hx8f5hwYbw4MGDBEEkJSX97W9/q6mpqaysfPLJJxkMRnZ2tsVi8Y/xG0KFQiEUCp966qnTp0+fPn167969AFavXu3z+SJc73e/+10AJSUlFRUV4ca0t7e//PLLADZv3vzlCG1tbf69W7duffrpp/0ecGVl5TPPPCMSibhcbnNzs39ATU2Nf63xvvvuGz28v7+foiiSJPfs2QPghhtuOHLkSEtLy9GjR/3riE8++aT/cJ/Pl5eXx2Qyf/Ob39TX16tUqoqKir/+9a+PPPJIhOuazK9//WsAeXl5RqNxWgfS0MwA2hDSXMX4DaFcLt8cCn8sLoIh/Nvf/gZg165dwed89tln/U7MqCH0BySzs7OdTufosOPHj/uHjRpCq9UaFxcnFApbW1uDT/jzn/8cwJ/+9Cf/y9GqjBdeeGF0DEmSfpPc1NQU4XpbW1vj4+P9hycnJ993331//vOfg91NPw0NDQBuu+22qf5/FEVRb7zxBoAnnnhidMuhQ4cA/OxnP5sw8r333gNw4403kiQ5utFut2dlZbHZ7L6+vtGr2717dzRvHY6PP/6YwWCIxeKGhobZnIeGJkro8gmaqx6z2dwYCpIkIx/48ccfA/jpT38avPH73//+hAxG/7Af/ehHXC53dOOOHTsmrDV+9tlnBoPhm9/8Zn5+fvD2xx9/HMDnn38evDEmJuaf//mfR18yGIybbroJQFdXV4QJ5+fnNzU1/fCHP0xMTBwYGDh06NATTzyRm5t77bXXtrS0RL7YcNx5550ALl26NOXIAwcOAPi3f/u34NAon89/5JFH/Ous/usiCKKtrU2v189sPi0tLQ899BBFUa+++mqEhVgamjmETpahuer51re+5b9HT0AqlZpMpggH+pNK1qxZE7yRz+cXFBQEl8mHHAZg7dq11dXVoy/9f/f09Dz11FPBwyiKIgiiu7s7eGNubu6E5JHExEQAWq02woQByOXy55577tlnn62pqamoqDhx4sQ//vGP8+fPX3fddbW1tQqFIvLhQ0NDf/jDH/zRzuDKvGjslv8CP/744y+++CJ4e2NjIwD/BUokknvuueeDDz7Iysras2fPDTfcsHv37qysrClP7sdoNN5+++1ms/npp5/2rxHS0CwAtCGkWblYrVaCIILzIf0kJCQEv/RLt0zYOHmL0WgEUFFREWwd/cTGxrLZ7OAtAoFgwhh/DovP54tm5gwGo7y8vLy8/LHHHmttbd2+fbtWq33hhRd+85vfRDhqaGhow4YN3d3d5eXlDz74oFQq9c/qqaeeCleLGYz/qeLgwYOTd0ml0tG/Dx48WFpa+vrrr7///vv+epVNmzY9//zz69ati3x+n8/3wAMPdHR03Hnnnb/85S+nnA8NzVxBG0KalYtIJDIYDDqdLikpKXj7BLfMX8Gm1WqD80vDDXv66acnxFrnm4KCgscee+w//uM/RqsdwvH88893d3c/+eSTf/rTn0Y3ajSaCS5sOMRisc1ma25u9juv4eByub/61a9+9atftbW1ffXVV++9997Jkyd37drV1NQU+cCnnnrqyJEjhYWFb775ZnD0lYZmvqG/bTQrF79hm+DA2Wy2CettIYcBuHLlSvBL/5Lh+fPn52OqkfGrrowaD7+fN9nJq62tBTChJm/CVUQ4fLoXmJ+f/4Mf/ODrr7++5557DAbD119/HWHwhx9++Mc//lEqlX766adT1lPS0MwttCGkWbncfffdGMnnHN24f/9+i8Uyedjzzz/vcDhGNx47dqyuri542B133CGXyz/55JOQpsJqtc5+wm+//fbk89jt9nfeeQfA+vXr/VtSUlIA9Pb2ThjpDwIHi4mTJBksUhr5cL+m629+8xu73T5hl9Pp9Hg8ABwOx+QcJf/KpcvlCnddtbW1Dz30EEEQBw8ezM3NDTeMhmaeoEOjNCuXBx988Nlnnz1x4sT999//k5/8RCQSffrpp08//XRaWlqwGdi8efM999zz4Ycf3nzzzb/+9a9TUlLOnj37r//6r+np6cFGRSQSvfjii/fdd9/OnTuffPLJbdu2KRSKvr6+pqamAwcO7N27N2Sp+7T47W9/+9hjj911113bt2/PyspyOp2tra379+/3hyv96akAhEJhUVFRY2Pjvn37ysrKeDzemjVrNm3adMMNN7z00ks/+clPPB5PWVlZb2/v73//+8li1oWFhf5/xRNPPJGXl8dms7dv315QUHDvvff6/w8bNmx44oknSkpKWCxWd3f32bNnDxw4UF9fn5ycXFVVtXfv3ocffnjz5s1ZWVlut/vLL7986aWXJBJJOOFTkiTvvPNOm82Wnp5++PDhw4cPhxz22GOPrV27dpb/QBqa0Cxu9QYNzWyYvbJMb29vcBIHm81+7rnnJivLWK3W22+/PfiH85Of/MRfeD5BWebIkSM5OTkTfmVZWVmffvqpf8CossyE2T7zzDMAXn755QjX+/TTT092mAiCuPHGG1taWoJHVlZWrl27dlRExq8s4/P5HnvssWBlmcLCwubmZgA5OTnBhx8+fDhYOG1UWcbtdj/11FMTMn2YTOZ1113nr3yvq6ubnFWUlZV16tSpcBfldDqjuVP9/e9/j/CfoaGZDQRFd6inuWoxm82Dg4MSiSRkFoZSqSRJMisri8UKRD66urp8Pt8EQ0WS5NmzZ1taWiQSyQ033JCUlKTVam02W0pKSnDhIICqqqrq6moOh3PNNdfk5uYajUaj0ZiQkBCs1ek/YVVVVVNTk8vlUigUOTk5wfVwXq9XpVLxeDy/MM0oJpPJYDDEx8dPqS6tVCpbW1vVarXH40lISFi/fn04fVS3263RaLxeb2xsbFxcnH9jW1vblStXrFZrXl7e1q1bmUymUqlks9mTT+JwODQaDUVRE2ZlNpvPnz/vvwqFQlFWVjZa5g+Aoqimpqb29natViuRSLKzs9evXx9BaJSiqMjVk34SExOFQuGUw2hoZgBtCGloaGhoVjR0sgwNDQ0NzYqGNoQ0NDQ0NCsa2hDS0NDQ0KxoaENIQ0NDQ7OioQ0hDQ0NDc2KhjaENDQ0NDQrGtoQ0tDQ0NCsaGhDSENDQ0OzoqENIQ0NDQ3NioY2hDQ0NDQ0K5olYQhfeOGFyRL4IYmmjzbNMoYkSVoUcIVD3wRWOPPxBVgShvDNN99UKpXRjAxuCEezAnG5XD6fb7FnQbOY0DeBFY7L5Zrzp+ElYQhpaGhoaGgWC9oQ0tDQ0NCsaOaxQ73BYDh9+nRtba1UKv3xj388f29EQ0NDQzPnUBTlA5hBnZyXK/NoCD/++OM333yTzWbr9XraEM4tFEUNDA+nSCSLPREaGpply4murna9/p7i4oTl3hJ5HkOjjzzyyMmTJ/ft2zd/b7EyGbTZ3qitfbm6uk6rXey50NDQLE/O9/aeVam0NtvLV670ms2LPZ35ZR49Qpo5R221Xuzrq9No/ClTh1taJFxuZmzsIk+LhoZmeTEwPHx8JJPfTZJv19fvKytbxn7hkjCEfX19P/zhDyUjgb6srKy//OUvIUfabDZiBQSsJ2N2uQ63tfUND0/Y/lZ19ffWrBFxOIsyq4XHbrd7PB4mk7nYE6FZNFbsTWDB8Pp879XVOV2u0S1ut/u1y5f3lZYK2OxFnJgfu93u8/mi/w7weDwWawpLtyQMoUwme/jhhwsLC/0vpVKpSCQKOZKiqHC7ljFtev3HLS12j4czyeB5gKMq1XfXrGGsjFsDg8Hgcrm0IVzJrMybwEJyrLPT7PVOuNs4KOqoSvVAaemi32oIghAIBHP7MLQkDCGfz9+wYcOmTZsWeyJLDofXe6yjo0ajiTCm22Q63dNzfWbmQk2KhoZm2dKm11/s6wu5S2k0ftraekdh4fJ76F4ShpBmMiRFVQ0MnOzutns8Uw4+3dOTExeXRieR0tDQzAKzy/VxS0sE3ZZqjYbJYNyal7fMotPzaAjPnz//4IMPWq1Ws9mck5Ozffv2V199df7ebjlRrVZ/1dU17HZHOd5HUR80Nv7TunUrZ7GQhoZmbnF5vW/X1U355H15YID0+W4vKFj0GOkcMo+GcOPGjZcvXx59yV4Cq6xXBRf6+r7o7JyumJ7Z5Xq3oeGhNWvYV8X6maEKytfgHMS6P4OfvNizoaFZ6ZAU9WFzs9ZmC7FP9R7iNkKUNbqhWqOhgLtGsjqWAfNYR8hisaRB0OvbU0JR1Mnu7mMdHTOTlO2zWN5paLBG7UcuJsrX4DbD1gP95akH09DQzCden+/9xsY2vT7EPtcQzC2w907YXKPRNA4OLsTkFgRaa3Sp4CbJvzc3n+zuns1JlEbj3y5fVlutczSpeWO4E5nfhmwTbF2LPRUamhWN1+d7r7GxdWgo9G5DFXjxcKon7znS3h5NBsNVAW0IlwQ9JtPfLl+un4snLKvb/VZdndHpnP2p5hFrB0S5EGXBShtCGppFw28F20P6ggAoL0x1UOyGI0Tius3j+aprmfx+aUO4yFhcro9aWl6vrTXMXZc1q9t9sLbWuWT7l1Ik7H0QZUKURXuENDSzxzOjhtUGh+PV6uqwVhCAuRmCVIiyQdpBhni2vqJW65dFe0i6fGLRcHi9J5TKGo3GOw+dZvUOx4dNTd8pLV2KeV02FXgJYHAhpD1CGpqoGHa5HF4vARidTvXwsNJk8pAki8EwOZ0WlwsAgyAkXO616enlSUlMxtQeTpNOd7ilxUWSkQZ5TOAlAgR4iXBqIMycsN9HUV8plfetWjXzC1sa0IZwcbB7PG/W1mrmczGv3WA4oVTelJ09f28xQ6ydEOUAgCibNoQ0NFPSMjT0UXNzZKPloyiT0/lZW1tlf/9t+fnpMTHhRto9npPd3Zf6+6d832aze8jD2ZYI8JLgCGEIATQNDQ3abFe7DCltCBcBu8fzRm2tdv5TWs6qVD6K2pmdvbSqX63KgCFki8HkwqUDN36x50QzC+z9qP0/2PLG1CMpEpQPDLqSKlo8JHmiq6uivz/6yOegzfZadXWeTFamUKSIxWIOx//z91FUr8XSODhYo9G4IzuCAACd3f4PDUPIgqer68ZYBWw9IYdRFHV5YOCWvLzoL2oJQhvChcbp9R6sq5ulFRwYHj7W2XlPUZGEy4088nxvr8Xlur2ggLt06gutnRCN+KnCLFiVtCG8urF1oesA1v5u6pLQpv8LjxVrf7cg07rq0dpsHzQ26uz26R5IAW16vb8cgsVg8FksBoMx7HL5oramXp/vUGPjzjhrfmLWG116ESHc6Akr9Fin1d6Unc1ZOneY6UMnyywoFPBBU9PApCYS06JKrX67vl7IZn/e0RHN+IbBwb9VVg5N/+c0Xwx3QpwT+JtOHF0GuI0Ahf5Ppx6p/RqOgfmf0FUPBVT09b1UVTUDKzgBr8837Habnc7orSCAGo1Gyuev5RsFXOG3V68+PWBUO7zwWEIOdnq9c5LxvojQhnBBOadSdRgMMz7c6na/39h4eWBgX1nZPcXFeru9OVz1z3iMTucbtbVLxRaOrhGCNoTLArcRnFj0TWUIfR4MXYArfI4iDQCg32J55cqVzzs65iONLhooirrQ13dtWhpIB5g8KY93S17eB7YS18CXY4MGPgc5li9aGcWK41KGNoQLR7/F8vVM6+VdJPlRS8vzlZUygeD75eUyPp9JELfl5x/t6Igm3A9g2OV6rbo6tHjEAjO6RghAlE1XUFz1uAxI/QZ0Z+ENJdA1iuEyfCRcUT26rUwcXu/BurqXrlzps4T2vRaGVr2ez2Klx8SAdILJB1AcH58jT/pEw4ZVCQAuHfSX4DaOHqKxWjuNxnAnXPrQhnCBIH2+T9rayBk94nl9vnfq69kMxhObN+/IymKOZL6kx8RkS6WnekIvYk/G5vG8XV9/pL19WkGSOcalA4MNTmzgJV1BsQxwGyHMgHwT1F9EGjZ4Bkk30YYwHBTwYVPTbCJGczMNijrX23tNWhoAv0fo3747N9/EkF9svwTKB2MtAJDjIkxno74RLUFoQ7hAnFWpZpYg4ybJQ01NYi731ry8yQkvN2Vn12o001pIuNTffzAKjfn5wqocy5QBIMqCpXmykiHN1YTbCI4UiTugOxtp2OBppH0D7iUQk1iSnOzqWnQrCKBBp/NRVJFcDlDwecAMpOMxCeK+kvKL9oTK9vMw1YGfBO+4Uvouk6l/UR3Z2UAbwoVAY7WeUalmcKDaat1fVSXhcu8qLAxZAiFks6/PzPy0tXVauhJKo/F/L12q6O9fBMfQ3gdB2thLUTbS78PnZWj4z4WfC83c4DeEgmQ4w3eQpkgMnUfK7fDa4FsmApVzSMPg4OkZ3SLmFjdJHlcq9+TmEgQB0gkGBxi77cTyeA+XFF3QWs87MyBIC14j9BN9dGqpcVUawpk1Z1gsPCT5YVPTdNe9h93uox0db9XVXZ+ZeWteHjN8IeA6hYIgiMqB6SXjOTyez9vb36mvX2glNns/+CljLwkmyv8HN52G8vUFnQbNHOI2gCMFNwHO8KmD5mbwEsFLAEcK9+L7PUuKXoslcjvcBePr7u5sqTTV3+J7ZIEwmFiJYl+uqMqZcN4smGwI2/T6bpNpYaY6t1yVhvDvzc1XR7MhAMBxpXJaoUuPz/dOQ8NfKyt9FPXDjRtXJyREHk8QxO35+ad6emYgtN2m179aXb2g/0xHPwQpEzfGFMHrgK0bAJr/iDN3o+onCzclmlniNoIbB15kQ9iI2NUAwJHRy4TBDAwPv1VXt1gJosGozObGwcFdOSOJbEELhMGIFVsfLt90ycjoHnZN3juDXqpLgavSEHabzX+trPx7c/Ppnp6zKtVSDkwPDA9P11f7R1sbj8V6csuWW/Ly+KyoFA/kAsENmZnv1NdPoRwYikGb7Y3a2oWzhfZQhhAEEm+A9muY6tH6LDK+DeXrcF+Vj5YrEX9oNLIhtDRDUgQAPDldQTGKyek8sDT08d0k+XFLy235+WP3nFAeoR8xh7M9iX9WH8J8DAwP12m18zfPeeKqNIQAbB5PnVb7VVfXcaXyrfp605LsOkQB003RrBwY0Fitt+Xns6KQzQ1mfXJyllT6QVMTOf3HMZ3N9kp19QJ1brL3jlsjHMVvCDtfRs4jSP8mEq6D+uhCzIdm9rj04MjAjYdbDyqMZ2NuRkwxAHDltEc4ysnubscSsIIAvurqyoiNzZfJxjaF8Qj9lMpjdG4iZOvTL5XKpWDap8XVagiDsXs8h5qaoiynW0gu9fdHXw9EUdTX3d0Xenu/tWoVe5pW0M/unBwOk/lOfb1n+mEWo8PxRk2NymyewftOD8dAaCGupBuhOYHud5C9DwBSbo9KqYRmKeAxgxMDBhsscdj1P0sLJIUAHRodQ2e3LxHnqc9iadLpdo8GRf2QzgiGkMkSbBEZz4ZK8LG63TPLDVxEloMhBNBvsbxeU2NbSu2S+yyWL6KTQAPQa7G8VlPTbTJ9v7w8jh86HDERauIzF4Mg7i0uFnE4hxobZxCmNzmdr9XUfNjcrJ6dAtwUOAbGJcuMIsoBg4W4MggzACDlNgwcnXyNNEsOrxUMNhhcAGGjoxQJawckBYDfI6RDowDwVVfXYlb0juDx+Q63tu7Jy+NNWIgJHxoFAJZgHV/bZTSaXSFWCi/29i7lFavJLBNDCGBgePilqqqlUIgDwOp2H5oqSkkBWputVqt9rabm783N65OTH16zRsCOTpif8qH5jzDVTdhMAHcUFDi93gt9fTOYNkVR9Vrti1VVr1VXd82HToTbAAYXLEHovZkPoGAkR4afDFE2BiPWpdEsBfwLhH7CGUJrF3iJgbsql/YIAaDTYGjW6RZ7FgDwaWtrilhcJJdP3EE6GCweP9wdiclnk7Y1SUmXQ+VAkBT1QXPzVRQgXVbdJ0xO58G6utUJCbtycqZsyzB/uEny7fp6c8QlNxdJvlVXZ/d4kkSiTSkphXI5Y1qdklyDYHChOQ6CiZhxXTH9fuH+qqr0mJhAGvT06TGb36itjeXx4oXC/Li41QkJwb8Hh9cbWFHv/TuMNSiNugTQ3gdBati9a54Z91KxC4OnkHj9dCdPs6C4DOMMoSuUIRzNlAHAlcPcsEBzW6p4fb4j7e3Rj/eX9wk5nBSRwAfGoM3WaTQyCSKWxzM4HP4MCSmfXySXlysU07qTVPT36+z275WVhdhHOrekJGQVFb1VVxfiiZ7Jg8+1IVnxanXN9oyMyTkNRofjSHv73UVFkw9dgiwrQ+inYXCwTa/PjYsTcTjbMjLEHM5Cvjvp873f2Bi5v4SLJA/W1SWJRLf4C1dngL0f4hzEbUDPO4gpDi56BSDhcu8oKPigqemf162L1sUMhcnpNDmd7Xr9kfZ2CY8n4nC4TKbJ6TQ4HOkxMZtTFOlXfiXi8kYNocnp7LVY4vj8RKEwdLLPhCLCyPAVMDfPePI0C4TbCE5c4O9wpYSWFsSMGkIZnCvdI7zQ26t3TCzCC4fT632rvj6Oz+c4DRcHapjCVKkg5tq0NABGp7MoPl7K4xEEobVaL/X3dxqN9xUXR2kL2/T6cyrVI2VlIX+tcQzr9WmJ7Li46zIzT4UQSSbA4MZxCIVY3KjTrUlMnHyGhsHBGzIzpVGu9Swqy9AQAnCTZJNOB6BlaGjv6tUKsXjB3vqz9vbI4Vm/rm6KWLxnxlYQgKNfIE618xVg8idqtQAA8mUyldn89+bm75SUTM/XDAUFmJ3OYB9XZTares5AXyZx9yXUVjMYLKvbrbZa/WuTHCYzWyqN5fGYDMaAxUIBpYmJqxMSOCGLCMPBldGV11cBE0OjocJ95mbEXxv4mytf4SprNo/nbG+0moJ9Fsvfm5uL4uNvysokOl9CegqGTyH9kTG13hGkPF6eTPZBU9P7jY33rVoVQYLDj8psPtzaen9JSSwvdEbMTomazYsDsD0jo3VoSDM5QZTFB2lfn5x8TqUKaQh9FFXR339zbm6UF7uILJ81wpBYXK4DdXXGqB++ZgNFUceVyitqdYQxHp/v9ZqabKn0lry82XSNX0U1PbpxK5vBQEwRLKHdphuzshgEMbOCiiigMHgaSTsszPgOdXubXj8wPDyaoeMmyZahoYt9fedUqi6Tqdtk+qS19b8vXPhM2V/rTu0xm5VG49RZvhwZnVVxFTDBEI6GRj3DGB5JFrM0j/MIV/Ya4cnubld0i2fne3vfa2zclZOzMzubMDeAwUbKbZBfg96/hxzPJIj7iotZDMZbdXWRf1+NOt37jY33FBUlh3ESeCxWHkMNdiwABkHcXlAQ4m7F5MPryIuLMzqd4RzcarX6qlgpXOaGEIDd43mnoWEGlebTwkOSHzY3h0wmDuaEUpkkEu3IyprNe61LiL2Hcz4moWx9SgokReHihwyC+Nbq1QRBvD0fOmpOHUBBmAV+IpxRpYA7vd7KQctHOslr1dVv1ta+Vl09HLmKnxu3wl2HpY76KEz1AX01P7yEwJfB58LpO/HlVrgNMFyBtQsxJYExKztrVGe3V0WhsGF2uT5oamrU6ZZfEg0AACAASURBVP6pvLxQLgd80H6NpJ0AIN8EjPR/mASDIO4pKpILBC9WVYXsuWb3eA63th5XKr+7Zk22VDp5gJ9CuZzlGftkU8TijamTVveZfJAOBkGUJiZWh3EAXCR5+moQIF3+hhDAoM12eD6l/IwOx6vV1Q1T9WhWmc3NQ0N7ZhEoIIDtGRm3y0wMaSkY7GvT0tjCZBCMcGLHTIK4t7g4QSh86cqVOe7K69SCpwAAXmIkqeUJeCxgB55A1Vbry1VVg7bwHew4Mrjo0OgSRvkmOl4M6Kv5GV0jvLAPXBnS70PVE6j4Psr+MPq5gx0Lz/DKLIzxUdQnra0RSiaG3e7TPT1v19e/ePmylM/ft3ZtIOnP3AR2zMgKCIHkW6A9Dl+IugUABEHckpd3a17ecaXyLxUV/2hrq9Fouk2mdoPhs/b25y5d4rNYj61fnyAURpjq6oSEcb4+cFN2drxgfL43k++XGy1LSqrTasNd1/ne3shxsqXAijCEAJp0uovz0EOZ9Pkq+vr2X7kSUmEhGIqiPmtv35ObO7FYJzI+F3wBt2lVQsKPNm26ISsL+kuQbQQg4nDWKRSQFMNUH+4EBLA7J2dbevqbtbWRrM50cWrATwQAXlKUHiEAeIbBHktkNbtcr0Wo4ufKaI9wSeM2YODo+NBoPJw6GKuhv4gtB7D2dxg8DV4Csr47dhTBAEe6Mp3Civ7+3vCaFRRFHWpsNDqdZQqFv/PoWA6L7jzirxkbyk8GPxnDnRHeK1sqfXzDhu+UlMQLhUqj8evu7sr+fhGH89iGDbtycjiTGroFI2Czs2Ik8FiCVyLZDMY9xcXj0mpYAd1tuUAQw+O1h8+N+Ky9fYmXFS7PZJmQHFcqxRzOlBrW0aO12Q41NkbpaTXodFwms3BysU5kBo6CLULijlSJ5J6iokDay+ApZD/s339tWlpVz0ZP21+RcF2gqDkUa5OS2Ezmgbq6e4uLM2JipjeHkDi1kG0CAF4SHFF6hD54TMGGEIDD4zlQV/fNVavy4uImDmeLQTrhc4OxoHm/NNHiNsDWBf0lJGwLbPGvEaoOIePbAVGSG44FexUB/NFRXoj0imWM0en8qitSD+qK/n4mg3FHfv7E7AFbN3weiPPGbeTKgxvEhyNeIIgXCJASdYYaAKA0MZFJWsESghhnL5NEom+tXn2osTGwAMnkj7Yk3JSScrGvryBYoS0I0uf7rL39n9atm23a3rxx9XuEDjX6DkczkPT5Pmxqqpwjv7BKrX456nijj6JOdnfvkGgxPKl4yN6Hvo/Q9UaIwygvLM2wD3CYzLtHraBDjaELSL7FP0TM5ZanF0KcB/3lyHNYFR9/V2Hhh01NX3V1zUGM2KEJ3MjYYoCCN4qew7YecGSTtSo8JPluQ0Ooz4UAJ45OHF26uAyI3wZD1Zip40jhtaP7baR/M7BFUgDepEdPnjySPPcy5bO2Nk/4TAW11XpGpbp9shUEYKiCfNOEEimwY+GZF1V6FoNxTVrahLjoKHlxcQ+vXRsoymLyR5vUF8fHGx2OCIGxgeHhaBZHF4tlYAgHYFVGOZYCPmtvP9zSMgM1zlGsbvc79fWftrZG+FpPoEajkfJ4GT4lTJNKifs+AjcB9r5At1Ln4Fjo39IGTqzA1Xt/aUkcYcbna+HSo/sg0u4Gayy+vzUjg52wFfoKUFPMJ0cq/cH69QPDwwdqa2fVod5rBagx344XMV9muCPwpGIOSh0cj/+B8b3GRt2E4C2XThxdwrgNyPwOgLE6QhDgysHgQro20oGxa2Gomu/ZLSkadboIVVVqq/Wturo7CgpCyCtSXgx3BPTKg+HEBtqz2HrCJZHOjLKkJAmXC6cafEXIAcli8QOlpTwWa3SNEACDIDalpl6IWBbypVJ5qb9/KajKTeaqNYSWFngsAOAagscyupAWDdUazV8rK1uGpp3DTQGX+vufu3SpNVQ6VoSjzvX2bktPg9sIazvgG7fTbYZ8M9ixgUCH+hgGTwd2mhuS0679fnxnBtMI9RewtOHSo+h8LSBLPYKYw9lasBEcaaCfX0QEbPb9paWpEsmLVVVdM26h6dSOi2tFjo669TDWwDEAS3OI33MQzTrd85WVr1ZXV/T1BRJKOXG0IVyiUCQ8w0i/FwRrnOvAS0D6fVMcm7ANujPzOrslhdXtPtLWFm5vk053sK7ujoKC0HHF4Xbwk8GcpErIkQbuGI7+6D2BKWExGFvT04Fw7dICJIvFdxYWgsUP7s1brlB0Go2G8LVqLq/3SHv7gdrapdB8cQLzbgitVis5H6ULunOB+jl/TdI0b5cGh+PdhoZXq6uVUStqaqzWV65cOdLePt1ShGadTshmZ/BJsCXgSGELKrHwmAOBeG5c4GvtGoLhCsPnVvAYu3Hy+9c/EBe/GoYqqL9E2e8x3A74xi2bAwCuSU2VxqbBHlXUlwBuzMq6s6Dg45aW6fZKDODQgJc09pKfFClx1OsAJwaqD8AUBrkOYVGZzZ93dPz3+fOv1dScdmR0GzTk0vvZhGRp9gKbL9xGsCXgxOGaAxAFlQNlPYicfeEPAwDEb4XuLLAUPYM5hwI+amkJ1w/gYl/fcaXygdLS/DCrazA3TdBQDMCJhccMUHAOwmsLeAWzZlNqaoy/vj6cOP4IBTKZiCceXSMEwGUyt6SmRl4HBdBlMn3U0rLUPvt5NIR9fX1btmzJyMiIj4/fv3//HJ/dNQSHOvAHXzGzEl2V2fxmbe3h1tbIxac2j+dIe/v+qqroeyoFc1alujY9HS4duPEQF8DSOrZvNBDPkcJtgM8N0glR9v3imkedv99SdAODK4W0HIYqaI4j+TZsO4QNf5u4WgCwmcw9+asIxzSsWrZU+khZ2VmVasqqjxA4tYGUUT+RPULSAdlGgAoXFw0JBfSYTF8NJ7ze3P9f58+/29BwrLOzf17bYsyOXovluUuXln6a+JzhNoArA4CMb4MYy7mrj3vg/9ao//vChYlR7mD4CnDiYG6a/1kuPudVqs4wQVGvz3dWpXqgtFQhEoU+OBAXLQyxi2CByYPHCucgWMJplDCFR8hmb/O7g/CrIYZqlzYCgyBKElNAjvuUN6WmqszmyAKTABoHB//R2rqkGtnPoyF88skn165dOzQ0dOrUqZ/+9KddUz0pTAOvFaQTDjUoL7w2iHPHPEKPBW3PT+tk1Wr185cuXejrC+7S7qMojdV6oa/vjZqaP50/P+PQdotO43Ob8+Pi4BoCLx6SCYbQNGII4+A2wjUEblxJ4e6cjv8XTC7W/wUA4tah+y2wRRBlQZwfToQ6P3vbdsalac0thsu9v6TkaEdHz7TaEHossCrHibrx5PCYA2uckyEdYImR+R1/ycf0YPLhtTu93pahoQu9va9VV9csjf5tE/BR1JH2dq/P90lra9PSaCkw77gMIf37y/39Tq/X4nK9VlOjjVBTlLANg8s/OjowPBzBQ6ofHEyRSCK1XbN1g58UIi7qhy2F2wDXEGJXB7yC2XFjdvZYcVcUaohrMlbBYw1uxcxmMLZnZn7R2TmlkatSq//R3r50gj3zVT5hsVg+/vjj5uZmgiBKSkp27dr11ltv/fKXv5ybszt1AS/QoQFHCm48hkesi0MNtx7wTcvGm12uYx0dxzo6OEymkM0GYHG5Zq9MRlLUcWXXHm4D4S6BUwdxLniJYLBgVUKUDQR7hHEYboNriC+Q7VqzG/GvI+NbgQftuHWw9yLvsSneTJC6XajVxRCN5mlMO0EovG/Vqg+amh5eu1YWlTauD70fQr5p/E2QAW48nNrQnSVIB5h8cOOjn9UYzHGLEF6f77OODpXVenthoXAWYuJzzqnu7tEmjp+1t2fExi6p6c0LbsNYHf0IBodDNRI18bfL/ud160KXrMVvg/oL5P1gvqe5iLi83kgChz5PRW/37rxQ3t4oTt24NYgJcGJh7QRLBEH65I5s0yWWx1sbrBcaroF2EEkSaZKAo/GYgu8G5UlJ1Wp1g05XMlWhWtXAgNJo3JaeviYpaUpl1PlmvjzC3t5eADkjLY8LCws7O8OWf5Ik2d/frxxBP2UqinMQvERw5TA3gisbJ9rkGgRFwTPDGJqbJI1Op9HpnBN9zsr+fhkHOWwjzM2B0CiA+G1j6TCjhpArhdsY5xt6pDBRzOUi68Gx4jm+AvxkKHZN+XaEfONdUk3KNBXGM2JibsjMfLu+3hKqweZEhirAYCN+68TtEZYJSQdYM5WfZwqCDaGf5qGhZysqDre2dhgMUwuWzjMen++DpqZTQSJSNrf7H62tEQ5ZJrhDeIS1Wm2wKzBkt38WrtlQwjYMngzkPS5TPmltjZA50q1u9LmMmaLxNbKWFuiD4jquIXDDVx5zpLC0gZcAvmL2HuE1aWnM4GL5iMkyo5TECSYUOPl1bb7o7Iwml8LocHzS2vpsRcXpnp5uk8nico0e5fB4huz26DPzZ8l8eYRms1kYJOEjEomM4dNSVCrVj370I+5IB8GsrKzDh0OXBlqtVgCkXU2yYikOmjRqMyddyiZXu/RulwsEwbKrGYDHrqcWu/eHxe0+o1I9lOqlXMkwNRIeo5uQwO0GP4/t+dpr6qAE6WynwSsRUm63mB2zhd2wTuxmCe8bnhRhZ5a9QorXY6rIO0e8ltCeu0vKebW/38zLj36qq2Uyh9v9Wk3N3qKicFL0ftiGam/izZR7YhSUwZIzbP1eUWmIQzw2L8mkIsuKhoFBsRgeqzfoWI/HQ5Kkx+Op6Omp6OkhAC6LRfp8xXL5puTk6JzaOcPr8x1qaemeFFiuHRhQ8HhlofT4lw0ci5qAyBX0nfRR1KWeHvf4D7pSpZIQxMbkyb5FAldxN+voZsem932C6UnvWqdScVoKVKrV1RFLls+qTVsEamrgmCfp1tGNLHMb4dJ6xIHiE7ZT5xUWhfvtMBgillNLCnNICDg+l9thChtEnQoBi5UrEgXfeUT2fhsZQ011zymIkx3V6EhOevBGOZebFxtzurXqJonGK9sK1hSP5jq3+2hQ+gWDIDgMhnPEBK6Oj9+RkcEgCC9FidhsAHa7nSTJ6JsW8Hg89lQRmvkyhHK5fHh42OfzMRgMACaTKSG8p5yVlfWXv/xl06ZN0ZzZxWS2mOykKOUrLZPlplJ4wq9U/XZ22kaGE+wYuHTgytlwYGHbEAbQHEfSDoCgKOpoS8uW1NQEZh3i1mDwNFhCDm/kySDhOraporTg2nJDhans/yRI0xViMXHYDdNpbPgtJrt04pujevfkbTj7rfi+d+8kU96V/M+0Jn5tRgaPw3mjoWFzaurm1FR2yG6CLh0oNzsmO8QucSrUDZyQ/3Ofk82PAXNGHwdPArMr+LQEQbBYrODfgA8gGIxmk6nZZJLx+UliMYfJlAsEqRIJm8FwkaTSaKQoKlsqjeFy2UymmyR1dnvj4KCQzS6Uy+P4fCGHE7p7YkQ8JHmoqWnA4Qh51WfU6oKkpMRwSRDLASvESZyg72qjTuegqMn/jbNqdapcHqI2YPNzaPtfYdWDuKVmcv5XZMQL2FhtBrTq9WfV6tA/BwCA1mbTuajSwrUM3SmOVzu24u4ZglPDYRFgsAHArWeLksDiAOCzWI4JPpYgHgBTqGByuOArOKQe/Im9maZG8yXAuHHzg3HBglNuExhsUezUT3Li+Pxs42DPpCvdLup/sZu5XURydV8gY+90J+UDRiPqbWazsqHB6/NxWax7ioryZTIGgyEQCGbTvWcy82UI09PThUJhbW1tWVkZgCtXrtx+++1zcuYes7nCxLZYnSXxcRssJ4jMjRsYstcvW21dndtyVrM8JkjL5yqZeHpQJHTnINsAdswVjcbp9V6Tloae04gphKQQniC/IXZ1ienduxQ+Rr0G6SNtdcU50PZOFFKaFrJNUNyMtb8r/PrmYp6xyRlWWj4k6xSK3Li440rlny9eLEtK2pyaKvJ/v30uqD5E8s0wNYTO5Ia/pl4XammWgs8dUNuaAaFCoxHQOxzh2sGEbAxS0d8PgCAIEYezMTl5a3p6lL8uq9v9bkNDhCxiD0m+39j4T+vWTU9a9irCbZjwXQ3XeoUCPmxqeqSsLGnyY0H+v0D5JvoOI/WueZrmwtNjNh9qbIycW3dOpdok0DGFRaA2wdQwZgidg+DKYO+DKAukA5QPLBGAWB7vkbKyYZercmDA4fFIeLwCmcxqlvT398sLSuWJJQRL3uLWVRG5017TsakUXHJz3S1IbxzTaIy+b6g4ZzXz8uTuEjFeTZ608DKRc63rc5jqEBsiVhQ9/rpDl9f7bkPDI2Vl0ohCqTNjvtYIeTzeQw899NRTT3V1dR08eLCysvL++++fkzOvS5Q9Iqn6Xvm6jRn5BJMDriyGy30k3aOzWV+ovHzKVaDyxnjcFgATH6DmG7/MmNuktdm+7ur6hl8UzW0EWwr5JsjH/N1r0rO+sWodo+FpCDPHnoVFORBmztxmAGAJcc0BCFKRuXcPvhKymRi6OK1qrRgu956ion8qL/f6fC9UVr7T0HC0o6Op7bjXY0f32zDVu0RFDYOD7zU2XlGrx52XwQFLpBrqP9LeXjkwMKruTXkdSm9CnXZwhiW0QRpO8wdFUcMu14murrfq64ejWCht1ulevHx5yloavcPxUXPzksoRn0tGyycAAB0Ggzp8GM1Nku/U11tDhvhW/xIN/99yqin8qqsr0rfdbRiyWZVG43p2FzgyCDPHdDA8JjC4kBTA3gP4FwhlACRc7gOlpRIuN0UiuauwcG9Jya15eblxcWszS29N5W3K35IjlWYrCm8RtH6/vHy6sQ0Gab9jxy8YvEQMnh3bOlUR4RiinGJfY4jW3279NampFf0DZPKtGDw1rSlFwEdR56ZqdTcz5vFx9Xe/+90vfvGLPXv2JCUlffrpp7JwFaPTxdoJjjSgBlv0pP8pRixb/U37B73x17YMiY5pKZ2Di84zFLBOoVi4/sheKwCX03SoU3tzbq6MzwcoeCzgxIBgjaZN3piVdV1GBqT7cHQjUm4bO1ycG2VF/NRk7BV/cc1dEsvbGhUlKZzczDoysTzezbm512VkqMxmk1l12YiPvQUcwufzeb2DXRmxsUVyeZ1We6GvL0cqTRaLZQKBze1utea267s3pmZorNbzvb0MghCy2Rang09liAYHv+jsLFMoyhUKKY8HgKSoqPLEWPzgit35psNgeKGycmdOTmli4uQbitPrbdfrr2g0XVGLMLTq9Uc7O2/OyZnbMM6SYHz5xJSdOM0u14G6uu+WlgonhNFS70D9r6H+Mpp0sKUI5YOlZVQyyehwhO2m4qfn3RO2tdemxHOcPDDY4CvgsYC0gymAQwteIoQZ0J0HAJceXHlRfPzt+fmCkEtcBAu3jCSLxhSjY79CLN6RnX2soyPE4DBcw+lQxKUieTfUx5C0I7DV3g/BFCmjAUTZQkdHTqZ0XOsJnwdeW2JsUoJQ1zjMLJ3T+FzL0NA1CoVAMMPV0HDMoyEUCoXPPffc3J/X3DKWiz/qywtSwU1Is55NS9kIUaZv4CiZtY/0+V6prq5Sq9cpQovmzTFemxfMd5Tm3LjkQI8LzzCY/OBy40SRKKBgFLcesavHSXKk3Q1p+dzMRJQNUXYeo39rovCMxzhdQ+hHwGYXyuWwHtu8qtwjKnCTJEiHkBfQFy1XKHotll6zud1guNjXJ+Rw0rjcx1OZvMTAsrnWZnOTJN+rlxubkHOzweG4PDDwypUroxIbxfHx9xYVTWEhCBYIxkI2oHB4vZ+0th5XKvNlsnihkMVgOD2eQZtNY7UanM4ZuHcVfX0EsHBPYwtGUPmEymzujkKuT2u1vlFb63dugjYTyPg2NF9crYZQdwbn78ddff5X9YODkb4kbmOv1a2xO+/NBgz+dFACgjTYeiApgmsQvAQI0uDoB0XCNXRdasINxcVRPUVJimBpAajNqanten2UgllyPu96bis4UiTtQuUPgD8Edjj6o/UIWUJwYkti0B6cOhro1UxsSEk5p1KVchjwuSL0xpkWFFDR3586uVnN7LgKFzDEOZBvDrE98Xp0vAReAlgShsfMYDDYDMbe1atfra5OFovDajfMHV639T3r6liue/dI0cgEBXeCIG7NyxsLI5Q8Pa4nkSgHohzMFds+BCd2R+XjlNdxdjYRYpcevAQ2g8FmMDD+sTRNIkmTBM3fUIUgaZtEf87wsNbfbiKOz9+Vk7Nr5D9DUtSB2toTXV03ZYdKvQnGX0q4sJ2Y7B5PjWYOpDr8XOzrSxaLS5dZEmlQ+cSZqKNVgzbbi1VVdxcW5gTfyGQbUf8fcz2/hUL9Bez98JjBjoHHUqeN9LWhLK1fuFbdKOhiujhjdRGizIAhdGoJSWFqbLxbJJaz+lfHdhTlfAtRxhI4sWCJYO8jwLjX9Lv9vCemFPxjEsSdWfGsPgkIBmQbYO+DY0Ro2z4QWRZ4HKKcQq6ew2SN1TK59P6gbr5M9nl7u4YtT/LawJkbQwhgYB7Shq9C0e3Y0tAfkr/YTpAGtgheu1/vII7Pvzk396Pm5hmuUXksURboOL3eA53DfBbzjjjN2BOc2xTsjRXKZOnBqVlp3xiLRcw5fAWYfIiybpKob8rOnmFojiLhsYAdXdINVxZC6M5fTT8JJkF8a/Xq5qGh6intDUsw46rQpcOR9vblpkQ6EhpVW60R+ipMxuZ2H6yvf6+hYUyDLW49DNWgvLD34uSt6D4Yrvf6UkR9DCwhzM0Aer/85lDL6xEaADRoByimcLWYgrF6zBAKMwLLhA5tSUru98rLH9v9+H26nxfZvgotrhaOmGKYmzBwRDD4+d6SkshZWmwGY29JSRrXGZgGwUTiDqi/COyOPlkGgDiXY+sa12nVrQdHBoAA1iUnX3YmwTt3LcHnh6vQEEZAvgVMHkCALYI3cPdcnZCQIBROKQUbGlM9tCemHNWm1++vqkrmer6RzGK4g1YIPMZgK7I5NZTwyrwizIS1e2t6+p0FBSEWtKfEbQQnBkR0XxKuPHpDCIDPYn2npOSEUjlFVC1mFYbORTWBJYzT6z3U2Dib5l9LC/8TEicWwNddXdONGFMU1Tw0tL+qKiBHx5ZAmA5TI7rfgc+Ntr+i9t/mY9Zzj0sHaydS74SlGRR5bsAABg+dL4MKEYTxeB3HDaLdeQWEJA8uw5gh5CvgNkF3ju0x3LRqKwAk3ogtB0AQ0wsRSYpgbobmC3gsiVz8U3l5uOodCZf73bVrc+Pi4NKDNzINxW5oRg1h1MkyAEQ5MFSOC3iMeIQAyhWKZqfIaF/S7emx3AzhKGxJcLnCrfn5TRH7gYXFpYO9d3zjpDF8FHWpv39/VdWXSuVt+fm7pQZCmDKuTCIoNJosFmfEzmStblYIs2DrArA2Kene4mKm2zC99LxQ6iFhYYlAkROrHSLKysj4/HuKiz9oahqMINAs3wyHFta5E6pdJPqHh6fMqr8KIB04UgJbN9hiEMwek6ltvA6U1+eL8ho9Pt+hpqZz/g52so3QV6D3AxT/AuX/Be3JeZj6nGLthEMNzXEkXI/YElhaBjV1rb40pN4Jjmxcl2zNCf8D4un2mgw+mRYrC5SdjEnGMJCxFx7L1pwSCX/EdCl24W7t9FYEYophrofmK3Di4FDLBILvl5Xdnp8fXLVCACWJiT9Yvz6wqBGsXJNwHXTnAIAiYWmFOOpV7czvQHc+p+H7cZyRzz3IEArZ7Gti3Z+rlrqE0DI2hGPPIHwW6+6iosOtraETuCPgGoKPhCOE0LOPoj5sbm4ZGropO/vx9euzpVJ4rOBIwWCPxQGCQqObUqJ+wppDRFmjJqQ4hvlt3U/5tiD1L/UXU3QyC/pCR0VwH13XEOCDN6xH6CcrNnZPXt5b9fXGcJFDggXFrrFn1aWKw+utmqr1RJte/2Fz85yo9y0aNhVMDaj7tf+LcWJSoOW1mprfnjnz8pUr0ShsURT1ZWfnl52dlGwjVIdg7Ubi9ZCWw9ICrx0AbJNL1JYGDb/BkTVo+QsUu/yu2JnWi5R/gS3xBujOBQKk1k6YaqF8vV/5ec2QbXf+KgDgJyNpR3BvbYYoc+fWH163e3oiGBOJKYbqQwjTEbvKv6DDZjLXJSf/YP36H27ceEdBwe0FBY9v2HBPUdFYDqpryB/DBABxDrxWODUwNYCfErI9fWhE2bi5khCkblL/PqC879KPnRbYEs8xub0z6P+6kCxXQxgzoaY+PSZmU0rKwbq66RUXuoYQUzT51+h/mPX6fPeXlmZLpYEVOK8VLBHYMQGnkPLCqQU/CQCPxVo1lQTtvMBPhtsA0gkAzX/KE+EHgi/GHFNzA+yROkpP+EJPTXB0tPsgLO0gHVPKPq2Kj9+ekfFadXXYRsGSAriGQC2yrGhkLvX3f9bWdnmq/o6Ng4Nv1dXZw3Snuwqw9UCcD9X74MQ1DA5OKBWwut1Gh+MXW7cmiURfKqPtFnuut/cVTZKm7yJS7wx0F4otgeEyhtvwSe4S7cxs7ULBj+EdRvItiCnq1PU2qnsCKtW8BIgyA96V9iQUu71p3/xYw92TXyCUjEiRBan15sbFfa+8/NqoxRzCElMEjxmK3eAp4Bz3TBYvEJQrFOsUivgg2UtggpYpAdkmDFVg6ALit0zvrRkcrP/L2pRUbu87cA4C1DgzzxLsiXd9qVQu5UfA5WoIJXBPrObZmp6eJ5O9WVsbrknmRDwWMDgQ58M+LinO7HK9Vl3NZTK/uWrVuGI4vyHkjBhCazd4Sf6k4eL4+BmIeM0BBCOQnO3SoeNFXP9ZjP7rhwpTt6WnEy49PMNT9HEcXzQ9NaOG0GOC2wyrMsIaYTDlCsXdRUUfNTd/0NTUbjBMymwiwBKPizkvMUiKujww8O3Vq092d/dOVWivNBr/t6Jixo29FhlbDxK2IWOvnSX/fJKgdrvBkBMXx2YwduXkdBoMYZ9sJtHnjXnVurFXdkfgtXwLcH8POwAAIABJREFUhi6g+21Q5BINBli7kPUgbm2EMMPAVHwwGOuz9QZSLgEk7YClGZ2vwOdGTPFpHZkQm1ScmDb5NFmxsQ+Ulk5XKD803HjwEqDYPQ0N7gmi3vJNGLqIoQuQhUrLnwKCu+lvZYokKF+ZeNNgibLYFhmfXzWzNuALwjI1hIJU/9rYBHZkZRXK5S9fuaKJJgHX3y9CmB7cU75Rp3upqqokMfGuwsJxVtDnAkGAwQY7NqCpP9w+qkG1elHcQT9+6YrmPyJjL2KKkXwro/f9HdnZ34rXcvih0luCceknt9qJBGckNGrtAVceMITRtZ7IjI19fMOGzNjYcyrVH8+ff7u+/lJ/v9pqDSSYcGKXcqeCOq1WIRLly2S35ud/1tY2ZfKIw+s90t7+4uXLUdZ7LSHsKggzsOaZL4TfnfxA2a7X58XFAeAwmbfk5R1pb4/W2BMMd/ret9Qxav8PM2AI30HOPgx8PseXMHt8bjgH/U3HfBT1QXObgx0Ppxq8EUPIjkXuoxDnIXmP1ma/olbvCVNIuiYpfJelGbD9EyRcN4UhbPmfsRuaSz/OEMo2QV+BoYuQT9Mj9EOwrt3+a3bhT8bphABgCeG13pSdfbqnx7XY7WLCsUwNIT8ZXgfcIe4y2zMydmZnH6yrm7qZuFMHrhzsGDBY/lYjp3t6vu7q+k5JyZbJ+Z9em18VcCw0OmIIxVxu5sKnyYwiyoKpDp2voOinAJB5P5RvAih0nH14w3Ucty5s+ozPA9IOdkzovSERpMKugs8Dew9kG0Ha4RqKxiP0w2Ox1icnP7x27RObN5cpFFqb7ZPW1v86d+6vly//w5RUOzg07SXeBYECLvb1+VOCC2UyFoPRGF1vXq3N9mZt7UtXrlzs61MajYveUioqbD0QpA8hrtY5sSySpKgukyl3pEAwXyaTcLlTl8eMIsp1kr7XqqsbBwch34yBzwEfVv871MeCW78uCWwqCFL84lZX1OqB4WFw48GRjtNHJJhIuI4UZHzS2rojO1sUSoCbw2QWycN3WZoBsk0gmJEMoc+F2n/D8W0wNwKAa2gsaxQjKUtO7TSKCMcj5nI3ZRZO7KHIEsJrSxAKi+PjP1lijelHuQoL6qOCgCQfltaQpffF8fGJItEHTU1dJtMdBQUhOi10voSkXXAN+Vf4wE+BQ31x0F6n1e4rKwvdc9VjDRhCTgyG2+HSgSLBSwCwKj5+JqULc4UwE03/haSbIMwEAMVO1P0SnS9j8GTymmd2N7/xqdsUemF8RB5iGu/FlkCQBlM9rN2Qb4E9G6aG6A3hKDwWq0gu998jfBSltdlUfVUdZvsJbdXeVauSlljngYt9fUI2Oys2FgBBEDuys//R1lYc9Yfeb7H0WywAWAxGRkyMvxWGiyRXJyTM8V1yTrD1QJhxvrd38s2sx2SSCwTBYmA7s7Pfrq8vTUwM3cwkFG6S/KC5uTYubj2Rl595L4QZ4MbDUAXpmoDM0FLA1uXXhHJ4vYG6LK48ZOX7caVSwuWuDaOlUCiXc+dDk52vCJa2GIfhCmKKUfBjnL4Lt7dPDI1ypBCkQZA+m//ztWlplwcGxqVKsYQgbQB25+a+Vl19rrc3oK61lFgaX6z5QJyP4bZwO2V8/vfKytgMxstXrkzMV/SY4dBA8+VoK10jYt/tNFxRq7+7Zk3YzuPeEUMozABFouMlvzvIZDA2Lkq+6CiiLLh0KPxp4CXBwpYDqP45GByIstYlxhcJwpQuTKt2YhTZRuhOw+cCNx6ibBDErGTEAQZBKESiTYkx98SbdubkvNPYqI1Qa7HgmJzOsyrVbfn5gUwH3Zks+3kpjxfIIDVcjl5x2OvzdRqNdVrtFbW6cXDw/cbGL8L3sl44fC5ovxp7aesZ5qTUaUPkUdcPDk6w3EkiUZZUerpnepmfFEW16fVvc773nudGu8eD5D2o/ik+SoHy1RldwDxg7YIwC8DRjo5A3lNcORK2TxjVPDTUMjR0Z0FBuCyYOY6LjsIL7xHqzkO+BVkPwm2EUzsua9SPfAvir5nNm/PZ7BuzxjeYZPJBukD5/DIal/r7oxHkC83gaWi/ns30wrF8DaEoG46BQMLkZOx9LAbjjoKC9cnJr1ZXj/tgrJ2IWQWKouy9LVbWgbq6l1ScFK770fXrx2skjmfUEDIFyH4Y2Q8j4ToAZUlJcYvbIlhahoy9kG0Y2xJTjDW/RdrdABBTdEesNiZkM16HOuAQTwtRNgg2hBkAIMoBWzLdVnOh4cTCbSpJSLgpM/NAXV3VhN4XiwRFUZ+2tV2Tljb2Edt6YKjalR5/qrvboTkHzQkMT0MBecLJz/f2nu+NmNa7ABiqcG6kbwzlhUNzRuedrNPk8HpbhobWTrqz78zOrlarZ/LsIi1rtvieu3TpAu9WjyAXipvnTJJ+9li7IMqq1WprRwO/7JgxAWQAQIfB8Flb2zdXrQqn8CLhcrPmacUkQmh06ALkWwACceuhr5zoEQJY+zsU/j+zfP8NKSnjxBdBjLaREXM4dxYWftTSMpPWQIZKGKthuDwfCeTL1xAy2BCkh0yZgduA7oP+PzckJ99dVPRhc/OHzc3dJpPe4XCYu4Z5ORWMTX81bzzTry1LSnpyVdw2iXGKbgleK9hBOg78ZLAlbAZje2bm3F3SjJAU4Nq3J27Mewzl/w0AkkK+rfnuwsIQcTx7H/gzksJJuglx6wCALUH+v8zkDJNhx/pXXovk8ofXrKnVaP7nwoWjHR21Wm3z0FDlwIA5ivZJc85ltdpNkuMWjO39iFufMHy+WOg42TeIrO/6V5dnzHGlsn0GQhBziL0fTk3gxmofaEB+pXpw8qgranWhXD65SYKIw9mRnf1pa+vMHlzsHs8xLf5A7ntzeO0FjVHvcCyJFSZbl46V9llb2IBTrVb7cUvL3pKSCBLHaxIT52vFhBsH0h5api5gCP2Rm7MgHeCMTwLgJU0vLSAUBHB7QcG4a2OJRqurc2wnVyfEf9TcPL0P0m2C9iSyHgJXzhhunuUMJ7Nc1wgB+HM3BiApmrjdYwXpgtfmL3bJio39l40bq9Tqr7q6bB63wxlDMK25MtktReWZcQkAYHOMk7u0doDBgWB8mNtrHeuuOcKWtDRx+C7VSwJJEbrezIiN3ZObe6SjI+guQ8ExMA29wXHnLBj7m5ijFppsCTzDfokfuUDwSFnZkN3eptd3Ggz+1tUnu7vXKRSrEhISx1dKURTVaTS6SDJfJvOvVHl8vob/n73zDoyiTP/4d7b3li3ZZNM2hfSQ0Jt0FRBEDiuCJ+BZTq+od3pc07vz9H5e1TsLHqJnwYoFRBCkSBNIIRBIhfSy6dlNtu/O748Jm83uJtl0IPP5A3bfeWfm3d3JPPO87/M838bGQ+XlXBYrS6uVcrkiDidCKh3sPanFYjlcUbExM7PndkZFBoUuRvG/ForC/mOIyXSJQ92O4ahnuEnyw4KC1YmJ4xZ4TPlhbXngaw1NpV+YM/xNEQlk19XdkRJYtHmyRnPeYDhWVTVvqCtDDpfrspV3ucOx79QpDpMpYjAiFAo5ny/l8YRstpDNVgqF3FEQa+0Li7HqAxvbzgjgl5Ak+UlhYYvZvCEjQ+2TtOcFQRD+3vPIQYCngaW+OyzAQ1clQHYr3oRMw7nfghMyMhM2fqiFwgiptCfNlCXsNoT2drSdW5y49P3Cy1+VlNySkBDsEbsqINKDI4MsjdmWAzwwsgO+rg0hX4vm7wO0dyvotnqyPjlM5iydbpZOB3M16vYg7sFe/bvvwldoOw+2yNcQOoxg9wrikHK586KiRuBTjCrSJKpe8LTwcBdJ7rt0qfs2Z2sGSziEOJfRgmCAJYTDBHSn5ysFAqWXJpnRZjtRXf1hQQG14ivn8SKkUgZB1JlMBCDmcncVFwvYbKfbbXE6o6TSu1JTnW73OYOhxmhst1rbrdaF0dFTw4LTYAPMDsf7588v1etDvOe9zbUQ6MDgIHYTny1bLGzcXVKySSwn7K2+cXSDwel2f3rxYpfdPmPsa9UCsNSAJUDbWbd22RclxY5AFdgLm5rEHE5f3g9BEKsTE7fm5FDqlUMcxpU7qd3larBYWv0yN5QCQUJISJJKpROLR1X90el2f1LPaokUBZxNazSb602mH0+f3v8EUoREEjLSinq9oGZHfQyhxx0EEDINbecgC/zsMiIkq1S9DWEnAFgNABgu8x0pKW+dPft1WdmNsbH9fVft58DkQxwPc1X3LVeaQlz6Es5On/vtMLneDSFVYcHtQNMxdF5GyHTI0rrrcdtafX04Sz0MBz3Jfz2wxZ4S3sCV4mE+2NvB7jXjf2NsbPDBcuMGVwmeBpffhv6+mTqdVizeU1pq6OyEOWhBsiBgEMQIJI9TqYScwLcPCZd7c1ycR/avyWymFOQzNJooqZQgCJvLZXY4mAQh5nA8N0qPGEiLxfJOfj6XxUoLwvGyOp07CgpS1Wrfh3pLTbcPzVEAmKzRnG1oyLHpptrbhmMIAZDA12VlNpfrhrF/tDLXQrMYbXknqqvrOlp8Z9IAkiSPVVUt6HcJQMLlLouP/7SwcFNmZmCN2QFhCalFpr5oNpubzeYT1dVKgWBtcnLo6MiuOdzuD/JzLll43QEBfpS3tcUqFAOKTo/6M03AZcLmkz1R9LxQCHS+C4QjSrJKta+srPvP3uMRWg0A4Ori8NQbMjK+KC5+My/v1kmT+vSejcVwWSGOR1cVQmYAAJNPSlJgLOoV9zBsrvo7db9ESqWzIiJi+xJpZIlAsOBoR1sezFXgqWGpBQBnJxicXos3bgdqd6PyA4gnUUEuvSBYINg95aTtzfDVXCbh6PBWXIoPCRmfmmpD4IadOPsUGr8DECWVPjR16h0pKeGuSipfOCBRUmnAQjlhYvHmrKxVkyYlXamkoxQI1qWl/WzmzBk6HWeYk1eeBE1/yt9Gw37vpxOVQJAZGpoZGhotk1Fmj8tkynk8CZcb0F0I4fPXpafvKysrHKgiYrPZ/N/cXJ1EssDfJplrvL80giBWJiQcahe3d43MIt/B8vJPCwuHmG7otuHgksGVXKcw1yB8ZWNj4ZHKStg7/BeQLrW1uUkyfiCh1BSVKlWtfu/8+SGOnykIUsqn2Wzelpd3wRBcaZXB4HC53jt37pKhvB+l68ttbQOGwISJxcmjnRgTMHC0NQeKqT1vQ6YNroDiIJFwuREe1bkeQ9gIgkm95rFYdyQnZ2m1/8vP31VSUtraGiCCxtaCrgpYG+HsorLRADgi1/f6ICPBNewRCtnsu1NT+Ww2SZLfVVUdraz0BLMxCCJCKk0ICTlSFWq31KOjAKobQDrRlg8Ajk4IdD2G0NGBivfBD0XCj/tcy2GLu+XmHSa4nb6GsLcSPZfJvCXez628apEkYuZ2nHoAK4sBEECySpUsPFyd9M8Sd4TN5apsb6ei/gRsdqxCMVWrjZLJmrq69l26VNHeTn3nBEEkhISsSUriMpk6iSRLq7W7XAyC8NjLZXFxC6OjC5ubGYCQw+GxWHvLymoGqkbWC8ojDPDgSMJcCzBw6S1ol/hOWQeNSiC4Nz19R0GByWabFhbmby8NXV1namsvNjXdFBeX4Z8Z5nbA1uLj+SkFgjkqzhfV1g2h5IjM1503GNotlo1ZWYM+lrkODd/CdGkQqgIUllqHcv4nTf9zyMywNvor5B2tqpoXFRXMp1sYHW12ON7Oz789OVkWMFC5H1gCuKyAO5hnd0fjiU9LXnHe8s8AP9NQcbndH1+8WNHeDnubz9yPBzdJVnV03JbkF5TQm6WxsaM6eQsE8ghJF9ryocjqaVHOHO2a5ime2VGuEi1nAMBqgDDC80xDEMQUrTZZpcquqztZXV3f2UmSZKxCkaHRSLhcAZslsrcxxAmo3weBbpSWMymuYUN4U1wcn80GQBDE/KiomeHhVG1DEYejEQrZTCYAZlT43qoi2Fog0sNqgKMdAJydEEbCWAwAthZUvIOQmYFV7z2wxXAaATVszeCHw1IHkD0/jKPXvOhNcXGBExKuWsJuRrYDbfmQZwCAwwRTaUTkzAhGd7qI0WZjMRjek1oqofDe9HQXSTZ1dXXYbBqh0OfW5u//8VisTK+5xFsTE1/Pzh6EYDJbGjhN2N4Klggx96LtLKo/hygG4Su7N1nq0XgYUXcHeYZQkej+yZM/vngx32CYHRERLhYTBNFsNhc1Nxc3N7OZzBSV6rEZM/gBA+KtBvBU/sFBs8LVRW2Xs+vrpwW9ANk/1UZjdm3ttMEmp1obAKAtF+I45P4ciqmIXjfQPgBImOv2GRyNrGjUfgXSSeXPeag1mYw2W7KqJ3NAxOG4SbKvquLL4+JO1db+Nzf3pri4YGahvSDA5MFp8a7mHJiW02g64XY7Pi8sbLda50VGDj84s8Nq/ayoqDvJyt6nJEuN0ajg8wNfHleIlctHK2vCG9UcnH4Qab8H48rfrLEIfG0vh37ST7rFIkaNNI3mm0uXXCQJUSxqPofDCEcHpMk+zj2fxZoXGUnFUpkdjotNTd/X1JgdDrPDbnbMms4U3ej4CqGLRnWo1+TUKAOYExmZ3vtxj8tiJSqViUqlTiJhX7kLT4+dEt55HJJEEIyecthOE4SR3R5hzRdQzR3ACsIrXsbeDL4GTH6v39JLbmmJXp+l1QY6xNUMgYi1qP6k+13l+9DeBEZP0qSEyw24tMMkiFCRaFJIyKAf8AGVQND/wpIv3hpP3lgM4GkAAvJMJDyCrqru8lEA2s91a38HjYzH25yZOVsXll9fs/3s2Tfz8o5VVcl4vPszMx+bPn1RTEyftzlbCzgB5rsIjnyVpOJwRYVp5OrDfVtePuhqc5R/0JoDANWfo+z1oPayNuU4Y7Prm8APhakYkWt9LP2pmpoZ4eHediZdo3l81qxZEQEKTAMgCGKmTndPWtqJ6up3z50bXOVJz/Ra/xgOQX8f3HaSdB0qL3/r7NkBy6D3z/nGxteys3tSjf1z765Q3t6ulw+gXjS4a37IaBZCHIey13paWnO7k5o8MLh9rXSOFAI2O5F6SGKwIYpF01FwFWBL+vkdBWz21LCwDRkZD02d+nha6C901Zc6yRN2/ZBneoLkmjSE92dmLtXrg+nJCMm6RVjMkKUCAFMAtxNuBxyd4KoBBiy1sLf2mi7oC5a42xBam8FVgiPxE+CVEQRxU1zcVVg9KCgi16LqiiEsfRXxj4zBOWdHROh6Jd72C7ePEuFWg2fxAAQLEatRt7c7RK3jIkj3YGUrCIJIYRvukZX9fObMn8+ceV9GxpyICPmAlt7eEq8M5CiwZUqyaWqYdm/ZEDPr/bE6nV8MtmajpR4iPVpz0FkOlxXG4mC0jsvri/dY0wBAnonIO30qDZns9rLW1szej31RMhmLwZgfFdVPPkOYWPxAVlaIQDA4W3ilUld/OLtAEOAoPFazqqNjW27uG7m5u0pK8hsaBjEDAdR3du44f/7Tixd7rV3ZmgN6hCRJFjY1xfW7VhqnUPQsm402k/8PBc/1XPytOUHd6EaankkgaQpa88DTBPtAA8DewuXK703POOOI/bLGOoKPkv5ck4ZwEP4HP0w75VdZcVeChtnSbn0+lgBcBRq/gzQ5qC/BEzhK/Rn0Fv6FvZ3gyG+OjQ1QjPtaIWQaXBa0n0fTMbhsoz0RQcEgiNWJicHG1rJEIF2E269UkLURPK+5AX44FFmo/Qrmmu50T1tQJbB74TT2H6PoTwjZdHtioClxggmWcF6otLGr62zwFagHorSl5URNzSB2sNQjbAVa82A4iNBFiLwTlX5lFnpzsanpvQuFLmoyjR8Gke+j5+na2ozQUG+DR1wJxOWxWFP7nbxlEMTNsbFakei9c+eCDZ9hBnED9Sho9r7b1hqNOXV1nxUV/ePkyY8vXDhSWZldV5fX0HC6tvZSa6vPI4XZ4citr9+el/d6dnZxi98khI9iwxXK2toIgojq284RBDFG7iCFLBWq2ajd3f22NcfXIxwTYhUKKVWQSxwPgjE4Q2hrATdEzOE8NG2GgM3empMzemX3r0lDODhStizSx3bPaHGksNSDxQcIcBQwlkCaGtRBWOJuy2dv6ZakuGIIJVzuZE7NpozE8UnzGjEIxKzHkZU4tRnxD4/qurQ3SoHg5j4UagIQ0Cm0GsDvHROhvgH2NtTugjQFPBWsvQ2hyzqwaXQYuxXSgyaNKONIEwJ/Fo6C5Wy/MyXlwOXLtSZTgA5D4mB5efCCf7DWQz4ZLAEuvQnNQsSsQ/m7/XQ/WVPz8YULTrsR7MAuu4sk8+rrfTIv1SKRZ+p4Rnh4/1kEBEEsi4vTiETBhpKyBAF+lOaTKPy/nmhYzwIeS9Q9K9CbLofjQlPTofLy3SUlXxQV7SktfefcuZdPn/60sHD/5cufFRa+np394vHjXxYXV3YEmkhwWUC6As4oHq2snNevuO4snW4Q8x8jgmJad3gg6UJ7PuTj4BESQPcjEYONkGkQRg/WEALgMpnUktOuvqv5DJMJYAgBAZu9jArjZEthrgFLDABcBThSCIObyaTWCN0OOM1gSymPUMBwPMp45/FZM1dzs3XqSQMf5Con/Q9Y8BUSH0fsxrE87ZSwsGDrknOVhL33E7rbDmeXb3FwggndrbA1Q5oMrsrX7BkLB5a4c5gG6xGmuvMhTkhSKsP9b3YcGRztSoHg1sTEDwoKgtLCDAKX2/1hQUFjkGU8LfXga6GYguYT0CxEyAw4jAGDBp1u91clJd0ZYA5j9x+LH0XNzWqhMKR3Hd1Ir88u4XIHrIZDEMTyuDiVQBCUXLb/DbR2FzouAoye6RmPuxb83RZotVjOGwzHq6ryDYb6zs7+Zpz7WCCsaG+3OJ39qIWESySLg1vNGUnkGWg7CwDGYvA0/WR9jCpTtdpukY3QpeCHBTXFTWHrFZc0PyrKZLON4LSKNxPCEAJI12hS1WqwpbDUdj/QieKgXhDs/lT6hLEQXAVAgC1hODrWyqqUNW+i5ktY6v3rq12DEJCmIO5Ho72E7s/NcXHpwUS6c5WEj0doNYCnDOC/8rWY9BPw1AE8QocRltoBMuocJjgt/XXojZbrUnIZlPM0w9+os8RwdAKIVyhWxMe/e+5c2QiVD7U6ne+eO1cV0HfxgSqhrsiCMBKiWAAQ6b0Vpykq2ttfz8k541ESd/TpEWbX1U3xi4ON6h0PGcwcCUEQK+Lj4xSKN/PyBlgE8rFt9nYYixCzAVxlTyqUZwGvD49wuAQyhCRJHrh8+Ya+c0iYDMZtPjreY4N8MtrzAaD5xJBE50cGPpud5V16gsEF6QY5UNFt0gWnCV6VjBgEsSw+/mhV1WjUm50ohhDAivh4pVgBa2N3dWyBDvLJwe7MEsJlQeNRhN4EgMGWrhaX6dt3I2w58n4JvrYnTJlm8DAIYk1S0vL4eHE/+h4I5BH6LBB6Qy1ucVW+s6kOI1x2WANUju7BaQTpCly2OBCTRWZPQaIUtdr3U3jdwROVyrXJyXtKSz+8cKHVMghb2xdGm+2ts2ePV/maNF8sDeBrEbYcCY92twgiYO6RtqgxGt/Oz3/r7NkmbxfTYQpoCFsslmazObG3A0QQhI8hDBOLI4OIDaEWz7K02h39z5H6eBKtpyGfDAYbHHmPBHcfa4Qjhi1A7kRhc7ObJFO9ckh8mBYWphzVgmp9wQ8DScJSh/pvoL1xHAZwhVkREb2eA4L5deytYEt9lBEjJBIOk1k8CmXoJ5Ah5LPZ61OTpAzLkDweAnGbkfAIRDEsBuP21PR091kYDmHmdrjMEEWP+GgnINPDwx+fNWtTVtaimJj4kBC+f8IGz98QNvRpCCmoQgfeFfIcJrBF3jbADzecFrAlQTqFXBZrMs/gMYRMgvCtWdrbO4mWyR6ZNi1cLN6Wl/dVaWmN0UiSpNXppKrQNXR2Hq+u/vjixZNBx8K4SXL/5cvH+rGFpBP2VnBVUExF0i+6G4XdhpAEjldXbz97trytzXfHPjzC07W1WVqtj4sTKZH4l5gP4B/3wZyICK1Y/PHFi33aQqbXGqHbgbaz3UW2uIorhtANRzu4CgBgj5FH6CLJb8vL+8mRF7DZ88ex5rB8Mlpz0fAttEvHbQxUIIW3UxhM3JMl8J/2tLCwY6OgTXYNJ9QPAalcv0GS/45gzVB0IXmhAKRc7p2pqWFCHo43QbMYPDUSfz5kzTkaHwggQiKhxMxIkuy02zvt9lartcFkKmltNXS64TSBdIK4YiMtDQOHO1Gzo6Ira10OIyRJMNf0WaXJ0QmW8Epxy4GXVTI0Gm7nl94laqdqtccqKx2eSH2/mzKLwZgbGZml1Z6urf2yuLjJbOYymU63m81k8lmsSUrlpJCQ49XVVqdzYdBxhgcuX7Y4HIv1+gD549ZGcJW+yf4CHYzFhs7O3aWl1X1Nrjo6/A2hzeU6bzA8PM230mNmoPTZJJUqhM9vCc73XREfv6e0dFte3u3JyQFcKG83ov0chFHdVSw4chiLAMDe3l1VEaPnEfoawlM1NUqBoK8ceYIgViQkBHikGzPkGbj0XwgjhlntdvjcEB19tqHBRc1qBvPrdJb5ByoDSNNoDpaXVxuNwUw2BM/EMoQQ6EKY1k0pUe+1ioYQsyBgszdlZXXL8/JCEbEaABIfH+lR0gAAQRBiLlfM5WrF4hSVarFef6yqan+JDLbWK2GiJKyNA6sHc5WwNfX8UTmNkKag9ss++1NCIkxeMPEyBEFMCwtDTili7vU0CjmcLK32VO0VIdk+1qsEbPaC6GhPSD0JmB0O4ZWbZpxC8XZ+vpDNDjaSCDheXV1nMi3R630DdqhImd60s8K+q8o+25XTZz10lxkMln/Rwbz6+jiFwsf54zKZyYHmBhkEMT86emdhUAJyDIK4JSEhp75++9mzsXL5Er2+lxR2L0N4vkdIgSOHrQ3oPW85GmuEpBMOo3dkVqfdfry6elNmZl/5tGFTAAAgAElEQVR7zAwPT+l7ynQskE9G0d+R+MR4jgEAIOVyM7XabGr5ORhDaLoETYAkLjaDcXtS0ggU8e/NBJoaBQAGG3ytWBx2f2bmgDUg/FkWF9fzl5nwCCLWjvDwaPplTkREmkKEzsvd722tYAm9K+AERhDRswvphNsBYSSc5m47Z6lF+du9+jtNYEt6TcT1TYJCoRIKYSr1ES2Z7b0oEtxNmQCEXq6DgM2+KzX1u8rKQWVclLe3v5Gb+3p2dr7n6Ru9DKHV6cw3GN7Jz/9XsS231dHfDcVPUAWAmyRP19bO9IuCSVGr+yqqnqpWq/pW5vNnilb70xkzQgSCN3Jze0UVMflw27tjKKyNPUVTPWuEngVCjI5HaLoEgc7bsT5w+XKWVqvgB1YrmxIWtjQ2doTHMFhkGSDd47tA6GFeZGR38WGPKlNfWBvA5PclEZyp0fSTrzk0JphHCCD9OcjSuUzmuvT0jy5cKB5IbcBDRmhomndkY8qvR2V4NH1DEMTNcx9j7H3sHC8E4gRYG3wzCAMiSUDdV93quN35AAQE4eiqhmQSjMW+gTMOE1hiEESP3ghF5yWQpHfRagZBLNbr4eiAuRriXhKjUh4vXaPJo0K9GRyQJNyOwUZUyXm8lZMmfXThwn0ZGX3dbQNS39n5WVHR7tJSpUAg5XL5zeUMU4y7uLixq6uhs9NFzdn2o+ZB4ejwF13Kqa+X8/n+soL9SDkyCGJRTMyHBQXBj5/DZM6PioqRyT4rKlIJBNPDw0NFIhGHA5YQ1kam6TIkk3oMElMAuOGywmrokZJm8uGyBVmkewDs7XDbwNPAWOit8l3U3FzV0fHQVN8JdgZBREmlM3S6xNGWmAgGaSLU86CaO97jAAApjzc9PPxEdTVYQj8Bn96YyiAe02eIiWcI9fdR/zMJYm1S0rvnzgXOnPVCxOEs1eszRlFRmiZYGJLE1bf8I/zrjd/LXmyzNgS18sHgQhABUymkKZ4wSKlikqOzwCyZBFMZnOZeVoqaGiVdvh5hax6YHG9DmK7RqIVCVH0C1VwwfWvK3BAdfa6xsdvqUE4hZ9CTEJNCQrrs9rfOnr0nLW2wGnsOl6veZKo3mdDYClKB+t5yBCwh3HaQTo9qii9+HqHV6TxSUbEhI8OnY5xC0b/ibpJSGadQDDZpJFIqfXT69LMNDcerqxu7uhgEEcabKTp/EgSDI4ogy8ocbrfF4bC5XHxriqysOMZqiFYvvGIeCbAEcHahoxCShL70IoKi4zzaziLuIZhKPZN1Rpttd0nJ3Wlp/n7wioSEKVdPtWGChSXfjfcgepgbGZlTV2djCQOoRHnTeQmqOWM1KGC0DWFLS0tOTg5BEEuXjmfMUl+wmcy709J2FBRU9lGhQ8bjLdbrk1WqccgBoukDUj5lRtrK6Y6vGxWVHWH3MrXpMh7vRHV1bkNDwAQjHovFViSbOoogTaHCIJNVqlXTNjD2pBZEbDBXnevgheS5jE7GlVk1hwk8NVw22Hp7il2V3qHzXBZrYUwMANTvRdjN/ueV83iTQ0NzqEUR9hANIYAsrZbPZr9z7tzqxMQBZf8C4+wMHFtL1Uvi9HFMR4fPgI9UViapVP4aqsHU110WF/fqoMRGAABMgpii1VJ2pcNmqzeZzC0OsrPcIZ4CEBwmk8di8Vgsc0NFi7X2iCV6z9mim2JjE0KuZFDY2tBwAABCpg/qvL1wdMJhRPUn4MiopyiH2/3RhQszdbrwQOY/YCMNhYDNnhsV9W1Haa9Abh/cDpjrIBjTUNtRNIRbt279yU9+olarlUrl1WkIAfBYrHvT0z+9eLGo9xwpAWRptTfGxfVTO5hm3Ej8KbE7RUMQmtkvQ6gAsHLSpKywsMKmphaLhcditZjNNUYji8HQy+XL4+NF7viyz2Z1xj8prDkVFsYTp6QAgGZOVuWvoE+CvX1urOB/BkGLsREsEZxGsMUgmOjymhq1tYC0e4s53xwXJ+VyARL1e5H8dMBhzouMPFtf7yLJYcZuJCmVYg7nowsXlsbGDlK9CADgMHUn0fvAkfZnCO3tEEZ73jWbzecNhkf8gkUjJJLoIHSFQgSCxXr9vmFUHpdyuVIuF8r59q4UjrD3rKONj6YT8xPXXCZ1u0pKOu32LK0WLBFazwAEzNXDMoTOLqhvgOEINAsAuEnyowsX1ELhnEAKG2wms0+xdRoAwCydLr82trnqI5Auf9kyALDUgace48zsUTSEd9555/333//xxx//9a9/Hb2zDB82g3FXamplR0d+QwNVC59JEDN1uv5ne2jGE14oIm9H1cfeFfLCxWLvh3Gn283qKeetSVBHgMwHq64nfDRmPY6uxYxtaD4hddauTpyz/aO/u8WJcJjAkoAke0WNdlVCnAjjRWouMVGp7C6r334eTH5farcyHi9Lqz1TVzf8IEadRLI+I+Ots2flPN6gS1Y6TWAHupjZkv6WCR3t3kW59paVzYuK8lfjCl4ZcZZO19jVlVc/bO14/9RGjhxMLiSJegb73vT07Xl5IQJBFEuI9vPQLERr9rBO5+yEYBp0t1LpwocqKgDckpAQMHEwVCgcvvzh9Q2LwViRlPH2BQUsdYELcpmrx75Q1ygaQumYCY6MBFFS6YhHItGMIslPQdjfXwvLR9Qi+h5UvAfSBdW87pbwWyCMRNgymKvRVRURw5vFOHe8zQxnF9hikI5ehtBcCVE0LHWwtcZoJ61JSkLFu8j5OcQJ0AaYF/UwLyrqrMHgYImoKmvDQSUQrE5M/OjChYenTetf/dWXviqledWOD4C9wxO2V9TcbLTZ/LWFuSxW0mDSA25JSHC53ecMhuB3CQphFDQLKR8ihM9fk5T0ycWLG3UiOYML5Sw0n4TT1FfR1IFxdoIlgjAKQI3ReLah4aGpU/uydvTTczDEyGRTwiNyOiv6NITB1/waIa6KYJnW1ta33nrrwIED1FuVSnXfffcF7Gmz2Th+1StoJg42mw0Ak8kEOwxxT8IWbBU0aFZx854i+WFOtsbt2evmEgBMbjjRdMTVfH6RCg3Sey5d3OEimQCX6TS7rlQ5YXZWuELmMjjyZJ5pRUIC6XS6Kz9xxz1KuG2usNvIvofBBTKUytMGPmGtdw9KhzYQeqk0QaH4rrJySfCCPqSL6bS4wIff2QmmiLAaAo/KZWXC7QIHLpfZ6dxTWromMZF0u326xoeEuB2OoH8DAFih12t4vP3l5a6hpoI5nU6mz4IFSwGZwvMBoySSOTrdjtryjbp0thsMfjhpqiS9Aj4HBdPZ5SJ4cLksTudnhYXLYmN5DIarj59SxePZgr8mJzBLEmfUH/+02jXbbwvJ7Kp2hS73v1w9OJ1Om83Wj9CHD2w2mzGQ1tuwYovff//9mED0dZX0hdvtNplM7VewWv0052hohglH4VbdQBgLSb6vW0MKIghzFdFxnpClrp66Spv1a4CKv7+yRmhvJ+CKUevXRQt+ENLMZjDgtjEaD7v1DziTf0/K0vs/82ydjsMRjVRa27yoqPyGBmPwd1unCSwRAt41WJI+PUJHjzv4VWlpmlodEWg+dmih1FPDwjZNnqwcTELIYJkWFhYp1+xo0licTpKvIyyD0W70xu0E6QSTZ3U63y8oSFQqJ4UEkl++Au0RBglDNfdO1j4J22+N0NYCJnfs6/4PyyO89dZb582b59/u+7w2EEql8rHHHpsxY8aAPe12O7f/usw01zUul4vL5Q72AutGvx71ezjSKN+EAWksLDWMriIoMsQCweapU49WVR2rqnKCYBJuLps3jbg4IyNKPGUKSr5HRwGLy0X9YchSOeI+k+e84XK582Nivm06PsRh90bKZE4JCztWU7MyIWHg3gCsXeBIA5+aHwJDi+8mWxNMl8CRgyNnMpkna2o6bLbbU1L8A6dlPF6cUhn8g7k3EVzupqlT38jJ6Ri8/8RisYL5JlckJBysqNien39rVGik5egQv3x3J1hCq9v9/oULUTJZ/wnyPBZLK5UO7QuZcHDVXLl+sx5vVQs62itgLKZikWCrgyCy/x+LxWJxudyR/Z6HZQiFQqGQDpGiuVYIX4nU3wZImxNGwFKHtnzEPwyAyWAsiI6eExFR11DNSdGplfHM3RuQuRMAxHGo+RwAancj/JbgzzwzKjH7+9Yg1JKCYk5ExCtnztQYjT1RM235kPum93Xj7FNKCVwVQElZeSVXGI7AWARhJLjKi01Np2pqNmVlBUwfSggJGc7NSMTh3J2W9mZeXrAK9YOEIIjFMTFakejzy5clLlUcuypOoRhsLiacnY1kyAe5uRmhoQPWzo6RyWgrOAgi75CfvmujYslnddUVVh6UM8HkwVzd/9r/KDGKa4QFBQV/+MMfqqqqysvL77jjjsmTJ2/ZsmX0TkdDMwBMHtJ+H6CdwQVHjqbvMP1VTxubyYwS88C2oPEAeCrIMwFAHNddYL12N+bvCv7MbJH2Ju75j4Y3fA88FusmfeSukpIHp0xhEATsbaj5HC5zT/lNb+wBCmf3IE1BR0GPIXR0oKscMRtQ8c5lInZPRen6jAx/TQmKISY1ehEqEt2RkrKjoMA1yPzC4ElWqRKVypL8NyttXR8U1GnF4iytlqpTM6DJsrtc31U2ZB9sj2efY12+fPzEif77O8LDK776aqRGPiGwbYCxkJTNaSvb1XT+zVZC4TIchTwLrNKA3WOyssImjYoE+igaQrVaffvtt3vehtKVWWiuWoRR6LhIRQb2wFXCUofS1xD7QE83awPOPgV+GGQDqV54w+AmCy1TFOyc1is67FT9Gn9J4WAw16QYd5/jzf2usnJBdDRsTeBr0XQcgggI/LRwHcZuZaKAyFJQ+RE0i7vftpyBPAPCyKqQ23ZebrsjJUXTx5QPh8mMGXy1Xn/iFIrViYk7CwtHQ22VgkEQiSJXYrh0ceyknPr6UzU1hq6uLrsdAJfFipRKV8THS3ovuHTa7QWNjcerq+OEpPDI4bk/uFM80OIfAbjM5jbzwPVpabxggJWCTjc/dFkkiUiCgGQ5CUbASyE3J+dCa+s1bwhpaK5eBJEgmL5miavC0R9AfQOi7+5uIVgQ6FDzJZYeHfQp4h68uePlWtGT3bInlTugmjOwhlRALPWwt65MSNiakxMlk8U4miCKAV8Lw0HEbPDt7DBCFNPnoXihIBiw1IEfBtKFtjzEPZBdV3e4on1NUnI/SjcxMplvgspQSVOrO6zWA5cvD9x1yLAlcBhZ/LAZ4eEeiUQ3SdpcrjO1tVtzctI1Gmqmt9lsPmcwNHV1xSkU96ana7py/g3i11u26PzqjNOMMS+//PKH341WubirIn2ChmacEUb6K49j8vPIfLGnjjNF2u+hnu8jShcUqb9h70nfEGV4lwitMxlha0H7+SEaQms93A4Rw35bUtJnhYUPhLWIJZEQT0LtrgClvftKIvQgTUFHIfhhpLn2klt39EKF3eXamJnZf5nv+H6DJwfL3MjIVosld/i59n3BDhAfyyAIPot1Q1RUqlp9zmA4WF5OEISUy50TERGrUHQvi3Z0BQ64pbm+oA0hDQ0Q9yPAbz5GGCg4IvreAI3BwORjyr8E5367YcmprwtOnGNyya5KuCxg+tqbOIUiU6stMBgK+5JGsTSAwYa9LUYWMVOne7e68/6QEB6DDX44uip8BKECiuv2QhxP1u4+bI3NqamUsrWzYsJS1Or+7/1MBmPEpRVWJCQ0dXVVG/sVJRgygQyhBwWf7y0M2Qtn5xCnr2muKSaYHiENTUDE8T46SqNC6GIYi3iE4zaNeWMU9KpIdFz0bCQIQsbj3ZWaem96eopKdVtSUuD1OdINWzNEsZQI3+wIXSyr+f3SJqfbDVEsOi/17uyCywpWv6HdgvAD7bLLrc2bNHUPJIenDmQFASQqlaKRrmvBJIg7UlPFo5Qc5TGELgtI5yB2pA3hxID2CGloxgoGF5JEtOWjoyhCrd+QttBQ8GrNpHtcbrdeLlcKBN59OUzmXWlpr2dnW529b9y2JnBk4Km61WjtHUslhp3k5M+KitbqY4mqT+EtATRQSA5JkgfKyy85VT+MYfAaKyBcE8zn6Ed9cDiIOZyNmZkfFhR0L6OOIB5DWL8XLDFClwS7o7OLNoQTAdojpKEZQxRT0JoDYyEkidDerGk/MkUbOj083McKUsh5vFv8s+Yt9eCFesmyNxE81erExE67fV9NJ+my9Kqj3e8CocXp/ODChTqT6b54Oa/1ODghYAzskKmEwuhRq8or5/E2ZmbO0ulGWPjMYwgt9WjLAxl05qKzk7aDEwHaENLQjCHyLLTlwlgESRKYPLBFsPUnV5uqVvvKO1gbwKcMYTsA2JrAVTEJ4q7U1IbOzo+6MuztRT2d+zCELpLMra9/5cyZED5/fXo6XxoPW2vgNVE/pmq1o5o2zmEyb4qLe3jatJHUM2JL4DTB7YC9HTwNOi4EtRfpBOmiPcKJAG0IaWjGkG6PsAjSRADghcLa0P8ey+Pje01FWhrA0/Z4hNZG8FQA+CzW+owMsUj1UpHpeFVVd7kWr5KhFE63+3h19T+///5CU9O6tLQbY2MZBAG2GDxNf1kWV+CxWJPHJCFYKRBszsrKCA3t3wpxmcwomUwvl4eJxf3pHxEsMDjoKgdXCeVMtJyBK4iCxs7OAZZXr2JOnjz5+98HKh9xLTNSGTsBjjxKx6WhoQmALA3GYjB54IUCAD8UlgZIU3o6dFXg0DIwONDfj8SfASAAKuP7cEWFu+kk7C0QhIHBgcsMtwNdlVDOpHZlEsTyxMnTGe9/1y78V01NukajsndKBAqe0chiMEjgUmtrdl1duESyISND5TMZG3NvMDf9LK2WOygFqGHAYTJvS0y8ITKysLm5y+Ew2mwdViufxWK53WqpNEQg0IpESqHQY/3sLtfesrI+czDYYhiLwddCHI/G71D8T3DkiHuwvxHY28AZgaIB4wKDwWCN1S81Zoye6PH19k3R0FzVMHmQJILJ637r7xG25kIYibRn8d1qaOZTpd0IgrghKlJX/pf32ltdsZu7V/LYErSeAUvQbVOvoAybsaZ+X1vCxoLGxpo2l8kGS0uZiyTdJBkjk61NTg6s6xtEvX8GQUwPWoZ3pAgRCOZGRnq3mEymgHVeOEzmqkmTpFwupZ3rC0sCUwnU8wECsZtBunDxBZBuEH07GbbmoSSMjj4VFRVur6J0kZGR/jYvOTlZq9Xi+kIlEHBHonK9P7QhpKEZWxRTQF65i1EeoTemEsgyoJyJrL/h5A9x8xkwOABw9ld6e96s+duO1TZ29+TI0fgdwpb7Hl8UC7dTTpjmRUbC/Ali5/rMjg6ZFJVKxuMN3G9cuSE6urS1tcY/H5EtgakU/Cu2gWCCJYajDZy+KwNYr1JD+Oyzz3Z1dQFoa2s7cOBATU1NuN8Dyr59+1599dVvv/12PAY4WjAZjFS1urylZcSPTBtCGpqxRf9DuK9UHPX3CI0l3bWzo9eh7HXU7YVuFer2oOZzLD0+ny0vaDG2U4KdHDkshl7Tqh74WlgNYMvgsgyQTR80TAZjYczAi4jjDgGsnDTp9exst0/xUrYEBKOXzgY3BLaW/gyhvQWS+ADtlTvQVTVC4w2CqDshjPZu2L59OwCHw7Fs2bJf/epX/lbwOmZyaChtCGlorn1Uc3te80PRlt9rq6kE+vu6X4cuQfMJ6Fah/hvoN4IbwgYW6/WfXrwIAMJo8NQgAs0U8TSwGMBVgSMfqaDHrNDQ/ouuXT1ohMKZOt2J6uperWwJuMpeIlzcENha0U8x7b6mRt2O7kilMaCPmVuSJDdv3qxQKP70pz+N0UiuDiKk0tGQdKYNIQ3N+BHQI/TUuFHORsEfAaDpGKa+RLWlqFQHebw2qzWwL9h9WA1ac2APA2e4Skndx2Ox5gesQHa1sigmpqy1tbGrq6dJGOX7TMAJga0RfeF2wGkOPKvsX9l8zPnDH/5QWFh4+PBhxqgFUl61pKvVI37MCfcl0tBcRfA0vQyhvQ1uK/hXgl9CZqA1F/ZWGIugmEK1MQhiVsRAyqV8DawG2FoDVBIfEjfGxo54TbVRhcVgrElK6hVtz5H7ahdzFbD1PclmawY35OpMIvzwww//97//7d69WxCoDsN1T7RMNuLHpA0hDc344RMsY6LcwSs3X7YYIj1KX4ViinfNl0ytVti/WWLL4LbDUjMi0f+xcnnmNSgmGioS3ZOWxu7HYaLWCPviag0Z7ejouO+++zIyMv7+978//fTTTz/9dHt7+3gPakwZjWcTemqUhmb84ITAYezRTjKV+tb+Vs5C8b8Re793G5vBmBMR8c2l3vW1feCpYboExbRhDlDB569OTBzVUjKjh14uvzc9/cvi4haLJcBmtrQ7F9NHuIqi/zia8YPH473zzjveLZxAT0WzZ8+mtdCDhzaENDTjB8EATw2roVtZ3lgCiZ8hLHu9V3wNAGB6ePiZurq2gPd3Cp4GXVXDnBoVczjrMzJGSxFiTIiSyX48ffr5xsai5uay1laHy7vKKAGOAvbWXqGkHmzN3dV/rjK4XG4wgudhYWFho1Mb/bqENoQ0NOMKtUxIGUJTCcJX9tqqmg2C0Z1Q4QWLwVgcE/PJxYvoC54GBHM4uRNsJvPutDT5VZ84OCAMgsjQaDI0mnar9euysmJvlUdqdjSgIbR3T41e/b7wBx988L///c+7Ze7cuVu2bBmv8VyL0IaQhmZc4XktExpLkNjbIxTHY9G3AZf6UlSqHLm8vK2POH6+dpixHrfEx4cFKuBy7SLj8e5OTe202+tMpi673eF2t9vl57taTP5dSTdsreAqdRIJZ3RKmYwgy5cvnz17tnfLxAyiGQ50sAwNzbjCv5JBcfEvcLQHSIrQLAi4H0EQqxIS+rxN88Ogvz/wpgFHxGKtTU7OuE5XmEQcTkJISKZWOz08/EZ91P3qOrl/XpqticcV3zIpeVNmZn+1vK8OJBJJZG+USiUAl8vV0dGjyfXOO++8/vrrwzmRzWbr8s5IGYiSkpL77rtv4H5+OByOm266yW63D2HfoUEbQhqacYXyCHOfQMX7WHoMrEE8y8v5/KWxsX1uZg5uVpPDZEbJZEv1+h9Pn546CqlaVyO8UIWrblNm5tSwMEoBkcVgTAkLuy+868lE3tSwsGs0SoiisLAwOTnZ81YkEkkClpkNmjfeeONHP/pR8P2NRuPx48eHdi7tKKt9+UBPjdLQjCv8UJz7HSSJWHIEnEEnSE3Vagubmi73NUEaNEv0+jkREdf0fX8o8ENhaRBxOLckJCzW67vsdj6bLWSzkfsaFBkD7z5+mM3m06dP22y2mTNnSq/oJJeWlhYUFHA4nClTpoSGhhYVFTkcjpycHADp6ekzZ850uVwATCZTdXV1VFTUwYMHZTLZ3Llz3W734cOHXS7XokWLqPrdLpcrJyenurpap9NNnz6dIAiz2VxdXd3a2pqTk8Pj8VJSUgC0t7efOXOGyWTOnj2bd2U5ub29/cSJE3K5nM0OEI5bXl7e2tqjwRkZGalSqXz6sFisxx57bCzVM2hDSEMzrkhToJqLOe8Ho//gD0EQqxMTX83OtjgcA/fug1iFYk5k5ASzgQAod7xbtonPYvE9d962fCTfNG6jGoiLFy+uXr06MzOTz+c/9NBDu3fvTklJeeutt5599tlVq1aZzeZt27bt3Lnziy++6Orq2rp1K4AXX3zx1VdfNZlM//jHP7Kzszdu3BgVFaXX6w8dOnT33XcXFhaKxeKLFy9GRUV9+umnAH75y19eunRJp9Pl5OSEhITs2rWrqanp+PHjBoNh69atWq02JSXl8OHDP/zhDxcuXGgymR577LFDhw6p1eqysrKFCxfOnTvX6XR6GzwPu3fvPnr0KACSJL/88st///vfDzzwgE8fm802depUs9nMH6uqfrQhpKEZVzQLoVk4nANIuNzlcXGfFhYObXcZj3dbYuJEtIKgFmgbAdI3qqjtLOST+9rpjdzcS4Fu8aPE5qysOEWvUnmPPvroU089tWnTJgBvvPHGb37zm88+++zjjz/+y1/+cscdd3i6PfXUUwcPHgy4LlhXV3fo0KHo6OjTp0/PmDFj9+7dK1as6OzsVKvVDQ0NoaGhL774IlW8ze12Z2ZmHjt2bN68eXfdddfJkyepA7pcrvvvv/+tt95asGABda4XX3zxxRdffOaZZ9avX//nP/8ZwE9/+tPKykqfUz/22GOPPfYYgN/+9rcNDQ0bNox/vTrQhpCG5jogTaOp6ug4U1c32B0lXO6GjIxrq3zaSMLggC3yrUXXVQkmL3BOBQBAxuMFiK8ZNXyUkJ1O5/HjxxMTE0tLSwE0NTXl5uYCuPnmm3/84x8fOXJk2bJlN910U8BpSQ96vT46OhpAfHw8gIULFwIQiUShoaG1tbWhoaGXL19+4YUXCgsLbTZbdXV1WVnZvHnzvI9QWVlZXV399ddf7927F0BpaSkVmPP999//+Mc/pvrccsstX331VcAB7NixY8eOHSdPnuReHVmqtCGkobkeuCkurtlsLh9MtS2dRPKDpKSxvKdfjVB1z70NYb/uIIDbvSJQxh6Xy+VyuRYsWKC44iZSTtVjjz22YMGCXbt2bdmy5bnnnjt27Fg/B/GYH8rt835LSf6uWLHiJz/5yQsvvKBQKFatWuUfwGm329ls9pIlS6h15SVLllBLlW6327PSzOwjpPm777574oknDh8+7L86OF7QhpCG5nqAxWCsS0//rLDwQlPTgJ2FHM5snW5WRMTVnxsw6vBDYanvlbXSfg6y9PEb0ABwudysrKyOjg7PLChJktS/aWlpaWlpTz75pFAoNBgMQqHQ0k/tob6xWq2lpaUbNmwQi8VGo/HUqVMrV64EIBQKzWYz1Sc2NlYikbBYLMqb9AwjMzPz0KFDM2fOBHDw4EH/gxcVFd1xxx07duxISEjw3zpe0KzfHOUAACAASURBVIaQhuY6gcVgrE1OjjMYDly+3NV3DtZMnW6xXt9fNeoJhb8SVlseou4ep9EExSuvvLJmzZqTJ0/GxMSUlZWxWKxt27YtX748Ojo6Kirq9OnTs2bN0mq1LpdLq9WuWLFCp9O9+OKLwR+fx+MtXrx4zZo1N9xww549e9RXcmnmzZv3i1/84t57742Li3vmmWf++9//rlu37gc/+IFKpTp//nxKSsozzzzzu9/97sYbb2xoaHC5XKdPn/Y/+COPPCKXyz/44IMPPvgAwN13302tMo4vtCGkobl+IAgiMzQ0San8vqYmu66us7c5lPF4i2Ji0jV9rn5NRPjaXgIgAFrOIOvv4zSaoJg6deq5c+cOHjzY0NCQlZVF+WSvv/76iRMnWlpaNm3adNNNNxEEwWKxcnJycnNzzWYzj8fbsGGD0+kEMHny5Ndee406lFAo3L9/v0fU8O233540aRKAXbt2ff755+3t7Tt27DCZTNQ0bFxcXGFh4cWLF6ky3ytXrpw6dep3333X2tr68MMPz507F0BGRkZ2dvY333yjUCj++Mc/XvSrAviXv/zFO80/Li7O/wNyOJyvv/56LJcPCcqfHV9mzpz5r3/9a8aMGQP2NJlM4uur7BPNoDCbzVwut6+1BxofHC5Xl8Nhc7lsTieDIMIlkutgJnSEbwKFf4O1Hpl/7X5rNeCrVPygZ3o5IiLi5MmTOp1uxM5IMyRefvnl0tLSl156qaurSyAQjGzOK+0R0tBct7CZTBn90NA//FC05fW8bTkDxdTxG82Eo6ysbPPmzd4tHA7nm2++GeNh0IaQhoZmAuOVUw8ArdkIoQ3h2BETE0Ol8HsYl/JGo2gI9+/fv3379pKSEplMdt99961fv370zkVDQ0MzFPjaXsEyLdmI29x3b5oRhslkhoSMvwDyKBrCb7/9duHChb/4xS8qKio2b97M4XDuvPPO0TsdDQ0NzaDhh/YKlmnNgeK18RsNzfgwiobwhRdeoF5kZmYeOXJk3759tCGkoaG5uuDI4TLDZQWTB3M1QHaLJNNMJMYil4gkydzcXCoql4aGhuZqggBPDasBAMrfhWrOeI+HZhwYlkfY3Nx8/vx5//Y5c+ZwvKoXvvTSS3V1dY8++mhfxykvL7/ttts8WSN6vf6LL77w72axWP7zn/88+eSTwxkzzTXNRx99lJaWlpSUNN4DoRkfTCbTm2+++dOf/nQEj8lnqxw1h0mOnFf8knneIbKz03srSZJPP/20UCgcwTPSDIELFy6kpaV1dna+88478+bNo2qlBgOPxxtQ0WlYhrCkpISqMu7DBx984Fn/fOedd1588cXDhw/3cyVFRERs2bJl8uTu+n4ikUgkCiBJ09raum3btmeeeWY4Y6a5ptm/fz+LxZo2bdp4D4RmfKisrHzvvfd+/etfj+RBk3/OLHgOnZexaJ9Qleiz8dVXX62vrw+4H81YMmXKlFmzZolEoj179mi12tTU1BE8+LAM4ezZs/fv399Ph48++ujpp58+cOBAwPIBPYNgscLDw/V6/XAGQ0NDQzMUotcheh1cFjAD1B+nymzSXN+MYrDMzp07f/azn+3bt4+eyKKhobnaCWQFaSYIoxgs88Ybb1it1vnz5ysUCoVC4a0YSUNDQ0NDc5VwVdQaDQsLYzKZnIHUQV0uV11dXURExNiMiuYqpKmpSSAQ0JELExaHw2EwGOjKnxMZg8EgFosFAkGQ/e+5554//vGP/fe5KgyhwWDo6uoKpqfNZrtKFI1pxgWHw8FkMhm0hNAEhr4JTHAoTeDgK7FptVr+QOrTV4UhpKGhoaGhGS/oJ2saGhoamgkNbQhpaGhoaCY0tCGkoaGhoZnQ0IaQhoaGhmZCc80I81oslq1bt1ZWVs6cOfP2228fF/FGmjHA4XCcP3/+3LlzIpFo7dq1nnaSJHfs2JGdna3X6zdv3szj8aj26urq7du3m0ymH/zgBzNnzhynUdOMJNnZ2fv3729paUlOTl63bp0nRrS9vf2NN96or69fsmTJ8uXLPf2PHj36xRdfyOXyjRs3arXacRo1zYhRV1f3xRdflJWVCQSCxYsXL1iwwLNp3759+/btCw0N3bx5s0KhoBr7ujCC55rxCG+55Za9e/fGx8c/88wzzz777HgPh2a02LZt29q1a19++WWfX3nLli3PP/98fHz8rl271qxZQzU2NTVNnz69ublZq9UuW7bswIED4zFkmpGkoaFhzZo1LS0tERERb7755oIFCxwOBwCn0zl//nzqSejhhx9+7bVu1cDdu3evXr1ap9PV1NTMmDGjo6NjXIdPMwJkZ2efP38+MjKSxWLdfvvt//nPf6j27du3b9y4MSYm5ty5c3PnzrXb7QCcTucNN9yQk5Pjc2EMDvJa4OTJkyEhIVarlSTJ3NxcqVTa2dk53oOiGRVcLhdJkh999FFqaqqnsaOjQyQSFRQUkCRpNpulUmlubi5Jki+88MLy5cupPv/85z8XL148HkOmGUmcTqfdbqded3Z28vn8U6dOkST52WefJSQkUJfHnj17oqKinE4nSZKzZ89+/fXXqf6LFi166aWXxmngNKPCK6+8Mnv2bJIk3W53fHz8zp07qddpaWk7duwgSXLnzp3eF0Z0dDT1elBcGx7hkSNHbrjhBmqGJDMzk8Ph5Ofnj/egaEaFgMnyubm5EokkJSUFAJ/Pnzt37pEjRwB89913S5cupfrceOONR48eJem82GscJpPJZrOp1y6Xy+l0Ulo0R44cWbx4MXV5LF68uLq6uqKiwm63nzx5csmSJVT/pUuXUhcGzfWBw+E4depUWloagPr6+tLSUuq3JghiyZIl1G/tc2FUVVVVVFQM9kTXhiFsaGhQqVSet2q1uq6ubhzHQzPG+FwAGo2GugDq6+s97Wq12m63Nzc3j88QaUaBxx9/fNmyZcnJyeh9DXA4HLlcXl9f39DQQJKkWq2m2jUaDS2ZdH1QVlYWGxsrk8mKi4v/9re/Aaivr+fz+WKxmOrguQkEvDAGe7prwxCyWCyXy+V563A4BixMSnM94X8BUNMDLBbL6XRSjdQL+sK4bvjjH/947NixN954g3ob8CZA+Y6ea4C+M1w3xMTEZGdnf//993K5/OGHHwbAZrOpyXCqg/dNYPjW4dowhOHh4bW1tdRrl8vV0NAQFhY2vkOiGUvCwsLq6+vdbjf1tra2lgoODA8P98wN1NTUCIVCqVQ6bqOkGTn++te/vvvuu4cOHfJ4e943AZPJZDKZwsLC1Go1i8XytHsuDJprHSaTKZfL09LSnnvuuQ8//JAkybCwMIfD0dTURHXwvgn4XxiDPd21YQhXrFhx9OhRg8EA4JtvvpFKpZmZmeM9KJqxY9q0aWw2++DBgwDq6uq+//77FStWAFi5cuXOnTup58GPP/6Y1lC9PvjXv/71n//855tvvvG2aitXrty7d6/JZALwySefTJ48WafTMZnMFStWfPLJJwAcDsfnn3++atWqcRs3zQhhNps9r7Ozs3U6HUEQSqVy1qxZ1G9tNpv37NlD/dY+F0ZmZmZ4ePigTzmS8T2jyaOPPhoXF3f//fer1er33ntvvIdDM1rk5uZOmTJFr9fz+fwpU6Y89NBDVPv27dvVavX9998fGxv7xBNPUI1ms3n69Olz586966671Go1FVZKc01TXl5OEER0dPSUK3zzzTfUprVr16ampt53331KpXLv3r1UY25urlKpvOeee2bNmjVv3jybzTZ+Y6cZGdatWzdv3rz169cvXrxYoVDs2bOHaj948GBISMiGDRsmT568atUqt9tNta9duzYtLY26MPbt2zeEM15L6hMnT56sqKiYNm1aXFzceI+FZrTo7OwsLi72vBWLxQkJCdTr4uLi3NxcvV4/Y8YMTwe73X7w4EGj0bhkyRJPgi3NtYvVar1w4YJ3i16vl8vlAEiSPHLkSENDw5w5c7x1SZuamg4dOiSTyRYtWsRiXTNFQmj6wmq1nj59ura2NiQkZMaMGd7rHbW1tUePHtVoNPPnz/dEmPd1YQTPtWQIaWhoaGhoRpxrY42QhoaGhoZmlKANIQ0NDQ3NhIY2hDQ0NDQ0ExraENLQ0NDQTGhoQ0hDQ0NDM6GhDSENDQ0NzYSGNoQ0NDQ0NBMa2hDS0NDQ0ExoaENIQ0NDQzOhoQ0hDQ0NDc2EhjaENDQ0NDQTGtoQ0tDQ0NBMaGhDSENDQ0MzoaENIc1EwW63b9q06fe///2APf/0pz89+OCDVqu1/27btm178MEHy8vLR2iAg6CjoyMnJ+f48eOlpaUWi2XsB0BDcz1BG0Kaa5innnqKw+E899xz/ptaW1s5HI5YLPa0OJ3ON998c+fOnQMe9tNPP926davD4ei/26FDh7Zu3WowGAY77OGQl5e3ePFiuVw+derUuXPnJiQkiMXiGTNmbN261dOnoqJi69atJ0+eHNopzp49u3Xr1sLCwhEa8sD8+c9/Jghi6dKl/qpw27ZtIwgiKytrwJ+DhmbI0IaQ5hrG6XQ6HA6Xy+W/iSRJh8Nht9s9LUwmc8GCBdOnTx/DAY4wp0+fnjt37sGDBzMzM3/zm9/84x//ePLJJ2+88ca8vLzdu3d7up09e/bBBx/86KOPhnaWvXv3Pvjgg0eOHBmhUQ/ML3/5y2nTph04cODNN9/0bq+trf3FL37B5XLffvttNps9ZuOhmWjQas40EwUul3vo0KHxHsWwePrpp81m8xNPPPHXv/7Vu72pqSk/P3+8RjV8WCzW22+/nZWV9fjjjy9dujQyMhIASZKbN29ua2t7/vnn09LSxnuMNNcztCGkmSiQJJmbm8vn85OTk73bzWbznj17KisrNRrNzTffrFQqA+7udDr3799fVFQkkUiWLFkSFRXV14laW1u//fbb6upqHo83ffr0qVOnem81mUwlJSVKpTIqKqqurm7v3r1tbW1xcXHLli3jcDj9j//48eMAfvazn/lsUqlUS5YsoV5funTp0qVLAAwGQ05ODtUYGRmpUqmo15cvX87Ly6upqSEIIjExccGCBd7nvXDhQm1tLYCqqirP7pMmTRKJRJ4+hYWFJ06caGlpCQsLW7x4sVar9RlPZ2fn0aNHKysrrVarUqlMS0tLT08nCKKfT5eUlPS73/1uy5YtGzdu3L9/P0EQW7du3bt3b1ZW1hNPPNHPjjQ0IwBJQ3PN8vjjjwN49tln/Tc1NzcD4HA4npauri4Aqamp3t1OnTql0+k8fw5CofDDDz+cPHkyAKPR6OlWWVmZnp7u6cZkMp9//vl169YBOHnypPcBX3jhBaFQ6P0ntnjx4qamJk+HgwcPAti4cePLL7/sPd2XmJhYXV3dz4d1uVzUkS9dutRPtzVr1vj/mb/22mskSdrt9qSkJJ9NkZGR3h/B5ymB4siRI9TWxsbG5cuXe2/icrnPPfec9wC++uorhULhc4S77767nzFTOBwOauJ669atFRUVYrGYy+WeP39+wB1paIYJbQhprmGGaQgNBoNSqSQIYsuWLcXFxSUlJb/+9a/5fH5ISIi3IbTZbJQVXL9+/dmzZysqKl5++WWBQBAWFuZjCJ999lkA8fHx77333oULF44dO0YZy7lz57pcLqoPZQijo6NFItFf/vKXU6dO7d+/f+HChQBuvfXW/j/vnDlzACxatKioqKivPvn5+dQw1qxZs/8KNTU1JElardaUlJS//e1vhw8fLikpOXny5BNPPMFisVQqVWtrK7X7iRMnNm3aBOCnP/2pZ/e2tjaSJM1mM/U93Hnnnd9++21RUdHOnTsTEhIAvPLKK9Tu7e3tEolEIBC88sorhYWFVVVVx44d+7//+79f/epX/X80igsXLnC5XIlEMmvWLAAvvPBCMHvR0AwT2hDSXMNQhlCn0830g5qQ7N8QPvnkkwAeeeQR72P+5Cc/oZwYjyGkIjgWLlzodrs93V577TWqm8cQXr58mcVihYeHt7S0eB/wtttuA/DFF19QbylDCGD//v2ePkajUSaTMZlMi8XSz+c9fPiwQCCgdo+NjV2/fv3WrVtra2t9un322WcAfvaznw30/ZEkSf72t78F8O9//9vT8vzzzwN49dVXfXpS0bkPPPCAd2NdXZ1EIlGpVFarlSTJb7/91v8rHRTU2QHMmDHD6XQO+Tg0NMFDR43SXPM0NTVd8KOoqGjAHT///HMAPktQ/itSVLfHH3/ce5Xrhz/8oc9q4o4dO5xO5yOPPOIzMfjII48A2LNnj3djZmamZ1UPgFgsnjVrlsvlqqqq6mfA8+fPLygoWLdunUwmu3Tp0jvvvPOjH/1Ip9OtWrWqoaFhwM8bkFWrVgE4ffr0gD3fffddAL/5zW+8G7Va7W233dbU1JSdnQ1ALpcDyM/PN5vNQxuPZ8Vx9erVTCZzaAehoRkUdLAMzTXPli1bfve73/k0trS09BX2QmGz2S5duiQWi/V6vXd7ZGRkSEhIS0uLp+XixYsAMjIyvLtxudykpKSjR496WvLy8gDk5uY+/fTT3j3b2toAVFRUeDdOmjTJZzwajQaAwWCgJhv7IiYm5t1333U4HKdPnz5z5sy+ffu++eabXbt2LVq0KDc3l8fj9bMvNYwXXnjh2LFjtbW17e3tnnZqJrkfzGZzUVERl8t95ZX/Z+8+A5s40oeBj1ZdsnqxintvuGJjbJrpxUAgCSUkJCGEkIPUI/Xun/dSLpcGpHCQhLQjhEDCEUroHWxMsQ3YGPcuV8mSrN73/SCfMbJcsCXLZX6frNnZ3Udg69Huzjyz3WFTRUWF/cjp6emxsbHjx4/Pzs729/fPzMycNm3anDlzBAJB7wfv1NDQ8MorrxAIBAwG8+GHH65YsSIgIKCf+0LQgMFECI1RWq0WRdHOsZRd8fn8rolQo9EAALr35PP5XV/aE97p06c7b352YrFYONx9f2uddzg7IQgCALDZbP0JHo/Hp6enp6env/zyy1lZWbNmzSouLv7tt99Wr17dy14lJSVpaWnt7e2TJk2aP38+i8VCEEQmk3322WdO52J21d7ejqKoxWLpOnO/6xu0HwGLxZ4+ffrdd9/du3fvTz/99NNPPyEIMmfOnG3btjl84XBq3bp1CoXigw8+QBDk7bfffuaZZ86cOdP7cFMIGjyYCKExikqlYjCY1tbW7pscisXYZw60trba57f11M1exWbXrl2LFy92fbg9mzRp0iOPPLJ79+7c3NzeE+E///lPhULx73//23631i4rK8thVqJT9nfn5eUlk8nsObsnTCZz69atmzdvLiwsPHfu3K5du44fPz5v3ryCggIikdjLjj/++OOxY8cSEhJef/11DAbzxx9/nDt37vvvv1+7dm2f4UHQYMBnhNAYRSQSQ0NDNRpNWVlZ1/bq6mq5XN61JSYmBvzvzmcng8Fgv2XaKSEhAQBw5coVd0XcM3uC6XyiZp+VYbFYHLrZJ92vXLmya2N+fr5DN/u0QodrRC8vr9DQ0Pb29qKiov6EhCBIXFzcK6+8kpubm5iYWFZWVlhY2Ev/xsbGv/71rwQCwV5Exj7FnkQi/fWvf62vr+/PGSFowGAihMYu+5S7zZs3d23sfnnU2Q3tUgnz+++/d8iXjz/+OB6P37lzZ1VVlcMRbDabfczqIP34449di8bZNTc3Hz16FACQlJRkbxGLxQCA7vnD/tC063gcjUbz6aefOnSzTwuRSCQO7U8//TQA4O9//3v3+6j2u8f2H9D764VisVj7PWSj0djLW7MXkXnnnXc6i8hERka+/fbbKpVqzZo1aLcapBDkSh4dswpBgzLIeYQymcw+ROXll1++efPmrVu3Xn31VQqFYn8c2Dl9wmw223PMo48+mpOTU1RU9Mknn5BIJPud0q7zCD/55BMAAI/H+/jjj8+dO1dQUHD48OF33303KCjov//9r71P54R6h4DXrFkDALhw4UIv75dIJPL5/L/85S+7d+8+f/784cOHP/jgA3tBgOjoaPsEBvs7pdPpeDz+xRdf3LZt2zfffHP37l0URd977z17zz///LO0tPTQoUMJCQn2R3dz5szpPEtZWRmCIEwm86233tqxY8c333zT2NiIoqher7dPeE9PT//5559zc3NzcnL27Nnz1FNP8Xg8+74//vhjRETERx99dPLkyZKSkuvXr9vvcwYEBBiNxp7e13fffQcASEhIMJlMXds7/+V/+umnXv5ZIGiQYCKERrDBV5a5detW10EcNBrt4MGD3SvLNDY2dq3WjcPhtm7d6rSyzA8//GBPrl2NGzcuNzfX3mEwiXDdunX2y7WusFjsI4880tTU1LXnkSNHgoODO/vYK8vo9frMzMyu+6anp2dlZTkkQhRFd+zY0XWoZ2dlGfv1mcPAHyKR2FkK4OjRowwGwyHC+Ph4eyZ2SiKRsFgsAoFQUFDQfevt27cJBAKDwei97A4EDQYGhfccoBFLJpMpFAoOh9O9ppfNZqusrEQQpDMfoChaUVFBJBIdxrwYjcbz58/X1tZyudyZM2cyGAyJRGIymQICArqOCrHZbNnZ2cXFxV5eXhkZGUKhsLW1VaPRiMVihzEgRqPx2rVrFRUVNptNIBBERUV1zbV6vb6pqYlGozkMQ5VKpWq1WiQS9T4FAkXR4uLiqqoqe+bz8fEZP368w/jVrudqbm5GUZTL5dLpdHvjrVu3CgoKbDZbVFRUcnKyxWKpr68nk8ndS4aq1WqpVAoAcIiqtbX1ypUrzc3NVCrVx8cnKSmp8+AAAKvVevv27aqqqra2Ng6HExoa6jDzxEF7e3tbWxuJROqe4+0aGhqMRmPXtwBBrgUTIQRBEDSmwcEyEARB0JgGEyEEQRA0psFECEEQBI1pMBFCEARBYxpMhBAEQdCYBhMhBEEQNKbBRAhBEASNaTARQhAEQWMaTIQQBEHQmAYTIQRBEDSmDYtEuH37dntJwz51X2INGlOsVissCjjGwQ+BMc4dvwDDIhHu2rWr+xJuTun1encHAw1nRqPRZrN5OgrIk+CHwBhnX8/LtcccFokQgiAIgjwFJkIIgiBoTHNjIrRarVu2bJk/f/6aNWtKS0tde3CbFt4fgyAIglwA13eXgfrggw8OHjz46aefZmdnT5s2raKigkqlDv6w5hqzcp8Sa8LKUmRhc8IGf0AIgiCnNm7cuGfPHk9HAXXYtGnT22+/7Y4juysRms3m7du379+/f/LkyTNnzjxx4sTevXufeeaZwR/5gunC99Tvw33Dn85/GsyCN3chCHKXxsbGL7/8csGCBZ4OBAI7d+6USCRuOri7EmF9fb1MJps4caL9ZXp6el5enksS4aywWbPCZmlMmvxP8snXyN4TvQd/TAiCIKeoVCqLxfJ0FBAgk8nuO7i7EmFLSwuNRsPhOo7P4XB6mSBRV1e3evVqCoVifxkcHPzjjz867anRaDp/vhFww++ynzpG7bqooeFOr9ebTCYsFuvpQCCP6foh4G5Wq3XIzgX1yWw2q9VqnU5ntVoxGEw/9yKRSHg8vvc+7kqEXl5eBoOh86VOp6PRaD11FggEL730UkxMjP0ljUbrpXPnpjmz51i+tZCtZBzTjU86oWEFi8USiUSYCMe4Xj4fXAv+pg0reDyeRqMhCEKhUPqfCPvDXSlELBabzebGxkaRSAQAqK6uDggI6KkzgUCIiIhISkp6oFPE8GPOYs/ia/D+8f6DjBaCIAgas9w11ITNZs+cOXPnzp0AgMbGxmPHji1fvtzlZ1FSlLIamcsPC0EQBI0dbryp+Nlnny1YsODo0aM1NTXr168fN26cy09h5pktzbDwIARBEDRwbkyE48aNq6ioKCkp4fP5AoHAHaeg+9Ap1yg9bf3HhX/MD52fIk5xx6khCIKGLZPJVFtbGxoa6ulARgb3zsIjEAixsbFuyoIAAL8gP66RC3qov8rIZeTfynfTqSEIgoatysrKKVOmeDqKEWNkT0cPF4UrUaVBbui+yWQ1TTdMp1a5oJYNBEHQyBIUFHT27FlPRzFijOxEiEfwDfiG2sra7pvKWsp8UB+xSjz0UUEQBLnJ8ePHX3vtNfs6RFVVVU888YRSqezera2tbceOHUMe3Ug1shMhAEBD0yjrnPwe1FfWywnyCFtEjbwGAIAa0bJvyoqPFg91fBAEQa4zc+bM7Ozszz//3Gw2r1q1Kikpiclkdu/W3t6+f//+oQ9vhBrxU9GtPKtXvZe53IwPxndN65p6jZwlNyvMdXfrOBGctm/bapHa8NZwabKUx+d5Ll4Igkawv5/7+z8v/3PITrd59uZXJ77atQWPx//yyy+pqakXL17k8/kvvfTSkAUzio34REgPpcvKZbT9NMAAfs/7gf9VGyC3kpFgRA3UmkpNUX5RC71l7vNzs77Lwu7BTnt5micjhiBoxPpg+gcfTP/AszEEBgauXr168+bNFRUVri2wMmaN+Fuj0+On21bZzs4526xsPvb1MbPNbG/n6ri8IB4xmBgkCRKqhFNXTyViiWlPpAVoA85dOefZmCEIggassLDwP//5z9KlS19//XVPxzJKjPhEiMVgMwIynk58OvIvkdHy6IuXLgIANEaNn9XPN8Q3cFxgoC2wNaqVSWcCAMgUsjJeSbhA6MyXEARBI4hWq12xYsVnn332yy+/VFVVbd++3dMRjQYjPhF2ojFpNeNqBFcFAIDy8vJ2bDuWiGXwGfJYefLi5M5u8fPiRRjRwZMHPRcpBEHQAH322WdTp05dvXo1kUjcu3fvt99+W1NT070bkUiEs+n7b8Q/I+wqaU5SeUF527U2002Tnqq3NwYvDr6vEwLARCDOElvnWrEYWFoegqCR5P/9v//X+XNYWNitW7ecdgsKCrp06dJQBTXijapE6EX0Ou17+tlTz+oRfehjPX4bCpoaBK6AGzdvpCamPtDxS8pLas/Wzlk/Z9CRQhAEuUZ7e7vDaq8keDHgiwAAIABJREFUEikyMtJT8YxEoyoRAgDiJsXF7o7dvny7OLDnqfQYUCuuxeRgQOKDHbz+Un2yNLm6tDowPHCQcUIQBLlERUXFF1980bVFJBJ99NFHnopnJBptiXBm0Mxfnvplin8fRfZ8MnxIu0g2ow0hPsBTUlGz6Br1mvC4EIQPLkoIgiAXSUpK2rVrV+992tvbm5qaIiIihiYku7y8vLi4OBzugbMMiqK5ubnjx48fsskho2ewjB0Wg+0zCwIAQv1CS7GlZZfKeu9m09gstR3LPFVVVhFQQvRT0TQNTVWrckGsEARBbvN///d/KlXHJ9WlS5fWrl07mKPV19d/9tlnD7RLcnJyZwAPxGg0pqSkGAxOiki7yWhLhP1XH16PvdXHYJni34plu2VmpRkAUHOlppZd68f2O88533C0YUhihCAIGqDNmzer1Wr7z9OnT9+7d+9gjtbY2Pjtt9+6Iq6+EYnEsrIyEok0NKcDYzkRTpk2xWa06SS6njpo1BpGA+MC8ULF9xVNt5tE9SJqAhUAkLIohdJGUTQqhjBYCIKgDqdPn160aFFqauqmTZu0Wi0AwGw2v/XWWxMmTEhJSXnyySdRFH333XdNJtP69euXLVuWl5dXXFxsr8FtMBiWLVt2+vTp6dOnp6WlnThxoqys7KGHHkpNTe3Mc3fu3Fm1alVycvLMmTN//vlne+Pf/va3pqamZcuWLVu2zH6ttmfPnjlz5qSnp3/44YcWS8eds8OHD2dkZEybNu3EiRPdIy8oKFizZo1erwcASKXSVatWSSSS7t0sFsvrr79uNg/hbG90GJgwYcLVq1f701OlUrnwvD99+VPBdwU9bT20+9CVLVeUeuWlf10q/qD49BenTRZTx6avD1369yUXRgL1k1artVgsno4C8iTXfgj0bsmSJQcOHBiy0/XH2bNnAwICLly4UFdX99xzz61cuRJF0W3bts2ePbumpqahoWH//v1Wq7WxsZFEIl25cqWyslKr1R4+fDg9PR1FUfs14ooVK0pKSn755RcGg7F48eK8vLysrCwGg1FcXIyi6I0bN06fPt3Y2JiTkxMcHHz+/HkURQ8cOBAQEFBZWVlZWWm1Wnfu3JmYmJibm1tZWZmZmfl///d/KIrm5uZyOJzTp09XVVU99NBDAIC2tjaH+B9//PF169bZbLaFCxe+/vrrTt+jPVPqdLqujV9++eULL7yAoqhGo7HZbK79V3XjYJnKysrq6urOl1OmTCEQCO473QD4ZviyD7KLyop+qvjppbCXRDwRwui4RJbpZH7VfryHeAwSI/2NdASDRIB7z5nTHknT79DXN9f7Cnw9FDsEQR6gP683ZA3dsyvyLDIp9b47hFu3bv373/8+depU+88sFstoNGq1WhRFrVarv7//ww8/DAAQCoUYDMbPz08sdjJ+/sMPPwwMDAwPD3/ttddWr16dmJgIAJg8efL169cjIiLGjx+vUCiKiooMBkNaWtrJkyenTZsmEonweHxQUJD9CJs3b96xY0dSUhIA4JNPPpk/f/577733008/rVmzZubMmQCAf/7znwcPOqlbsn379qSkpIULF8rl8g8+8HDV1k5uTIS7du369ddf4+Pj7S9TUlKGWyLMiM7Ye3Rvxr6Mt8Bb2nytnCjnvMLB4DAAgBMnT6QR0sQxYgAAgnG8gczlcK96XZVfk/suhokQgsYQcgaZnEH2YABVVVWffPJJ51qDMTExbW1t69evr6ioSElJ8fb2fvbZZ19++eXeD9KZHb28vEQiUefPGo0GAHDgwIFXX3116tSp3t7e9fX1RCKx+xGqq6tffPHFzo90Pp8PAKivr583b569JTg4uPteAAAajfbSSy9t3Ljx7NmzeDz+gd67+7h3+sSCBQu2bt3q1lMMBgaDSVmXQiQTWURWdnk2bj9uwsUJ7Blsk9UUcTcCZPS6byAGUw3rvkMQNKREItGKFSueeeYZh/Zvv/12x44dFy5ceOyxxxISEqZOnYogCIqiAzjFxx9/vH379vnz5wMANm7caDQaAQAORxMKhV999ZX9wrSTt7d3Y2Oj/eeGBucjCiUSyfvvv//ss89u2rQpJyfHaZYdeu4dLGO/YX39+vWB/X8MgWBWMIvEAhiwMGzhjagbhmsG1IBmncrywnoFTQzqZcewpDB/tb/RahyyUCEIgtatW/fhhx8WFBQAAJRK5YEDBwAAFy5cqKmpwWKxcXFxFAoFQRAAgI+Pz8WLF9va2h501AmZTL5z5w4A4Nq1a7/++qu9USwWNzc3FxYWKhQKFEXXrVv3xhtv1NbWAgCam5uPHTsGAFi+fPn3339fWVlpMpnef//97ke2WCwrV6586aWXvv32W/uN2UH9W7iOG68IcTicVCrdt2/fjRs3xGLxyZMnvby8nPZUKBT/+c9/zp49a3/p7e29evVqpz3NZrP7hhJtnLXxZPHJWZ/NGoeOK08rN1t6O5GXtxcFoWQXZE+OmeymeKDuzGYzgiA2m83TgUAe49YPAQfD8Bv8o48+ajAYnn766ebmZiqVumTJkqVLl9pvVMrlcgqF8vzzz0+ePBkAsG3bti1btmzdunXr1q1MJtM+mx5BkKSkpM6J6tHR0VQq1f5zYGCg/Q7nli1b1q5d+/nnnyckJLz55pv2K0KRSPThhx++8MILGo3m0qVLr7/+OoFAyMzMlMlkXC7XPklx+vTpb7zxxsyZM7FY7FtvvXXnzh2H2fT79u0LCAh44403AAA7duxYunRpfn6+/QllVwiCJCYm2tN5Vzabzfw//Z9rj8Viux/KAWYw/9PffffdJ5984tBIoVDsdWBRFLXHajQaJ0+enJmZ+c477zg9TkhISGpqqlAotL/09vZ+4YUXnPZUq9U0Gm3AAffpVvOt4priOGFclH9Un50Lvyu8S7u7fPly98UDOdDpdEQiEYuF1dLHLnd/CHS1fPnyJ598csmSJUNzOqgXX331VUlJyZYtW7RaLYVC6X8ixOFwfX5iDOqK8NFHH50+fbpDY2fu7QyUSCTOnz+/sLCwp+NwudwXXnhhwoQJfZ7RZDK59Z7yBP8JE/z7DsOOHkmn36ATCITe/ktQYK414wOGyzPhkc5qtcJEOMa5+0Ogqz6vJKBB0mq1N2/e7NqCIEhaWprTzlgslkgkWiwWIpHo2uprg0qEDAaDwWD0p+f169ejo6MHc65hKDghmJRDOnr3aGZ0pvMeViDfJQeNgP0mG8CPbgiCoPspFIrdu3d3bcHj8T0lQvdx4zPCGTNmREdH83i8ixcvlpaWfv/99+47l0dgWViTt0l2QoZGoU6/ntzZfqdZ1cy0MfF1eFrgEN3MgSAIGil8fHy+/vprT0fhzlGj77//fkBAgM1me+qpp0pKSjofAY4mAY8GzNTPPJ1/uvumXw/8ilfhIzZEVFGrqguru3eAIAiChgM3XhGmpaUN/RXuEMMxcOoodcTxiNyc3KjHoyhMir39wN0DscWxrPksPpNv8bVYaiyejROCIAjqCXwUPFiRSyPxj+C1Bu2tX291NhafLmYwGPwEPgAgMDqQo+Z4LkAIgiCoN6NtYV6PEEYILUwL+A60Slv5PH55a/ly9XLeap59a1J4UgVaoWhUsEQsz8YJQdCD0mq1CgVcasbz7JW43QQmQtfwFfheZF80/GGYs25O0cmiYK9gol/HCG8CllBPrtcV6MaLxns2SAiCHohIJHrxxRdffPFFTwcCAQDApk2b3HRkmAhdJmJxhOVHy7Wd1+Ja4swP3Vf5wig2GqqGrmI9BEEusW3btm3btnk6Csjt4DNCl/EWe9sybWqN+jrpelhMWNdNvlG+TCXTU4FBEARBvYBXhK7kG+/rG+9rtjkWQoyJjmk+1CxXyNkstkcCgyAIgnoCrwhdD484FlTDY/GNpMbC2z0WmYMgCII8BSbCIWLgGdrL2z0dBQRBEOQIJsIhwo/g02V0T0cBQRAEOYKJcIiEjgsNtga3aFo8HQgEQRB0H5gIhwiOijPgDPl38j0dCARBEHQfmAiHTjuzXVEFS1RAEAQNLzARDh28H57aTPV0FBAEQdB9YCIcOuIIsUAnQFHU04GMYGXysrPVZxUGeGENQZDLwEQ4dLj+XD/Ur1Ja6elARiqNSXNs9zHB74L6T+v/uPqHp8OBIGiUgIlwCGGBlCitLIGJcIBO7zv9uO3x0NmhnGgO7xzvh5s/eDoiCIJGA/cmQhRFGxoa3Lp8xsiiZWs1NRpPRzEi1ZbWJtUk2R62EeIJ4iXiSHpk2Ymy/CY4CheCoMFyQSIsLi6eP38+n8+nUu8bCVJZWTlu3Lj09HSRSLRly5bBn2gUIAYQaa00T0cxIlVfrS4QFPB9+QAAgAGMRxibwKacX3L0Fvg1C4KgQXFBIiSRSE888UT3xUo2bdo0Z86cmpqaGzduvPvuu+Xl5YM/10gXEBkgNohtqM3TgYw8lFYKNfjeNy2cAMd6ljXbOvvi3osOPVVGVfe65xAEQT1xQSIMDAxcuXJlcHBw18b29vY///zTvqBlSEjInDlz9uzZM/hzjXRsMdsLeBVXF3s6kJEGBUKj0GFxKywXq5ykZElYDn1X/XfVa6deG8LgIAga2dz1jLC+vh5BEH9/f/vLsLCw6urqnjpbLJaGhoaq/2lpGc11yGqZtc03mj0dxQhTXVmtwqjEfLFDe0xijK/ZV6lRdrZYbJanqp7KzMu8WXuzRdtyqfbS0EYKQdDI06/1CCsrK7/++uvu7Zs2bfL29na6i0qlolAonS+pVGp7e49rL9TX12/cuJFIJNpfhoWF7d+/32lPjWbEjzTRBen4hXy1Wu3pQEYGg8ZA8iJVFFQgFMRP7afX600mExaL7ezQRGhqy2mbmDrR/jKvPm8imKhkK4k/E0swJbeR2wkbEzwUO+QWo+BDABoMnU5ntVoxGEw/+5NIJDzecWk8B/1KhEQiUSQSdW/v5eh8Pl+lUtlsNgRBAAAKhYLP5/fUOTAw8IsvvpgwYUJ/gqHRRvZgk8RJicY8IwlDwnv18X8zltk0NsQLQW1o65etJYElWAXWKrbSaDQsFkskErsmQq1Qa6wy0mZ1/FbIimRML2bc+rg/Dv2RQksJyQnR2rQChqDrwVEU7f9fETQMjfQPAWgwEAShUCiu/RPuVyL08fF55ZVXHui4vr6+dDo9Nzc3JSUFAHD9+vVly5YNJMBRh0/nHyEcibgaEToztGt7say4rK1scfhiTwU2fOSdzePl8MSvi4vyirAA61/lbwIm7SSt086CcQLCcULnS14NzzTOhMFglj60FABQkFvQdqdNkN6RCCW3JKpTqnZy+8QXJg7BG4EgaERwwTNCvV7/+++/nzlzxmq1/v7778eOHQMAEInEtWvXbtq0qbCwcMeOHYWFhY899tjgzzU6SMQSS4nFoTF7Xzb+d3x2XbZHQhpWMDcwRmC8eeSm8bqxJqRGEieho/TIyEinnUNiQvysfmXNZQAAvVYfbAiOSIvo3KrgKvTlHfMrym+Wo3+itYxa73bn9/MhCBqbXJYI8/LyFi1a1JkIAQAffPBBenr62rVrjx07dvLkSSaTOfhzjQ4+UT5U1X1zLovuFs2Rz4n3ir+953azZkwPpbl+8zrDypDMkvBL+AKVIH5WfNrCNOtTVgKB4LQ/gkcULEXFzxVmq7n299oyYhmdfm8BZEIIgd3KBgCgFtR23FY0rmjuurkWYGmqbxqi9wNB0LDXr1ujvWOz2b/99lv3diKR+K9//Wvwxx99kkKTTEdNqBbFUDEAAIAC5AhSEloyI3PGwq8WZl/LfnjGw56O0WPk5+S2YNu0lGmnL5y24q3z2PMAAEJfYS+7RD4bidmKqf+4XmvTYpdiu24KjQs1XjLaLLbcvblmrHn2otkYDEZCkZAKSfZjVtyuUJ9VJ7wKB9RAkKPSttI2XVuab5qnA3E7WGvUA0Q0UTVS3VDVYH8pKZBozdr0h9MRL6ROUIepHbvjOAqqC2L0MYmZiRgMhrmMyV3C7c9eCBHhr+cXcYv4z/OnRk3tuonL5DYgDeXfl/NqeKxHWAgGAQAYxAZrjdXeQXNG46P10Rl0Ln8vEDTSFZ0raj40Jm5QwUToGSovVVNVx9056RVpmbiMgqcAAPAiPKWd0uuu9zRpmr7OdTKtZeSqOV7TxG8ieBEAACmBKcmByf3ckcvkLly30Jfj231TPate36qvyKyICo6yt/Aj+Jx2DgBAWiWl6Wl12Lq7hXdd9A4gaPQgtBNEKifzBUYfmAg9A/VGTY0mAABqRvltfP+0jsoDPH8eW8/u50Gu5l3ln+RbUau7ohxajW2N8W3xoYtD++76IKgzqSWLS2bFz+psiYmKoVloWqm29c/WPEFeO6e9tazVtSeFoFEAp8P5Wf20JucDtkcTmAg9gxfIs1/51V+vL0KKJoZ1jOb3CfDxsfoYzIb+HMRabs2wZRTcLXBjoM6crzmfI8lxYT1P1IhWnKqo+bGmkdnI9HbxoKq5YXNXxK7o2kLCk6oJ1YZvDDK1LHZBLDmQTG4i97T74duHR81XDQh6IBQDhQzIZeVlng7E7WAi9Izw8HBvszdqQ3U3dPX+9fZnVwAAPAmvQlTVNT2Wo+uK28atw9Xpcob6+Zb6V3XJryUxX8VYbI6TQAagprSmZkuNPFeOUJGwFWF97+AKltmW41OOB24MjBBGhI8LF+lFTrNd4d3C5MPJl69fHpqoIGhY8bJ4NeOaW6pHc81LOxeMGoUGgMvkliAl8j/kGC0m9uHYrpvayG2WOktkqPNpc530Zn2wKbh0Rmn4+XBrm1V9VK1p0bQj7dF/jR5kbFqdNu+nPNECUYh/SPet7fr2ZEsylUtNliZfqL4wM3jmYM5VUlVC/Z1aElySsTwDhwzdb+P0hOmdP7OFbBVGVVhVGB8cf18nG8AdwTXjmtErKOhX1SMIGg2ys7PHp4wn4olsK7tGVIM2op6OyO3gFaHHtJHbBHcFpamlyb73DQnR0/X6xr7X2CspKlFilanjUytsFaqvVUcaj/zA/cFL56WQKxx6osYH+z0uulDkK/cl7iIeOXGk+9aKsgo5Vk5/lk4mk0uzSx/oyI6BoWjpH6VNPk2zVs4ayizYndRLWnmnsvPl8YrjK/evLPulTGaRCZ4VhGhCpK1SD4YHQUOmtro27FxY8Z1ijV5DBmRqGJWupPe92wgHE6HHMEIZzaHNS2csdWhHBAhR3lF/XKqTKgyOic1OViJrZbR6Ebx2CXY9jjyumqF65+l3JARJZUll12511+tqttU8UGCkYtLtcbctUyzeud7dbxi2VbXJaXIAACmNFF8Xb787qjVr/yj4A0UfLOPuu7pvvGF80qNJD7SXOzDDmd53vDVGDQBAb9F/dPijd2reUdWqriZfFXKFRcyiimMVno4RgoaC9JDUCqyKBoWsVdaGtPmF+QlNvc3iHR1gIvSYmIUxMStiurdz/DgMHcP+86Fdh4784uSyDABAbaKiQSgAYErylKlTpm5I3gAA0DA0qhpV126aCxq6jm5UGfsZlVVhZegYsemxgZMDxUB84c4Fhw5IE2LkGwEA4mSxECM8k3PmvYvvvbn5zfRD6aV1D3aBaL5oNoeasVRs313dLHROKIPAyPtPnqnMVPxN8W+63/wj/ENeDXl55ssAANZMllgivpZ7rfuOX1z74qrk6pDHC0Fu0VzazNawb3jfsLZaFTKFCqfy9vbGoJimplFeiQk+Ixx2/AP9DRYDakWlBukk6SQShqQ36Mkkx2GNIq3IHGMGADwd/3RnI+KD4CvxAID93+wneZHiEuMwJkw+Pt87zzs2Ixb0Q+2l2qvEq49xHwMAKHnK0qulM8bN6NqBqWKC8faTgcrAyvBz4UKK0BfxbSW21t6tjfCPcHZUJ0qaSzLMGaL5w2OWEgI4qzmknaT6/fW3wC3vp70pYgoFdEzonBA54eb4m8wTzK/NX6+fuL5zp6N3j6Kn0KMhR1NXpnoobghyJelx6R3fO958b3wpXt2mthKsAIAmUhNSigiFo/m6EF4RDjtMGrMKX3X+4PkzF84gRKSOWFd0vMihj9lkJqGkIJ8gh3ZhsJCj5Wj0mpTWlJjqGMt/LeX+5Wpfta7EycjS3Sd2X6+4fl+TFRCKCc2hHbUkhIlCv1Y/lVEFAJC2SS//cRm1omKzODA80N5hyvIp1KXU8KRwxjOMVp9Wa+0DTDMov1zeQmtBvIbLb6DIW6Rbq2t+onnpq0vFYscVgBPmJrCCWEnnkgqrCgEAqBltPtE87sC4ZdRlqdWpLhk9C0GepWvR0TS0lAUpHDGHrqebVCYTxQQAUAqU5mKXzZUanobLxxDUFT+T71fs51XghcagimQFr5gH7k8xUqm0DdOGxTjeVAwLCWNamdfPXm8ltuLW4MrIZWmL0gTjBDw5r/tZgvODJeckXVtaslqqbFWp4zuub1gxrPFg/Pc3vgcAFO4rjL4TffuP21KMlMPg2DsQsUR+NJ80jYTlYNmhbJaC1f/3KKgSmMaZ+t9/CMQJ4tJ905kk5xMZ+Sv5RF8iYw9DsV3RvqW97mZdbkKucKMw3hafU5ozxKFCkMvVHK25TL8czA32DfD1tnhj2jE2LxsAgB/PF8pH8+UggIlweAqJCbGwLWmWtLCpYTPSZtTb6uUV8q4d2qRtapyTNe4JeEIjrlF8W6wJ1fiIfOb8dQ6XwU2KTrLYLIrG+wbdSNXSIGuQj9THhtrsLbXyWnWWuja+trPGLoaMwXKxbVlt+eX5oW2hF8ddFBeLm8nOaw+GxoT6W/y1xn4VoVC1qLhmblx6XH86DxcYELs69ljYsbfVbz9Pf/7H2B+XLliKIWAaeY2KbOcDmiBopEB1KKOJwZnKAQCw6WwlRkmX03F0HAAgLjrOjJrbJG2ejtGNYCIcpkIeCSGOJ2KoGC+Cl9RLWl123xR7dZtaR3A+j15JU7JsrHHTxnW2ELHEKq+q6pz7jnCn8I4MLxOiwryKPEWr4uoXV5u3N6M09In5T3TtxlrI2oBuQPYi5d7lDy1+6BfmLw0+DU7PSyQTZXhZcVFxf95deVb5beptCqm/VVWHj/XL1m94ekN4ZPiX8760t7CmsCJaIlDb6J9rBY1iNTdqbmBuzB432/5Sipf6G/wpLAoAAI/gy73Kq69XoxbUqhidVZbgYJlhCsfH0ebR7D9b+BZz43336HUqnY1kc7qjRWwp1ZdOZk3u2mgeb+Zd5GnkGi+2l71FUaYgcAl6o77qWpWl2WLD2yInRzLiGY5hiHC0p2mSXZLYR2IxGMyqZ1Z1FsHpTkFT6Mv1ILHvd2dptNj8ncc//MXwY2L494b7hkSGFINiSZ3EN8BJyW8IGhGUd5VqX3XndF41VY034ensjhmExmAjs5gp/UJqRs3iTY5P0EcBeEU4ArD8WCQlqWuLtd2KUp1fgkzLnBa53rEqzaLJi/K5+aU/3pveQJfSKcEUagw1rjqOZ+Kl/CWFPZWNZTiZyeAl8Ep+PZnL5gIAeBQeh8zpKU4kACE2EvvzjmhaGs/fyWPLEaoN39baBMt2QyMYW872jb33Tc7CtgAAuPyOddAikiLMRvNXlq+UBmVtaa1nQnQnmAhHgNDwUG+TN+iS+LA6rNOkBQAg4UlcmpNl/GavmU02kG9cvQEAMFgMQYag0NjQ8JRwLoZLnUvF4/GDjzMkPiRAE9B3xXArYJvZoSEuXmXCg3QUnapV1Xc/CBqWlA1KDaqZEH2vkCDZm2wABh6749tqjDBmd/ru9X9Z3+DTUH6m3ENhupELEqHNZtu9e/crr7yybNmyysp7ZU1+++23ZV2oVPCTYoD8ef5tmLYWyb3StzgDjsJ4sAdsZAK50bex/VY7AKCgpABFUC+OF0JG2M+zhYmuGRImFAs1eE1WTlbv3VrqW5owTQKGwCUnHQ7MDDMYzSMJoGFBV6iTbpaiZie3gmoP1TbkOH943x/leeW11Foy7t5kZW4ANxfJ7bxTisFg/jn9n2KaOGVeSog8pEZeM+BzDU8uSIQWi2Xv3r10Ov3IkSNy+b3BjUVFRVqt9tH/IRL7ddMMckpKklaX3xvtQjFR6JwHLgDoO8HXp80HAFB1o0rB7BjoiHBceVdA66/V3+qjUKqkWtJGGlV5A8/G49TwcTvkRk3VTYrDijJdWe0hJ3cmjXeN1QX9WrLGKVu1zRJ431zYmMAYy8NOZscyvZlaivbKxSsDPtfw5IK/XgKB8OeffwIAtm7d6rApLCzs0UcfHfwpIAPLYK2/N16LbqEzeQ+8bl94eHgJKLmedz2xIZG+zC2FdCOmRLB/YLcb2xlEx3E3nbQSrZY5qpb6ZAgY+EIX3FuGoJ40/trYEtBiCDP4n/TXNmupAmrnJp1Mx7VwVe0DvOVmNplFahE76b71wPEIfknEEqf91T5qcnOP63eOUO59Rnjq1Kl58+Y999xzt2/fduuJRj2yDxnf1vFRa7FZmCiTxxvIYJMGTgP+BF5H1gnC3HJnkilmAjw4fOGw/aXTxXtxchxeOKrShkAk4Fh6HEMEQYNkMBnEVvHsZbOXJi/NYmcVHi7surXkRkk+Lp9v5Pd+EKvcipqc3FY99/O5alJ1qG9/n9lTxBSKZuRNfOpdf68IL192sjZpSEhILwXokpOTQ0JCeDxednZ2ampqdnZ2YqLzkfXV1dVLlizpvHcaFha2f/9+pz01Gk0/Ax5leGIe/ga+TdFGwBFaZC04gNPpB7IeLymSFHApoH5yvVrtZD6+S2DDsfE34jfrN5vbzOQW8tMbn8ZgMF07MLVM1BsdWAB6vd5kMmGxnq/T3RWNQtOhOoVUgSPBG6RuNwY/BEorS0kIiWqgAgMQxglJl0hd/3zMpea2oDZzmbm+pp7JcXKjyGAwNP/RLGoRKYVK/vL78uW5onOJTYm2lbb+/z2yuCyL0eK+D5A+6XQ6q9Xq8KnSCxKJ1OeR0bczAAAgAElEQVRgwP7+3b7zzjvdG19++eXFixf3tEtmZqb9h7lz5zY0NOzcuXPHjh1Oe/r6+r799tvx8R3LolKpVBqN1tNhe9k0ikXHRN86dqvqWNXcVXOra6tRHBpACxjAcSZOnnhVfTUtJc3VAd5DW0KTEqWr81ebcWbEhrSqW0PE9xb4tZqtLCvLN8aXRhrI/yMWiyUSicMtEQIAqrBVfCXfL9TP04GMCWPtQ0AlVZnIJvu7Hp80XnVOhcPhyGQyAADYgEgjok2kNdc0E5uITiez5vyUQ9fR9yTtWZy/GNEgVOG926qYyxhtqDYiuL+18gEAXiFeBJSgAzpvmvdg39iAIAhCoVD6nwj7o7+J8Pz584M5jUgk6jqg1DEIHE4sFgcFOZaQhrpiL2Wz97LrG+vbFe1Y/AAzAYIgaZluzIJ2vPk8W5oNQ8Pkbc1TlCi6JsKq3CoNokkgJbg7hiGmxCtxTTiYCCF30DXrMIyOz30qiVqMK24qakocnwgAqLpbJcPIUvxSTtFP6ep0YKLjvr+f/z21PZXzIieVnrqnbk/0/ui4FzpKGzbJmhIMCcJFDzZoHIPDKLHK9tp27xjPJEJ3cOMzwtzcXPtKrVVVVT///HNGRob7zjUW+IX41XvXl+0r0yl0JtLwKlfdHcJEMFiMnqs31hgBACiKoha0IK+AdJYkSZT0ufuIo6foNdIxd8sOGhp4OR7vfe/mnoqpai3vKOAgyZdIuVIAAFaARaSOn+dKg9I32xdMBBQ6BQAwedlkhpJRWdxxTVJ+sbyGVoMjP/D9/HZyu1QiHdh7GZ5ckwhDQ0MxGIxarU5JScFgMHV1dQCAV155hcFg+Pv7x8XFLVu2bO3atS4511g2ftX4UG2oplSDUkZGZUtKEIUmpwEAmn9uVv5LKTomak5pXjhvoafjcj0LywKnEkJuQtfReb73BscRA4j45o68SG2ksqPZAACeP4+mdrxjfPn6ZS6W6zu9436pL9tXEilpPNioNCgBANxKrnbcQMZvm+gmQ0tfdTNGFNckwvLycrQLPz8/AMDly5clEkl2dnZ7e/unn36KILCKzWARKURTsmm6YToYIY9IgqKCfA2+ZrXZWmf9fvL3xNeIybOTPR2UW5A4JLx2VA2FhYYJi80isAj8A/07W4KigvhaPoqiUqVUYBYkJCcAAEJCQ0QWkeM47ZtAEaAAXZ6mTVo6yR/xf3/X+20FbYgRSZzQj9LA3eAFeKJyVM0Ld29yotPpPj4+MAW6UMisEB1FF+gb6OlA+oXFZVkR6819N3NJuZumbRrYAJkRgSFisA3svvtB0AOqaarBYrAk+r1qw0I/IQtllUhKcnNymyhNJCIJAEChUQyI4XbxvYlqWqM2RhUTkhFy3+EQwJvDe6v1Ld1h3V7aXr5XH5MunOKKuQxdjxOFRyI42nukQYBwnRChjpjvFi2UlsimSMW0Ub5iX2hwqN6it2gtOCr8m4JcSVIjoRFofqDLOCwM0DA1F/deZCEstv+9r19ynrzuSt346PH2lzeybjAIjECB45dmcjwZz8KfbT8bjYseWEjiADFqQc02Mx4Z0rsgx68fb2ptWp6x3OVHhn+0Iw9CGzFZEACg99Y36ZpmTprp6UDci0fhXcBfMBQbwsaHeToWaFRRNipxNMcP6rDHwxjfMbA6LCGF0NnoN9WP8DtBZ9ZR8BSpSsq4wVCEOf8CivPHLQcDTyckJomMIdc014SKhqJ0/r/P/3tBwgIenhdwOiAUDS2OKk4KTHLtKUbSRyo0EsXNigMLABYz7Gb+uVw7s721dMQsxnTiwolmdbOno4D6ZpPYSAKSQyPCQgTPC8gJZKbvvRn0gnABHUs/ffX0vqv7JF9KUAo6aeEkN0UlxUslNX0M/5aoJN1rS1lR6zc3vtl8YLPN1q8VSWVqWWZWpmq7qvrb6lZqq4VtuXn45gCD7hm8IoTci8/j83kDeQ4x4hADiLi7OACATWlDGAhw5XxfF7vyx5XkO8nnss+1zm7dkLzB0+FAPZLIJYnaRO/JTmbsYbwwtEzHh+4afw3hAiERk4iGoX7L3DirVe+lb29q773PuzvfjTfE80X8R5/uqDhtsVme+/q5N9rf8LJ6tZW20WfTiUl9DLrJv5DPI/HqefUECSH8+XAf1Mfra6/8qvykYFdeFMIrQghyjdDoUG+dN2pC5d/IVVeGxaJj145fyzmc49AouSYRF4lbF7dmMDJop2gS1Sic1jlq3Dp1S0aVkbn9LXIdPjM8kZTIW8xzaxYEAAA2sMl6u6TTmDR/0/1tecDylIaUkjsl9sZTBafeV7zvN9lPv0H/LPZZ9Wm1VWHt5SAAAM5djnqceuGTC/3X+wdyAvFcPGUyJZ4V77I3AgCAiRCCXCXYN9gKrCW7S8pMZe2X2kEff+BuV1JUIsoV+dz2uX3n3khCtUZtPWPNGZ8TGRvJWceZhpt26c9LHgwS6l1wZTA+/QEGpBD5RO/XvEnjHG+lupyXyIui6q30dnldOUAAdxX3jv8d7ZmO2Yptl9uUQiVpEimYFbx+6frv0O9qd9XqTT0u3KZsUrLN7MRpiRgMJpIbaW8kjiciLBdnLnhrFIJcppnSHNYQVjW3ynTG1HCkIfWhVACAscYoLZLKKfLIqZFDM8ruo6yPyK3kucVza8fVEhEi8RDx4umLAr0gNzYXV4nzofmsmLsCAIAhYMBiMGn/JI1M48X1GoLAoAdSeKPQhrHFpcR5OhAnBL4CXVZvdf+bq5qtZGsACIhbEGf+t1ktUau8VGnKNOEjHRXd5obMDXw2sOW7FuMnxp9pP7/9/NteBMdfwtqztWX0skdJbl/LD14RQpDLEEOINb41C5IX8BbwuHe47bp2gIKGXxvKb5eTr5Cvfnz1aOHRgR3ZZO1vUb2TZSczLmWsLFmpDlBPemhS8qJkvBDPZDJN8abpBdOnaKckr75X08Avwi+HlVN1oGpgUUFupbipkIiG6Y1rrpjrZ/OT6WSdLTaDTXdWB/5X88rcaNaz9AAAH7bPae7p9p/b7+66q6fqKcJ715Hh3PCJb04MnB+4Tr9OulVqrrp/ZA0KWHUsXNJQXK3BK0IIcpnkRR05Jjo2OvdMbuWByuDQYKVVOfHNiURAxP2CQw+hN1tvJsx4sJrjJ46e4Ofz71DvJK5IjBHF9NITRdHmw82h7FDeOh4f6RijFLmm456SJdZik9kITELXXYTThZz/clAzisEP4+E9YxJfxifPH6ZL4GKIGCNirKutY4ew5YXyj3M+XqtcSwd0C95Cn0IHAFAUFFxkR35JezjtyMkjcxrnkGY7uWdLSiSxo9lfffHVU0efEr8g7mxvLGpsRVvnTpg7BG8HXhFCkFuw5rHCq8O1l7QNkQ0kHAmDwwQ+GaiepKbn0JuONfX/OFajNfxmOCGGMME6oep0H5dux88cn2GcEfB4AAZxktVwPjhCPMGhcVLEpLvI3aoceFE4vLRIWnA2XELs8F2nRUFStDa0yv+Uq46rXtK8RE2gfh70uSZLY9PaAAA8Pc87sGOwaww/5vknng96I0iUIHJ6KDqRHrMwBm1Hbep7A3AashqqBdVk3FB8FYCJEILcIjgyuIHaQDfSp8+f3tkYNy3uZNpJ9CZq0/Q9iQq1oagJrfit4i7xbsySGGWSktHqvK6VTW2rO1RX/lF5/LV49WQ14vUAf9cIBmkObtbn9ThgAfKI8uvl1bRqHDJ8b9qZ6WZdo05/V38g8YDPGz4+833+8eg/LuAvFP9SrDPovK3efkEPMHJ1QfiCHCSn8Uaj/aXVZBXIBJEZke6J3RFMhBDkLoKlAkmahEa+b7LXM1OfOY49LjnY97MfyXaJ4mMFvg6vy9ABAIJjgv0N/valzbpSNitbv2wtKyorCS9hv8aOnPLAnx0pGSl0Dd0kH+5re40phGqCLbRfU849BcfHRdVFNeIaX5n7ir2FjCMnPZ5EaiWVnCxpxjXj8A+QxXEIThmsVBWopLXSsn+VKT5WlBJLY4J6exDgQsP36wYEjXTBAcHBAcEOjUQsEZmGYM9iLU0WnLDHP0Btq9asMG+M3Kg2qw8kHgAAcPlcGUZWVVkVHHLvmGab+fbu20qecs6aOSTcAAfNh/PDf6T9mP6f9LCXw4ZzHYAx4sj5I6ybrABdgF/qsF7nmevDpRXQdFN1XetGhQvD90Xum1kw8xb91oMecOKUifTv6YafDWW+ZePmjZvKnerSeHsDrwghaKitSl71BeEL2c8yVNvjupJ3zt65Q7+z55E9R1Ye6Zx00UhrbChu6Nrt098/DTQFZj6VOeAsaDfvmXkKg+LcD+fym/JbtC2DORQ0GFWyqpisGBqPpnxUKWALPB1Ob8QBYkAEovGOj/2WLlmaR8jT8B54neoYYcx58vlTolOZT2b68/2HsqI3vCKEoKFGwBKeeuqpoz8cnbZjmnitmMR0ksNoNTTDNMe1T/UCPaPu3mPCc3fPLa5YzJrBwhIGW8pVQBOgT6OWHyzXdl97x/bOG6Y3bDG2qUuG7is5ZJe9PzuBlRD3xHCcO+gAy8EyX2RicI73EPAIPur5KDJ+IINcFm5YSCfSXRHdg4FXhBDkAVG8qIUbFt7F35Vuk2ady3LYWlRUhLViJ6U6VkzmhnO57Vz7z5o2jegPESGAQEt1zSqPQoFQ/KJ4DmvOz+jPgVGBgXcC65rqXHJkqJ/y6/OnyKYEPBTg6UD6C0Nyfifdh+7DIXMGcEAmiYlgPJCVXHBFqNfrT506VVRURKfTFy9e7Ovr27kpJyfnzJkzAoFg1apVFEpv9XggaKzhe/EXvrQw93yuMFuITkUx2HufKbVXaylCSjgm3GGXqMiotiNtrSdbQTAw/GYoZhUvWbXEhSEhXghtLQ21oSyElSPP0f6q5b3IG5rx6xAAoCqrCsvE+vv4990VcikX5N5nn332yy+/1Ol0+fn5UVFRV69etbfv2bPnoYceAgAcPHgwIyPDavV07UUIGn7GZ4yXYqV3Lt3p2siQMphRzO6daUTa4bjDDdcbML9ibvjdyFyf6Y6Q7HMQk55ICjYESz6SnN56+tSdU1YU/v26HbmVrPeD81g8wAVXhNu2bWMyO/5oiUTitm3bUlNTURR9//33t23b9uijj1oslqioqGPHji1cuHDwp4OgUaY2ojb+RjzI6Hip0CoCzAG8BJ7Tzi8uelE/T9/a0PpwwMNujYpAIgS8GaAsV5ovmhkHGZvPbn58zeMimvMJ0Z0MOQZCFAFhwGcuA0HT0vj+Y2LNsuHGBb+vnVkQAIDH4wkEAgCgoaGhpKRk/vz5AAAcDjd79uyzZ88O/lwQNPqkZqRaTVbVbyrDDQMAIP9WvowgI5AcS8B0IuPJ/gFDcfcMg2BY4ayodVH8lfzHjI+VflVa1lTW+y61F2uL8oqGILbRR2/R+1h9fIJ8PB3IWOTKUaPFxcW7du06d+4cAKCpqYlGo1GpVPsmb2/vwsLCnnaUyWRfffXV/v377S/5fP6LL77otKfRaLQnWmhsMhqNAAAsdlStdy8gCzawN2RUZSSXJRvVRnmVnMQh2d/pcOEDuBu4qp9UhbsLxRvFPZY7QQHTzCyvLXdr8KPjQ6CkqER+U572eFpny93auzwMDyWgw+u/fvgxGo1YLBaD6e+MVxwO1+cnRr8SYVZW1qJFi7q35+TkhId3PM+XSCSZmZn/+te/EhMTAQAIgths98oi2Gy2XkLBYrF0Op3FYtlfcjgcBHF+qYogSE+boLEA+R9PB+Jiby57U6aT1RbXinJEHITDnMwcdu+RAIKfCKZ/Rd91etfaeWuddtHKtQRAwCvxbg1+dPwCyPPl3i3eXd9IU10ThoQRIkIPRjUi2H8B+p8I+9OzX4lw4sSJNTU13du9vDqWj2pqapoxY8aGDRuef/55e4tQKNRqtSqVik6n2zsIhT3+B7NYrCeffHLChAl9RoLH4/H4oZtlCQ039l+AUXZFCAAI4YaEgBDgB0pul8QZ45gJTCx++L1HPMCmY6dnTz9VeMriZ1n8xGKH7S1NLShAWTqWW/9IR8eHAKeNw7fxDWYDjdIx+0XXojPRTaPgrbmb/Reg/4mwP/r1xcp+xdad/etMa2vrrFmznnzyyVdffbVzF5FIFBcXd/DgQQCA0Wg8ceLEvHnzXBg3BI1KokUiI8OIpQ6/LAgAAEA4Veg3xS9pXFJMbYzR6ngHT9GkqKBUUG1Uq3GwQ0xLG0r1llEyflLWKCv/tFxXcW8ZW4vewjFxmpCmyvLKzkacDIcXwizoGS54Rrhhw4bq6urz58+fP38eABAVFfXFF18AAN577701a9bk5+fn5uaGhobOnDlz8OeCoNGNHkGnhbtmgrxbYAB5MpkMyCVFJVdzr06dcF/pGYPUYGPZ6g31pipTYGTgYM5j+o/pPP586sZUNpk9uIg9r/RsqcVgoe2jIXMQ0ngSAKDqVlUDrgFHxWlrteB/NWQYWgbXj+vJQMcwFyTCv/3tb88991znSwajowTUokWLsrKyzp8/P3Xq1MzMTNdeyULQaDUi/lKUQqX8phzc/zQD247F+eOUKiVagw4mEZYVlRFQQhgm7NKXl8avH+/DeICBlIfOHJo9dfbA6nu5Cb+eXzOz5m83//bu+Xd9xvsAANTF6iZuk5gitjRb7H00Jo2v1VccIO71SJC7uCARxsfH97QpIiIiIiJi8KeAIGhY8Z3gizuAs9gsXUeQUrVUrAAra5eZG82DObj8ilzmLZv/+HzMDkzjvxt1j+nCAsL6s2O7tj01J/Wy7PLsFbMHE4ALSUokOptu2oRpvqG+sm9krEoWNZjKaGWQJ5LpGLrlWkci3HtwbyaSiWPA4s+eMeIHX0EQNPTEEWJv4J1TnNO1kW1hi33EFBGFoOx7ekOzptn5BisQtYgYExgICQl+OZggJOj36LuvwujU7dzbCkQRUR6hU3c8kLOhHl7Sr/FyY4V3BR7BR3AjrrOu15yt0V3UGayGmJgYv2A/npGHWtHGLY3Ty6YTJoz4OSEjF0yEEAQ9OAxoYbc05TV1Nui1ehyK8xH6iAPFXH0fz7oaFA3Xt15vVt7LhddqrrU2tJpKTbIDshpQkxqdaj9L/NPxCEByL+T2crSSspJzv58DABiKDY2+jSW0koofKy7vu/yP7/7B/Bfz86ufD+aNDoZRZRS2CAXpHaspxc6OZbeyFVmKLeItIewQjpDDR/nXD10v15er1qrYM0f809CRCyZCCIIGghxH9mm49/Suob6hBduCxWBDAkIwKEbeJO9l3zvX7kwGk2+euGl/qTVpGbsZ5h/M1fur86ryTgac7LoWnTRBSrnWY8l+FEWrDlfFlMQ0tzQL5AJ+PF/8sLhWV0uVUJ9TPFeD1IjOiW7fvD3ot9s/VtCyrUVe1fHei/5TdJV+NS2yY9Z8akjqMdqxAxEHdj65E4PBAATICDL/In/8LHy8oMcHTNAQgLekIQgaiIiUiIZzDU2tTUK+EADQ2thqIBoAAHgEX0Gr8Lrmlf5Qek/7YsuwRfSioKoggAKAAblXc1k4Fu81nlQqJRgIL/LuKyw1ec7kO/l3Ss6XRGQ4GXBw6OahZENyBavC+qvV1+brF+OHIEj0m9H2rWaJOe5cHO1PmiHIQGL0uHZxpaIyqy5r1bhVXR95Zt/O1h7VchZyksYl9fPfRNYgMyvMxl+Mn3h9kuyVHNseO+2FaV1HPz3z0jNd++O5eIPZkJaS1u1I0JCCV4QQBA0EFoetpFZWXumYCYcvxOsZHTP/0FAUX+k4JQ5F0S2/bfn3gX+jNjRIFeS3xE+Dau5m3wUA2G7b2vzaCFhCvCA+IyDDm+rddUc8gm+b1EbNouYV5zkc02wzV5+uNvub/Zf6h6vDa6m1DkVn8D748NXhN6k3C44XdH8LNqNNnaU+8O8DWTuyWKdYZ788qyvoeLiot+jBUSCmiL0Pel89fbWf/ybV5dV3yXd583mvYl4dpx5nnGXkMZwXT7cLWRDit8KvnweH3AdeEUIQNEC6CJ34rhjYwOVvLzO0jPGrx9vb41PjrflWs8mMJ3SkQ5PVdHLnyeVty6026wXqBQ6GE+sXmxOZk5qVak2wBioDgWOZmvvMnDqzSFZk+6+tZF2JmCyuba/Vm/UR3Igz5WeWWpaKZ4tx3riTwpNEf6LT3WmTaJzTHPvVZ1fqU+rGO40cMmdW1CyABxcqLrQfaScGErE07KF9hxKwCeEvhhfmFopOidoT2hlcRp//IJp6jYljIieRyUlkPuh7HQmsYJhWThhr4BUhBEEDFJUcxdPxZP+UseQs8XqxN6vjSk7AEdTj6gtyOy7Cvjzx5c1/3QxpD6Gvodf618Zcj6nn1QMA5i6YexW5Wv9VvRQrDfAL6P1c0Q9Hs7xYJ/efNFlNV3Zeqf6hGgBQc7nGTDfjvHEAgDlr50ybNc3pvpOTJysxymv7r93efPv4z8dNVpO9XXVX9a3vt5NemkR7iEZbQJu9cfZJwsmq/VXXrlxLr05nL2UDBIxLGXebd7v+5/r+/IPg5XgvH6/+9ISGFZgIIQgaoEBu4IchH56YeyLqrSgOm9N1k1Ks1N7UAgCOFx5/KPchvxi/iNciaELahFUTsghZlEQKAIBBZCQ/k9xgaajzrevP6cRLxYsUi97a99YU45QoU9TZnLMTmycypztZwdgBBoORR8p9SnwUdEVsXeyGrzZIdVJjo1FlVj0/73kspuOyjIglhi4JJUqI4rNiebqcF9pxV3PiqolGnbH8s/ILxy/0fiKOnuMfAteXH3kw/Zyg41apqalffPFFf4puq9VqGm0YF6CC3Eyn0xGJxNFXdHv0qWusAz+AWym3LPmWWJ/YkMdDOjcZLAYS7t64lRJZCYfC4VF6e5bWqXZnLaGFQJxCLJGV8O7yrDhrxJv9KtmBoqhKp2JQGeYys2y/bHvY9kesj9xpvLPqlVUOPb/b+x2TxnxkwSNdG2813Gq53BJdHt22rC0uvKMqWo4kZ1vWNqvc+uvzv2IwGGm71PylWfg3IQYZAbWBRi6tVkuhUFxbgAk+I4QgyPX8RH7Vs6vjT8VjsBifZffVSOuaBQEAEdwHKD7ls8RH9aeKNZmVYk2pKq5qjWmNAP3aHYPBMKgMAAA+DE9Jpzx5+UkzxsxId/LYb+0KJ4tMxYvjwQqQ832O7KzMngjLWssq/lPxOeZzi81yrepaanBqaXEpBU8RIaL+vx1omIC3RiEIcovAlEBiCpG+kI4huOzLO5aLxT2MAxiAw+HoG+iTFkwawEEYUxnyIDkBJcxIn/FAO4bNDYuRx8jUMpvBpvlBk0pPZa9jN3OaJeclAABZraxz3Cw0ssArQgiC3MV7tnffnQZKwBQMeN/klcn10voHrc3NEXMaSA3Fu4pj1bHN2Oa4DXFYBMuZwfH6zUtr1BolRlww/EQdkUbSFaFer//qq688HQXkSQcPHiwpKfF0FJDHqFSqb775ZvDHwWAwfvyBTOCjTaLFtcdl+2dHrI3AIlgAgF+YnxKnLNpcNM0wLTY5dvCxQb3bt29fdXW1a485khKhVCrdsWOHp6OAPOnIkSN5eY6zqqGxo76+/ocffvBgAIGpgaK3RMtXLg9iBXU2KtIVSo6SvYFNFg+j5Z9Gqz/++KOgwEl5hMGAF/IQBEEPoPt4xdmTZ4PJHokFco2RdEUIQRAEQS4HEyEEQRA0pg2LCfUikQiLxRIIfaxLabVaGxsbfX19hyYqaBiSSqUUCoVKpXo6EMgzzGZzS0uLj49P312hUaqlpYVGo1EoPa7M5eCxxx57//33e+8zLBJhS0uLVqvtT0+j0UgkOq+rC40FZrMZi8U6rDAAjSnwQ2CMM5lMeDy+/5VlhEIhmdzHIKZhkQghCIIgyFPgN2sIgiBoTIOJEIIgCBrTYCKEIAiCxjSYCCEIgqAxbcRUltHr/3979xua1LsHAPwRdfwsl3PasanV5v68WBMmY3Nb7g/TBZs5YjmIRsXGXjToVb3rVRFRLwr6w6Ia5ZtiVMMahTgLhxlsCxPa6oU0yNr0GG7QUrzm0T33xXOvd3e/4v52r3au+f28es7XB84Xzpfn6zme4/nb7du3P3361NjY2NfXl9mXUYH/HwzDzM/Pz83NCYVCs/lf74TDGI+NjXk8HpVKNTQ09Mcf/3iVz+LiosViiUQiBw8ebGxsZClrkEkej+f58+crKyvV1dX9/f3pe0S/fv06OjpK07TBYOju7k7Pd7vdExMTYrF4cHCwpKSEpaxBxgSDwYmJiYWFhS1btuj1+vb29vRHk5OTk5OTO3bsGBoaKi4uJsGfFcZflzNnhPv377fb7ZWVlWfOnDl79izb6YBsuXPnjtlsvn79+oajfPr06QsXLlRWVj59+rS3t5cEw+FwQ0PD8vJySUlJV1fXixcv2EgZZFIoFOrt7V1ZWdm5c+fdu3fb29sZhkEIJZPJtrY28k1oeHj45s2bZP6zZ88OHDigVCqXlpa0Wu3q6iqr6YMM8Hg88/Pzu3bt4vF4fX19IyMjJG6xWAYHB8vKyubm5nQ6XSKRQAglk8nW1tY3b95sKIzNwblgenpaIpHE43GMsdfrFYlE0WiU7aRAVqRSKYzxw4cPa2pq0sHV1VWhUPju3TuMcSwWE4lEXq8XY3zx4sXu7m4y58qVK3q9no2UQSYlk8lEIkHG0WhUIBDMzs5ijB8/flxVVUXKw2az7d69O5lMYoybm5tv3bpF5nd0dFy7do2lxEFW3Lhxo7m5GWO8trZWWVlptVrJWK1Wj42NYYytVuv6wigtLSXjTcmNM0KXy9Xa2kqukGg0moKCgrdv37KdFMiKHz4s7/V6t23btmfPHoSQQCDQ6XQulwsh9PLly87OTjJn3759brcbw3OxOY7L5fL5fDJOpVLJZFIoFCKEXC6XXq8n5aHX6xcXF/1+fyKRmJ6eNhgMZH5nZycpDPB7YNlQjWgAAAO3SURBVBhmdnZWrVYjhGia/vDhAznWHA7HYDCQY72hMD5//uz3+ze7o9xohKFQaPv27elNiqKCwSCL+YBfbEMByGQyUgA0TafjFEUlEonl5WV2UgRZcPLkya6ururqavTvNVBQUCAWi2maDoVCGGOKokhcJpPRNM1auiBzFhYWysvLi4qKfD7f5cuXEUI0TQsEgsLCQjIhvQj8sDA2u7vcaIQ8Hi+VSqU3GYb5j39MCn4nfy4AcnmAx+Mlk0kSJAMojN/GuXPnXr16NTo6SjZ/uAiQc8d0DcDK8NsoKyvzeDwzMzNisXh4eBghxOfzycVwMmH9IvC/d4fcaIQKhSIQCJBxKpUKhUJyuZzdlMCvJJfLaZpeW1sjm4FAgNwcqFAo0tcGlpaWtm7dKhKJWMsSZM6lS5fu3bs3NTWVPttbvwhEIpFIJCKXyymK4vF46Xi6MECu43K5YrFYrVafP3/+wYMHGGO5XM4wTDgcJhPWLwJ/LozN7i43GqHRaHS73V++fEEIORwOkUik0WjYTgr8OvX19Xw+3+l0IoSCweDMzIzRaEQImUwmq9VKvg8+evTIZDKxnCjIhKtXr46MjDgcjvVdzWQy2e32SCSCEBofH6+trVUqlVwu12g0jo+PI4QYhnny5ElPTw9reYMMicVi6bHH41EqlRwORyqVNjU1kWMdi8VsNhs51hsKQ6PRKBSKTe8yk/f3ZNOJEycqKioGBgYoirp//z7b6YBs8Xq9dXV1KpVKIBDU1dUdP36cxC0WC0VRAwMD5eXlp06dIsFYLNbQ0KDT6Q4dOkRRFLmtFOS0jx8/cjic0tLSun9yOBzkI7PZXFNTc+zYMalUarfbSdDr9Uql0sOHDzc1NbW0tHz//p293EFm9Pf3t7S0HDlyRK/XFxcX22w2Enc6nRKJ5OjRo7W1tT09PWtrayRuNpvVajUpjMnJyf9ij7n09onp6Wm/319fX19RUcF2LiBbotGoz+dLbxYWFlZVVZGxz+fzer0qlUqr1aYnJBIJp9P57ds3g8GQfsAW5K54PP7+/fv1EZVKJRaLEUIYY5fLFQqF9u7du/69pOFweGpqqqioqKOjg8fLmT8JAT8Tj8dfv34dCAQkEolWq13/e0cgEHC73TKZrK2tLX2H+c8K46/LpUYIAAAAZFxu/EYIAAAAZAk0QgAAAHkNGiEAAIC8Bo0QAABAXoNGCAAAIK9BIwQAAJDXoBECAADIa9AIAQAA5DVohAAAAPIaNEIAAAB5DRohAACAvPZ3+g1lJctbdkAAAAAASUVORK5CYII=", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -2264,108 +1704,104 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As we can see from our plot, estimated signal resembles closely to the real hidden states and appears \"smoother\" compared to the filtering case. We maybe also interested in the values for Bethe Free Energy functional:" + "As we can see from our plot, estimated signal resembles to the real hidden states and appears \"smoother\" compared to the filtering case. We may be also interested in the values for Bethe Free Energy functional:" ] }, { "cell_type": "code", - "execution_count": 265, + "execution_count": 353, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3daXwUVb7/8VO9JB2ydgchYQthFUISISLLsIiAoiMMM0r4K46gqOMwo3jlKnj1dYe5rleuiMI4wqiMAWR1AwTZFERAUJYkshoE2UwI2ddOd3X9HxS0EQJ0QifVXfV5P+o+Vlf9umz6m3Pq1GlJURQBAIBRmbQuAAAALRGEAABDIwgBAIZGEAIADI0gBAAYGkEIADA0ghAAYGgEIQDA0AhCAIChEYQAAEML0CB86qmnZFnWugo/UxRFf29KW263mzUC/cvlcmldgt5wSv1LlmWPx+PffUqB+T0SERGRl5cXHh6udSH+JMtyTU1NWFiY1oXoR2Vlpc1mM5kC9O+5YFRWVhYZGal1FbrCKfUvp9MpSVJISIgf98k3CADA0AhCAIChEYQAAEMjCAEAhkYQAgAMjSAEABgaQQgAMDSCEABgaHoIwtUnlAKn1kUAAIKTHoJw0VHP2pN+XnEHAGAQFq0L8IMUh5RVGIgLxQFoGqtWrVqwYIHWVdRNlmWz2ax1FXrQu3fvp556qjH2rJMgnL2fHiFgXNu3b7daraNHj9a6EDSWQ4cOrVy5kiC8rBSHoEcIGFxycvKYMWO0rgKN5euvv16/fn0j7VwP1wjbhks1sjhbpXUdAIAgpIcgFEL0cEjZRXQKAQD1ppMgZL4MAKBhdBKEyXaCEADQEDoJwtRYghAA0BA6CcIedulQseLmHgoAQD3p4fYJIUQzi2gTLh0pVbrHSFrXAsDojh07NnfuXPVxTEzM6NGjr7/++its//XXX6empkZGRgohtm7d+txzz23ZsqW+B12+fPmOHTu8T8eNG5eWllbfnVxq/vz52dnZ3qft27d//PHHr323AUUnPUKhzpcpYHQUgPZOnjw5Z86cDh06JCYm5uXl9erVa/fu3VfYfty4cUePHlUfu1yu0tLSBhx0w4YNe/bsaX9BREREQ0q/xMqVK48cOeLdbXx8vF92G1B00iMUQiQ7pOwi5f9pXQYACCFCQ0MfeeQR9XFOTs7nn3+u9s/cbvfy5csPHTrUqVOne+65x2KxbNy4sby8/MMPP9y1a9fgwYO9L1m0aFFkZOTEiROjo6PVxuzs7LVr1yqK8oc//KFz586XHjQ1NbV2d+2zzz7r0qXLrl27srOz//73v1ut1o8//jgrK6tdu3bjxo2z2WzqZrt27dq0aZPVah07dmzbtm0v3W3fvn0v6gWePHly9+7d3bt3X7x4cVRU1MSJE6OiotT/tG/fvnXr1kmSdNddd3Xs2FEIsXfv3vLyckVR1q9ff++993bv3n3FihX79u3r27dvXFycy+Xq16/f+++//9vf/rZ58+bqThYsWHDbbbe1aNGigWe/nvTUIxSZ9AgBBJgjR45kZWUlJycLIWRZHjp06MqVKxMSElavXn25NeFyc3Mfe+yx5s2bb9u27be//a3auGzZsj/84Q8hISFms/mWW26ps4spy7LT6XQ6nTU1NUKIWbNmjRo1aufOnS1atJBl+fe//31GRka7du22bds2dOhQWZaFEP/85z8feOCB6Ojo6urqfv36eTumtXk8HvcFHo9HCLF///6//OUvTzzxRPPmzbds2eJ9IwsXLkxPTw8LCxNC3HzzzVlZWUKItWvXPvDAAzNnzmzRooWiKFOnTn3llVcSEhJWrlyZnp6+YsUKIcT69evfeecddSeZmZlPPfVUTEzMtZz2etFPjzDFIWUVal0EgMCw9EfPO4ebaPqcJMRbvzF3ivrVBIWioiKHw+HxeEpKSsaMGaPm2eLFiyVJWrx4sRBiwoQJSUlJ33777bBhwyIiIu66664bbrhBCHH69Ony8vIlS5ZER0dPnDgxJibm7Nmz11133eTJk1etWnXjjTcKIaKiol599dWlS5deVMncuXPnz58vhJAkqby8XAgxfPjwN998Uwixdu3a48eP792712QyTZw4sX///uvXrx80aNC0adMyMzPbt2+vvmrWrFmzZ8++aLfPP//8Sy+9pD6eOHHiP/7xDyFERUXF0qVLIyMjJ0yYEBMTU1xcHBkZ+R//8R+bNm1KSUkRQjRr1mzGjBnqYuhhYWEff/yxJEklJSVvvvnmkSNH2rZt+/DDD3t7wH/+85/vv//+p59+2mQyqdkcEhLiv/9FV6GfIEyMlEpdSoFTxIZqXQoArQ2ON8WGNtHUOUkS7SIuPpbdbi8oKBBCFBUV3XvvvU8//fRrr722Z8+eY8eODR8+XN2moKDg8OHDvXv3vui1iYmJ6nCozWaLjY3Nz893uVy5ubnTpk2TJEndp9vtvrSSSZMmvfHGG7Vb1OAUQuzZsyc/P/+2225Tn/7000+HDx+Oj4+vqqp6+OGH1cazZ8+2bNny0t3+7W9/e+655y5q7NSpkzq7Jzw8PCYmJj8/v6ioqKCgYMqUKeoGhYWF3p/d6N27t1r50aNH7Xa7dwD2pptuUruYAwYMiIiI2LRpU79+/ZYsWfLdd99dWkbj0U8QSkL0sEvfFyqD45k4ChhdXJiIax0QXwV2u33MmDEzZsx47bXXwsLChg8fPmPGDO9/bdas2aUvqf2zTZIkKYoSFhZmNpvff/997/Y+/rRTaOj5nkFYWFi/fv28w49qy08//WSz2ZYuXaqmlBDCYvE1FOos0mKxLFiwwHtQ7zbelqioqPLyco/HYzKZhBAlJSVqmgohHn300Xnz5h0/frxPnz6dOnXysQy/0M81QsFCawACj9PpXLNmjTq3ZcSIEWvWrHE6nXa73W63WywWRVGEEDExMYWFV7q043A40tLSli5dar/A6XTWq4zhw4dv2bKluLhYfbnNZnO73R07doyLi/vss8/UxpiYmPrutra4uLikpKQVK1ZcocjExMRWrVr9+9//FkKcPHny448/9v6n++6774svvnj99de9k4yaTD2C8Icffnj//fcXLFhw5syZ2u2bN2+eN2/e9u3bazcWFRUtWLAgIyNDHRzw2rlz57x58zZt2nQtRV9OMktvAwgMxcXFHTt27NixY/PmzQsLC9ULdQMHDpwyZUrPnj1Hjhw5dOjQpKSkc+fOCSEeffTRsWPHpqWlrVy58nI7zMjIyMjIuOmmm0aPHt2tWzf1Qp3vkpOTX3nllf79+99xxx233npr165df/rpJ4vFsmTJkhdeeGHAgAGjRo3q3LnzkiVLLn3tq6++2uqCSwdya1u0aNHcuXP79u37u9/9rmvXrv/6178u2sBsNi9atOh///d/O3bseNdddw0dOtQ7eTUqKio9Pb2oqGjUqFH1emt+oPhm8eLFdrv98ccff+ihh6Kjo7du3aq2T506tWPHjk888URCQsILL7ygNp45c6Z169bp6enjxo2Li4s7ceKE2j5jxow2bdpMnjy5a9euTzzxxBUOFx4erk63rZevcz19PnXV91VNxu12V1ZWal2FrlRUVMiyrHUVulJaWqp1CQ0xbdq0l19+WesqfuFyuQovqKmpuei/lpaWqrc01P5Pbre7sLCwurra5XKVlJR424uLi91ut/pYluWcnJwdO3acPXv20oOWlpaWlZXVbikrK3M6nbVbysvLv/vuu6ysrKqqqtrVHj58+JtvvikoKLh0t8XFxXm1nDt3TlGUmpqa2h8V9Zql94388MMPO3bsyM/PV1uqqqoqKiou2q1a6ogRI959911v4wMPPPDss89eWoOiKFu3bh0wYICiKNXV1Re9qWvnaxAOHDhw1qxZ6uPJkyePHz9eUZTc3Fybzfbjjz8qivL999+Hh4cXFxcrivLMM8+MHTtW3XjChAlPPvmkoijl5eXR0dHffvutoiinTp0KCws7efLk5Q7XsCAsrVEi/l0je+r7uiZCEPodQeh3BCEa29KlS1988cWMjIyHHnooMTFR/ao/cuTIa6+9Zrfbf/755zpf1ahB6OvQaFxcnHcIu6ioKC4uTgixadOmpKSkxMREIURSUlLr1q3VZYHWrFnjva1k9OjRa9asEUJs27YtOjpancLUunXrXr16+f3nhiOt4jqblFPK6CgABKg+ffpEREQcPHiwd+/ee/fuDQ8PF0Lk5+cXFhauW7dODZcm5usEoTfffDM9PX3btm1VVVUtWrRQh6dPnz7dqlUr7zatWrU6ffr0Re2tW7c+derUFTauk9vtnjFjhvc+kqSkpDvuuMOXOnvEiL357sQ65mFpT5Zll8vl+6QsXJXL5TKbzer0M/iFy+VyuVxaV1Fv6hR8BIWEhIRLVyvt379///79r/xCRVHUz6ckSd5prlfly1eEr1/KixYtKisre/bZZ6urq//+97+vWbMmPT1dUZTa1ZhMJvXjWLtdnVZ7UWPtjeukKEpxcbHValWflpSU+PhBT7FL2YVidNtA7BR6LtC6EP3gfPpdkJ5S9UsGuqd+PiVJ8v1T6ssfyj4FoaIo06dPX7t27YABA9SWF154IT09PT4+Pi8vz7tZbm6u2ueLj48/e/as2piXl+dtvGjjoUOHXu6IVqv1xRdfVLvM9XLDdZ5FOUpoqE932DQxWZYlSfLeT4NrJ8tyaGgoPUI/qqmpCcaPqI831SGoeb8/JUny77ozPn2DqEetqKhQn5aXl6vVDB48ODMzU42348eP//jjj2pSDh06dO3aterGa9euVQOvX79+ubm5hw8fFkIUFRXt2rXrlltu8eM7UXErIQCgXnwdGlVvnPjLX/5SVVU1Z86cmTNnCiHatWt333333XHHHenp6QsXLvzzn/983XXXqRv37t07IiLCYrEsWrRI/YmsmJiYxx9/fPTo0RMmTPjoo4/uvvtudWFy/+oUJZ2tVkpdIsrq930DAHRI8n1s/auvvtqxY4fFYhk6dKi6OKwQwuPxrFix4uDBgykpKaNHj/ZeBTxx4sSyZcs8Hk96erq6nKtq5cqVe/fu7dq165gxY64wmhEREZGXl9eAoVEhRJ9P3a/3NfdvGRCrK9Umy3JNTY26Ljv8orKy0mazMTTqR2VlZd4lr4LIc8899+9//1uTCYdXddH0CDRMeXl5XFzc5s2bnU6n34dG6xGETelagvDhrXKv5tKfuwXclyNB6HcEod8FaRAWFxfX+ftBgaCysrLOBUVRXy1btmzTpk1jBKEOp/KnOKRsLhMCRhITE6P+7G0ACtK/LQxFh39KM18GAOA7HQZhaqyUXRiQA74AgMCjwyCMCRHRIdLxMqIQAHB1OgxCIUSKQzA6CgDwhV6DUMq80o9cAgBwnm6DkImjAABf6DQIY5k4CgDwiT6DsEuUdKpCqXBrXQcAIODpMwgtJnF9jLS/iE4hAOAq9BmEgtvqAQC+0W0QJtsJQgDA1ek2COkRAgB8odsgTI2VMgtYaA0AcBW6DcLrbCLMIk5VEIUAgCvRbRCK86OjWhcBAAhsug9CeoQAgCvRcxAms9AaAOBq9ByEKQ4ps4AgBABciZ6DsFuMdLxcqZa1rgMAEMD0HIQhJtExSjrAQmsAgMvTcxAKIVKZLwMAuCKdB2GyQ8qmRwgAuDydByF3UAAArkz3QSiYOAoAuAKdB2GrZpIQIrdK6zoAAIFK50EohEjmbkIAwOXpPwi5TAgAuAJDBCELrQEALscQQUiPEABwOfoPwh526YdSpcajdR0AgICk/yAMNYuECOlwMZ1CAEAd9B+EgtFRAMDlGSIIkwlCAMBlGCIIWXobAHA5hgjCFIfIKtS6CABAQDJEELaLkKpkJb9a6zoAAIHHEEEohEi2c1s9AKAORglCJo4CAOpklCBk4igAoE5GCUImjgIA6mSUIOzhkA4WK24WWgMA/JpRgjDcIlqHSz+U0ikEAPyKUYJQMF8GAFAXAwUhd1AAAC5loCBMcYhMghAA8GuGCkKJhdYAABcxUBB2iJKKnUqRU+s6AACBxEBBKAnRwyFlFzE6CgD4hYGCUDBxFABwCWMFIRNHAQAXMVYQ0iMEAFzEYEEYK31fpHiIQgDABcYKwiiraG6TjrLQGgDgAmMFoWB0FADwa4YLwlSH4A4KAICX4YIwmfVlAAC1GC4IGRoFANRmuCDsFCXlViqlLq3rAAAEBsMFoVkS3e3Sfi4TAgCEEAYMQiFEikPKLCAIAQBCGDYImTgKAFAZNAiZLwMAUBk1CAsUkhAAIIwZhI5QERUi/VRGFAIADBmEQogUh2B0FAAgDByEUibrywAAjByE/EIvAEAYOQgZGgUACMMGYddo6WSFUunWug4AgNYMGoQWk+gazUJrAACjBqFgdBQAIIQQwlKvrbOysg4fPtyiRYs+ffrYbLbajT169OjWrZt3y6qqqi+++EJRlCFDhoSHh3vbDx8+nJWV1blz5xtuuMEvb6DBkglCAIDvPUJZlu+///4777xz+fLl//3f/71w4UK1/eWXX7799ttXr159yy23zJkzR208d+5camrqG2+88dZbb6WkpOTm5qrt8+bNGzRo0KpVq0aNGjV9+nR/v5f6oUcIABBCCMU3s2fPTk1NLS0tVZ96PB5FUc6dO9esWbMDBw4oivLtt99GR0eXlZUpijJ9+vSRI0eqW6anpz/zzDOKolRVVcXGxn711VeKohw9ejQsLCw3N/dyhwsPDy8vL/extoY5W6U4Mmoa9RAXcbvdlZWVTXlE3auoqJBlWesqdMX7bxz+win1r+rqaqfT6d99+tojXLhw4eTJkwsLC7/55puKigpJkoQQGzZs6Ny5szoieuONN8bGxm7ZskUIsXLlyrFjx6ovHDt27KeffiqE2LZtW2ho6MCBA4UQHTp0SElJ+fzzzxsj2n10nU2EmMSpCjqFAGBovl4jPHr06NKlS99+++3IyMhDhw6tXr36hhtuOH36dNu2bb3btG3b9tSpU0KIU6dOtWnTRm1s06bN6dOn1cY6N66TLMvvvvtuSEiI+jQ5Oblv3771fGtXl2wX+8554m1+33Hd5Aua6HgGoJ5PhRXU/YePqN9xSv1LlmVJknw/pSaTSe25XYGvQVhRUREeHr527VpJkp599tn//M//3Lhxo8vlMpvNv+zLYnG5XEIIt9vtbbdarTU1NUKIy21cJ1mWd+/ebbVa1adutzstLc3HUn2XFC3tO6cMa+nx+57rJMuyy+WyWOo3QQlXoH6oTCbjTn72O5fLdYV/mGgATql/uVwuSZKumm1eVqu1dvTUydcv5VatWg0bNkw99vDhw+fNmyeEiI+Pz8/P925z9uzZ+Ph4IURcXJy3/ezZs61atapz45tvvvlyhwsJCXnrrbdqTzdtDD1beNadUmy2kEY9ipcsyyaTyTvbFtfO4/HYbDaC0I9cLhcfUf/ilPqXmoLe8UK/8PUbZPDgwcePH1cfHzt2TM223/zmN3v27CkqKhJC/Pzzz0eOHOnXr58QYtCgQZs2bVI33rhxo3pdsE+fPidPnlR3Ul5evnPnTrVdQykOKZOJowBgbL72CKdMmTJ48ODo6OioqKgXX3zx9ddfF0J06tTpd7/73ejRo8eNGzd//vw//vGPakBOnjy5T58+LVq0sFgs8+bN27p1qxCiefPmDz300N133/3II48sW7Zs+PDh3bt3b7w35ovudulYmVItC9tV+s0AAN2SfJ9ocOjQoYULF3o8npEjR6o9PyGEy+V69913Dx48mJqaOn78eO9Q7IEDB9SNx40bl5ycrDbKsrxgwYK9e/d27dp14sSJoaGhlztWREREXl5eYw+NCiGSP3Rn3GzuGevrcPO1kGW5pqYmLCysCY5lEJWVlQyN+ldZWVlkZKTWVegKp9S/nE6n34dG6xGETanJgvC+zfLw1tL4zk3xTUoQ+h1B6Hd8a/sdp9S/GiMIjf4NkmznhwkBwNCMHoQstAYABkcQin0FBCEAGJfRg7B1uKQIkVeldR0AAI0YPQiFEMl27iYEAOMiCEVKLJcJAcC4CEKR4mDiKAAYF0HIxFEAMDSCUCTFSIdLlJom+gkKAEBgIQhFmEUkREhHSugUAoAREYRCMDoKAAZGEAohRLKdIAQAgyIIhRAiNVYQhABgTAShEOeHRrUuAgCgBYJQCCHaRUiVbuVctdZ1AACaHEEohBCSED3sUnYRo6MAYDgE4XkpDimLn6EAAOMhCM9L5g4KADAkgvC8VIIQAAyJIDwv2SEdLFZkohAADIYgPC/cIuKbST+w0BoAGAxB+AsWWgMAAyIIf5HsENxBAQBGQxD+IsUhZRZoXQQAoGkRhL9gaBQADIgg/EXHKKnIqRTXaF0HAKAJEYS/kIRIskvZdAoBwEgIwl9hdBQAjIYg/JVkBz1CADAWgvBX6BECgNEQhL+S4pCyixQPUQgAhkEQ/kp0iIgNlX4sIwkBwCgIwosxOgoAhkIQXiw1VhCEAGAcBOHFku1SdqHWRQAAmgpBeDGGRgHAUAjCi3WOln6uVMpcWtcBAGgSBOHFzJLoFiPt5/eYAMAYCMI6pDikTEZHAcAYCMI6pLDQGgAYBkFYh5RY5ssAgFEQhHVIdUhZhQpJCABGQBDWwREqIqzSiXKiEAD0jyCsW4qD9WUAwBAIwrqlOKQs1pcBAAMgCOuWbGe+DAAYAkFYt1QmjgKAMRCEdbs+WjpRrlS6ta4DANDICMK6WUyiS7R0oJhOIQDoHEF4WfwMBQAYAUF4WckEIQAYAEF4WSkOKauAIAQAnSMIL+sGfoMCAAyAILysFmHCahKnK8hCANAzgvBKWF8GAHSPILwSJo4CgO4RhFeS7JCyiwhCANAzgvBKUhxSJhNHAUDXCMIr6R4jHS1TnLLWdQAAGg1BeCWhZtEhUjrIQmsAoF8E4VWkMl8GAHSNILyKZIeUTRACgH4RhFfBHRQAoG8E4VWkOARBCAA6RhBeRZtwyeUReVVa1wEAaBwE4dXxe0wAoGME4dVxmRAAdIwgvLoUJo4CgH4RhFdHjxAAdIwgvLoedulwieLyaF0HAKAREIRXF2YRbcOlIyV0CgFAhwhCnzA6CgB6Ve8gzM3NPXXqVO2WEydObNy48cyZM7UbZVnevn37tm3bXC7XRS/fuHHj8ePHG1StZriDAgD0qn5BePz48S5duowcOdLb8tZbb6Wlpc2aNSslJSUjI0NtLCkp6d279+TJk6dMmZKWllZYWKi2L168uEePHrNmzbrppptmzZrlr/fQBFJZXwYAdKoeQagoyqOPPnr33Xd7W0pLS6dOnfr555+vXr36ww8/fPLJJ6urq4UQb7/9dmxs7K5du3bs2JGQkDB79mwhhMvlevLJJxctWrR69eovv/zyueee8wZk4EtxSFlBUywAoB7qEYTvvPNO27Zthw0b5m1Zt25dQkJCWlqaEGLw4MERERGbN28WQnz44Yf33XefJEmSJP3xj3/88MMPhRDbtm1TFOXWW28VQiQlJV1//fVr1qzx75tpPAmRUrlLKXBqXQcAwN8sPm535syZmTNnbt++fe3atd7GU6dOtW/f3vu0Xbt2J0+eFEKcPHkyISFBbUxISFCvKaqNkiR529WN6yTL8ocffmiz2dSnXbt2TU5O9v1dNYYeDinznHxzvNTgPXgu8GNVBsf59DtOqd9xSv3L4/FIkuT7KTWZrt7f8zUIJ02a9Pzzz9vt9tqN1dXVFssvewgNDa2qqhJCOJ1Oq9V6UWN1dbW3sXZ7ndQgNJvN6tMbb7yxY8eOPpbaSLpFWnbnKTdFyw3egyzLNTU1isK1Rr+prKz0eDy+fNDho6qqKu+/O/gFp9S/nE6nJElut9vH7W02W+2cqpNPQbhz586vvvrq+uuv/+677w4cOHDmzJlp06b9z//8T1xcXEFBgXezc+fOxcfHCyFqt+fn56uN8fHx586dq73xwIEDL3fEkJCQDz74IDw83JfymkavFp7vzikREQ3/QKtBGBYW5seqDM5kMtlsNoLQjxRFiYiI0LoKXeGU+pfVapUkKSQkxI/79OkbJD4+furUqXa73W63h4eHm81mu90uSVKfPn12795dXl4uhCgoKDh48OBNN90khOjbt++WLVvU127ZsqVv375CiLS0tGPHjql3WVRXV+/cubNfv35+fCeNLTWWOygAQIek+o7UffDBBzNmzNi7d6/69M477xRCTJgwYe7cudddd90HH3wghMjMzBw4cOBLL71ksVimTp26YcMGNSAfeOCBY8eO/fWvf120aFF5efmGDRsud5SIiIi8vLyA6hGWu0TcIlfJeKu5oVcJ6RH6XWVlJT1C/yorK4uMjNS6Cl3hlPqXOjSqQY+wtu7du0+YMMH7dOnSpf379//kk09uvfXW9957T21MTU1dv359dnb2nj171qxZo6agEOLtt98eNWrUJ5980qtXr48++sgf9TedCKuIaybllNIpBABdqXePsGkEYI9QCPGHjfI9HaUxiQ3sf9Aj9Dt6hH5H98XvOKX+FRA9QiNLcQh+mBAAdIYgrIdku5TJ+jIAoC8EYT3wGxQAoD8EYT10jJIKqpXiGq3rAAD4D0FYDyZJJNml7+kUAoCOEIT1w+goAOgMQVg/yQ4pu4ggBAD9IAjrhx4hAOgMQVg/KQ4pu1DxEIUAoBcEYf3EhAh7qHSsjCQEAJ0gCOstxSEYHQUA3SAI6y3VIWWxvgwA6AVBWG9MHAUAPSEI642JowCgJwRhvXWJls5UKOUuresAAPgDQVhvZklcHyPtZ3QUAHSBIGyIFIeUyegoAOgCQdgQ6m31WlcBAPADgrAhmC8DALpBEDZEaqyUVaiQhACgAwRhQ8SGimYW6WQ5UQgAQY8gbKAUh2B9GQDQAYKwgbhMCAD6QBA2UDJBCAC6QBA2UCpBCAC6QBA20PUx0vFypcqtdR0AgGtDEDaQ1SS6REkHiukUAkBwIwgbjvkyAKADBGHDMV8GAHSAIGw4eoQAoAMEYcOlxkqZBQQhAAQ3grDh4sKE2STOVJKFABDECMJrkuKQWGgNAIIaQXhNuEwIAMGOILwmyXZ+oRcAghtBeE1SHFImQQgAwYwgvCZJduloqVLj0dSTc8wAABG/SURBVLoOAEBDEYTXJNQs2kdIB1loDQCCFkF4rVJjmS8DAEGMILxWyQ7mywBAECMIrxV3UABAUCMIr1WKQxCEABC8CMJr1TZcqpHF2Sqt6wAANAhB6Ac9GB0FgKBFEPoBlwkBIHgRhH6Q4pCyiwhCAAhKBKEf0CMEgOBFEPpBsl06VKy4WWgNAIIQQegHYRbRJlw6UkqnEACCD0HoHykOKauAIASA4EMQ+kcylwkBIDgRhP6RyvoyABCcCEL/SHFIWYVaFwEAqD+C0D/aR0qlLqXAqXUdAIB6Igj9QxKih136ntFRAAg2BKHfcFs9AAQjgtBvmDgKAMGIIPQbeoQAEIwIQr9JcUj7ixSZKASAoEIQ+k2kVbQMk46y0BoABBWC0J8YHQWAoEMQ+lOKQ2QThAAQVAhCf0p2SJmsLwMAQYUg9CeGRgEg6BCE/tQpSjpXrZS6tK4DAOAzgtCfTJLobpe4TAgAQYQg9DNGRwEguBCEfpZMjxAAggpB6Gf0CAEguBCEfpYaK2UXKiQhAAQLgtDPYkJEdIh0rIwoBIDgQBD6X4pDMDoKAMGiHkFYUFCwb9++/Pz8i9qLi4t3795dWlp6UfuhQ4cOHjx4UWN5efnu3bsLC/W8/kpqrJSl5/cHALriaxCOGDGic+fOEydO7Ny588MPP+zxeNT2hQsXdujQ4fHHH+/QocPHH3+sNlZWVg4ZMmTUqFG///3vBwwYUFZWpravXr26ffv2jz32WOfOnefPn+/3NxMgmDgKAEHE1yD861//mpeXt3v37sOHD69cufLTTz8VQlRUVDz22GOffvrptm3bMjIyJk2aVFNTI4SYN2+e2+0+cODAgQMHbDbbP/7xDyGELMuTJk2aN2/e9u3bP//888mTJ1/aidSHlFgmjgJA0PA1CO+8806r1SqEaNmyZefOnXNzc4UQ69ata9my5cCBA4UQt99+u9ls3rJlixBi6dKlEyZMsFgsJpPpwQcfXLZsmRBi+/btVVVVo0ePFkL07t27Q4cOn332WSO9K211iZJOVSgVbq3rAAD4wFLfF+zbty87O/u2224TQpw4caJDhw5quyRJiYmJJ06cUNsTExPV9g4dOngb27dvbzKZLmqvk8fj+fLLL202m/q0Y8eO3h0GPotJXB8j7S9SbrpO0roWAMBV1C8If/755zFjxrz88stq/lVWVoaGhnr/a1hYWHl5udruzTCbzaY2VlRU1LlxnVwu14wZM8xms/q0b9++zzzzTL1K1Va3SOvO0zXdbHLtRlmWa2pq3G66in5TVVXlcrm8f13h2l3hXyUahlPqX06nU5KkkJAQH7e32WzqcOYV1CMI8/Pzhw0bNmHChEmTJqktLVu2rD3/s6CgID4+/qL2goKCuLg4IURcXFxRUVHtjX/zm99c7lihoaFr1qwJDw/3vbyAktbS80OZEhlprt2oBmFYWJhWVemP2Wy22WwEoX9FRkZqXYLecEr9KCQkpF5B6Atfv0GKi4tHjBhx9913P/vss97GG2+8cc+ePdXV1UKIkpKS/fv39+rVSwiRlpa2fft2dZvt27ffeOONQoiePXvm5OScO3dOCOFyuXbt2qW26xILrQFAsJAU35YDu+mmmyoqKiZPnqw+7dmzZ+/evYUQQ4YMadWq1UMPPTRnzhy3263OJt25c+dtt932z3/+02Kx/OlPf/rkk08GDRokhEhPT6+qqnryySczMjIOHz7sDctLRURE5OXlBW+P8Fy16LzMVXi/tfZFQnqEfqcOwtMj9KOysjK6L/7FKfWv+g6N+sLXb5A+ffoMGDBg9wWnT59W2z/66KP4+PhXX321S5cuCxcu9G68bNmyjz76aOnSpQsXLlRTUAjx3nvvpaamvvrqq3a7feXKlX58G4GmuU2EWcSpCjqFABDofO0RNrFg7xEKIUZ87n4syfzbtr/0CekR+h09Qr+j++J3nFL/0rJHiPriMiEABAWCsLEkE4QAEAwIwsaS6pCyCghCAAh0BGFj6RYjHS9XquWrbwkA0BBB2FisJtEpSjpQRKcQAAIaQdiImC8DAIGPIGxEzJcBgMBHEDYieoQAEPgIwkaU6pAyCUIACGwEYSOKbyZMkvi5Uus6AACXRxA2rmQ7o6MAENAIwsbFZUIACHAEYeNKdkjZBCEABDCCsHGlMF8GAAIbQdi4etilnFKlxqN1HQCAyyAIG1eoWSRESIeK6RQCQIAiCBtdaizzZQAgcBGEjS7ZznwZAAhcBGGj4w4KAAhkBGGjS3GIrEKtiwAAXAZB2OjaRUhVsnK2Sus6AAB1IQibQrJdyuYXegEgIBGETYHLhAAQsAjCppDCQmsAEKgIwqZAjxAAAhZB2BR6OKSDxYqbhdYAIPAQhE0h3CJah0s/lNIpBICAQxA2kRSHlF2kdREAgEsQhE0k2U4QAkAgIgibSGqsYL4MAAQggrCJpDik7CJJ6yoAABcjCJtIYqRU7FSKa8hCAAgsBGETkYRIsovvi7WuAwDwawRh00lxSN8X0yMEgMBCEDadtFjxzhHps5MKc2YAIHAQhE1nfGdpWrLnb7vlHivc7x3xOGWtCwIAEIRNySyJuxOU70Zb5g4wf3zc036Ja/oeudCpdVkAYGwEoQYGxEmrbrV8daelyCm6LndN3iH/VM5wKQBogyDUTOdo6Y1+5u/vstpDxY2fuEeud+88SxwCQFMjCDXWMkxM72U+NtY6rJUp/Qt5wCr3qhMe8hAAmgxBGBAirGJyD9OxsZapqaYX9npSP3LPO+SpZjYNADQ+gjCAmCQxsp1p5+8sb/U3rzrhSVzimr5HLmI2DQA0JoIwEKmzadbdbvmxVHRa5pq8Qz5ZwXApADQKgjBwpTikjJvN++8+P5smfZP8bT5xCAB+RhAGurgwMb2XOSfd+puW0l0bmU0DAH5GEAaHSKuY3MOUM9byyPWm//rW0/Mjd8YPHpdH67IAIPgRhMEkxCTu72zKvssyp795+TFPl+Xu/830FNdoXRYABDOCMCips2k+HmbeX6R0XOqavEM+xWwaAGgQgjCI3RArZdxs3j3aEmYRvT52379Z3l9EHAJA/RCEQa99pPRKb3POWGtac2nE5/Lwte5VJ7h4CAC+Igh1IsoqJvcwHR1r+WMn07Rdnl4fuzN+8LgJRAC4GoJQV9TZNN/fbfl7mmlBjqfLcvcb33sq3FqXBQABjCDUIUmIke1MG263rBhq3n1OabfYNXmHfKaSy4cAUAeCUM96NZcybjZ/N9oihOjxofv+zfLBYuIQAH6FINS/xEjpjX7mI2OsSXZp+Fp55Hr3xtPEIQCcRxAaRXObmJpqOppuGZNoemyHfOMn7owfPDKBCMDwCEJjCTWL+zub9t9l+Vsv07xDni7L3G9876lkNg0AAyMIjUj94cOvR1qWDTXvPqd0XOqavkc+V611WQCgBYLQ0NKaSxk3m78eaSlyii7LXfdvlg+XMFoKwFgsWhcA7XWMkt7oZ/6vG8yz98sDV7lvjjf9qZupfYSQpPMbRIdI3r+YIq3Cwp9PAHREUpRA7AFERETk5eWFh4drXYg/ybJcU1MTFhamdSFXUuEW7x32LD7qyav6pbGkRvGuUVPmEt4FayKswnohFJtZpNALj21mEXbhT6xQs2h24bHVJCIs59PVYhKR1vPtJklEh5x/LAkRE3IhgYWICRXeJ1FWYb5wiEirZJGE0+kMCQmRpF+290WYRdjM9XpFUzNLIirk6ps1hoqKCp39u1PV/uw1sfLy8oiICE0OrUtOpzM6VAoL9ee/EIKw6QRFENZLuUt4fxOx0q04Lzyucotq+fxjpyy8k3FqPKLCff7z5vaIMtf5do8iSi78mJQiRHHNL5/JYqfwPimpEd6fJC5zKW5FyLJsMpnqG4S1ywtMsiJKNfp1LY/HYzLpsMvv8ohytzbfdYqi1Pcjiiub00e5t4s/g5ChUTRchPWXx/ZQH/+p+/MbobKyxmaz6vKLWytlZWWRkZFaV6ErnFL/cjqdfv/Dgm8QAIChEYQAAEMjCAEAhkYQNp39+/evWrVK6yp0Zfny5Tk5OVpXoSv/93//5/HwO5Z+k5ub+/7772tdha5s3rx5x44d/t0nQdh0du3atWbNGq2r0JWVK1fu27dP6yp05bXXXqusrNS6Cv04cuTIkiVLtK5CV7744outW7f6d58EIQDA0AhCAIChEYQAAEML0JVlQkNDW7durbPlGMrLy6urq5s3b651Ifpx9uzZiIiIZs2aaV2Ifvz000/t2rXT2T89DTmdzsLCwvj4eK0L0Y+ioiJJkmJiYnzc/t57733++eevvE2Arixz9OjRmhqN1phqNB6PR5Zlq9V69U3hm5qaGqvVyre2HzmdztDQUK2r0BVOqX/JsiyEMJt9XS/Yl79CArRHCABA0+AaIQDA0AhCAIChEYQAAEMjCAEAhhags0Z1pqSkZPXq1VlZWc2aNRs1alTPnj21rkg/Fi9eHBkZeeedd2pdiB58//33y5cvLysrS0tLGzdunNblBL2cnJwlS5YUFxf37Nlz7NixFgvft/VWVVWVmZl54MCB+Pj422+/3dvucrnmz59/6NChHj16jB8/3vdJpHWiR9gUpk+fvmTJktjYWKfTOWjQoBUrVmhdkU4sX7780UcfnTlzptaF6MFHH300cODA6urqhISEdevWaV1O0Dt48GDPnj2rq6uTkpJmzZr14IMPal1RUHrxxRcnTJgwc+bMOXPm1G5/4IEHMjIyunTpMnfu3EmTJl3jUbh9oilUV1fbbDb18UsvvfTll19u2LBB25J0oKCgYNCgQWPGjPnqq6+++OILrcsJbpWVlW3btl28ePGtt96qdS068dprr23YsOHzzz8XQnz33XeDBg2qqKjgntf68ng8JpNp5syZmzZt+uyzz9TGY8eOde/e/dSpU7GxsT///HNiYuKxY8euZdUCeoRNwZuCQojq6urw8HANi9GNxx9//Jlnnrnuuuu0LkQPdu7c2axZs8TExNmzZy9YsKCqqkrrioJe9+7dc3JyysrKhBB79uzp3r07KdgAJlMdIbV169bU1NTY2FghRHx8fNeuXbdv335NR7mWF6O+cnJyZs+e/fTTT2tdSND77LPPCgsL77vvPq0L0Yljx4653e5x48aVlZUtXbq0T58+1dXVWhcV3G6//fbx48e3a9euS5cur7zyyvLly7WuSD9yc3Nr/wXcsmXLM2fOXMsOuXjbdPLy8kaOHPncc8/1799f61qCW0lJyZNPPrl27VqtC9EPk8mUm5u7bdu2Dh06eDyepKSkZcuW3X///VrXFcQ2bNjwr3/9a8mSJQkJCXPmzBk/fvzmzZvr7N+gviwWi7rQmsrlcoWEhFzTDq+5JPgkLy9vyJAh48ePnzJlita1BL0vvvgiLy8vPT1dCJGfn19UVNS3b99vvvlG67qCWOvWrW02W4cOHYQQJpOpW7duJ06c0Lqo4DZ//vz77rvvtttuE0LMnDkzPDz84MGDSUlJWtelB61btz59+rT36enTp1u1anUtO+TPk6aQn58/bNiwe+65Z9q0aVrXogdDhgzZtGnT3Llz586de88993Tt2vWtt97SuqjgNnDgwIiIiH379gkhampq1GtaWhcV3GJjY3/88Uf18U8//STLsnpNC9du2LBhOTk5hw4dEkJkZmbm5ubefPPN17RHBY3vkUcesVqtaReMHj1a64r0Y86cOUOGDNG6Cj145513WrVq9cgjj9xwww0jR46UZVnrioJbTk5OfHz8iBEj/vSnP7Vq1WrKlClaVxSU1qxZk5aW1qZNm+jo6LS0tOnTp6vtL774Yps2bR588MFWrVq9/vrr13gUbp9oCsePHy8oKPA+DQ0N7dGjh4b16Ik6NNqlSxetC9GDH374Yffu3QkJCX379mWK47WrqKjYtm1bSUlJUlISPeyGKSwsPHbsmPdpbGxs+/bt1cf79u07ePBgjx49kpOTr/EoBCEAwNC4RggAMDSCEABgaAQhAMDQCEIAgKERhAAAQyMIAQCGRhACAAyNIAQAGBpBCAAwNIIQAGBoBCEAwND+P7Jc/yS+plLoAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXgUVaL38VPdIenOQhbTDSSsYQsgYFgEAwgCkQhXFOSCw6LyeAHZHB1Br864IuPA6IxXGJwrjiiCKBgUkT0DBGWAIWHTAcQQlpAACUkgeyfprvePGvvyhpB0Ot2pVPX384dP5aRSdfo8MT9O1VkkWZYFAAC+yqB2BQAAUBNBCADwaQQhAMCnEYQAAJ9GEAIAfBpBCADwaQQhAMCnEYQAAJ9GEAIAfBpBCADwafoPwlOnTq1cuVLtWuhWZWWl2lXwXTS+imh8FXm88fUfhCdPntyxY4fatdCt8vJytavgu2h8FdH4KvJ44+s/CAEAqAVBCADwaQQhAMCnEYQAAJ+m+SAsKir64IMP8vPz1a4IAECTNB+EL7300u9+97vs7Gy1KwIA0CRtB+HevXubNWvWuXNntSsCANAqDQdhaWnpokWL3njjDbUrAgDQMA0H4W9/+9tnnnkmODjYg9fccM5RWuXB6wEAmrp6BGF+fv65c+du991z585l/CI3N9dZ7nA4Dh06tH///oqKCtfvZbPZMjIySktLby50OBz//Oc/v//+e+VSa9euff311/v163fixIlJkyalp6e7fv3bWXrc8WOB3PDrAAC0ws+Vk44dOzZ+/PiLFy9KknS7Rd66d+/eokULo9EohJgwYcKSJUuEEKWlpSNHjiwtLQ0KCsrPz09JSbFarXXebujQoQcPHqyqqvr6668ffPBBpbCsrCwhIaGoqCgkJCQ3NzclJSUnJ0f51qBBg/73f/+3U6dOrnyW2lnNIpeFkwDNKikpmTlzZiMsBGq325U/d2hMY8eOnTp1qscv61IQRkdHf/nll0KIAQMG1HLaP/7xj6ioqJtLPvroI0mS0tLSjEbjpEmT3nnnHSUgc3Nz09PT77nnHuU0WZa//fZbZ+a9+eabPXv2vPvuu2++1Mcff1xVVZWWlubn5zd58uS333777bffVr41fPjw0NBQlz5uXSwmKadMFkLyyNUANLL8/PwdO3a8//77alcEnrd3797du3erFoQWi8Visfzwww+1n3bhwoXi4uIOHTo0a9ZMKUlKSpoyZYry76bHHnvs6aefVoLw3Llz48eP//zzz4cOHSrL8uzZs8+cOZOYmKj84JAhQ269uHIpPz8/5VJPPfWUMwgXLVpUS60yMjK++eab8PBwZ8knn3wyfPjwGk8OMxov3ZCKi3lP6KqSkhJJ4t8N6qDxb1VSUmI2m//zP/9T7YrA84qLi/fs2VNcXFyv3/zAwECDoY6XgC4FoSv8/f1nzpxZWlpaWlq6atWqxMREIURmZma7du2UE9q1a3fp0iVZliVJuvvuu5OSksaPH7927dqNGzf+61//2rZtmzM+a1TtUllZWQ6Ho86PJ4SIiYlJTEz85JNPnCVhYWG3a8To5o6rZXJwsMnFTw1Zlj07Xgmuo/FvFRQUxD8OdMzPzy84ONjjv/keC8ILFy6EhYUJIf76179Onjw5MzMzKCjIZrM5483f37+qqqqqqkopiY+PX79+/ciRI3v37r13796goKDar19eXn7zpex2e2VlZUBAgCt18/f3v7lHWAuLSfxY4MqJAACd8Nj0CSUFhRCzZs2y2WynTp0SQrRs2TIvL08pv3btWmRkpDPMZFn+7LPP+vTpc+nSpdTU1DqvX+1SERERLqZgvVjNyjtCAICv8Pw8wqysrLKyMovFIoQYOHBgSkqKUr5v376BAwcqx7Isz5s37+TJk8nJyUlJSY8++uju3btrv+ztLuVZVrPIYdQoAPgSlx6NlpaWLlu27MqVKw6HY8mSJSEhIXPmzBFCJCYmjhgxYuHChcnJyVu3bu3Tp09JScl77703YcIE5X3e3LlzBwwYEBsb27x58yVLlnz99dfKBbdt23bq1Knt27cHBgbGx8d/+eWXs2fPTktLU/qLa9euvXTpUkFBQVJS0smTJx977LFWrVrNnTu3f//+3bp1Cw8Pf+utt5RRrB5nMYncMm9cGADQRLkUhA6Ho6CgICAgYOHChQUFBXa7XSl/9NFHO3bsKITo2rXr999/v2PHjqCgoBdeeGHKlCnKCbGxsbt37165cmVlZeXGjRuHDh2qlI8ePTohIcH5mHTQoEHOFBRCFBUVFRQUPPnkk0KIgoKCqqoqIUSXLl327NmzcuVKm822YcOG2w37bCCrScop59EoAPgQl4IwODj4D3/4w63lTzzxhHLQpk2b1157rcaf7du3b9++fW8trzZG9OYvn3rqqRov1adPH29PDzL7iWYGUVgpmtc2ghUA6lBYWPj73/9eOQ4KCho1alS1udHVHDlypHXr1sqSI5cuXbrnnnsyMzPre9M9e/Zs3rzZ+eWoUaNGjRpV34vcavPmzXv27HF+GRwcrLNFnjW81qiXWE2MlwHQUMXFxUuWLGnZsmVMTEx5efnIkSO/+uqrWs5fuHDhvn37lGOHw3H9+nU3bnr48OEdO3a0/4VzDGMD7du3b//+/c7Ltm3b1iOXbTo8Nn1CN5RV1jo1V7seALTv8ccfV+ZuFRcXf/PNN+PGjVPKN2/enJqaGhUVNXXq1KCgoMOHD2dlZSUnJ+fn58fFxbVo0UIIceXKlY8//liW5WnTprVu3Vr5wXPnzm3atKm4uPiBBx6o8WFb+/btn376aeeX3333XXBwcHZ29v79++fNmxcVFbVr164DBw5ERERMnTrVmZSnT5/+9ttvKysrx44d26NHj1sv261bt5svK4QoLCz86quvEhISPvnkE0mSHnvsMefKYmfPnv3mm29KS0tHjx4dFxenlJw+fbpNmzZJSUkjR44cMmRIcnJySkpK165d+/Xrd+HChVGjRn311Ve9e/eOiYlRLrJp06YePXp4ZO3MOtEjrM5CjxCAR2VlZR08eLBXr17Kl48//viyZcvatGlz4sSJ+Pj4GjckqKysfOKJJ8xm88WLFwcNGmSz2YQQ+/fvHzZsWGlpaURExKRJk5zDD2/mcDhsvxBCfPbZZxMnTly/fn2LFi3sdvtzzz33+uuvt2zZ8sKFC/379y8qKhJCbNmyZfTo0UKIwMDA0aNHOzumN5NlueoXDodDCJGTkzNnzpzp06cHBQWdPXt2yJAhyhKvKSkpI0aMsNlsYWFhjzzyyNatW4UQqampc+bMefbZZ++44w5Jkj744IOZM2dGR0f/8MMPY8eOXbFihRDi2LFjb731lnK7a9euTZ06NTAwsOGN7wp6hNVZzSKHgaOAXuy7Ii86am+EGyW2NjzXs3rXIiYmRpKkgoKC+Pj4GTNmCCEOHDjw3XffnT592t/fXwgxevTopKSkX/3qV9HR0SNHjpwwYYIQ4uLFizab7d13342NjRVCdOrU6ciRI/fcc8/zzz+/ZMmSRx99VAgRGxv7/PPPP/zww9XuuGvXroiICOX4X//6lxCic+fOytJaZ86c+fTTT8+dO6csYHL16tVPPvlk3rx5zz777MqVK0eMGCGEaNGixVtvvXXvvfdWu+yaNWu++OIL5fi+++7btm2bEKK0tPT999+PiYmRZbl9+/YnTpzo27fvggUL/vSnP40fP14I0bFjxzfeeENJ2ZKSks2bNyvZNmnSpHXr1il3uXbt2rVr14QQs2bN6tGjxzvvvNO8eXNlebJqi1d7D0FYncXEBhSAfvSOkF7o1RjbRHQIqaEwIyMjPDy8rKxs/vz5U6dO/frrr48cOVJcXDxmzBjlhDNnzvz000+3/qDZbFZSUAgRHR2dm5sry/LRo0eXLVv2t7/9TQhhs9lq/MFRo0Zt2bLl5hLnIJ2jR49WVFQ4s/PcuXOhoaGFhYU///zzokWLlBGRRUVFzo19bjZt2rSPP/64WmFoaKjyJFOSpKioqNzc3KqqquPHj//pT39SBjaWlZU5K9mjRw8lBQsLC7Ozs/v166eU9+vXb/v27UKIqKioYcOGrV279qmnnvrwww//8pe/1NCg3kEQVmcxSZklPBoFdCLUX4yMVnn1UbPZPG3atPvvv1+WZbPZ3LNnz/Xr1zu/azLVsLjxzXs8SZKkrNJsMpn++Mc/duvWrV53V7qeSjU6dOhw860DAgIMBoPRaPzggw+UVVCEEK6s4Xy7ShqNxoCAgHfffVeZWaeUO++lHAQGBvr5+RUWFjpz0XmR2bNnL1y4MDY2tqqqyktz5GrEO8LqeDQKwLMcDsemTZs6deokSdKwYcOOHj2anZ0dHh4eHh4eGBiovFoLCwvLz8+v/TqJiYlr164NCwtTflaZY+06ZUrGqVOnlB8PCQmx2Wwmk+m+++5bu3Zt+C/qtYl6NZIkjRo1as2aNc5K3ro3pJ+f38iRI9977z0hxPXr11evXu38VkJCQmlp6TPPPDNz5kzX87jhCMLqrGbm1APwjD59+nTs2DEiImLfvn3KX/yYmJgVK1YkJCQkJiYmJiZ27tz55MmTQojp06e//PLLcXFxysiRGv35z38+depUz549x40bFxcXt2DBgnpVxmKxrF69etKkSQkJCWPGjOnUqdOBAweEECtXrty+fXtcXNy4cePuvPPOGmeNr1+/PuomtWx9vGzZsqNHj/bq1WvcuHG9e/d+6aWXbj3n/fffT05Obteu3eDBgwcPHuzsE0uS9NRTT50+fXr69On1+mgNJMmyzv/oJyUlrVu3zvUl2Y7mydNT7MfG89DYJUVFRSEhNb0bgffR+LfKzMwcNGjQxYsX1a6IcDgcN27cUI4DAwOrbRJQVlZ2+vRpg8HQuXNn59hIWZavX79uMpkCAgIKCwudcxuKiopMJpNz1ZGLFy9mZ2e3bt3aOafCqbS0tLKy8uaNyktLSw0Gw81PXysqKk6fPl1VVdWlSxfnZkayLJ8/f/7q1avt27dv2bJltcuWlJSUlJTcXGK1Wh0ORy2VvHDhwuXLl9u0aRMdHa3ctKKiotreScXFxcHBwfPmzQsNDV28eLFSuHjx4h9++OHzzz+/tUlXrVr13XffffTRRx7/zefPfXVWk6BHCKCBDAZDLbu/mc1mZYLdzSRJcv7IzXPhq/3Rb9u27e2mtN863+DWEn9/f+dEjptv3aFDhw4dOtR42aCgoFt3yjMYDLVUsl27ds4dZJWbOl9VCiH27du3c+fOrl27njhxYsOGDYcPHxZCXL58edOmTX/+85937txZYzW8h0ej1VnM0rVyQRICgJd07969devWp06dateu3dGjR5VcLywsvHDhgrI9XyPXhx5hdf4GEeQnCmwiwvPbHQIARGRk5K1rSnft2tU5ob6R0SOsgdUs5fJ0FAB8A0FYA4uJGRQA4CsIwhpYzSw3CgC+giCsAausAYDvYLBMDaxmkUMQAhpkNBqvXr3qXMfSe5Q1z7x9F9wsLy9v5MiR3rgyQVgDi0n6+QaPRgHtiYqKOnz4cC3rnnhKaWlpo20SBCcv7QlMENbAahL7r6pdCQBuuXW2uDewrI+e8I6wBhazlMtgGQDwDQRhDawm3hECgK8gCGvAhHoA8B0EYQ0iTaLAJuxEIQD4AIKwBkZJhPqLfJva9QAAeB9BWDOLicVlAMAnEIQ1Y049APgIgrBmFhMzKADAJxCENaNHCAA+giCsmcUk6BECgC8gCGtmNUn0CAHAFxCENbOY2YkJAHwCQVgzK9MnAMA3EIQ1s9IjBADfQBDWjAn1AOAjCMKa3WESRZWi0qF2PQAAXkYQ1kwSIiJAXOPpKADoHUF4W1azlMNmTACgdwThbVlMIrdM7UoAALyMILwteoQA4AsIwtuymkQOPUIA0DuC8LYsJimXHiEA6B1BeFussgYAvoAgvC0ejQKALyAIb8tq5tEoAOgfQXhbFnqEAOADCMLbsppZbhQA9I8gvK0wf2FziHK72vUAAHgTQVibSGZQAIDeEYS1YZU1ANA9grA2VpPIYSohAOgaQVgbxssAgO4RhLWxmFhcBgB0jiCsjYU59QCgdwRhbVhlDQB0jyCsjdUs6BECgL4RhLWxmCR6hACgbwRhbaxmpk8AgM4RhLWxmpg+AQA6RxDWJriZEEKUVKldDwCA1xCEdYg0Sbl0CgFAvwjCOrDKGgDoG0FYB6uZqYQAoGcEYR0s7MQEALpGENaBHiEA6BtBWAd6hACgbwRhHaxmNqAAAD0jCOtgYU49AOgaQVgHVlkDAH0jCOtgNYlcBssAgH4RhHWwmKQcBssAgH4RhHUw+4lmBlFYqXY9AADeQRDWjT0oAEDHCMK6MaceAHSMIKwbc+oBQMcIwrrRIwQAHSMI62Y1sbgMAOgWQVg3i5lHowCgWwRh3SwmHo0CgG4RhHWzmplTDwC6RRDWjVXWAEDHCMK6WUyCHiEA6BVBWDerWbpWLkhCANAlgrBuzQwiyE8U2NSuBwDACwhCl1jNLDcKAPpEELrEwpx6ANApgtAl9AgBQK8IQpewyhoA6BVB6BKLWeQQhACgRwShSywmKZdHowCgRwShS6wmeoQAoE8EoUusZnqEAKBPBKFLLPQIAUCnCEKXMH0CAPSKIHRJpElcrxB2ohAAdIcgdIlREqH+Io+nowCgOwShqywmKZfNmABAdwhCV1mZUw8AekQQusrKnHoA0COC0FWssgYAuqT5ILx69eqSJUuuXbvm7RtZTIIeIQDoj+aD8Lnnnlu+fPmVK1e8fSOrSaJHCAD6o+0gXL9+fffu3du2bdsI97Ka2YkJAHRIw0GYl5e3cuXKhQsXNs7tLCYWlwEAHdJwEP7mN79ZvHhxs2bNGud2VrPIKWucWwEAGo+fi+dVVFT88MMP169fHzFixO3O+ec//3ns2LGePXvec889zsKioqKtW7dWVlYmJiZGRka6eLuMjIyMjIy77rrr5h8pLi7esmVLRUVFYmKixWL54Ycf5syZI4T46aefJk2atGnTpk6dOrl4fTcwoR4AdMmlHuHBgwdDQkIefPDBxMTE253z1ltvTZgw4cSJE1OmTHnllVeUwry8vLi4uLVr127fvr1Hjx5nz5515Xbt27fv37//f/zHfxw4cMBZWFBQEBcXt2bNmp07d/bo0SM9Pf3IkSOpqampqam9evX64osvvJqCQog7TKKoUlQ6vHoTAEBjcykIe/ToceXKlR07dtzuhBs3bixevHjr1q3Lly/ftWvX22+/rcxn+OCDD7p06fLNN9+sWbPmkUceefvtt5Xz09PTk5KSnD9us9nee+89h+PfIbNv3768vLxqQ2A++OCDmJiYzZs3f/rpp5MmTVq6dKnzW1OnTrVYLLXUv7KysuAXRUVFrnzkW0lCRASIa4yXAQB9cenRaEhIiBDi0qVLtzth79690dHRd955pxCiY8eOsbGxycnJjz766JYtW5544gnlnHHjxj355JPKsSzLzz77bFlZ2dSpUysqKiZOnGgymebMmWMwGIQQNY4C3bJly5QpU5yXmjZtmvNbs2fPrqXyGRkZ27Zti4mJcZZ88sknw4cPd+WDVxMZ4H8+vyTEwQPS/1NSUiJJktq18FE0vopofBXVq/EDAwOVZKmFq+8Ia5ednR0dHe38Mjo6OisrSwiRlZXlLI+Ojr58+bLD4TAYDJ07d965c2dCQoLdbt+wYUPz5s0//fRTo9Ho4i2io6OvXr1qt9tr/xFFTEzM2LFjv/zyS/c/3i9aBlaVSIHBwfz2/x9ZloODg9WuhY+i8VVE46vI443vmSC02+0357PBYLDb7UIIh8PhLDcajbIsy/K/u1OxsbHffvttnz594uPjN23aVGek3Xoph8PhShB6kMUs5ZTLQhCEAKAfnpk+0apVq5ycHOeXV69ejYqKqlZ+5coVq9XqjC6bzfa73/1u7Nix58+f37BhQ523aNmy5c2XioyMbLSJE05WEzMoAEBvGhSEBQUFJSUlQojBgwenp6dnZmYKIXJzc48fP37vvfcKIYYPH759+3bl5B07djjfzCnvBQMDAzds2PD3v//9+eefX7NmTe33GjFiRI2XakzMoAAA/XHp0WhRUdGCBQvy8/MdDsesWbPCwsKWLFkihBg/fnxCQsJLL73UokWLGTNmPPjgg1OnTv3iiy+mTJmiDHiZM2dOXFzc008/3bx58xUrVuzdu1e5YEpKSmho6KpVq4xGY5cuXXbt2jV79uxJkyYpnbw//vGP6enpOTk5f/nLX7799tsXX3yxffv2s2fPvuuuu+bNmxceHr5s2bLdu3d7q0luz2oWqV5f3BsA0KhcCkI/P7++ffsKIRISEoQQQUFBSvl///d/K49AhRD/8z//8+WXXx4/fvy5556bOHGiUti6desjR46sW7euoqLi0KFDXbt2VcoTEhKUSym6du16c7B17do1NDRUuaMQIjAwUAgRFRWlXMpmsx08eDA2NrYBn9pNFh6NAoDuSM7RK3qVlJS0bt06j4wa3X9VXnjI/o+xnhlhpA9FRUXK7Bo0PhpfRTS+ijze+Bpea7TxWUxsQAEAekMQ1oPVzAYUAKA3BGE9hPkLm0OU29WuBwDAcwjC+olkBgUA6AtBWD/MqQcAnSEI64fxMgCgMwRh/TBeBgB0hiCsH6uZHiEA6ApBWD8sNwoAOkMQ1g+rrAGAzhCE9WM1C94RAoCeEIT1YzFJvCMEAD0hCOvHahY5BCEA6AhBWD9WE9MnAEBXCML6CW4mhBAlVWrXAwDgIQRhvVnoFAKAjhCE9cYqawCgJwRhvVnNTCUEAP0gCOvNamZxGQDQD4Kw3lhcBgD0hCCsN5YbBQA9IQjrjXeEAKAnBGG90SMEAD0hCOuNVdYAQE8IwnqzMlgGAHSEIKw35dEoz0YBQB8Iwnoz+wl/gyisULseAABPIAjdwXgZANANgtAdzKAAAN0gCN3BKmsAoBsEoTtYZQ0AdIMgdIfVxFRCANAJgtAdFh6NAoBeEITusJhELo9GAUAXCEJ3WM1SDj1CANAFgtAdrLIGALpBELrDYhK8IwQAfSAI3WE1S9fKhYMoBADtIwjd0cwggvzEdZYbBQDtIwjdZDVLOWV0CQFA8whCN1nNIpc59QCgfQShmywmeoQAoAcEoZtYZQ0A9IEgdJOFR6MAoAsEoZssJimXR6MAoH0EoZt4NAoA+kAQuonpEwCgDwShmywm3hECgB4QhG6iRwgA+kAQuinSJAoqhJ0oBACNIwjdZJREmL/I4+koAGgcQeg+q0liMyYA0DqC0H0WMzMoAEDzCEL3WVluFAC0jyB0H6usAYAOEITus5gEq6wBgNYRhO6zmiTeEQKA1hGE7rOaRU6Z2pUAADQMQeg+C9MnAED7CEL30SMEAB0gCN1nNUs59AgBQOMIQvdFBIjiSlHpULseAIAGIAjdJwlxR4C4xsBRANAygrBBLDwdBQCNIwgbxGpivAwAaBtB2CAWMzMoAEDbCMIGoUcIAFpHEDYIc+oBQOsIwgZhTj0AaB1B2CAWEzsxAYC2EYQNYjWzNy8AaBtB2CBWk2AnJgDQNIKwQSxmib15AUDTCMIGCfMXNocot6tdDwCAuwjChopkBgUAaBlB2FDMqQcATSMIG4oZFACgaQRhQzGDAgA0jSBsKKuZGRQAoGEEYUNZTMygAAANIwgbineEAKBpBGFDWc2Cd4QAoF0EYUNZTRLvCAFAuwjChrKYeTQKABpGEDaU1cT0CQDQMIKwoYKbCSFESZXa9QAAuIUg9AALnUIA0CyC0AOYQQEA2kUQeoDVzLrbAKBVBKEHWM1SDjsxAYA2EYQeYDGJXHqEAKBNBKEHWNibFwA0iyD0AN4RAoB2EYQeYDXxjhAAtIog9ABWWQMA7SIIPcBq4tEoAGgVQegBVrOUWy7zbBQAtIgg9ACTUfgbRGGF2vUAANQfQegZzKAAAI3ScBBeunRpxowZ999//xNPPHHq1Cl1K8MMCgDQKD+1K+A+f3//mTNnduzY8fvvvx87duzPP/+sYmV+WWVNUrEOAAA3aDgIrVar1WoVQgwZMqS8XOXpC6yyBgAapeFHo0KIH3/8cfjw4b169VqxYoW6NbGaRA5TCQFAg7QdhHfeeee2bdtWrVq1YMECdTuFFjODZQBAk1x9NPr111/n5OQox5GRkePHj7/1nIyMjM8++0yW5V/96ledOnVSCmVZTkpKSktL69at2+TJk/386r6j3W4/ffr0sWPHAgMDx40b5yyXZXnjxo2pqaldu3adOnWqcqmAgICRI0f6+/tfuXKlffv2Ln4cj7OaxOFctW4OAHCfq0G4ZMmS8PDwNm3aCCHatGlzaxCmp6f3799/xowZRqOxX79+Bw8ejI2NFUI8//zz27dvnz59+l//+tcdO3asXbu2znstW7Zs6dKlERERZrP55iB88cUXN2/e/OSTT3744Yfbt29//PHHMzMzo6Ki9u/fHxQU1K5dO1c/tBdYzFJuuUPFCgAA3CS7ZuDAgVu2bKnlhPnz58+YMcN5PGvWLFmW8/LyzGbzmTNnZFnOz893HjscjgULFmRlZTl/fNWqVTt27FCOKyoqZFlevXp1v379nCcUFBQEBgaeOnVKluXr168HBgbu3bt3+fLlr7zyyurVq0tLS29XsS+++GLEiBGpvzh27JjNZnPxU7vu6DVHr6RKj1+26SssLFS7Cr6LxlcRja8ijzd+PUaN/v3vf09PT+/du/fQoUNv/e7u3bvfeOMN5XjUqFHPPvusEOLgwYPR0dGdO3cWQoSHh99999179+7t3LmzJEmtW7ceNmzYnj17oqOjV61a9dprr+3evVv58WbNmt16/UOHDrVo0ULpZYaGhg4cOPDUqVNz586ts9qZmZlpaWkzZsxwlvz+978fPHiw6x/cFUEOkVPmX1xc7NnLNn0lJSWSxKQRddD4KqLxVVSvxg8MDDQY6hgN42oQdurUqays7Oeff166dOngwYPXrVtXrR6XL19WJjMIIVq2bJmdnV2tUAjRokULpVwI8etf/1qW5eHDh//Xf/3X8uXLd+/e3bFjx1oqUMulate+ffsRI0Z8+eWXrhGqPecAAA/6SURBVH1QN7UPFHm2ysCgYIOP/a8hy3JwcLDatfBRNL6KaHwVebzxXQ3CTz/9VDl4+eWXu3btunfv3vvuu+/mE4xGo8Px75dkVVVVSq/Oz8/PWSiEsNvtNw+WeeaZZw4dOvT888+npKTUnoJ1Xkp1zQwiyE9crxARAWpXBQBQH/WePmG1Wrt3737rMi5RUVHOLtrly5dbtWolhGjVqtXN/bbs7OyoqCjnlx9//PHBgwdfeumlmTNn1tm9q/1STYHVLOWUMYMCADTGpSCsqqpy9saysrJ+/PFH5V1dYWHhoUOHlPIxY8Zs3LhROd64ceOYMWOEEIMGDSosLExNTRVCZGZmHj16dNSoUco5H3/88WuvvZacnLx48eJnn332vvvuy8rKqqUO8fHxpaWlyu2ysrLS0tISExPd+MDeYzUzpx4AtMelp4vnzp0bNWrUoEGDJEnatm3bxIkT7733XiFEWlraAw88oMxknz9//oABAx555BGj0XjgwIGDBw8KIYKCgl599dWHH374oYce2rFjx/z585VunCzLBw4c2L17d0xMjBBi1qxZNpstLS0tOjpaCHHkyJEXXnjh8uXLmZmZCQkJAwYMePPNN81m8+uvvz5+/PiHH354586dc+bMad26tffaxQ0Wk5RbxnKjAKAxkuzChrIOh+Po0aMnT56UJKl37949e/ZUym/cuHHixIkhQ4Y4v9y+fbvD4XjggQfCwsKcP3706NEjR45069YtPj7elTrl5+cfOXLE+WVkZORdd92lHB87diwtLS02NnbQoEEufsKkpKR169Z5e7CMEOKp7+2975Bmd9P2Yj31VVRUFBISonYtfBSNryIaX0Ueb3yXglDTGi0IX0mzGyXp1T4EIRoJja8iGl9FHm983/qr7VXszQsAWkQQeozFJHIZLAMAWkMQegzTJwBAiwhCj7Ga6RECgPYQhB5jMdEjBADtIQg9JtIkCiqEnSgEAE0hCD3GKIkwf5HH01EA0BSC0JOsJimHGRQAoCkEoSdZGC8DAFpDEHqSlfEyAKA1BKEnWc0ip0ztSgAA6oMg9CRWWQMAzSEIPYlV1gBAcwhCT+LRKABoDkHoSVYzj0YBQGMIQk+ymOgRAoDGEISeZDUzoR4ANIYg9KSIAFFcKSodatcDAOAygtCTJCHuCBC8JgQADSEIPcxilphBAQAaQhB6mJXxMgCgKQShh1nNLDcKAFpCEHoYi8sAgLYQhB7GcqMAoC0EoYexyhoAaAtB6GFW9uYFAE0hCD3Mwt68AKApBKGHWU0ihx4hAGgHQehhVrOUS48QALSDIPSwUH9hc4iyKrXrAQBwDUHoeZEm6ZqNTiEAaANB6HmssgYAGkIQeh5TCQFAQwhCz2NxGQDQEILQ86xmZlAAgGYQhJ5nMTGDAgA0gyD0PFZZAwANIQg9z2ISrLIGAFpBEHqe1STxjhAAtIIg9DwejQKAhhCEnscGFACgIQSh5wU3E0KIEpYbBQAtIAi9gk4hAGgFQegVrLIGAFpBEHqFxcR4GQDQBoLQK6xmKYflRgFACwhCr7CaRC6PRgFACwhCr7CY2YACALSBIPQKC3vzAoBGEIReYTXxjhAAtIEg9ApWWQMArSAIvYJHowCgFQShV1jNUk6ZzLNRAGj6CEKvMBlFgFEUVqhdDwBAXQhCb1E6hWrXAgBQB4LQW1hlDQA0gSD0FlZZAwBNIAi9hVXWAEATCEJvsZhEDo9GAaDJIwi9xWqWzhfxaBQAmjqC0FsmdJA2X3QcyiELAaBJIwi9pXWQ9P4g4+Q99sJKtasCALg9gtCLxrU3JERLM76zq10RAMBtEYTe9e49xtPX5TXpDrUrAgCoGUHoXSaj+Ow+428O2s/c4GUhADRFBKHX9QiXXo4zTtljr6BbCABND0HYGOb1MEQFSa+m8bIQAJocgrAxSEL8bYhxTbqcnMUDUgBoWgjCRhJpEmuGGR9PsV9l3TUAaEoIwsYztJU0tZM0fV8VvUIAaDoIwka1uJ+xwCZWnGTYDAA0FQRho/IziDXDjK8fsR/Pp1sIAE0CQdjYOjaX/jjAOHm3vbRK7aoAAAhCVTze2RAXKS04xGwKAFAfQaiOvw4yJmfLX1/gZSEAqIwgVEdwM7F2mHHW9/aLxbwsBAA1EYSq6W+Rnu5hnLbXbicKAUA9BKGaXuxt8DOIJcd5QAoAqiEI1WSQxOqhxvf+ZT/ARvYAoBKCUGXRQdLf7vWbusd+o0LtqgCATyII1TemjXR/azayBwB1EIRNwp8HGn+6Ia/+mZeFANDYCMImQdnIfsEh+09sZA8AjYsgbCp6hEuv9GEjewBobARhEzK3u6F1kPRyKi8LAaDxEIRNiCTEh0OMn51lI3sAaDwEYdOibGT/WEoVG9kDQOMgCJucoa2kxzob2MgeABoHQdgUvdnXWGATf2EjewDwPoKwKfIziLX3Gd9gI3sA8D6CsImKCZHeGchG9gDgdQRh0zWtk6FPpPQcG9kDgDcRhE3a+4OMu7Pl9Rm8LAQAbyEIm7TgZmLtfcb5B9jIHgC8xU/tCqAO/SKlZ+40Ttxtn93N0DZYahsk2gRL/vwDBgA8hCDUgBd6GfwksTtbvlDsuFgsskvlOwKkdsGiXYjUNki0DZbaBUvtgkXbYCnUX+26AoDWEIQaYJDEwl7/Xx+wwCYyiuSMIjm7RGSWyCmX5Ywi+WyhXG4XUYFSTHMREyLFhEitAv/9ZbtgySipVX0AaNIIQk0KDxB9A6S+kdXDrcAmLpbIF4rk88XiYrGcdk1cLHFcLJbzbaJNkNQ2WOk+CrNRCmomany+GuYvpFsi0yiJ5s1qCNIAoxAVhkCbV95fhgd446qadLv2L66QqmyNXx0IQeOrqrRSCvHoBQlCXQkPEOEBUu+I6n80y+3iYrF8sVhcLJEvFssFFXJmiaisaSzq9Qoh35JrdlkU1nS2zS6KbH5Go1cmeBTwV+YXdlkUVtbwrw1Z9pekysavDwSNryqj8D/xiGgV6LELEoQ+wWQUXUKlLqFCCA8/IS0qKgsJ8ew/zuCqoqIiGl8tNL6KioqKQgI9OSCC0YcAAJ9GEAIAfJq2g/DYsWMpKSmlpaVqVwQAoFVaDUKHwzF+/PiJEycuWrSoS5cup0+fVrtGvqi4uHjFihVq18JHybL89ttvq10L3/Xuu+9WVjJYRh0rV67Mz8/34AW1GoRbt249fvz40aNHk5OTp0yZ8sorr6hdI190+fLllStXql0LH2Wz2ZYuXap2LXzXsmXLCgoK1K6Fj/r000/PnTvnwQtqddToxo0bx48fHxQUJIR47LHH4uLiqqqq/Py0+nEAAGrRanJkZmb26dNHOW7Xrl1lZeXVq1ejo6NvPbO8vDwrK2v9+vXKl0ajcdiwYeHh4Y1XV/1yOBzO/6KR0fiqczgctL9aXG98g6HuB59aDcLy8vJmzZopx/7+/kKIsrKyGs/My8vLzMz8/PPPnSUWi8UZomiI8vJyWZYZrKQKGl9dsiyXlZXR/qpwOBzl5eUuNn5gYGCdWajVIGzZsmVeXp5yfO3aNSFEq1atajxTluUbN24cP37cWTJ9+vRGqKEvqKqqunLlSu/evdWuiC+SZbmqqorGV8v169eHDx/uSm8DHpednT158mSlC1SnyZMnL1q0qPZztBqEAwcO3LVr10svvSSESElJ6dmzp/K+8Fbz589PTEx0dh/hWTabLSCAVUHVQeOriMZXUb0a/3Z9pJtJ8q0rS2pBXl5et27dZs6c2aNHj4ULF7711lvTpk1Tu1IAAO3RahAKIdLT05cvX15QUPDQQw+NHz9e7eoAADRJw0EIAEDD8aYXAODTCEIAgE/T6qhRqKu8vHz16tXOL+Pi4vr3769ifXzBxYsXU1NTr1279vDDD1utVmf5jz/++NlnnxkMhmnTpnXt2lXFGupYfn5+amrq+fPnBw4c2KtXL6UwKytry5YtznMSEhI6dOigUgX17NSpU9u2bcvKyurQocO0adNCQ0OVcpvN9uGHH549e7Zv376TJ0+WJPc3W6VHCHeUlJTMmjUr4xcsuuhtFRUVPXv2XLZs2dy5c8+fP+8sP3HiRHx8vNlsNhqNAwYM+Pnnn9Wro5499NBDv/3tb1977bVdu3Y5C0+ePPnqq686/y8oKSlRsYY6lpiYmJGR0bZt2507d8bFxV2/fl0pnzBhwldffdW5c+elS5e+8MILDbkFg2Xgjry8PIvFwvpSjUmWZUmSmjdvnpycfPfddyuF06dPj4iIeOedd4QQs2fP9vPzW7ZsmarV1CeHw2EwGMaMGTN8+PDnnntOKdy1a9eLL76Ympqqbt10r7y83GQyCSEcDkeXLl3efPPNRx999MSJE4MGDbp8+XJwcPCZM2fi4uKysrLCwsLcuwU9Qrhv2bJly5cvP3HihNoV8Qk1PvnZt2/f/fffrxwnJCSkpKQ0bqV8xe1WkMnPz3/nnXdWrlyZmZnZyFXyHUoKKmw2W3BwsBBi37598fHxynGXLl2sVmtD/kVCEMIdBoPh/vvvv3LlyokTJwYPHsyuhGq5fPmyxWJRjq1W6+XLl9Wtj08xm839+/cvKChITk7u0aPH3r171a6Rzv3hD3+44447Ro0aJf7/33whhNVqzc7OdvvKDJaBO8LDw7dv364cP/TQQxMnTpw5cybbYDU+Pz+/qqoq5biqqsrF1RfhEYMHDx48eLByvGjRohdffPHAgQPqVknHNmzYsHz58j179ijrZTZr1sxutzu/W1lZ2ZBffnqEaKhBgwaVlpZevXpV7Yr4oujo6KysLOU4KysrKipK3fr4rPj4+IyMDLVroVsbNmz49a9/nZyc7BwXHRUV5fzNl2U5Ozu7Ib/8BCHcUV5e7jzevHlzRESEKyvbwuMefPDBDRs2KMcbNmx48MEH1a2PT6n2f8Gdd96pYmV07Kuvvpo7d+63337bvXt3Z+Ho0aMPHz6svJr97rvvZFkeOHCg27dg1Cjc8e67765atapXr15Xr149dOjQRx999Mgjj6hdKZ0bN25cZmbmsWPHOnfuHBQUtHnz5latWmVnZ8fHx/fq1auqqio9Pf0f//hHZGSk2jXVoddff33z5s3p6ekhISEtWrRYtGjRAw88MH369LNnz7Zr1+7MmTPKnEJ2xfI4u90eGBh4xx13ODt88+bNe+KJJ4QQL7zwwoYNG4YNG7Z169bFixc/+eSTbt+FIIQ7bDZbWlrahQsXwsLC+vfvzx/fRvDjjz/abDbnlz179lReihQVFSUnJxuNxpEjRwYGBqpXQT07f/68cwNUIUSHDh0iIiKKiooOHTqUm5vbokWLgQMH0vjeIMvykSNHbi6Jjo5u2bKlcnz48OH09PS4uLjY2NiG3IUgBAD4NN4RAgB8GkEIAPBpBCEAwKcRhAAAn0YQAgB8GkEIAPBpBCEAwKcRhAAAn0YQAgB8GkEIAPBpBCEAwKf9P7jziccAShgqAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", - " \n", + " \n", + " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", - " \n", + " \n", + " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -2385,12 +1821,24 @@ }, { "cell_type": "code", - "execution_count": 266, + "execution_count": 358, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Approximate value of κ: 0.7544329252629847\n", + "Approximate value of ω: -0.17910301973526344\n" + ] + } + ], "source": [ + "q_κ = result_smoothing.posteriors[:κ]\n", "q_ω = result_smoothing.posteriors[:ω]\n", - "q_κ = result_smoothing.posteriors[:κ];" + "\n", + "println(\"Approximate value of κ: \", mean(q_κ))\n", + "println(\"Approximate value of ω: \", mean(q_ω))" ] }, { @@ -2402,175 +1850,180 @@ }, { "cell_type": "code", - "execution_count": 267, + "execution_count": 360, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1xTV/sA8JMdkhCGbGQvWWpBRVFUtIB11YVYLYqftqitWqrifh2ttlpX3VaLuBXE1SrKa0XUOpFSZQmCTNkaiBCy8/vjvm9efowkQJIb4Pn+0Q+5OTn3uUmTx3vvOechyGQyBAAAAPRWRLwDAAAAAPAEiRAAoFnv3r2TSCRq6aqmpkYt/QDQHCRCADqsqakpKCjo6NGj+Ibx8uXLkJCQoP/au3cvvvG0icPhLFiwID8/v/nG/Pz8cePGBQUFjR8/XvWuZDJZZGTk06dP1R0j6O3IeAcAer579+5t3boVuxt9/PhxGxubFg2EQuGcOXPq6uoQQjNmzFiwYAEOUXZD/fv3P3/+vFQqRQglJCQIBAK8I2pDbGyslZWVm5tb843Ozs7nz59/+/btypUrVe+KQCBMnjz5wIEDPj4+FApF3ZGC3gvOCIHGjRw5Ejt5CgoKSkhIaN3gzp07ffr0cXBwiI6O/uKLL7QeYIeRyeTZs2d/9NFHeAeCjI2NTUxMTExMGAwG3rG0obCw8NatWxEREa2fMjIyMjY27miHM2bM4HK5N27cUENwAPwXJEKgcQQCAfvJCwsLS05O5nA4LRpcunQpNDSUQqEYGBiQyd3gKgWFQpk/f/7gwYPxDkTXXbhwwdbW1sfHR10d6uvrBwUFnT17ViwWq6tPACARAu2xtLT08/O7du1a842pqamNjY2jRo3CKyqgIXV1dQ8ePAgODlZvt8HBwXV1dY8fP1Zvt6A36wb/+gY9SWho6Jo1a2bNmkWn07EtCQkJU6dObfNEUCAQpKWlPX/+PCcnp6qqSiaTWVtbBwcHjxs3jkqltmjM5XLnzJnD5/MRQqNHj163bh1CKDs7+9y5cxkZGSwWKzQ0dMqUKS1elZ+ff/Hixby8vJqaGnNz88DAwNDQ0IqKiq+++gohxGQyL168KL8dlZaWtnbtWuyeHEJo4sSJ3377bZuHWVZWFhkZKRKJIiIiZs2adfHixaSkpKqqKhMTk/79+8+dO9fMzKyLx6sd5eXlFy5cyM/PLykpYbFYHh4eM2bM8PDw2L17982bNxFCs2bNau9q9v3790UiUUBAgIr7OnLkyKVLl7C/KRRKTEyMpaVl62aurq4WFha3b99WvWcAFINECLTKzc3NwcEhKSnp008/RQgVFhbm5ORs2LChzcaPHj26d++ep6fnyJEj+/TpI5VKS0pKrl69+uTJkx9++IFEIjVvzGazz549KxQKExMTS0tLJRJJTExMSkpKWFhYZGRkcXHxkSNHSCTSpEmT5C+Ji4s7c+bMlClTQkJC+vTpU1hYmJSUdP/+/W+++YbBYMTExNDp9OaDMnx9fVUcnNK3b9/z58/v27ePx+Nt2bLFzc1t+fLlxsbGdXV1169fX7BgwcGDB62srLpyvFpw5cqV48ePf/zxx+Hh4dbW1tXV1RkZGatXr543bx5CaPr06TNmzDAyMmrv5enp6UZGRm0mszbNmDEjNTXVzMxsyZIlTCbTwMCgvZaenp5Pnz6VyWQEAqGjBwVAa5AIgbbNnDnzwIEDkyZNIhKJly5d+uSTT5hMZpstAwMDAwMDm2+xs7Pz9/ePiIjIycnx8vJq0Z7NZiOEWCxWfX39qlWrDA0Nf/31V319fYSQra2tn59f83WUnj17FhcXd+DAATs7O3nno0ePjouL27lzJ4FAMDExaR2SfHwHg8FQPErTwMCATqcnJibu3r3bwcEB22hlZeXh4bFjx47jx4+vX7++i8erUWlpaSdOnNi5c6d8wKetre2gQYPGjx+/cuVKsVgcEhLS5lskl52d7erqquLuCgsL//WvfwUEBHz55ZdKU76Li8udO3dKSkrknx0AXQH3CIG2DRkyhEqlPnz4kMPhpKSkTJ06tUMvJ5FIlpaWVVVVCtq8ePFi2LBh69evx7Ighkql0mg0+cP9+/cvXry49S9pWFhY63O1Tps8ebI8C8qNHTs2JydHxR5UOV5N+OWXX77++usW0x4QQubm5mvWrFE6sV0ikXA4HENDQ1X29ejRoxUrVsybN2/BggWqnPhi3b57906VzgFQCs4IgbYRCITQ0ND4+Pj8/PyhQ4daWFi011Iikdy7d+/27dvl5eU1NTU0Gs3U1NTDw6O6ulrxLgICAqZPn66gQW1tbW1tbXs3mQIDA3Nzc1U5FqXavLfHYrFEIlHr7Z0+XrWrra2tqalpcXoq169fP1tbW8U9NDY2ymQyVSZ1XLhw4fjx4+vWrVN9wBTWLZfLVbE9AIpBIgQ4GDt2bGxsbEJCwq5du9pr09jYuHz5cplMFhwc7OLigl2T/PDhQ3l5eXp6uuL+ld46Ki0ttbCwaG9SttJfeU3oyvGqHfb+KBiho/SaJHa5m8fjKW4mEokePnw4derUX3/91cnJqW/fvqqE19TUhBBisViqNAZAKUiEAAcUCmXZsmVlZWX9+vVrr82ePXucnJyWLVvW4lqZu7t7UlJSFwOwsbGprKwUiURt5sKysrIu9t8JGj3ejsLeH6FQ2F4uLC0tVZwLSSQSm82ur69XvCMymbxr1y4qlcpms5ctW/bzzz/b29srDQ/rtk+fPkpbAqAKuEcI8OHn56fg6qVEIklNTf3888/bvGOEzZHoCmw1lgcPHrT57N27d7vYf0dp+ng7ysTExNTUNCUlpc1n8/LyioqKlHbi7u7+5s0bxW0IBAKWa+fMmRMaGrpixYoWq5K2qaCgQE9PD5cTd9AjQSIEuohAIBCJxNb3xrhc7vfff6+WG3hLly49cOBAcXFxi+3x8fGlpaVd779DtHC8HRUVFXXw4MG8vLwW26urq7ds2aJ4vCjG29u7urpa9XoRoaGhc+fOXbly5atXrxS3zMrK8vb21v58EtBTwaVRoHHYAEKEEIfDoVKp+vr6LabPY8+KxeIPHz4IBAIajUYkEmfPnr1169Z58+Z5eXnRaLTq6urU1NRbt27NnDmzoaGhoaEBG5Qovx0okUiw0RM8Hk8gEDRfyI1KpbaeoTF48OCwsLAlS5ZMnTrVx8cHm0d48+bN2tra6OjojRs3tmgvk8mwZcExfD6fz+c334uBgQGRSGzeWCAQNDU11dfXN58SJxQK6+vrpVJp8/g7cbwdiqcTfH19IyIili9fHhIS4ufnZ21tXVVV9fLly0uXLs2ePbu8vFxpD4GBgTExMQ8fPmy9jgFCiMvlNo8fM3nyZB6Pt3Llyo0bNzo6OjY/XrmSkpKysrI5c+Z0+tAAaIEAFeqBph08ePDq1avyhyEhIStWrJA/TEpK2rlzp/yhq6vrwYMHsb8fPXp0+fLl4uJiHo9nZmY2ZMiQadOmmZubr1y5Ehs/EhUVNWHCBKzx3r17r1+/3mYANBrt9OnTbU79xlaWyc3NrampsbCwGDNmTGhoaHl5eVRUVPOYEUI3b97cvXu3gsMMDw+fO3cu9veVK1cOHTqE/U0kErds2SJfmHTDhg3y5cGax9/R4+1QPJ1WVlYWFxf3+vXr0tJSJpPp6ek5ffp0Ly+v3bt3m5iYKO1/7dq1dXV18rdCLj8/f/HixRKJhEKhJCYmyrc/efJkw4YN8h+lFu8PJiYm5saNGxcuXMBrtR3Q80AiBKClwsLC7777rkUiBM2pmAizsrKioqL27t3r4eGhlv3y+fzw8PBPP/30888/V0uHACC4RwhAa2VlZaampnhH0RN4enr6+/ufPn1aXR3+/vvvZDI5NDRUXR0CgCARAtCCVCq9fPmyv78/3oH0EAsXLszMzCwoKOh6VzKZLD4+fuHChc1XCAKg67QxWIbP5/fr1w+WgdBZRCLx2LFjHV3qrMfgcrkSiQQhJBaLi4qKzp07RyQS4cpbm/h8PjaZXSAQYGNz2Gy24tGblpaW+/fvV33pbQUIBMKWLVsUzD0FoHO0cY+wrq7O3t6+sLBQ0zsCnbNq1Spvb+8lS5bgHQgOCgsLFy1ahCVCMplsZ2c3cuTIsLAwGJrfpsjIyBZfZAVlmADoLrQ0fYJAICgo1wLwJS8N2As5ODjcunUL7yi6jaNHj+IdAgDqp1IiTEtLu3HjBoVCEQqFEydO9PX11XRYAAAAgHYoT4RSqTQjI2PNmjUUCkUikezYscPR0RFO7wAAAPQMykeNEonEiIgIbG1iEok0aNAguNsHAACgx+jY9AmpVJqamgqjtgAAAPQYqg6WkUgkhw8fLigoiIyMVFxss66uLisra/jw4eoIDwAAANAsVRMhiUT64osvMjIy7t27Z2tr23oJY7mEhITly5c7OTnJtzRfWFLu6D8nS7nK1+1Vo/FOQcOsB2lzj0VFRcbGxmw2W0P9x8TEUCiUrq8niRASCAQNDQ0SiUQoFOrp6XW9Q4RQbm6um5sb9ndcXFxycvLq1asdHBzabFxZWUmn0w0NDdWy6x5A9PqfptTb7NnReAcCEEKosbFRwY8e0KaOfhYMBkPp6vMdmD6hp6c3ZMgQY2PjS5cuKfjxtbS09Pb23rt3b/MtrZtZMM3f8VuuPa9RFsyWi2bxeLxt27ZlZ2e7uLig/5bCmTlzZv/+/dWyx/v37w8dOlRziXDAgAEtyjh0Go1GY7FYEolEIBAoPuNXUX5+/vXr1+UDjL/44gsikchgMNqrKi4QCM6fP/+vf/2r67vuGZooZKFUAkXYdYRMJoPPQkdo4rPo8M+opaVl6+IpzRGJRDab3XyKRZvt/fsOMWFotcC0g2HLgtoMBuP7779fv379li1bsC0NDQ3btm1js9mqlMnG3aBBWj3B7ZAzZ84oqLvbmqen55EjR0pLS21sbDQXFQAAtKY8EWZnZxOJRGyAjFQqPXPmTGBgoOYDwweLxYqIiLh79+78+fOxLU1NTSdOnCgpKUEI0Wi0uXPnOjo6ytu/f//+0KFDb9++1dfXp9PpAwYMCAkJYbFYPB5v+/btRUVFz58/l5/FR0ZGNr8wWF5efvLkycbGRrFYzGAwZs+e7ezsjD0lEom2b99eWFi4cOFCR0fHo0eP1tXV0Wi01atXY6drDx48SExM5PF4/fv3b72uh4KY2+y5tLS0vSuWLZSUlMTGxvL5fAqFYm1tHR4ePm/ePH9//6ioqOZ14woLC2tqary9vdvs5NGjR5s3b/by8oqMjJRfO0UITZ06NT4+fvny5apE0l1IZdL0qozUivTX799w+PUIyZhUpqOh3SCLgX5WPlQSFBICAH/KE6GdnV1CQsLly5fJZLJYLB4zZkx7P3A9g0QikV9QFovFGzdunDVr1qJFixBCHA5n165d4eHh8p/vPXv2hIWFeXl5IYR4PF50dLSvry+LxWIwGJs3bz516tTQoUNdXV1b76W8vHzPnj0rVqwwNzdHCNXW1u7ZsyciIgK7SEuhUNavX3/t2rWCgoKrV68uXrzY0tIyNzeXx+NhiTAgICAgIKCgoCAlJaVFz4pjbrPnr776SiwWK31nsJhXrVplYWGBEHrx4sXevXu9vb2/++67Fi1TUlKGDRvWZidSqfTJkycLFy5svbSpv7//rl27oqKiesbyZgKJ8Erejficaywq09XIydPUXZ/KRAg1ifmVjVWnM+O3Pdk70Sn4M89phjQDpb0BADRHeSJkMpnz5s3TQii6gMPhxMbGLl68GHt4/fr1oKAgHx8f7KGRkdHKlSt//vln+aVUmUwmv6PGYDBWr15tZWWlyo5OnjwZHR1tZmaGPTQxMVm1atX27du3bt3avFl6evqmTZuw0SvNT54UUBpz65719PRUWWXt1KlTy5cvx7IgQmjAgAFv3759/vx565aFhYVjxoxpvV0sFu/YsWPAgAHjxo1r/SydTmez2RUVFX379lUajI579PbZ7meHrViWczxnWLLMWzzrbOQwou/QOn7dX2VPw3//ev6Az6a6TiCglqXYAQDaoaW1RnVZTU3N+vXrEUIEAoFMJn/55ZfyH+LMzMwWpztsNptKpQqFQqw69tKlS48ePcrn8+l0uouLy9ixY1U8myksLNy3b1+Lja1L1cyYMaOjYziVxtzpnuvr61ukqCFDhrSZCIuKiqytrVtvP3DgAIlEanMUMcba2rqkpKRbJ0KhRPhL6q/PKtKnuE1wNGh5W7o5Q7rhROcQPyvfy7k3/ip9tmHEcjg1BAAXkAiRqalpi7MlOZlM1vzWF4ZIJGLFChBCZmZmWBLlcrk5OTkbN25csWKFKvfbzM3NN2/erHRQbycojVmNsIo8rTEYDIFA0Hr71KlT+Xz+vn37Wl9NxQgEgm69AjiHX7c65Xs6We8bny9oZJXu/5kyTL4aGH6n6F7kzWXbAzc6GNhqOkgAQAtQmFcRLy+vx48fN9/S0NDQ1NSEnUvV1dXJz4fYbLafn9/8+fPv3r0rb0wgtFvlytXV9cmTJ9qPuSucnZ1bxJyYmNhmS1tb27Kystbb7ezsxo8f36dPn1OnTrX5wrKyMhWH7eigqsbqRUnRffX7znT/VMUsiCESiEEOgaPtRnx7e212ba7mIgQAtAkSoSITJ05MSkp68eIF9rCurm779u3ykq0VFRXHjh2rra3FHjY1NSUnJzdff87e3v7Zs2fyXJiRkZGeno79HRYWdvXq1ZcvX8obp6amHj58WNMxd8Xs2bMTEhJu3brF5XKrqqpiYmKkUmmbLZ2dnRUsSDt37tx3797duHGjxfZ3797RaLRuup57VWPN4n+vHmLpM9Y+oHN3+waaeU1zm7g65XvIhQBomfoL8968eXP//v3NzxXq6uocHBw4HE7zZrVN7/Pet7wlplH+1oNbbOHxeDt27MjMzMTGoQQFBY0aNapFm6amptjY2PLycoQQmUz+/PPP5ZMcOBxOampqWloalgsFAsGUKVM+/vhj+WtlMtnx48efP39uampKJpNNTU1DQ0NNTEzkPZ8+fRo7c6JQKJaWllOmTMGezc7OPnfuXPPFVgYNGjRlyhTshRUVFQcPHkQINTY2vnv3ztbWFiE0YsQI+QgUBTG32XNycrKLi8uSJUuUTqgXiUSJiYnZ2dnYVFEfH59t27Zt2LChRTMul/vNN98cP34cW6sdIXT27Nl///vfGzZswJYcunTp0rFjxwYNGrRs2TJjY2N5GyKR+Nlnn7W3d51VJ6j/Ommlr0X/YdZDuthV3vuCy7nXf/l4q2VZBfev6+YL275oD7Tsw4cP+vr6eEcBENLMZ4FbInzP57zmaLGKhQz5Wflob3fdytKlS1VMhC0IhcI2EyFC6NChQy4uLkFBQSp2JRaLFy5cuHfv3m63kJVAIlx6e7W1vvXH9iPV0uHLmuw/C1MO2s1Bz1IgEeoISIS6QxOfBW6DZYzpRn6W3fIiGFDFzJkzd+3apXoifPz48dixY7tdFpQh2U+P9jApzLH2Aerqs7+pB6eJczLzQrjMTF19AgAUgHuEoDOEQuGPP/64adOmzMzMffv2tb6uYGJisnnzZtU79PPzCwsLU2uM2nA++/Kb+pIpruPVOwtwlO1wBkmvkFuixj4BAO2B6RMa9PDhw+vXr7e3EJoCp0+f/ve//71p06bmRTx0CpVKXbt2rdI2HeqwaxHh4GV11oXsK4t85pOJ6v8eDbHyrXtz7Y/8W5Oc21h8AACgRr06EbaoPoEJCwsbOHCgWvofPnz48OHD21wITbHw8HBV1jwDOOIKP2z+a8c0twkGNI1UF6EQSRZMs3Xpp71MPWByIQAa1asTYevqE42Njdu2bTMwMOi+s9mAdvz8ZL+HiZursbPmdkElUUMcAzc9+Pm3T/ZQSBTN7QiAXq5XJ8LWsIVV7969K0+ECmpEIISSk5NTUlKkUimXyzU0NFy8eLF8+VB1aa9WA8BR0pvkN5ziRT4Rmt6Rj8WA3Pf5v708s+ij+ZreFwC9FiTClioqKuSLsCiuEYEQsrOzW7NmDda+qKjo0KFDmzZtUmMwCmo1ALzUNr0/+HfMPO9ZJA3cGmxtssu4A89/G2Xj72EC/wwCQCNwS4TCwmxJ/Ttt7pFq704yNFHQgMPhPHr0KDk5WT7cUWmNiOaDWezt7dV7Y09xrQaAl11PDw629LVkWWhnd0wKc7xz0I+Pf4kdvw8ukAKgCbglwoZHN8SVWh0dzho9leHbRm2gmpqaNWvWIIQKCwv9/Px++ukn+QhGpTUiqqurb926VVZWJpPJbGxsWiwa0EVKazUA7UspeVhUX7LItwNjgLvO29QjoybnVFb8F/3naHO/APQS+E2onxON165bkFefaGpq2rNnT3p6up+fH/aU4hoRubm5sbGxn3322fTp0xFC1dXVf//9txoDU1qrAWhZo4i37/mx0H6fkgnaLh080Sn4QFpMkP1oW3Yb9a0AAF0BE+r/R09PLzo6Oj4+vrKyEtuiuEbE5cuX161bN2DAACaTyWQyHRwcaDSaGuNRWqsBaNmxf844GznYGeBQLpFN0w+089/17JD2dw1AjweJ8P+hUChLly6VV4FQXCOCTCaXlpZif3O53J07d2LrXKtXe7UagJblcwqTi+8HOwbiFcBQq8G1vHfJxQ/wCgCAnqpXjxrFqk/k5uauX79+2rRpPj4+CCE7OzsLC4vNmzevXbuWSqVu3rz59OnTCQkJ6L81IkJDQ7GXR0ZG7tu379ixY9gZYURERHV19YYNG6KiooyNjVvUiMDKEjWvEaHA2bNnU1JSRo78zyLOtra2+/fvf/z4cfNaDUCbZEi269mhj+1HMshdLevYaQQCYYJz8MG0GH/rwXRyNy5fDICuwa36BNAdna4+0XvcKX4Q+/Lcwo/mEwnqXFNUAb38V3r/PHs/Y26L7Qmvfnc3cf1qQLh2wgAYqD6hOzTxWcClUQCUEEiEh/+OneD0sdayoALBDoHX8m5WNlbjHQgAPQckQgCUuJBz2YplbqcbC36yafrDrAcd/jsW70AA6DkgEQKgyPsmTnzONRzHyLQ2vO/Ql9VZ2bV5eAcCQA8BiRAARY6/POdj3t+YrkNFpKkkyhj7kfvTfsM7EAB6CEiEALSrhFt2r/ThaLsReAfS0kfm/bkC7l9lT/EOBICeABIhAO06nH5yhM0wPd2bq0AkEIIcRh9OPyGVSfGOBYBuDxIhAG3Lrs3LfZc3zGoQ3oG0zdXYiU6iJRb8iXcgAHR7WppQz+fzt2/frp19gY5KS0uTF5YCcofTjwfaBZC1Umupc4IdRse+PBfsMJpKouIdCwDdmDa+5Gw2e9WqVe1NqJdKpVKplEzW3Z+bHi8gICAwUIdGReqC1Ir06sbaWe7T8A5EERu2taW+5ZW8G2HuUK4SgM7TRvohEokKytWKRCKJREKn69xtGNBryZDs139OjrELIOjADHrFxtoHxL44N8l5HIOC29pvAHR3KiXC/Pz82NhYJpNJJBLDw8OtraEQDOjJ/ip92iTie5m54x2IcuYMUydDh4u51+Z5zcI7FgC6K+WDZbhcbkxMzMaNG9euXbtkyZLffvtNvXXYAdApUpnstxenx9qPIiBdPx3EjLEfcTHn9w/CBrwDAaC7Up4Iq6urlyxZghVtZzKZAwcObF6iHYAe5m7JXwgR+vVxxjsQVfXRM3Y3cY3LuYp3IAB0V8oTobOzs5WVlfxhaWkpi8XSZEgA4EYqkx5/eW6sXQDegXRMoO3wK3k3uIIPeAcCQLfUsXmEGRkZFAoF7hGCnupO8X0aieps7Ih3IB1jSDf0NvU4n30Z70AA6JY6MGr09evXN2/eXL58ueJmJSUlf/75p5HR/9ZmPHLkyIQJE9prj40ahfuOugCrRyiV9tLFSqQyacw/Z4PtAvl8Pt6xIJJISJNIVY9kqLnv0YxTE+2CDKhsjQbWOzU2Nur+EOJeoqOfBYPBIBKVnPKpmgjz8vLi4+NXrlxJIpEUt7S1tR01alR8fLx8i4GBgYI4YPqE7pBIJBQKpdcW5v134V0mldnPTCfWFqBSqEQSUfXvBZ1OH2ju9Xtx0qKP5ms0sN5JJpPBLSEdoYnPQqVLo7m5uefOnYuOjsaGzChFoVCMmlGajQHAnVQmjc04H2ivc+trq26kjf/1/H/XCerxDgSAbkZ5inr16tXFixdXr15No9EQQtXV1aWlpZoPDACt+rPoHoPMcDSwwzuQzmPT9AeYecKdQgA6Svml0TNnzjAYjP3792MPa2trP/nkExsbGw0HBoD2SGSS4y/PT3IOwjuQrgqwGXYg7bfPPKYZ0gzwjgWAbkN5ItyyZYsW4gAAR3eK7jMpDAdDe7wD6SoDGnugmef5rMuLfOBOIQCqgrt3oLeTyqSxL8+PsRuOdyDqMcJm2PUCuFMIQAdAIgS93Z9F9xkUvR5wOogxoLG9TT0uZF3BOxAAug1IhKBXk8qkJzLOj7btxoNFWxtl6/9HQVK9gIt3IAB0D5AIQa92p/g+jURzMrLHOxB1wk4K47LhpBAAlUAiBL2XVCaNfXkh0K5HnQ5iRtoM+z0/CVYfBUAVkAhB73W35CGNRHY2csA7EPUzpBt4mfa78ApOCgFQDhIh6KWkMlnsy3OBtt2s0ITqAmz8r+Xd5ArhpBAAJSARgl4qpeQvMoHc7QpNqM6IbuBp0u/iq2t4BwKAroNECHoj7HRwtH0PmTvYnlG2wy/n3oCTQgAUg0QIeqOUkr+IBJKrkRPegWiWEd3Aw8QNTgoBUAwSIeh1/nN3sCcOFm1ttM3wK7mJH4QNeAcCgO6CRAh6nXslD4kEkqtxDz8dxBjpGXqYusXDSSEA7YNECHoXqUx2/OXZMXY9drBoa6Nshl+BO4UAtA8SIehd7pb8RSaSXHruYNHWsOGjcTlX8Q4EAB0FiRD0IlKZ9HiPnjvYnlG2w67mJcJCMwC0CRIh6EX+LLpPI1F78NzB9hjSDb1NPc5lXcI7EAB0ESRC0FtIZJLjL8+N7R2DRVvDSlJw+FCnEICWIBGC3uJWQTKbyuoxdQc7yoDGHmjmdSYzHu9AANA5kAhBryCSimMzzgf2psGirY209Y7Qo3sAACAASURBVL9VmFzLe4d3IADoFkiEoFe4np9kqtfHzqAv3oHgSZ/KGmQx8ETGBbwDAUC3QCIEPR9fLDiVGT/WYSTegeAvwGbY3ZKH5Q2VeAcCgA6BRAh6vku5f9iyra1YFngHgj8GRc/felDMizN4BwKADoFECHq4BmFjXM6VMXZwOvgf/tZ+qRX/FNYV4x0IALoCEiHo4c5lJfQzcTVl9ME7EF1BI1NH2vgfST+JdyAA6ApIhKAnq216fy3/VqBtL5072B4/q49ecwpeVmfhHQgAOgESIejJYl6cGWQx0IDGxjsQ3UIiksfajzz4d6wMyfCOBQD8QSIEPVZxfelfZU9G2frjHYguGmDm3SBseFD6BO9AAMAfJELQYx36OzbAxp9OpuMdiC4iEgghDoGH00+IpRK8YwEAZ5AIQc+UXpVRwCkcZuWLdyC6y9nY0YCqf/V1It6BAIAzSISgB5LKZPvTfgtyGE0ikvGORacFOwaeyohrEDbiHQgAeFI1EYrF4oyMDI2GAoC63HpzRyqTeJm54x2IrrNgmrn3cTmZCYuugV5NeSJsbGzctWvXrl27YmJitBAQAF3UJOYfe3F6vFMQARHwjqUbGGs/+mbBnbIP5XgHAgBulCdCJpP5zTffrFq1ytraWgsBAdBFpzLiHA3t+upb4R1I98CiMgJsh+1/fgzvQADAjUqXRul0GHcHuoe3Hyr+yE8KdgjEO5DuZJj14Dd1JU/L0/AOBAB8aGSwjEgk4jQjlUo1sRcAWtv7/NcAm6H6VBbegXQnZAJpgvPHv6T+KpKI8I4FAByof0xdcXHxvXv3HB0dsYckEunw4cOffPJJe+1FIpFEIhGLxWqPBHSURCIRCATd9x8uTyv/LqorDbIZzefz8Y6lq0giIU0i1dqB2DL6GlLZp17EhblO0c4eu5fGxkYCAW4564SOfhYMBoNIVHLKp/5EaGdn9/HHHycmqjo5CUuEcPVVF0gkEgqFwmAw8A6kM/hiwa+ZJye5jGPqMfGORQ2oFCqRRNTm92Ki67jDfx+f4BZswTTT2k67C5lMxmLBZQadoInPAuYRgh7iZMYFa31LJyN7vAPprozoBsP7Dtnz7DDegQCgbZAIQU/wpq74ekHSOMexeAfSvQ23GVrCLbtX8gjvQADQKuWXRnk83pEjRyQSSWZm5o4dOxBCoaGh9vb2Gg8NANVIZbJtT/YF2Y+GMTJdRCaQJruM/+X5r74WA1jUnnCFGQBVKE+EDAZj2bJlWggFgM65lPuHRCr2tRyIdyA9gZ1B3359XA7+HbNq6FK8YwFAS+DSKOjeyhsqT2Zc+NR1PKwjoy7B9oFPyv9Oq3yBdyAAaAkkQtCNSWWyHx/9MsrO30TPGO9Yeg4amfqp67htj/fyRE14xwKANkAiBN1YwqvfG0W8YVZD8A6kp3E1cnI0tNv3/CjegQCgDZAIQXdVVF96KjN+er+JRJjprAGfOH2cWvHPw7JneAcCgMZBIgTdkkgi2vTXjmCH0cZ0I7xj6ZmoJOr0fpN2PN3/vomDdywAaBYkQtAtHU6P1acyB8FIUU2yN7Dxtfhoy6PdUpkM71gA0CBIhKD7efQ2NaXk4RTX8XgH0vMF2g2vE3DPZSfgHQgAGgSJEHQzVY3V2x7vnek+RY8M69NqHJFADO03OT7n2svqLLxjAUBTIBGC7kQoEa67/+NIm2G27L54x9JbGNDY0/pN3PjXz+/gZiHooSARgu5k57NDTArTvy/Ml9AqVyOnQZYD19//USSFcmmgB4JECLqNizm/Z9W8mgq3BvEw2nY4iUDa/ewQ3oEAoH6QCEH38LQ87XRW/BzP6VQSFe9YeiMCIszoN+lFVVZc9hW8YwFAzSARgm4gn/Nm66Pdsz2nG9IN8Y6l96KSqOHeM8/nXHlQ+gTvWABQJ0iEQNdVNlavvPv9ROcQGCCDOwMa+3Ov0J+f7s+oycY7FgDUBhIh0Gnvmzjf/bl+RF8/L1N3vGMBCCFkxbIIdZu87t6P+ZxCvGMBQD0gEQLdVS/gRt1Z72XmPtR6EN6xgP9xNnac6BwcnbyxuL4U71gAUANIhEBH1Qu43/65zsnIIdB2BN6xgJa8TN2DHAOj7qyHXAh6AEiEQBe9b+Isvr3G0dA+yH4U3rGAtg008wqyHx315zq4Rgq6O0iEQOeUN1QuSor2MHb52H4k3rEARQaae41zGrvszr9gATbQrUEiBLol513eN0kr/fsOGWU3HO9YgHLeph4z+k1ed39rSslDvGMBoJMgEQId8mfhvZV3N092HTfY8iO8YwGqcjZyiOg/Z9/zoyczLsgQFGwC3Q8Z7wAAQAghiUxyJP3E3aK/5vefbcE0wzsc0DGWTLMFH0Wcy7qU975grf93TAoD74gA6AA4IwT4q2qsWfzvVRnVrxb6zocs2E3pU1lfDPxcimRfJkblvs/HOxwAOgASIcBZ0pu7X92MsjewDfcOZZD18A4HdB6ZQJrkHDLabsSK5A2nM+MlMgneEQGgErg0CnBT1Viz+9nhUu7bed6zLFkWeIcD1MPb1N2WbX01LzGl9NGaoUudjRzxjggAJeCMEOBAJBGdzUr4IvFbfZr+Qt/5kAV7GAMae6532EdmXt/d+dcvqUc/CBvwjggAReCMEGiVVCa7U3zv2D+nzRimC30ijOlGeEcENIKACD4WA/r1cf2z6N6c3xfM8Zwx1XUClNACugkSIdASiUxyp+jBqcw4CpH0qet4BwNbvCMCGseg6E12GTfUatCfRfcu5Fz9zGPaZOcQOpmOd1wA/D+QCIHG1Qu4NwpuX869bkgzCLYf7WwMN416FzOmyWzP6RUNlfdKHp/KiJvoFDzFbTwMDwa6AxIh0BSxVJJakZ745s/nFemeJv3C3Kda61viHRTAjSXLYpbH1Pd8zpO3f3+RGOVq5Dje+eOAvkPhBBHgTqVEyOfzjx49yuPxZDLZF198YWYG/5QD7eKJmtIq/3lQ+uTh22fmDFNvM49ov8XwYwcwxnSj8U5jQxxGZdXmXsm7sevpYR9z71G2/n7WvoY0A7yjA72USonw119/nTx5soODA5fL/fnnn7ds2aLpsED3whM1ZdfmvqjJTqv8p4BTZG9g42rktNj3SwMaG+/QgC4iEcn9zTz7m3nyxE2val/feHP7l+e/WjDMBlkOHGju7WnqBkkRaJPyRNjU1NTY2Ojg4IAQYrPZXl5emZmZXl5emo8N6CipTFrZWF3Kffumrvg1pyDvfUFN4ztrtpWtQV8/S9+Z/aZQSRS8YwTdA4Os52PR38eiv1QmLeG+LawrPp0VX1xfyqQw3YydXIydHA3t7A1sLFkWFCLcxwGaovz/rYqKCmdnZ/lDd3f3kpISNSbCysrKDx8+eHh4qKtD0Gnv378vKyv76KOPEEJNYj5XwOXw6+sE9Rx+fXVjbVVjdSWvurKhqpr3jk1lmTJMTJmm5np9prpONGeaEgkwJ1WdhCIh4jXhHYX2EAlEewMbewMbhJAMyd7x3pc3VBbVFz+vTK9qqOUI6ozoBhZMcwuWuSXTzETP2IRhbEBjG9ENDWhsTS9tyufz//nnn4CAAI3uBahCLBY/f/48MDBQvd0qT4R1dXVGRv+b7NWnT5/MzEwF7SUSSX19fVpamnyLm5sbi8Vqr33cpbicyryVK1eqFnDv0iBs7OhLeKKmFktbNYp4UpkUISSTyRpEjQghiVTCEzVJZbIPwgaJTNwo5AmlwiaxoKzqbT2/nlXAahDxyAQSk8JgUVn6VBaToqdP1densbxN3Uf29TfWMyTDP881rLi4hFn+tnfOsiQgggmjjwmjT3/kiW2RyKR1/DoOv76OX/+2oSL3XX6DqLFR1PhB2NgobBRIhAyKHpPC0Kew6GQ6nULTI9H1KHQKkcKgMChEMo1MxaYw6pHp2P+6BERgUZnNd0oikBiUtlf4y87OPnLkyD6Xfa2f0iPrkYjwT0DtKSoqWr52Webjl+rtVv0/Z5WVlVlZWV9++SX2kEgkbtq0afTo0e22l9aW2b/7+dF+tUfSA7T4rrZJJpM1r3yjR6KR/pOl/rOdQdYjEghYKyaFKUNSAoHIINMJCFnQTYiIyGAzKCQKjUh9VPzw5fMXWzasZ1KYkOrwVSfWkwlkdnRrvAPRGXo27T0jkUl4oqYmCb9B1CgQC4QSIV8i5Iv5EiThifkyiZQr/CCSiAgEIl8ikEjFBAJBhlCjiIcQIqD//Ecqk/DEfHmfBIQIBAL2d319PeEj+qmXca133SRukkilaj1OoIhAINDzM/jw4YPqL2EwGCQSSXEb5T92BgYG+fn/W0v+/fv3hoaGCtpbW1v7+/snJiaqGKUVMhNkNe5fuFfF9kBzyh8Vv/6Q42HljncgABVQmQ0ygnUfK7wDAejRo0fLdi3bu+ZHvAMBKCcnZ+q6qfq/6Ku3W+Un9ZaWlgUFBc3jsLWFNUEAAAD0EMrPCBkMhp6eXnFxsZ2dXUNDQ0ZGxsyZMxW0r6mpyczMXLBggYoRZGRkcLlc1dsDzcnLyysrK4PPQhcwaotdxBz4LHRBVVVVUVERfBa6oK6urqqqqkOfRUBAwOeff664DeH/32BqW1NT07FjxwQCgVQqnTdvnoWFoloBVVVVhw8ftrJS9ZJOfX29QCCASfq6oLGxkcvlWlrC+i/44/P5NTU1Njbt3hgDWiMSid6+fWtvb493IABJpdKioiJHxw4s0zh48GBsJLwCKiVCAAAAoKeCgb8AAAB6NUiEAAAAejVIhAAAAHo1jU+a7lzlCqh3oQmde1c3bNjAYPxnCSsTExP5Ugmgi8RicU5Ojre3t+ovge+FhnTis4DvhSbk5+fHxsYymUwikRgeHm5trdKCEmr4Xsg07Jdffnnz5o1MJquvr1+3bp1GXwUU69y7+tNPP2kyqN6ooaFh586d27Zt+/bbbzv0QvheqF2nPwv4XqhdfX396tWrBQKBTCZraGjYtGmTSCRS5YVd/15o9tJom5UrNPQqoBi8q7qDyWR+8803q1atUvEfvBj4BDWhc58F0ITq6uolS5ZQqVSEEJPJHDhwYPO1XNqjlu+FZhNhm5UrNPQqoFin31WJRJKcnHzgwIFTp07V1NRoLMDehU7vcKVi+F5oSCc+CwTfCw1wdnZuPgG9tLRUQbUGObV8LzSbCFtXruBwOBp6FVCs0+/qwIED6XT6/PnzAwMD9+/fD58FXuB7oVPge6FRGRkZFApFldN0tXwvYNQoUGLChAn+/v5MJtPGxmb+/Pk3btzAOyIA8AffC815/fr1zZs3tTn+SLOJ0MDAoHlyVlq5oiuvAoqp5V21tbWtqKhQa1xAVfC90FnwvVCjvLy8uLi4qKgopbWTMGr5Xmg2EXaucgXUu9AEtbyr5eXlMGQfL/C90FnwvVCX3Nzcc+fORUdHY0NmVKGW74VmE6G8cgVCCKtc4eXl1bxBamrqtGnT4uLiOvQq0Amd+ywePXokLy0pFovPnDkTHBystZh7Lfhe6A74XmjNq1evLl68uHr1ahqNhhCqrq4uLS1t3kBz3wuNT6hfsGCBvHLF4sWL5UWfNfEqoFgn3tVhw4bduHFj8+bNdDpdJBJNmjQJalN0HY/HO3LkiEQiyczM3LFjB0IoNDRUleIG8L1Qu859FvC90IQzZ84wGIz9+/djD2traz/55BNVCrB0/XsB1ScAAAD0ajBqFAAAQK8GiRAAAECvBokQAABArwaJEAAAQK8GiRAAAECvBokQAABArwaJEAAAQK+m8Qn1AABVxMXF/fHHHyKRqMXCGQAATYMzQgB0QlhY2JkzZygUCt6BANDrQCIEAADQq0EiBAAA0KtBIgRAFz19+nTKlCnjx48PDw/PzMzEOxwAejIYLAOALmIymSYmJtHR0W5ubnjHAkAPB4kQAJ1z7969uLi4rVu3mpub4x0LAD0fJEIAdIhMJrt48eKdO3d27drFZDLxDgeAXgHuEQKgQzgcDlZr+++//8Y7FgB6CzgjBECHGBoarlixgsPhrFq1ikQi+fv74x0RAD0fnBECoEOIRCJCyMjIaNu2bSdOnHj06BHeEQHQ80EiBEAXGRsb//jjj8ePH3/69CnesQDQw0EiBEAnxMfHz5s3TyQSybcUFBTU19dv3LgxIiLi5cuXOMYGQM9GkMlkeMcAAAAA4AbOCAEAAPRqkAgBAAD0apAIAQAA9GqQCAEAAPRqkAgBAAD0apAIAQAA9GqQCAEAAPRqkAgBAAD0apAIAQCa9e7dO4lEopauampq1NIPAM1BIgSgw5qamoKCgo4ePYpvGC9fvgwJCQn6r7179+IbT5s4HM6CBQvy8/O73pVMJouMjITFV4HaQRkmoHH37t3bunUrtpjf8ePHbWxsWjQQCoVz5sypq6tDCM2YMWPBggU4RNkN9e/f//z581KpFCGUkJAgEAjwjqgNsbGxVlZWbm5uXe+KQCBMnjz5wIEDPj4+FAql6x0CgIEzQqBxI0eOxE6egoKCEhISWje4c+dOnz59HBwcoqOjv/jiC60H2GFkMnn27NkfffQR3oEgY2NjExMTExMTBoOBdyxtKCwsvHXrVkREhLo6nDFjBpfLvXHjhro6BABBIgRaQCAQjI2NEUJhYWHJyckcDqdFg0uXLoWGhlIoFAMDAzK5G1yloFAo8+fPHzx4MN6B6LoLFy7Y2tr6+Pioq0N9ff2goKCzZ8+KxWJ19QkAJEKgPZaWln5+fteuXWu+MTU1tbGxcdSoUXhFBTSkrq7uwYMHwcHB6u02ODi4rq7u8ePH6u0W9Gbd4F/foCcJDQ1ds2bNrFmz6HQ6tiUhIWHq1KltnggKBIK0tLTnz5/n5ORUVVXJZDJra+vg4OBx48ZRqdQWjblc7pw5c/h8PkJo9OjR69atQwhlZ2efO3cuIyODxWKFhoZOmTKlxavy8/MvXryYl5dXU1Njbm4eGBgYGhpaUVHx1VdfIYSYTObFixflt6PS0tLWrl2L3ZNDCE2cOPHbb79t8zDLysoiIyNFIlFERMSsWbMuXryYlJRUVVVlYmLSv3//uXPnmpmZdfF4taO8vPzChQv5+fklJSUsFsvDw2PGjBkeHh67d+++efMmQmjWrFntXc2+f/++SCQKCAhosZ3D4Xz++edCoRAhRKFQTpw40fzdEAqFM2fObGxsRAiRSKT9+/e7uLg0f7mrq6uFhcXt27db9wxA50AiBFrl5ubm4OCQlJT06aefIoQKCwtzcnI2bNjQZuNHjx7du3fP09Nz5MiRffr0kUqlJSUlV69effLkyQ8//EAikZo3ZrPZZ8+eFQqFiYmJpaWlEokkJiYmJSUlLCwsMjKyuLj4yJEjJBJp0qRJ8pfExcWdOXNmypQpISEhffr0KSwsTEpKun///jfffMNgMGJiYuh0evNBGb6+vioOTunbt+/58+f37dvH4/G2bNni5ua2fPlyY2Pjurq669evL1iw4ODBg1ZWVl05Xi24cuXK8ePHP/744/DwcGtr6+rq6oyMjNWrV8+bNw8hNH369BkzZhgZGbX38vT0dCMjI0tLyxbbjYyMzp8/v2jRouXLlzs5ORkYGDR/lkqlnjlzprCwcOXKladPnzYxMWnds6en59OnT2UyGYFAUMeBgt4OEiHQtpkzZx44cGDSpElEIvHSpUuffPIJk8lss2VgYGBgYGDzLXZ2dv7+/hERETk5OV5eXi3as9lshBCLxaqvr1+1apWhoeGvv/6qr6+PELK1tfXz82tehvrZs2dxcXEHDhyws7OTdz569Oi4uLidO3cSCIQ2f4Kxm50IIQaDoXiUpoGBAZ1OT0xM3L17t4ODA7bRysrKw8Njx44dx48fX79+fRePV6PS0tJOnDixc+dO+YBPW1vbQYMGjR8/fuXKlWKxOCQkpM23SC47O9vV1bXNp9hstqenZ0VFhfz2YUVFhUwmw/5xwGKxampqXFxc2uvfxcXlzp07JSUl8s8OgK6Ae4RA24YMGUKlUh8+fMjhcFJSUqZOndqhl5NIJEtLy6qqKgVtXrx4MWzYsPXr12NZEEOlUmk0mvzh/v37Fy9e3PqXNCwsrPW5WqdNnjxZngXlxo4dm5OTo2IPqhyvJvzyyy9ff/1162kP5ubma9asUTqxXSKRcDgcQ0PD9hp4eHhkZWVhf8tksmXLli1evFg+BCY7O9vT07O912Ldvnv3TpUDAUApOCME2kYgEEJDQ+Pj4/Pz84cOHWphYdFeS4lEcu/evdu3b5eXl9fU1NBoNFNTUw8Pj+rqasW7CAgImD59uoIGtbW1tbW17d1kCgwMzM3NVeVYlGrz3h6LxRKJRK23d/p41a62trampqbF6alcv379bG1tFffQ2Ngok8kUTOrw8vK6cuUK9ndGRoZAIDAyMnr27Jm/vz9CKCcnZ9asWe29FuuWy+UqPRAAVAGJEOBg7NixsbGxCQkJu3btaq9NY2Pj8uXLZTJZcHCwi4sLdk3yw4cP5eXl6enpivtXeuuotLTUwsKivUnZSn/lNaErx6t22PujYISO0muS2OVuHo/XXgMHB4f3799zOBwjI6O7d+8GBARYWlreuXPH399fKBQWFBR4eHi099qmpiaEEIvFUn4kAKgAEiHAAYVCWbZsWVlZWb9+/dprs2fPHicnp2XLlrUYJOLu7p6UlNTFAGxsbCorK0UiUZu5sKysrIv9d4JGj7ejsPdHKBS2lwtLS0sV50ISicRms+vr6xU0cHd3z8rKGjZs2P379zds2GBlZXXmzJnGxsaioiITE5M+ffq091qsWwUNAOgQuEcI8OHn56fg6qVEIklNTf3888/bHCqJzZHoCmw1lgcPHrT57N27d7vYf0dp+ng7ysTExNTUNCUlpc1n8/LyioqKlHbi7u7+5s0bBQ08PT2zsrLS0tIoFIq3t7epqWm/fv0ePHiQk5Oj4AYhQqigoEBPTw+XE3fQI0EiBLqIQCAQicTW98a4XO7333+vlht4S5cuPXDgQHFxcYvt8fHxpaWlXe+/Q7RwvB0VFRV18ODBvLy8Fturq6u3bNmieLwoxtvbu7q6WsGwGiwR3r17d8yYMUQiESH08ccf37lzJzs7W8F1UYRQVlaWt7e39ueTgJ4KLo0CjcMGECKEOBwOlUrV19dvMX0ee1YsFn/48EEgENBoNCKROHv27K1bt86bN8/Ly4tGo1VXV6empt66dWvmzJkNDQ0NDQ3YoET57UCJRIKNnuDxeAKBoPlCblQqtfUMjcGDB4eFhS1ZsmTq1Kk+Pj7YPMKbN2/W1tZGR0dv3LixRXuZTIYtC47h8/l8Pr/5XgwMDLBfc3ljgUDQ1NRUX1/ffKqcUCisr6+XSqXN4+/E8XYonk7w9fWNiIhYvnx5SEiIn5+ftbV1VVXVy5cvL126NHv27PLycqU9BAYGxsTEPHz4sPU6Bhh3d/f8/PyioqLdu3djWwICAg4cOEChUGbPnt1etyUlJWVlZXPmzOnccQHQGqH5zCoANOHgwYNXr16VPwwJCVmxYoX8YVJS0s6dO+UPXV1dDx48iP396NGjy5cvFxcX83g8MzOzIUOGTJs2zdzcfOXKldj4kaioqAkTJmCN9+7de/369TYDoNFop0+fbnPqN7ayTG5ubk1NjYWFxZgxY0JDQ8vLy6OioprHjBC6efOm/Pe6TeHh4XPnzsX+vnLlyqFDh7C/iUTili1b5AuTbtiwQb48WPP4O3q8HYqn08rKyuLi4l6/fl1aWspkMj09PadPn+7l5bV7924TExOl/a9du7aurk7+VrSGrb8TGxsr3/LDDz88e/bs6tWr7Z3wxcTE3Lhx48KFC3ittgN6HkiEALRUWFj43XfftUiEoDkVE2FWVlZUVNTevXsVX+pUHZ/PDw8P//TTTz///HO1dAgAgnuEALRWVlZmamqKdxQ9gaenp7+//+nTp9XV4e+//04mk0NDQ9XVIQAIEiEALUil0suXL2PTukHXLVy4MDMzs6CgoOtdyWSy+Pj4hQsXNl8hCICu08ZgGT6f369fP1gGoruYNm3ab7/9hncU2sPlciUSCUJILBYXFRWdO3eOSCTClbc28fl8bDK7QCDAxuaw2WzFozctLS3379/feuntTiAQCFu2bFEw9xSAztHGPcK6ujp7e/vCwkJN7wh03V9//bVnz57k5GS8A9GSwsLCRYsWYYmQTCbb2dmNHDkyLCwMhua3KTIyssUXWUEZJgC6Cy1NnyAQCArKtQDd0duWrXJwcLh16xbeUXQbR48exTsEANQP7hECAADo1SARAgAA6NUgEQIAAOjVIBECAADo1dSfCOvq6h4+fKj2bgEAAABNUP+o0SdPnuzbty8xMVFxs6P/nCzlKl+3V43GOwUNsx6kzT0WFRUZGxuz2WwN9R8TE0OhULq+nqQqBAIBiURqsVi2YkprCDRXXl6up6fXU4cWNzQ09LbhuOoieJPFSTpnsWgr3oF0S3w+n0wmd+hr2zup/w1ScWKiBdP8Hb9OeTv1sWC2XDSLx+Nt27YtOzvbxcUF/bcUzsyZM/v376+WPd6/f3/o0KGaS4QDBgzQ2v/iMpmsQ1NOscWsW9dwaA+Hw4mJifnXv/7Vqeh0Hazo23lSCRJquxxjjwH/46kIt38p+PcdYsLQaoFpB8OWBbUZDMb333+/fv36LVu2YFsaGhq2bdvGZrPt7e21GVvnDBqk1RPcDjlz5oyCuruteXp6HjlypLS01MbGRnNRAQBAa3DK/P+wWKyIiIi7d+/Onz8f29LU1HTixImSkhKEEI1Gmzt3rqOjo7z9+/fvDx069PbtW319fTqdPmDAgJCQEBaLxePxtm/fXlRU9Pz5c3klvMjISAcHB/lry8vLT5482djYKBaLGQzG7NmznZ2dsadEItH27dsLCwsXLlzo6Oh49OjRuro6Go22evVqBoOBEHrw4EFiYiKPx+vfv3/rdT0UxKy0Z8VKSkpiY/8g/AAAIABJREFUY2P5fD6FQrG2tg4PD583b56/v39UVJS8Th5CqLCwsKamxtvbG3v45s2b1atXOzk5LV++XF7Q9ciRI3/++efMmTNnzpyJbZk6dWp8fPzy5cuVf05dUFhf8mfRvczqnA/CRhKR5GxkH2AzdKjVICIBBo4B0EtBImxJIpHIy5mKxeKNGzfOmjVr0aJFCCEOh7Nr167w8HA3NzeswZ49e8LCwry8vBBCPB4vOjra19eXxWIxGIzNmzefOnVq6NChrq6urfdSXl6+Z8+eFStWmJubI4Rqa2v37NkTERGBXaSlUCjr16+/du1aQUHB1atXFy9ebGlpmZuby+PxsHQVEBAQEBBQUFCQkpLSomfFMSvtWYGKioo9e/asWrXKwsICIfTixYu9e/d6e3t/9913LVqmpKQMGzZM/tDR0TE4OHj8+PEmJibYJVYikbhw4cLCwkJ5FkQI+fv779q1KyoqSkPLm1U0VO1LO5pd+/ojcy8fiwEMip5YKnnbUHE0/fT+tJglvl/6Ww/WxH4BADoO/hX8/3A4nNjY2LFjx2IPr1+/HhQU5OPjgz00MjJauXJl85oyMplMnj8YDMbq1atVvLJ38uTJ6OhoLAsihExMTFatWnXixIkWzdLT09evX48tWOzm5iY/nVJAacyd7vnMmTPLly/HsiBCaMCAAQMGDGizZWFhYd++fZtvcXFxycvLQwhduXIlOjoaISQUClvUEKDT6Ww2u6KiQmkknZBc/GDBrWUGNPaKIYuCHQJdjB2t9S3tDPr6Ww+O/GjuJw5jdj87/POT/SKJSBN7BwDoMjgjRDU1NevXr0cIEQgEMpn85Zdfyn/EMzMzW5zusNlsKpUqFAqx6thLly49evQon8+n0+kuLi5jx45V8WymsLBw3759LTa2LlUzY8YMPT29Dh2O0pg73TOXy22R3oYMGfL8+fPWLYuKiqytrZtvcXV1vX79+ujRo9PS0vT09LhcbmVlZfOLzBhra+uSkpIWe+m6s1kJl/Ouz/P+zJJl3mYDZ2PHb3y+uJx3/bvkDdtH/4tJUX6VGADQY0AiRKampvLBMi3IZLLmt74wRCIRK1aAEDIzM8OSKJfLzcnJ2bhx44oVK5rfCGyPubn55s2b5ddg1UhpzGqEVeRpjcFgCASC5lssLS0rKip4PB6RSBw7duyTJ0/EYjF2Hbg5gUBAp9PVG+TpzIs3Cv4dOXCePlXRBAYamRrmPvV6/q3lyRt+GbuFTlZzGAAAnQWXRhXx8vJ6/Phx8y0NDQ1NTU3YuVRdXZ38fIjNZvv5+c2fP//u3bvyxgRCu1WuXF1dnzx5ov2Yu8LJyalFzO3NFrW1tS0rK2uxUSaTpaamDhkyZMiQIampqQUFBa0TYVlZmSr/jFBdYsHta69vzu8/W3EWxBAJhEku41hU1sYH26UyqRrDAADoMkiEikycODEpKenFixfYw7q6uu3bt8tLtlZUVBw7dqy2thZ72NTUlJyc3LxqqL29/bNnz+S5MCMjIz09Hfs7LCzs6tWrL1++lDdOTU09fPiwpmPuirCwsISEhFu3bnG53KqqqpiYGKm07Wzh7OzcuvyklZXV1atXhw0bxmAwpFLp27dvzczMmjd49+4djUZT45z6zJpXh9NPhHvNVCULYgiIMMXlk/f8ul//OamuMAAAOq5XXxrl8Xg7duzIzc3FLm8GBQWNGjWqeQMKhbJ58+bY2NiLFy8ihMhk8rx58+STHCwsLKZPny7PhQKBYMqUKf7+/vKXjxgxIi8v7+uvvzY1NSWTyaampqGhodhTVCp18+bNp0+fTkhIwHZkaWkpfzY7O/vcuXOVlZV0Ov3atWsIoUGDBk2ZMgV7tqKi4uDBgwihxsbGd+/eYSlnxIgR48aNUxqz4p4V09PT++mnnxITEw8ePMhms319fX18fLZt29a65bhx47755psvv/ySQqHIN7q6uv7zzz/YqBxfX98HDx60eNWtW7c+/fRTVSJRRb2Au/HBtmluE0w7OF2VSCCGuU89nH7c29RjRF8/dcUDANBZ6q9Qf/Pmzf379ze/aFZXV+fg4MDhcJo3e8/nvOZosWa9DPlZ+Whvd93W3bt3f/jhh9YV6vl8PolEap7YEEJCoXDbtm0bNmxo3c+hQ4dcXFyCgoJU3K9YLF64cOHevXvl0y67aE3KD1QSNcRxTOdeXsp9ey77Usz4vSZ6xl0P5sOHD/r6+l3vpxcS5L/k3Dhp8e0uvAPplpqamigUCiyxphRub5Ax3cjPsmcuLAkQQjNnzty1a5fqifDx48djx45VVxa8VXCnhPt2gU9Ep3uwYVsPthz485N9PwduUktIAACdBfcIQWcIhcIff/xx06ZNmZmZ+/bta31dwcTEZPPmzap36OfnFxYWppbYOPy6Q+nHp7lNIBO6NDF/lO2Itx8qbhelqCUqAIDOglNmDXr48OH169fbWwitW6NSqWvXrlXapkMddi2i/9n//DcfiwGWLIsu9kMiED91HX8wLWao1SDVh9sAALqdXp0IW1SfwISFhQ0cOFAt/Q8fPnz48OFtLoQGNORFdVZ6dea3gyLV0ltffSt3E7ffXpz+bvAitXQIANBBvToRtq4+0djYuG3bNgMDA/XOZgPaIZXJ9qT+Os5xDJVEUd5aNWPtR+5NPTLFZXzr6iUAgJ6hVyfC1phM5rx58+7evStPhApqRCCEkpOTU1JSpFIpl8s1NDRcvHhxi7lxnaBirQbQ2q2CP4kEgrepuxr7ZJD1RtmO2P93zO4x36uxWwCA7uhAInzz5s22bdsmT548ceJEzQWEu4qKCvkiLIprRCCE7Ozs1qxZg7UvKio6dOjQpk2buhiAirUaQAsCiTDm5dmZ7irNiewQPyvf/c+PplW+8LVoe5FxAEC31oFEePny5a+//rr10lmdIyzMltS/U0tXKqLau5MMFdVY4HA4jx49Sk5Olg93xGpEyE/ysBoR27dv37p1K7bFyclJ/nJ7e3uxWKyWULFaDVZWVleuXHn48OGuXbta12oALVx69Yc129KGba28aQeRCMSxdiMPp8ce+2QPAbVcxxUA0N2pmghTU1MHDBigxt/ihkc3xJUl6upNFazRUxm+bUyvrqmpWbNmDUKosLDQz8/vp59+ko9gVFojorq6+tatW2VlZTKZzMbGpsWiAZ2mYq0GINco4l3IufzFADWsJNcmLzP3B6WP/yp9GmAzVEO7AADgRaVEKJFIkpOTV65c+erVK3Xt2HhOtLq66iJ59YmmpqY9e/akp6f7+f1nYS3FNSJyc3NjY2M/++yz6dOnI4Sqq6v//vtvtYSkYq0GIJeQ+7uzkZMpQ3lVxc4hIEKg/ciYl2dG2PjBSSEAPYxKE+pv3bo1bty41sV9ehg9Pb3o6Oj4+PjKykpsi+IaEZcvX163bt2AAQOYTCaTyXRwcFDjGbMqtRoAplHES8j5Y7TdcI3uxb2Pi0QmfVCqkZohAAAcKT8jbGpqev369YQJE1TssbKyMj09HTtJwsydO7eT0WkdhUJZunTp4cOHsduEYWFh69evZ7FY/fv3xxqkpqY+f/580aJFCCEymVxaWurh4YEQ4nK5R48eLS8vV1ckWK2GdevWtVerQXOkUimPx2uxsc21RnVEfO5VJ0M7fSKzRRFEtRthOeT4i3O+ffp39KSwqalJxYrNoAWxQCCRSFr/DwlUAWuNIoTodLrSyq/K36C//vrr7du3O3bsQAjV19d/+PBh+PDhCmrlGBkZWVpaNl8uy91dncPZ1ah59Ylp06b5+PgghOzs7CwsLDZv3rx27VrFNSIiIyP37dt37Ngx7IwwIiKiurp6w4YNUVFRxsbGimtEKKW0VoPmEAiENqvj6mYi5IsFV9/cjPD6TI1r07TH09z9/tvHGZycIZYdW8BdJBKpveBwLyGgUIhEIrx7nSOTySARqlL/vGPVJ3JycgoKChRPn1Cx+gTQTR2qPqELEnL/SCl+ONtzuvKm6vCyOutlTfah4J879CqoPtFpUH2iK+CMUEWw6DboxiQyyYXsKwG22hvJ6W3qUd1Yk1mjtlFjAADcdSARJiUlnT179vbt23BuB3RESvFDAxrbRl/9cwfbQyAQhtv4nc2+qLU9AgA0rQOnzCEhISEhIZoLBYCOOpudMKLvMC3v1Md8wM6nB0q5bzUxeR8AoH1waRR0V/9UZTSKmtz6OClvqlYUInmwpU9czlUt7xcAoCGQCEF3dT77yjDrQbhMbx9q5Ztc/IAr/KD9XQMA1A4SIeiW3n6oyH736iPz/rjsnUVlepi4/fE6CZe9AwDUCxIh6JYuvvpjkMVHFCJu48KHWQ+6lHtdIpPgFQAAQF209DvC5/O3b9+unX2Brmi+pLjO4omabhfeXTzoSxxjsGRZGNENHpQ+GW2r2aXdAACapo1EyGazV61apQuTLoRCoRbWH+nWjI2NIyMj8Y5CicQ3fzobOxjQ2PiG4WflG5dzFRIhAN2dNhIhkUjserlatYAFPnoAGZJdzr0+yTkY70CQh4nbzYI/8zlvnI2gQhYA3RjcI/y/9u48vKkyUQP4Sc7Jnqb7koautNBiS/eyKBS4eJUReRQZnDsq4MUreN3m6lXHccbR+3BHR4QHl3mKMkzBQbwsrahQdqVAAcFCId1X2rJ1oWvSpElOzv2jDiIDTZom+U6S9/dXE06Sl+85yZtzcs75wMOUXT0voIQx/tGkg1BCgTBXnVlYu5t0EAAYExQheJjCum9yI9NJp/hRljqjpPXEgElHOggAOA5FCJ6kXd95oaMqLSyFdJAfKcXy5ODEvU2HSQcBAMehCMGTfNOwPz08VUzz6IinbHXmrro9HDWKWVwAgFdQhOAxzFbL7ob9ueoM0kF+JsZ/nIASnr12gXQQAHAQihA8xrG2k2Hy0FB5COkgt8qOTC+qwyEzAJ4KRQgeo6h2T5aaL4fJ3CwjLLX8WkWXoZt0EABwhF3nEZaVle3Zs0ckEplMpvnz52dlZbk6FsAtWvraWvsvPTrpYdJBbkNMi1PDJu2uP7Bs8q9IZwGAUbNdhFarVavVvv766yKRiGXZ1atXx8fHBwYGuiEcwA1f1e/NikijBTzdh5GjzthauXNJ6mIhXxMCwJ3YftMKhcJly5aJRCKKomiazs7Obm5udn0wgJ8MsaYDzUdyeLlfdJhaGe4n9jt15QfSQQBg1Eb37dVqtZ45cyYpKclFaQBu67uW41EqTYA0gHSQkWSr07+s20M6BQCMmr3XGmVZNj8/v7Gx8emnn5bL5S7NBHCLXfV7ciIySaewITVs0t6mw+36jnBFGOksADAK9hYhTdPLly/XarUlJSXR0dEKheJOS7a1tZWWlmZm/vSx9eabb86dO3esSZ1Br9cLBAQmNPcCRqORpunhPeRudrG/7epAR0zCOKPR6P5XH5XU4KTCqt1Lkhffcj9WPIdZDAaWZXU6XMTOEQaDQSQSMQyxaTv5QC6XC4U29n2OYoBkMllubm5QUFBhYeGSJUvutJhGo0lNTf3ggw9u3JOcnMyTjUiO45RKJekUHolhGFJFeKDqSLY6XS7lxSo0sqnjcjZrv1iRvZQW0DffjxXPYUMymZGmMXqOGX7P+ngR2mPUA6RWq3t7e0dYQCgUqlQqnGIBTmG0GA9fPEp2Dl77hSlCAmWBJy6dnhE1jXQWALCX7YNlqqqqampqhv+2Wq1btmyZPXu2i1MB/Ohwy7HYgCjic/DaLysi7cu6YtIpAGAUbG8RxsTE7Ny5s6ioiGEYi8UyZ86c1NRUNyQDoCjqy7o9d4/LJZ1iFFJDk/c2HrqiuxapjCCdBQDsYrsIFQrF0qVL3RAF4Bb1PU3XDb2JgQmkg4wCI2TSIybvrt//dAbeNQCeAVfBAP7aVVecrZ4s9LTjLXMi0vc0HbJYWdJBAMAuKELgqUGz4UhLaXYEvyZdskeoPDhEHnz80inSQQDALihC4KlDF0vGB8X6iT3yuPmcCEzMBOAxUITAU0W1e7LD+Xtx0ZFNCk1q7m1t679MOggA2IYiBD6q6qrTmXXjg+JIB3EQI6CzI9K+bthHOggA2IYiBD7aVV+cHZEhoDzsMJmbZUdk7Gv8dog1kQ4CADagCIF3Bky6422nsnk86ZI9AmUBGpX6SMtx0kEAwAYUIfBOcdOhpOBEuUhGOshY5aozijAxEwDvoQiBXziK21VXnBvJ90mX7DExKLFj8Hp9TxPpIAAwEhQh8EvZ1fNCio5WjSMdxAkEAkGuOqOoFudRAPAaihD4pbDum9xIz/518GZZEeklrSf05kHSQQDgjlCEwCPt+s4LHVVpYSmkgziNUixPCko82FZCOggA3BGKEHhkV31xZthkMS0mHcSZcjWZu5sOWDmOdBAAuD0UIfCFiTXtaTiQo/GGw2RuFq0axwjpM1fPkg4CALdn1wz1DQ0NBQUFCoVCKBQ+8cQTGo3G1bHABx1uORbppw6RBZEO4nyZ4Wk7ar6eEplFOggA3IbtIuzv79+4cePbb78tFov1ev3777//xhtvMIxdDQpgvx01X82MmkY6hUukBCUduXS8rf9ylApfIgF4x/au0Y6Ojueff14sFlMUpVAo0tPTGxsbXR8MfIu2s0pnGkwMGk86iEswQiZLnVFYi5PrAfjIdhEmJCRERkbeuNnW1qZUeuTMOMBn26q/mqLO8uiLi45sqjrr4MXvcB4FAA+N7mAZrVYrEonwGyE4V7u+41y7Nks9mXQQF1JJ/BKDxu9uPEA6CADcahQ/9dXX1+/du/fll18eebGWlpZDhw4FBgbeuGf9+vUPPPCAgwGdSq/XCwReu83hUkajkaZpkUjkiiffWlGYFjzJarYazUZXPD9xRqNRIBBkh6Rtr9w1TzNHKMDR2vayGAwsy+p0OtJBPJLBYBCJRD5+SIdcLhcKbbzj7B2gurq67du3v/rqqzRNj7xkTExMXl7e9u3bh2/SNK1Sqex8FVfjOA77dR3DMIyLilBvHjzUdvTZzOVSqdTpT84THMdJpdJ4aazqkupsj3ZW9N2kE3mMIZnMSNN42zpm+D3r40VoD7u+mdbW1m7duvWVV14ZPmTGJpFIFPgP/GlB4KfdDfsTA+MDpP6kg7jD9HE5WysLSacAgJ+xXYQ1NTU7duz47W9/K5FIKIrq6Ohoa2tzfTDwCRYru6Pm67vHTSEdxE2Sgyf2DvVrO6tIBwGAn9jeZN6yZYtcLv/oo4+Gb3Z1dc2bNy8qKsrFwcAnfNd6LFAWoPFTkw7iJkKBYLomZ0vFzj/PfpN0FgD4ke0iXLVqlRtygA/iKO7zyp2zou8hHcStMiMmv//9Xy72tcX649skAC/g6DUg5tTlMjPLJgbFkw7iVoyQmRaZ/XnlDtJBAOBHKEIg5rOK/5sRNcWLT6K/kymarBOXz7TrO0gHAQCKQhECKeUdFdcNPamhk0gHIUDKSHPUGZ/j8FEAfkARAhkFF7bOiJrms9c3mK6ZcrjlaJehm3QQAEARAgmVXTWXBq6kh6eSDkKMUizPDJu8tXIn6SAAgCIEEv56/vOZUdNp377S2D3RU/c3f3fd0EM6CICv8+lPIiBC21nV1n8pMyKNdBDC/MTKjPC0v1fg8FEAwlCE4G6flH+W5/Obg8NmRk07dPFIx2AX6SAAPg0fRuBWP1wt79R3ZkR484xL9lOK5TmRGQUXtpIOAuDTUITgPhzF5ZcXzImdiXmIbpgxbuqxtlOt/ZdJBwHwXfg8Avf5tuW4mTWnhCaTDsIjUkY6I2rq+nObSAcB8F0oQnATM2v+9Nzm++Jm++ClZEY2TZNTfb1e21lNOgiAj0IRgpvsqPk6RB4UFxBLOgjvMELm3riZH5V9ylEc6SwAvghFCO7QY+z9oqrovrg5pIPwVFpYypDFdLD5COkgAL7I3iK0WCxardalUcCLrT+3KSM8NUQeTDoITwkowS/G35t/btOg2UA6C4DPsV2Eer1+zZo1a9as2bhxoxsCgfep6qo9daVsdswM0kF4LUqlGR8QV6DFqRQA7ma7CBUKxbPPPvvaa69pNBo3BAIvw3Lse9//5f64ORJGTDoL390XP2tf0+HG3oukgwD4Frt2jUqlUlfnAG+1o/prMc2khaeQDuIBFCLFvbGz/nzqIyuHo2YA3MclB8uYzeaem1itVle8CvDfFd21zyt3Lki8n3QQj5GlTmetlqK6b0gHAfAhjNOfsbW1taSkJD4+fvgmTdP5+fnz5s1z+gs5QK/X++wEeGNkNBppmhaJRPY/xMpxq0rXTlNnySmZ0Wh0XTb+MxqN9q9482L+peD8F+mBKRHyMJem8ggWg4FlWZ1ORzqIRzIYDCKRiGGc/znvQeRyuVBoY5PP+QMUHR09d+7c4uJipz/z2HEcp1QqSafwSAzDjLYId9R8bWANebH34MsHx3H2/74QKVXPir17bfknH9/7rtDnh25IJjPSNN62jhl+z/p4EdoD5xGCSzT3tW7Wbnsk6UG0oAOmReaaLENbqzBtL4A7oAjB+YZY0x+P/fn+uNlB0kDSWTySUCB4JOnBbdW7qq/Xkc4C4P1sbzIPDg6uX7+eZdmKiorVq1dTFPXLX/4yNjbW5dHAY31w5pNgWWCm2ten3h0Lf4lqQcK8t46999dfrPMTY8cggAvZLkK5XP7SSy+5IQp4h+KmQz9cO/9MxpOkg3i8u0Intva3rSpd886sN/FjIYDrYNcoOFPN9fr8s3/79aRHcPq8U9wXP6drsPtv5z8nHQTAm6EIwWk6B7t+V/K/D094IEwRQjqLlxAKhI9OWljcdBDX4wZwHRQhOIfOpP/vb/84TZOVFDyBdBavohTLn0hZ/GHZhvKOCtJZALwTihCcwGgZeu3I/4xTae4eN5V0Fi8Urgj7VfJDbx59p76niXQWAC+EIoSxMrGm35WskjKSefFzSWfxWnEBsQ8m3v/Kt39s7m0hnQXA26AIYUyGtwU5ils4YT6ObHSpu0KS7h8/978O/74B24UAToUiBMf1mwZ+c/gNWsgsmrgAV5Bxg8mhkx5I+NeXDr95vqOSdBYA74EiBAddHri6ct8r4fLQhyf8Ai3oNneFJC1KWvD7o3861FxCOguAl0ARgiNOXzn7zP5XpkRm3hc/R0ChBd0qITDu3yf/en35pvxzBSzHko4D4PFQhDA6Fiv76bnNfzq57t8mPZyjziAdx0eFK8JWZjxZ3l7xwsHftes7SccB8GwoQhiFxt6LK/a9XN5R+Z+Zy2P8o0nH8WlykeyJlEejVJH/sfc3xQ0HOQqT2gM4CPNUgV305sEvKor2X/z2vrg5mRG4mjYvCAWCmVHTE4MSvqj+cm/zty/lrIwLiCEdCsDzoAjBBjNr/qph32fabYmB8c9nrVCK5aQTwc+oFWErM5Z9f6XshUOv3zNu6pOTfx0mxyXuAEYBRQh3pDPpv2ncv736K7Ui/LHkRWplOKa65ieBQDBVk50WnnK87eSTe56fGTXt0eSHY/2jSOcC8Ax2fa4ZjcZPP/10cHCQ47jly5eHhYW5OhYQZOU4bWdVcePBY22nkoITH79rkVoZYTKZSOcCG2SM9N642XdHTT116YcXD/4uSqVZkHjfjKhpMkZKOhoAr9lVhJ988smCBQvi4uL6+/vfe++9VatWuToWuN8Qa7rQUXn80uljbSdljGRyWMpvcp7BjlCPI2dkc2Jn5MXcXd1V+1Xd3rWn12eGp86Mnp6rzgiSBZJOB8BHtovQYDDo9fq4uDiKolQqVUpKSkVFRUpKiuuzgct1DnbVdTdVX68rb9fWdzdpVJGJgXFLUx8NxY9MHo4WCFNCk1NCkwcthpqu+uLGQx/9sCFIFpAWlnJXaNLEoIQY/3G0gCYdE4AXbBfh1atXExISbtxMTk5ubW31xCIcGho6d+7czJkzSQchwGgxXjf0XDd0tw92XtN1tA5cudR3qaX/Mi0QjlNFqpXh2ZEZi5IWiOk7zqbb3t4uk8lCQlCQjqitrU1LSyNy/R05I8uMmJwZMZnjuCu6ay39bQeaj2y68EW3sSdSGRGl0kSpxmmU4WHy0FBFSJA0wF+icn/IEQwNDel0OtIpPFV9fX1oaKharSYdhO9sF2Fvb29g4E97VIKDgysqRpoXjWXZvr6+srKyG/dMnDhRqVTeaXmjxdjSf8m+tGNSUVGxevXqzSmb3fBao6Iz6e1ZjOXYQbPhxk2z1Wy0DFEUZbFaDBYjRVEDQzqz1TJoHhy0GA3mQZ3ZoDfp+00DA6YBASVQSfxUYpW/VOUvUQZKA++JmvKIIkwusnfPZ3FxcXh4+EMPPTT6/x9Qa9eu/fDDDwMCAghmEAgEGj+1xu/Hz0Sz1dKh7+wydHcNXm/sae4fGugb6u836Qxmg59E6SdWKEUKuUguZ2RKiVJCS2SMVMZIRLRIJBRJGQlFUYyQufnXRwktEdMie5KIadEIX7lu0VhxUnSpme1uGOV/FyiKot4rWDNp0qRHHnmEdBBn8peoIhROPk7F+QcBXrt2rbKy8qmnnhq+KRQK33rrrVmzZt1p+fOdlQVVXzg9xj8bHBwUzVa9d+IjN7zWqCjFijv9E8dxN06TpgX0Pz53OI6iGCEtpSUcRdECWkqLrRynFMtFAkYtC5PQYgktlTMyuUimZBR+YqXE7s+dOxH3CBUKSYxUM8bn8U2Dzf2RdFioNJR0kJ9JkN/mpEPWah0w63Rmnd5sMFoMRtakt+jNrNnEmntNvRaWZSl2yGISCAQWK2tkhwQURVECiqJM1iETaxl+EgFFjbD5a2LNJtbeY6/C+67P9qd5+Lb1CB0TBgZEFxpPXCEdxJmSghJWpi6zf3m5XE7TNn4FsF2E/v7+DQ0/fR3r7u4e+YutRqOZPn16cXGxnSnv8Zt6T7w7ZnM9derUC++/sPH0B254Le8jpSRKRqEJjiQdxCNZB9mIgPCI4AjSQTzP9zs/6/v+7xvn42026nICAAAGIklEQVTriKeeeiorK+uZ+c+QDsJ3ti+xplarGxsbb9ysrq6Ojsa1tQAAwEvY3iKUy+UymaylpSUmJkan02m12sWLF4+wfGdnZ0VFxYoVK5wX0jk6OjpaWlp4GMwjlJaW+vn51dXVkQ7ikQYGBl599VWZTEY6iOeRdF9OZwfwtnVMaWlpXV1deXk56SAkzZgx4/HHHx95GcFNP0LdkcFg2LBhw9DQkNVqXbp0aUTESHt42tvb8/PzIyN5tw/NbDZfvnw5NjaWdBCP1NHRIZFI/P39SQfxSA0NDePHj8esjQ4wmUxXr16NicE1VB3R3t4ul8v9/PxIByEpJycnI8PGPDl2FSEAAIC3wjRMAADg01CEAADg01CEAADg07x2Vh3HZswwmUwbN27s6+sTCoULFixISkpydU4eGstkI0eOHDl58qRQKExOTl6wYIHrQvKWY6NXVla2Z88ekUhkMpnmz5+flZXl6pw84dhwYT4cCmuac3Feat26dU1NTRzH9fX1vfHGG3Y+avPmzeXl5RzHsSz79ttv9/T0uDAiXzk2dBzHbdq0adu2bVar1WXRPIADo8eybEFBgclk4jjOYrG888473d3drk3JG46tbA6vot4Ea5oTeeeu0dvOmGHPA69cuZKWlkZRlFAoXLp06b59+1wblH8cHrqKigqGYRYvXuzLJwk4NnpCoXDZsmUikYiiKJqms7Ozm5ubXZ6VBxwbLodXUW+CNc25vLMIbztjxmifRKVS1dfXOzWXB3B46I4ePbpw4UKX5fIMY1/xrFbrmTNnfGSfvGPD5ZR3t6fDmuZc3vkb4WhnzLghNDS0uro6OTl5aGiooKBg+KuTT3F46CiKam1t3b17t8lkCg4OXr58uc0L3XqfsYwey7L5+fmNjY1PP/20XO4T8yE7NlxjGWSvgTXNuTy4CIuKim6+CCpFUUqlcsWKFUKh45u5jz/++IYNG3bv3s0wzIMPPnjgwIExx+QjVwxdd3d3SUnJiy++yDDMiRMnvvzyy0WLFo05KR+5YvQoiqJpevny5VqttqSkJDo6WqG445wkAGOBNe2feXARjrAjbrQzZtwgkUiee+654b97enq89euSK4ZOr9c/9thjDMNQFDV9+vR333137Dn5yRWjN0wmk+Xm5gYFBRUWFi5ZsmRMKT2BY8M1xkH2DljTnMs7fyN0yowZhYWFeXl5Ts3lARweuvHjxxsMP80b7JuHzDhlxVOr1b29vU7NxVOODRfmw6GwpjmbdxbhjRkzKIoanjEjJSXl5gXOnDmzcOHCbdu23fbhHMdt2rQpMDAwPj7eHXH5xOGhmzdv3meffTb8d2lp6cSJE90TmFccG72qqqqamprhv61W65YtW2bPnu22zAQ5Nlw2H+ULsKY5lwfvGh3ZihUrbsyY8dxzz9m5gbJt27a2tjaWZWfMmDF9+nRXh+Qnx4ZOo9Hk5eWtXbuWZdng4OClS5e6Oic/OTB6MTExO3fuLCoqYhjGYrHMmTMnNTXVDVH5wLGVzbFHeRmsaU6E2ScAAMCneeeuUQAAADuhCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKehCAEAwKd57UW3ATxITU3NH/7wB5ZlQ0JCPv74Y7FYPHx/WVnZunXrOjs7J0yY8OGHH5INCeCtcNFtAF44e/bs6dOnV65cecv9Vqt1yZIlW7ZsIZIKwBdg1ygAL0ycOLG2tnb47/Ly8rfeestqtVIU1draGhMTQzQagJdDEQLwgkKhMBqNZrOZoqh9+/bV19dfuHCBoqja2tqkpCTS6QC8GYoQgC8SEhKamprMZrNWq125cmVJSQmFIgRwPRQhAF8kJydXV1eXlZWlp6dPmzatvLycZVkUIYCroQgB+GK4CEtKSvLy8hiGSU1NPX36tMlk8vPzIx0NwJuhCAH4IiYmprGxsaKiIjMzk6KoWbNmFRQUJCQkkM4F4OVwHiEAXwiFwqCgoLCwMIZhKIpKS0vr6enBflEAV8N5hAAA4NOwaxQAAHwaihAAAHwaihAAAHwaihAAAHwaihAAAHwaihAAAHza/wPrs71k3U2IawAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd0BTV9sA8JNJSCDI3kuWTBVQFIsVLWKttVpFfFUUv1q0rVrrXnW0ttW6qqKv1SLWDS5sAaGtu+JARAVBEAQB2Ziwssf3x+2bl5eRBEhyA3l+f5Gbk3OfJCRP7r3nnIcglUoRAAAAoKuIeAcAAAAA4AkSIQBAvRoaGsRisUq6qqurU0k/ALQFiRCAbuNyuWFhYUeOHME3jGfPnoWHh4f9x759+/CNp1MsFmvhwoVFRUVtNxYVFU2YMCEsLGzixInKdyWVSmNiYh48eKDqGIGuI+MdAOj/bt269d1332FXo48dO2Zvb9+ugUAgmD17NpvNRghNnz594cKFOETZB/n5+Z09e1YikSCELly4wOfz8Y6oE/Hx8TY2Nh4eHm03urq6nj179s2bN6tXr1a+KwKBMHny5NjYWH9/fwqFoupIge6CI0KgdqNHj8YOnsLCwi5cuNCxwbVr10xNTZ2dnVetWvXJJ59oPMBuI5PJs2bNGjp0KN6BIBMTEzMzMzMzMzqdjncsnSgpKUlLS4uOju54l7GxsYmJSXc7nD59elNTU0pKigqCA+A/IBECtSMQCNhXXmRk5PXr11ksVrsGFy9ejIiIoFAoRkZGZHIfOEtBoVDmz58/bNgwvAPRdufOnXNwcPD391dVh4aGhmFhYadPnxaJRKrqEwBIhEBzrK2tg4KCrly50nZjZmZma2vru+++i1dUQE3YbPadO3fGjx+v2m7Hjx/PZrPv3bun2m6BLusDv75BfxIREbFu3bqZM2fSaDRsy4ULF6ZOndrpgSCfz8/Kynr06FF+fn5NTY1UKrW1tR0/fvyECROoVGq7xk1NTbNnz+bxeAihMWPGbNiwASGUl5d35syZnJwcAwODiIiIKVOmtHtUUVHR+fPnCwsL6+rqLC0tQ0NDIyIiqqqqPv30U4QQg8E4f/687HJUVlbW+vXrsWtyCKFJkyZ9+eWXnT7NioqKmJgYoVAYHR09c+bM8+fPp6en19TUmJmZ+fn5zZ0718LCopfPVzMqKyvPnTtXVFRUVlZmYGDg5eU1ffp0Ly+vPXv2XL16FSE0c+bMrs5m3759WygUhoSEKLmvw4cPX7x4EfubQqHExcVZW1t3bObu7m5lZfXnn38q3zMA8kEiBBrl4eHh7Oycnp7+0UcfIYRKSkry8/M3bdrUaeOMjIxbt255e3uPHj3a1NRUIpGUlZUlJSXdv3//22+/JZFIbRszmczTp08LBILU1NTy8nKxWBwXF3fz5s3IyMiYmJjXr18fPnyYRCJ9+OGHsockJCScOnVqypQp4eHhpqamJSUl6enpt2/f/uKLL+h0elxcHI1GazsoIyAgQMnBKXZ2dmfPnt2/fz+Hw9m2bZuHh8eKFStMTEzYbHZycvLChQsPHjxoY2PTm+erAZcvXz527Nh7770XFRVla2tbW1ubk5Ozdu3aefPmIYSmTZs2ffp0Y2Pjrh6enZ1tbGzcaTLr1PTp0zMzMy0sLJYsWcJgMIyMjLpq6e3t/eDBA6lUSiAQuvukAOgIEiHQtBkzZsTGxn744YdEIvHixYvvv/8+g8HotGVoaGhoaGjbLY6OjsHBwdHR0fn5+T4+Pu3aM5lMhJCBgUFjY+OaNWsGDBjw888/GxoaIoQcHByCgoLarqP08OHDhISE2NhYR0dHWedjxoxJSEjYtWsXgUAwMzPrGJJsfAedTpc/StPIyIhGo6Wmpu7Zs8fZ2RnbaGNj4+XltXPnzmPHjm3cuLGXz1etsrKyjh8/vmvXLtmATwcHh8DAwIkTJ65evVokEoWHh3f6Esnk5eW5u7srubuSkpKvv/46JCRkwYIFClO+m5vbtWvXysrKZO8dAL0B1wiBpg0fPpxKpd69e5fFYt28eXPq1KndejiJRLK2tq6pqZHT5unTpyNHjty4cSOWBTFUKlVPT09288CBA4sXL+74TRoZGdnxWK3HJk+eLMuCMuPGjcvPz1eyB2Werzr89NNPn3/+ebtpDwghS0vLdevWKZzYLhaLWSzWgAEDlNlXRkbGypUr582bt3DhQmUOfLFuGxoalOkcAIXgiBBoGoFAiIiISExMLCoqGjFihJWVVVctxWLxrVu3/vzzz8rKyrq6Oj09PXNzcy8vr9raWvm7CAkJmTZtmpwG9fX19fX1XV1kCg0NLSgoUOa5KNTptT0DAwOhUNhxe4+fr8rV19fX1dW1OzyVGTRokIODg/weWltbpVKpMpM6zp07d+zYsQ0bNig/YArrtqmpScn2AMgHiRDgYNy4cfHx8RcuXNi9e3dXbVpbW1esWCGVSsePH+/m5oadk2xubq6srMzOzpbfv8JLR+Xl5VZWVl1Nylb4La8OvXm+Koe9PnJG6Cg8J4md7uZwOPKbCYXCu3fvTp069eeff3ZxcbGzs1MmPC6XixAyMDBQpjEACkEiBDigUCjLly+vqKgYNGhQV2327t3r4uKyfPnydufKPD0909PTexmAvb19dXW1UCjsNBdWVFT0sv8eUOvz7S7s9REIBF3lwvLycvm5kEQiMZnMxsZG+Tsik8m7d++mUqlMJnP58uU//vijk5OTwvCwbk1NTRW2BEAZcI0Q4CMoKEjO2UuxWJyZmTlnzpxOrxhhcyR6A1uN5c6dO53ee+PGjV72313qfr7dZWZmZm5ufvPmzU7vLSwsLC0tVdiJp6fnq1ev5LchEAhYrp09e3ZERMTKlSvbrUraqeLiYn19fVwO3EG/BIkQaCMCgUAkEjteG2tqavrmm29UcgFv6dKlsbGxr1+/brc9MTGxvLy89/13iwaeb3ctW7bs4MGDhYWF7bbX1tZu27ZN/nhRjK+vb21trfL1IiIiIubOnbt69eoXL17Ib/n8+XNfX1/NzycB/RWcGgVqhw0gRAixWCwqlWpoaNhu+jx2r0gkam5u5vP5enp6RCJx1qxZ33333bx583x8fPT09GprazMzM9PS0mbMmNHS0tLS0oINSpRdDhSLxdjoCQ6Hw+fz2y7kRqVSO87QGDZsWGRk5JIlS6ZOnerv74/NI7x69Wp9ff2qVas2b97crr1UKsWWBcfweDwej9d2L0ZGRkQisW1jPp/P5XIbGxvbTokTCASNjY0SiaRt/D14vt2KpwcCAgKio6NXrFgRHh4eFBRka2tbU1Pz7Nmzixcvzpo1q7KyUmEPoaGhcXFxd+/e7biOAUKoqampbfyYyZMnczic1atXb968eeDAgW2fr0xZWVlFRcXs2bN7/NQAaIcAFeqBuh08eDApKUl2Mzw8fOXKlbKb6enpu3btkt10d3c/ePAg9ndGRsalS5dev37N4XAsLCyGDx/+8ccfW1parl69Ghs/smzZsg8++ABrvG/fvuTk5E4D0NPTO3nyZKdTv7GVZQoKCurq6qysrMaOHRsREVFZWbls2bK2MSOErl69umfPHjlPMyoqau7cudjfly9fPnToEPY3kUjctm2bbGHSTZs2yZYHaxt/d59vt+LpsYqKioSEhJcvX5aXlzMYDG9v72nTpvn4+OzZs8fMzExh/+vXr2ez2bKXQqaoqGjx4sVisZhCoaSmpsq2379/f9OmTbIvpXavDyYuLi4lJeXcuXN4rbYD+h9IhAC0V1JS8tVXX7VLhKAtJRPh8+fPly1btm/fPi8vL5Xsl8fjRUVFffTRR3PmzFFJhwAguEYIQEcVFRXm5uZ4R9EfeHt7BwcHnzx5UlUd/vbbb2QyOSIiQlUdAoAgEQLQjkQiuXTpUnBwMN6B9BOLFi3Kzc0tLi7ufVdSqTQxMXHRokVtVwgCoPc0MViGx+MNGjQIloHQWkQi8ejRo91d6qzfaGpqEovFCCGRSFRaWnrmzBkikQhn3jrF4/Gwyex8Ph8bm8NkMuWP3rS2tj5w4IDyS2/LQSAQtm3bJmfuKQA9o4lrhGw228nJqaSkRN07Aj2zZs0aX1/fJUuW4B0IDkpKSj777DMsEZLJZEdHx9GjR0dGRsLQ/E7FxMS0+yDLKcMEQF+hoekTBAJBTrkWgC9ZaUAd5OzsnJaWhncUfcaRI0fwDgEA1YNrhAAAAHQaJEIAAAA6DRIhAAAAnQaJEAAAgE5TfSJks9l3795VebcAAACAOqh+1Oj9+/f379/fdv3ATh158mt5k+J1e1VookvYSNtATe6xtLTUxMSEyWSqqf+4uDgKhdL79SRlxGKxQCDQ19dXSW95eXmyhbVOnjz5xx9/bNmyxcXFpdPGlZWV+vr6MLRYhpv/qPneVYv/+xrvQABCCLW0tEAdYC2hjvdC9YlQyYmJVgzLBl77tefVyorRftEsDoezffv2vLw8Nzc39J9SODNmzPDz81PJHm/fvj1ixAj1JcLBgwe3K+PQe6qaV4otZi2r4RAVFSUSieS0Z7FYcXFxX38N3/v/IRZJBXy8gwD/gDWZtYc63gvcyjAF2w03o2u0wLTzgPYFtel0+jfffLNx48Zt27ZhW1paWrZv385kMpUpk427wECNHuB2y6lTp+TU3e3I29v78OHD5eXl9vb26osKAAA6gnqE/8PAwCA6OvrGjRvz58/HtnC53OPHj5eVlSGE9PT05s6dO3DgQFn7t2/fHjp06M2bN4aGhjQabfDgweHh4QYGBhwOZ8eOHaWlpY8ePZJVwouJiXF2dpY9trKy8tdff21tbRWJRHQ6fdasWa6urthdQqFwx44dJSUlixYtGjhw4JEjR9hstp6e3tq1a+l0OkLozp07qampHA7Hz8+v47oecmLutOfy8vK2gclRVlYWHx/P4/EoFIqtrW1UVNS8efOCg4OXLVvWtm5cSUlJXV2dr69vp51kZGRs3brVx8cnJibGw8NDtn3q1KmJiYkrVqxQJpJOSaTSh1VZd8rvv3xbIpKIDKkMXwuvMKd3HY0guQIAugSJsD2xWCwrZyoSiTZv3jxz5szPPvsMIcRisXbv3h0VFSX7+t67d29kZKSPjw9CiMPhrFq1KiAgwMDAgE6nb9269cSJEyNGjHB3d++4l8rKyr17965cudLS0hIhVF9fv3fv3ujoaOwkLYVC2bhx45UrV4qLi5OSkhYvXmxtbV1QUMDhcLBEGBISEhISUlxcfPPmzXY9y4+5054//fRT+ect28a8Zs0aKysrhNDTp0/37dvn6+v71VdftWt58+bNkSNHdtqJRCK5f//+okWLOi5tGhwcvHv37mXLlvVsebOs6qd7Mw8TCUQfc88xjqMoRHKriPOKVbr0z3W+Ft5fBn5qTldcVB0AoINg+sT/YLFY8fHx48aNw24mJyeHhYX5+/tjN42NjVevXt22poxUKsUyE0KITqevXbtWyTN7v/7666pVq7AsiBAyMzNbs2bN8ePH2zXLzs7euHEjtmCxh4eHmZnir3KFMXfsWV9fX5lV1k6cOLFixQosCyKEBg8ePHjw4E5blpSU2NnZddwuEol27tzp5eXV6QLfNBqNyWRWVVUpjKQdiVRy8HHctoy9Yx3fWTQ0+h27ICcje1tDa3djlwkDxy0P+kKfrPdJ6pcZbx52t2cAgC6AI0JUV1e3ceNGhBCBQCCTyQsWLJB9iefm5rY73GEymVQqVSAQYNWxly5deuTIER6PR6PR3Nzcxo0bp+TRTElJyf79+9tt7FiqZvr06d0dw6kw5h733NjY2C69DR8+/NGjRx1blpaW2tradtweGxtLIpHalqdvx9bWtqysrNMk2hWhWPj1nR9YvMYvAv6PTu7kGVGI5FDHEFfjgTvuH5jv968pbhOV7xwAoAsgESJzc3PZYJl2pFJp20tfGCKRiBUrQAhZWFhgSbSpqSk/P3/z5s0rV65U5nqbpaXl1q1bZedgVUhhzCqEVeTpiE6n8/mdjHicOnUqj8fbv39/x7OpGD6f360VwEUS8cbb3/PEgjk+M0gEeS+mPdM2ZvDcYzmnEUKQCwEAbcGpUXl8fHzu3bvXdktLSwuXy8WOpdhstux4iMlkBgUFzZ8//8aNG7LGBEKXVa7c3d3v37+v+Zh7w9XVtV3MXc0WdXBwqKio6Ljd0dFx4sSJpqamJ06c6PSBFRUVSg7bwex8cKBZ0BoxaLL8LIgx1h8w329W/LNzf1c8UH4XAIB+DxKhPJMmTUpPT3/69Cl2k81m79ixQ1aytaqq6ujRo/X19dhNLpd7/fr1tlVDnZycHj58KMuFOTk52dnZ2N+RkZFJSUnPnj2TNc7MzPz3v/+t7ph7Y9asWRcuXEhLS2tqaqqpqYmLi5NIJJ22dHV1lVN+cu7cuQ0NDSkpKe22NzQ06OnpKT+n/nz+b7l1L2Z4fkRUIgtiTGjGc7yn77i3v7SxXMmHAAD6PZ0+NcrhcHbu3FlQUICd3gwLC3v33XfbNqBQKFu3bo2Pjz9//jxCiEwmz5s3TzbJwcrKatq0abJcyOfzp0yZEhwcLHv4O++8U1hY+Pnnn5ubm5PJZHNz84iICOwuKpW6devWkydPXrhwAduRtbW17N68vLwzZ85UV1fTaLQrV64ghAIDA6dMmYLdW1VVdfDgQYRQa2trQ0MDlnLeeeedCRMmKIy5056VfLn09fV/+OGH1NTUgwcPMpnMgIAAf3//7du3d2w5YcKEL774YsGCBRQKBdty+vTpmzdvjh49Grvp4OBw4MCBe/fuLV++3MTEBNuYlpb20UcfKRlMXn3hiecJi4bOp5Koilu3YWtoPX7g2K9v/3D0/b00sl63HgsA6JdUX6H+6tWrBw4caHvSjM1mOzs7s1ists3e8lgvWRqsWS9FQTb+mttdn7J06VI3N7clS5aIxWI+ny8bB6uQQCDYvn37pk2bOt516NAhNze3sLAwJbsSiUSLFi3at2+fbNqlHDwRb17KkvecRnubDVLYuFMXXvxma2i9YvjnPXu4BnBz7zf9nWy5qPOr10DDmpubDQ0N8Y4CIKSe9wK3I0ITmnGQNSws2W/NmDFj9+7dyifCe/fujRs3TpksiBA69Dje3tC2x1kQITTJLTz20dExDqMCrDqfAQIA0B1wjRD0hEAg+P7777ds2ZKbm7t///6O5xXMzMy2bt2qfIdBQUGRkZHKtMyte3Gr/N5El3HdCLcDGklvstuEH+8f4IsFvekHANAP6PQ1QnW7e/ducnJyVwuhyaGwVgPuqFTq+vXrFbbpVofKNBNLxTsfHJjo8h6N3I1ZFp1yN3F9UpN7Iifh0yFRvewKANCn6XQibFd9AhMZGTlkyBCV9D9q1KhRo0Z1uhCafAprNeisy4UpemQ9X3NPlfQ2wWVc7KNfPnANszGwUkmHAIC+SKcTYcfqE62trdu3bzcyMurWbDagGU2C5hM5Cf/np4KpIBgm1XCU3fADWXE/vLtBVX0CAPocnU6EHTEYjHnz5t24cUOWCOXUiEAIXb9+/ebNmxKJpKmpacCAAYsXL7awsFBtSF3VatBBvz4752PuacFQ5drZo+yCfso8/Kz2uZ+Ftwq7BQD0IZAI26uqqpItwiK/RgRCyNHRcd26dVj70tLSQ4cObdmyRYXByKnVoGuqW2vTS24sDVyo2m7JRPJ7zu8efBz/84Rdqu0ZANBXKJUIs7KyUlJSKBSKQCCYNGlSQEBA73csKMkTNzb0vh/lUZ08SQPkHUywWKyMjIzr16/LhjtiNSJkB3lYjYgdO3Z899132Ja2g1mcnJxUe2EPq9UwePBgbKa8jjv29HSQTaABVdk5jsrzM/f5u+xBxpuHwbbDVd45AED7KU6EEokkJydn3bp1FApFLBbv3Llz4MCByq+D1ZWWjBRRdVkvO+kWgzFT6QFjO26vq6tbt24dQqikpCQoKOiHH36QjWBUWCOitrY2LS2toqJCKpXa29u3WzSglxTWatAdZU1v7lVmfjVMLfPfiQTCOKfRR56cGmk7jIDar1cOAOj3FCdCIpEYHR2N/U0ikQIDA0tKSnqfCE1mr+plD6oiqz7B5XL37t2bnZ0dFBSE3SW/RkRBQUF8fPy//vWvadOmIYRqa2sfP36swsAU1mrQHcefnQ22Ga6+FdEGmbndLL97p/z+aPvO6wkDAPqx7k2ol0gkmZmZbdeV7k/09fVXrVqVmJhYXV2NbZFfI+LSpUsbNmwYPHgwg8FgMBjOzs56eqr8plZYq0FHVDRXZlY/DrJVdk3UHiAgQqjDqGPPzkiRilccBABoP2UToVgsjo2NXbFixZQpU5Rfi7LPoVAoS5culVWBkF8jgkwml5f/U8Sgqalp165dlZWVKg+pq1oNuuNEbmKQdaC6F8j2MHUTiUX33nRSZxgA0L8pO2qURCJ98sknOTk5t27dcnBwkLMmZG1tbXZ2Nna2EP3vmVVt07b6xMcff+zv748QcnR0tLKy2rp16/r16+XXiIiJidm/f//Ro0exI8Lo6Oja2tpNmzYtW7bMxMREfo0I+ZSp1aBaAoGAw+Fgi26ro/8eq+M2/F1+f/GQBRoIbIRVwPFnZ4YYa8U8CgGfLxaLORwO3oEAhBDicrkkEgnvKABC3X8vaDSawhLo3a4+UVRUlJGRMXfu3K4aXLp06dtvv127dq1si6+v76hRo1Q7kASo0NKlS11cXBYvXtzd6hMacODx0bc89ninUA3sSyqV7s86smHkV77mXhrYnXy85w+a76aYx3yDdyAAIag+oU26+14QiUQCQcEguG7PI7S2tmaz2XIa6OvrW1tbt11AWX57oA2IRCL2I4tEImnPL98mQfOfpbeWBH6q8AedqoTYjziTf/lHK1/N7E4O7NOrPe+FjtOqz4WOU8d7ofj7JS8v78WLF9jfEonk1KlToaGa+HkOwJWCq56m7kyq5n6JD7H0zW8oeA316wHQJYqPCB0dHS9cuHDp0iUymSwSicaOHevri//vZdDvCSWiS4XJc32Vqs2kKmQiOcg64Fz+5TUjlmpyvwAAHClOhNjymxoIBYC2rpfetmCYWzJUvHarQkG2/j89/HnR0GgjPaaGdw0AwAUU5gVaKuFF0kjbYZrfL4PC8DYfdKXwquZ3DQDABSRCoI2e1T5vFXDcTAbisveRtoGXX6aKJGJc9g4A0DBIhEAbJb74Lcg2AK+VPy0ZFmb6JrfK7uKydwCAhmmoDBOPx9uxY4dm9gW6KysrS1ZYShvUcuqza56tClqMYwzDrQMS86+McxqNYwwAAM3QRCJkMplr1qzpakK9RCKRSCRkMlRGxE1ISIhWTYlJepk6xNKHSqLiGIOXmXvqq78K3xa7m7gobg0A6Ms0kX6IRKKccrVCoVAsFtNoNA1EArSfUCxMfvnHgsFz8A2DQCAE2Qy9UPD7+pHL8I0EAKBucI0QaJdb5RnWBpZmdFO8A0GBVkP+Lr/fJGjGOxAAgHpBIgTa5WLB74FWQ/GOAiGE6BT6IFO3q8V/4R0IAEC9IBECLVLMLq1uqfUyc8c7kH8Mt/FPenkVihQC0L9BIgRa5HJBSoD1EIVLxWuMA9OOiEhZVU/xDgQAoEaQCIG24Ai511/fCbQegncg/yPQevClwmS8owAAqBEkQqAt/iq95WLsrMlaE8oYYuH7pCa3nvsW70AAAOoCiRBoi8uFKcOstOtwECGkR6b6WXgnv/wD70AAAOoCiRBohfyGwmZBy0BjZ7wD6USg9ZDfi/+QSCV4BwIAUAtIhEArJBWmBloPIWrNMJm2bAysDCj0h1WP8Q4EAKAWkAgB/lqFnDvl9/0tte68qEyA1eDLhal4RwEAUAtIhAB/f7y64WYy0IBKxzuQLvlZeOXW5tdzGvAOBACgepAIAf6uvEwL0L5hMm1RSVQ/S+/koj/xDgQAoHqQCAHO8hsKW4StLsZOeAeiQKDVYBgyA0C/BIkQ4OxK4dVA68F41eBVnjUMmQGgn4JECPDUKuTcLr/nbzkY70CUEmA1+ErhVbyjAACoGCRCgKdrpbfdjAcaUBl4B6IUPwuvZ7V5sMoMAP2MUoV5i4qK4uPjGQwGkUiMioqytbVVd1hARyS9TH3XfhTeUSiLSqL6WnilFP0xz3cm3rEAAFRG8RFhU1NTXFzc5s2b169fv2TJkl9++UUkEmkgMtDvFTQUNfGbXbRyNZmuBFoP+b3oD4kUCjMB0H8oToS1tbVLliyhUqkIIQaDMWTIkOLiYvUHBvq/pJepAVaDtXM1ma7YGFjpU2iPqrLxDgQAoDKKE6Grq6uNjY3sZnl5uYGBgTpDAjqhVci5VZbhb9U3hsm0FWg1+PJLWGUGgP6je4NlcnJyKBQKXCMEvfdX6S0344GG1L73o2qwhc+zmucwZAaAfkOpwTKYly9fXr16dcWKFfKblZeX3717d+jQobItX3/9dVhYWFfthUKhWCwWCoXKRwLURCwWCwQCsVisgX1dyk9+x3YEl8vVwL5UzsvE/VJe8r/cp6pvF0IuVyQSNTc3q28XQHktLS14hwD+0d33gk6nk0gk+W2UTYSFhYWJiYmrV69W2KOdnZ2fn99PP/2E3SQQCN7e3np6el21xxIhjUZTMhKgPmKxmM/n0+lqX/PzRcPLVjHH09Kjb10glAmyDzybd3mBf5T64ufq6wvJZEND7SpTrMvgvdAeKn8vlEqEBQUFZ8+eXbduHTZkRj4CgWBoaBgQENDr2EC/dbkwRWuLLinDxsCKQdF/WJU1wiYQ71gAAL2l+Brhixcvzp8/v3btWuyorra2try8XP2BgX6rRdCq5UWXlBFoNeRSAQyZAaA/UHxEeOrUKTqdfuDAAexmfX39+++/b29vr+bAQL+V9uq6h4mLNhddUoafhXd6yfVaTr0F3QzvWAAAvaI4EW7btk0DcQDdcaXo6gTnULyj6C0qiTLEwuf3orRP/ObgHQsAoFdgrVGgUU9rnwvFQqcBjngHogLDrP2TX/4hkmhikC0AQH0gEQKNulyYEmg9VPuLLinDgmFmQjf5u+I+3oEAAHoFEiHQHBaPnVmZ7W/lh3cgKjPcaujFgt/xjgIA0CuQCIHm/P4y3WkHWWQAACAASURBVMfck0bqclJpn+NlPqis8U1pI4yjBqAPg0QINEQsFV95eXW4jT/egagSiUAMtB56qSAZ70AAAD0HiRBoyN/lD4xoRtYGlngHomLDbIZcK73dKuTgHQgAoIcgEQINOV/w23DroYrb9TVMqqGriXPaq+t4BwIA6CFIhEATXrFflzdVept74h2IWoywCbhQ8JsUQbVeAPokSIRAE86/uBJkM5RE6J//b45GDiREelj5GO9AAAA90T+/mIBWaeI33y67N6w/nheVGWEbmPjiCt5RAAB6AhIhULsrhVe9zDwYFAbegajRYAuvl29fvYZ5FAD0QZAIgXoJJaJLL1NG2g3DOxD1IhHJw6yHwkEhAH0RJEKgXjde3zHTN7ViWOAdiNoF2QTefH23kd+EdyAAgO6BRAjU60zepVH9/XAQY0Cle1sMulyYgncgAIDugUQI1Cir+ilfzHczccE7EA0Jthl+qSBFIBbgHQgAoBsgEQI1OvX8wijboP5Ra0IZFgwze6bN1eJreAcCAOgGSIRAXV6yXpWyX/tZeuMdiEa9Yxd0Nv+yRCrBOxAAgLIgEQJ1OZl7fqTtMDKBhHcgGuVo5KBPpt0qy8A7EACAsiARArUob3rzuPppP6s1oaQQ+5EnchNgxTUA+gpIhEAtTj0/P9I2kEqi4h0IDjxMXQRi0f03WXgHAgBQCiRCoHrVrbV/VzwcYasTsyY6IiDCaIcR8Tmn8Q4EAKAUSIRA9U7kJAy3HqpPpuEdCG68zTyb+C0Pq2AZbgD6AGUToUgkysnJUWsooH+oaa29VZ4xyi4I70DwRCQQxjiM+uXpKbwDAQAopjgRtra27t69e/fu3XFxcRoICPR18c/OBlkH0Cn6eAeCMx9zr2ZBy/3KR3gHAgBQQHEiZDAYX3zxxZo1a2xtbTUQEOjTKpor/654+I69Th8OYogEwljHkCNPTsLwUQC0nFKnRmk03b3YA7rllycnR9kOo+nw1cG2vMw8RBIRzCkEQMvBYBmgMoVvi7Nrcvt9xSXlERDhPad3f35yQiQR4x0LAKBLZJX3WFZWlpaWRiD8s7wkkUg8ffr0Bx980FV7oVAoFouFQqHKIwHdJRaLBQKBWNzDb+39mUdG2QwXC8RcxFVtYH2XLc2KTqJdfP7bRKf3uvVAIZcrEomam5vVFBjolpaWFrxDAP/o7ntBp9NJJAXrW6k+ETo4OEyYMCE1NVXJ9lgihLOv2kAsFvP5fDqd3oPH3nvzqI73dqb3x0QCnGb4HxNd3zuRmzhpUDiD0o0XlquvLySTDQ0N1RcY6BZ4L7SHyt8L+M4CKiCSiGMfx4U7j4Us2JG1gZW7scuJnAS8AwEAdA6+toAKXCpMNqDSB5m64h2IlnrP+d2U4j8rmivxDgQA0AnFp0Y5HM7hw4fFYnFubu7OnTsRQhEREU5OTmoPDfQRLB77ZE7igiFReAeivQypBiH2I/Y/OvJj6Ba8YwEAtKc4EdLp9OXLl2sgFNBHxWbF+Vv5mdNN8Q5Eq420G34oK+5O+f0Q+xF4xwIA+B9wahT0yuPqZ49rckId38E7EG1HJpA+dB2/79HPXBEP71gAAP8DEiHoOb5Y8OOD2Emu43Wz3FJ3OQ9wcjJy/Dn7BN6BAAD+ByRC0HNxT09ZGZh7mrrhHUifMcFl7I2yv3Pq8vEOBADwX5AIQQ/l1r1If3V9kst4vAPpS+hk/Uku47/P2MsT8fGOBQDwD0iEoCe4It63Gbs/dJtA784kcYAQ8jb3sDa0OvgYarkAoC0gEYKe2Pvw345Gdl5mHngH0idNch2f8eZhxpuHeAcCAEAIEiHogfRX15/W5U0c2L3FM4EMjaQXMeij7ff213Lq8Y4FAACJEHRTCft1bFZcpOcUGCnaGw5Mu2Db4V/f/kEoEeEdCwC6DhIh6IZmQcv6W9+97/KeFcMC71j6vBCHEVQiZe/Df+MdCAC6DhIhUJZIIt50Z7urycAhlj54x9IfEBDhY48Ps2tyLrz4He9YANBpkAiBsnY9iOWJeBOcx+IdSP+hR6bO8ZlxMjcx400m3rEAoLsgEQKl/PLk1POGgkjPqbKSy0AljGlGs32m/3DvJ5hlDwBeIBECxc7kXfzz9a25PjNggIw62BnaRHhM3nDru4KGIrxjAUAXQSIECpzJu5hUmDrf718MCgPvWPotV5OBU9zfX3VjS35DId6xAKBzIBGCLkmR9MiTE1depv3f4NlMqiHe4fRzg0zdp7h/sObG1uyaHLxjAUC3QCIEnROKhdvu7rlb8eDTwXMgC2rGIFPXGV5TN93Znv7qBt6xAKBDFBfmBTqogcvacHsbhUid7zebSqLgHY4OGWjk+InfnKNPTrSSXYKlUrzDAUAnwBEhaO9R1ZMFqV/aM+1mek2FLKh5FgyzRf7zX7Ff57Ne1sEabACoHyRC8F88Ee/g07jv7+2dPujDUId3CAhmSuCDTtEPdQzRI1E/Sf3yj5KbeIcDQD8HiRD84075/XkpiytbahYHLHAe4IR3OLqOiAgmNOMon8hfc84uv7apvOkN3hEB0G/BNUKA8uoLDmXHN3DfTnZ7355ho0fWwzsi8A9bQ+tF/v93/83Dz9JXj3MaPc9nhom+Md5BAdDfQCLUXVIkfVz97PTzCyWN5WMcgv/l+bFUKhUKhXjHBf4HiUAcZTdiqKXfzbK7Ub9//p7zmEjPj2wMrPCOC4D+Q6lEyOPxjhw5wuFwpFLpJ598YmEBlQf6NhaP/Ufpzd9epkmkkmCbYVM8PiATSAghKQxT1FZ0Cn2iS1iI/ch7bzJjri73NHP70HXCSJtACoxmAqDXlEqEP//88+TJk52dnZuamn788cdt27apOyygDm+aq+5XZt0qu1vEKvEyc5/oEuZs5IB3UKAbDKkG451DQx1DcmrzTuQm7Li3P8g2YLT9yECrIQZUWPcHgB5SnAi5XG5ra6uzszNCiMlk+vj45Obm+vhAIZ4+QCgWvmp8XdBQ9LQu72lNrlAsdDdx8TX3njZoMoUIZ8X7KgqR7G/l52/l1yxoyasvSMy/8sO9fQ5M28Hm3t7mgzxMXa0NLGHELwDKU/xtWFVV5erqKrvp6elZVlamwkRYXV3d3Nzs5eWlqg51E5vfyOKyazh1Na11VS01ZU0Vr5sqalvrLOjm1oZWdobWc7wjLBhm8jtpbm5uaGgYOHCgZmIGcgiEAsThym9jSDUIsgkIsgkQScVvmt6UNpZfKkyuaK7mCjn2TFt7pq0D09aaYWlpYGFKMzanm9LINM0E38/weLwnT56EhITgHQhAIpHo0aNHoaGhqu1WcSJks9nGxv8dqGZqapqbmyunvVgsbmxszMrKkm3x8PAwMDDoqn3CxYT86sLVq1crF3Cf1CJoVaaZWCLmiP773ccX8QUSIUKILxIIJAKhWMQV8fhiPlfEa+G3cEW8VmFrs7C1md/SLGhhUOiGeoYD9JhMqqERjeloZD/Meqgp3RS7+KekR48eZWdnr1y5srtPEKjc69dljMo3So4QJRNIjkYOjv850c0T8Wo59XWt9WWNb3Jq81n8xhZ+C5vfJEESJtWQSTUwoDAYVDqdQtcn0+gUOoVINtQzQAjRyfokIqntHxhDapef37aIBCKdot/NJ9oHPHv2bO/evfHe8XgHAlBpaemK9ctz7z1TbbeqPz9WXV39/PnzBQsWYDeJROKWLVvGjBnTZXtJfYVTw48ZB1QeifaQc/1G2maEColA0v/nN7tUipAeiUohkiVSqR6ZQiZQSAQijazHIOib6BsxDAfqkan6JH0GRd+QwjCgGJKIKpgSyuTSSfVSR5pt77sCvcQW6Uv5PX8vPAxcOm7kiwXNgpZWUStHyG0VcXkinkAi4Ih4UrGkkl1NJBC5Iq5EKiUQEFfME0skBIQQIiCEWoT//SVH7LogpUQq4QgVHMX2Ra2traR3Dfr3d1Rfwefz9YOMmpublX8InU4nkRQcDyhOhEZGRkVF/y2T9vbt2wEDBshpb2trGxwcnJqaqmSUNsiC/7z1wKJ9SrYH6mOkx6RKKLamNngHAlAxldEiJcB7oQ0yMjKW710edx++o/CXn58/dcNUw59UXAZA8WGEtbV1cXFx2zgcHGCoIQAAgH5C8REhnU7X19d//fq1o6NjS0tLTk7OjBkz5LSvq6vLzc1duHChkhHk5OQ0NTUp3x6oT2FhYUVFBbwX2oBe/9pNxIL3QhvU1NSUlpbCe6EN2Gx2TU1Nt96LkJCQOXPmyG9DUGYONZfLPXr0KJ/Pl0gk8+bNs7KSt6pFTU3Nv//9bxsbZU/pNDY28vl8mKSvDVpbW5uamqytrfEOBCAej1dXV2dvb493IAAJhcI3b944OTnhHQhAEomktLS0WyPbhw0bNnToUPltlEqEAAAAQH8F1ScAAADoNEiEAAAAdBokQgAAADpN7QtO9qxyBdS7UIeevaqbNm2i0+nY32ZmZrKlEkAviUSi/Px8X19f5R8Cnws16cF7AZ8LdSgqKoqPj2cwGEQiMSoqytZWqQUlVPC5kKrZTz/99OrVK6lU2tjYuGHDBrU+CsjXs1f1hx9+UGdQuqilpWXXrl3bt2//8ssvu/VA+FyoXI/fC/hcqFxjY+PatWv5fL5UKm1padmyZYtQKFTmgb3/XKj31GinlSvU9CggH7yq2oPBYHzxxRdr1qxR8gcvBt5BdejZewHUoba2dsmSJVQqFSHEYDCGDBnSdi2Xrqjkc6HeRNhp5Qo1PQrI1+NXVSwWX79+PTY29sSJE3V1dWoLULfQaN0uBAGfCzXpwXuB4HOhBq6urm0noJeXl8up1iCjks+FehNhx8oVLBZLTY8C8vX4VR0yZAiNRps/f35oaOiBAwfgvcALfC60Cnwu1ConJ4dCoShzmK6SzwWMGgUKfPDBB8HBwQwGw97efv78+SkpKXhHBAD+4HOhPi9fvrx69aomxx+pNxEaGRm1Tc4KK1f05lFAPpW8qg4ODlVVVSqNCygLPhdaCz4XKlRYWJiQkLBs2TKFtZMwKvlcqDcR9qxyBdS7UAeVvKqVlZUwZB8v8LnQWvC5UJWCgoIzZ86sWrUKGzKjDJV8LtSbCGWVKxBCWOUKHx+ftg0yMzM//vjjhISEbj0K9EDP3ouMjAxZaUmRSHTq1Knx48drLGadBZ8L7QGfC4158eLF+fPn165dq6enhxCqra0tLy9v20B9nwu1T6hfuHChrHLF4sWLCV2Xt+79o4B8PXhVR44cmZKSsnXrVhqNJhQKP/zwQ6hN0XscDufw4cNisTg3N3fnzp0IoYiICGWKG8DnQuV69l7A50IdTp06RafTDxw4gN2sr69///33lSnA0vvPBVSfAAAAoNNg1CgAAACdBokQAACAToNECAAAQKdBIgQAAKDTIBECAADQaZAIAQAA6DRIhAAAAHSa2ifUAwCUkZCQ8PvvvwuFwnYLZwAA1A2OCAHQCpGRkadOnaJQKHgHAoDOgUQIAABAp0EiBAAAoNMgEQKgjR48eDBlypSJEydGRUXl5ubiHQ4A/RkMlgFAGzEYDDMzs1WrVnl4eOAdCwD9HCRCALTOrVu3EhISvvvuO0tLS7xjAaD/g0QIgBaRSqXnz5+/du3a7t27GQwG3uEAoBPgGiEAWoTFYmG1th8/fox3LADoCjgiBECLDBgwYOXKlSwWa82aNSQSKTg4GO+IAOj/4IgQAC1CJBIRQsbGxtu3bz9+/HhGRgbeEQHQ/0EiBEAbmZiYfP/998eOHXvw4AHesQDQz0EiBEArJCYmzps3TygUyrYUFxc3NjZu3rw5Ojr62bNnOMYGQP9GkEqleMcAAAAA4AaOCAEAAOg0SIQAAAB0GiRCAAAAOg0SIQAAAJ0GiRAAAIBOg0QIAABAp0EiBAAAoNMgEQIAANBpkAgBAOrV0NAgFotV0lVdXZ1K+gGgLUiEAHQbl8sNCws7cuQIvmE8e/YsPDw87D/27duHbzydYrFYCxcuLCoq6n1XUqk0JiYGFl8FKgdlmIDa3bp167vvvsMW8zt27Ji9vX27BgKBYPbs2Ww2GyE0ffr0hQsX4hBlH+Tn53f27FmJRIIQunDhAp/PxzuiTsTHx9vY2Hh4ePS+KwKBMHny5NjYWH9/fwqF0vsOAcDAESFQu9GjR2MHT2FhYRcuXOjY4Nq1a6amps7OzqtWrfrkk080HmC3kcnkWbNmDR06FO9AkImJiZmZmZmZGZ1OxzuWTpSUlKSlpUVHR6uqw+nTpzc1NaWkpKiqQwAQJEKgAQQCwcTEBCEUGRl5/fp1FovVrsHFixcjIiIoFIqRkRGZ3AfOUlAolPnz5w8bNgzvQLTduXPnHBwc/P39VdWhoaFhWFjY6dOnRSKRqvoEABIh0Bxra+ugoKArV6603ZiZmdna2vruu+/iFRVQEzabfefOnfHjx6u22/Hjx7PZ7Hv37qm2W6DL+sCvb9CfRERErFu3bubMmTQaDdty4cKFqVOndnogyOfzs7KyHj16lJ+fX1NTI5VKbW1tx48fP2HCBCqV2q5xU1PT7NmzeTweQmjMmDEbNmxACOXl5Z05cyYnJ8fAwCAiImLKlCntHlVUVHT+/PnCwsK6ujpLS8vQ0NCIiIiqqqpPP/0UIcRgMM6fPy+7HJWVlbV+/XrsmhxCaNKkSV9++WWnT7OioiImJkYoFEZHR8+cOfP8+fPp6ek1NTVmZmZ+fn5z5861sLDo5fPVjMrKynPnzhUVFZWVlRkYGHh5eU2fPt3Ly2vPnj1Xr15FCM2cObOrs9m3b98WCoUhISHttrNYrDlz5ggEAoQQhUI5fvx421dDIBDMmDGjtbUVIUQikQ4cOODm5tb24e7u7lZWVn/++WfHngHoGUiEQKM8PDycnZ3T09M/+ugjhFBJSUl+fv6mTZs6bZyRkXHr1i1vb+/Ro0ebmppKJJKysrKkpKT79+9/++23JBKpbWMmk3n69GmBQJCamlpeXi4Wi+Pi4m7evBkZGRkTE/P69evDhw+TSKQPP/xQ9pCEhIRTp05NmTIlPDzc1NS0pKQkPT399u3bX3zxBZ1Oj4uLo9FobQdlBAQEKDk4xc7O7uzZs/v37+dwONu2bfPw8FixYoWJiQmbzU5OTl64cOHBgwdtbGx683w14PLly8eOHXvvvfeioqJsbW1ra2tzcnLWrl07b948hNC0adOmT59ubGzc1cOzs7ONjY2tra3bbTc2Nj579uxnn322YsUKFxcXIyOjtvdSqdRTp06VlJSsXr365MmTZmZmHXv29vZ+8OCBVColEAiqeKJA10EiBJo2Y8aM2NjYDz/8kEgkXrx48f3332cwGJ22DA0NDQ0NbbvF0dExODg4Ojo6Pz/fx8enXXsmk4kQMjAwaGxsXLNmzYABA37++WdDQ0OEkIODQ1BQUNsy1A8fPkxISIiNjXV0dJR1PmbMmISEhF27dhEIhE6/grGLnQghOp0uf5SmkZERjUZLTU3ds2ePs7MzttHGxsbLy2vnzp3Hjh3buHFjL5+vWmVlZR0/fnzXrl2yAZ8ODg6BgYETJ05cvXq1SCQKDw/v9CWSycvLc3d37/QuJpPp7e1dVVUlu3xYVVUllUqxHwcGBgZ1dXVubm5d9e/m5nbt2rWysjLZewdAb8A1QqBpw4cPp1Kpd+/eZbFYN2/enDp1arceTiKRrK2ta2pq5LR5+vTpyJEjN27ciGVBDJVK1dPTk908cODA4sWLO36TRkZGdjxW67HJkyfLsqDMuHHj8vPzlexBmeerDj/99NPnn3/ecdqDpaXlunXrFE5sF4vFLBZrwIABXTXw8vJ6/vw59rdUKl2+fPnixYtlQ2Dy8vK8vb27eizWbUNDgzJPBACF4IgQaBqBQIiIiEhMTCwqKhoxYoSVlVVXLcVi8a1bt/7888/Kysq6ujo9PT1zc3MvL6/a2lr5uwgJCZk2bZqcBvX19fX19V1dZAoNDS0oKFDmuSjU6bU9AwMDoVDYcXuPn6/K1dfX19XVtTs8lRk0aJCDg4P8HlpbW6VSqZxJHT4+PpcvX8b+zsnJ4fP5xsbGDx8+DA4ORgjl5+fPnDmzq8di3TY1NSl8IgAoAxIhwMG4cePi4+MvXLiwe/furtq0trauWLFCKpWOHz/ezc0NOyfZ3NxcWVmZnZ0tv3+Fl47Ky8utrKy6mpSt8FteHXrzfFUOe33kjNBReE4SO93N4XC6auDs7Pz27VsWi2VsbHzjxo2QkBBra+tr164FBwcLBILi4mIvL6+uHsvlchFCBgYGip8JAEqARAhwQKFQli9fXlFRMWjQoK7a7N2718XFZfny5e0GiXh6eqanp/cyAHt7++rqaqFQ2GkurKio6GX/PaDW59td2OsjEAi6yoXl5eXycyGJRGIymY2NjXIaeHp6Pn/+fOTIkbdv3960aZONjc2pU6daW1tLS0vNzMxMTU27eizWrZwGAHQLXCME+AgKCpJz9lIsFmdmZs6ZM6fToZLYHInewFZjuXPnTqf33rhxo5f9d5e6n293mZmZmZub37x5s9N7CwsLS0tLFXbi6en56tUrOQ28vb2fP3+elZVFoVB8fX3Nzc0HDRp0586d/Px8ORcIEULFxcX6+vq4HLiDfgkSIdBGBAKBSCR2vDbW1NT0zTffqOQC3tKlS2NjY1+/ft1ue2JiYnl5ee/77xYNPN/uWrZs2cGDBwsLC9ttr62t3bZtm/zxohhfX9/a2lo5w2qwRHjjxo2xY8cSiUSE0HvvvXft2rW8vDw550URQs+fP/f19dX8fBLQX8GpUaB22ABChBCLxaJSqYaGhu2mz2P3ikSi5uZmPp+vp6dHJBJnzZr13XffzZs3z8fHR09Pr7a2NjMzMy0tbcaMGS0tLS0tLdigRNnlQLFYjI2e4HA4fD6/7UJuVCq14wyNYcOGRUZGLlmyZOrUqf7+/tg8wqtXr9bX169atWrz5s3t2kulUmxZcAyPx+PxeG33YmRkhH2byxrz+Xwul9vY2Nh2qpxAIGhsbJRIJG3j78Hz7VY8PRAQEBAdHb1ixYrw8PCgoCBbW9uamppnz55dvHhx1qxZlZWVCnsIDQ2Ni4u7e/dux3UMMJ6enkVFRaWlpXv27MG2hISExMbGUiiUWbNmddVtWVlZRUXF7Nmze/a8AOiI0HZmFQDqcPDgwaSkJNnN8PDwlStXym6mp6fv2rVLdtPd3f3gwYPY3xkZGZcuXXr9+jWHw7GwsBg+fPjHH39saWm5evVqbPzIsmXLPvjgA6zxvn37kpOTOw1AT0/v5MmTnU79xlaWKSgoqKurs7KyGjt2bERERGVl5bJly9rGjBC6evWq7Pu6U1FRUXPnzsX+vnz58qFDh7C/iUTitm3bZAuTbtq0SbY8WNv4u/t8uxVPj1VUVCQkJLx8+bK8vJzBYHh7e0+bNs3Hx2fPnj1mZmYK+1+/fj2bzZa9FB1h6+/Ex8fLtnz77bcPHz5MSkrq6oAvLi4uJSXl3LlzeK22A/ofSIQAtFdSUvLVV1+1S4SgLSUT4fPnz5ctW7Zv3z75pzqVx+PxoqKiPvroozlz5qikQwAQXCMEoKOKigpzc3O8o+gPvL29g4ODT548qaoOf/vtNzKZHBERoaoOAUCQCAFoRyKRXLp0CZvWDXpv0aJFubm5xcXFve9KKpUmJiYuWrSo7QpBAPSeJgbL8Hi8QYMGwTIQfcXHH3/8yy+/4B2F5jQ1NYnFYoSQSCQqLS09c+YMkUiEM2+d4vF42GR2Pp+Pjc1hMpnyR29aW1sfOHCg49LbPUAgELZt2yZn7ikAPaOJa4RsNtvJyamkpETdOwK99/fff+/du/f69et4B6IhJSUln332GZYIyWSyo6Pj6NGjIyMjYWh+p2JiYtp9kOWUYQKgr9DQ9AkCgSCnXAvQHrq2bJWzs3NaWhreUfQZR44cwTsEAFQPrhECAADQaZAIAQAA6DRIhAAAAHQaJEIAAAA6TanBMps2bZIV2DQzM1uwYIGcxmw2+/nz56NGjVJBdAAAAICaKZUI6XT62rVrlezx/v37+/fvT01Nld/syJNfy5sUr9urQhNdwkbaBmpyj6WlpSYmJkwmU039x8XFUSiU3q8nqQw+n08ikdotli2fwhoCbVVWVurr6/fXocUtLS26NhxXVfivnrPSz1h99h3egfRJPB6PTCZ362Orm1T/Aik5MdGKYdnAYytupzpWjPaLZnE4nO3bt+fl5bm5uaH/lMKZMWOGn5+fSvZ4+/btESNGqC8RDh48WGP/4lKptFtTTrHFrDvWcOgKi8WKi4v7+uuvexSdtoMVfXtOIkYCTZdj7DfgH09JSn2NisXi69ev5+XlMZnM999/XyXLMAbbDTeja7TAtPOA9gW16XT6N998s3Hjxm3btmFbWlpatm/fzmQynZycNBlbzwQGavQAt1tOnTolp+5uR97e3ocPHy4vL7e3t1dfVAAA0JFSiXDIkCE0Gm3+/Plv3749cODAV1991V9PYRkYGERHR9+4cWP+/PnYFi6Xe/z48bKyMoSQnp7e3LlzBw4cKGv/9u3bQ4cOvXnzxtDQkEajDR48ODw83MDAgMPh7Nixo7S09NGjR7JKeDExMc7OzrLHVlZW/vrrr62trSKRiE6nz5o1y9XVFbtLKBTu2LGjpKRk0aJFAwcOPHLkCJvN1tPTW7t2LXax9s6dO6mpqRwOx8/Pr+O6HnJiVtizfGVlZfHx8Twej0Kh2NraRkVFzZs3Lzg4eNmyZbI6eQihkpKSuro6X19f7OarV6/Wrl3r4uKyYsUKWUHXw4cP//XXXzNmzJgxYwa2ZerUqYmJiStWrFD8PgElSKSSuxUPb5dnlLDLJVKxGd1kmJV/+MBQpp4h3qEBoF2USoSyEmgMBmP+/PkpKSlyVmJsaGjIzc2VDaghEomRkZG9D1RjxGKxrJypSCTavHnzzJkzP/vsM4QQi8XagVA5hAAAIABJREFUvXt3VFSUh4cH1mDv3r2RkZE+Pj4IIQ6Hs2rVqoCAAAMDAzqdvnXr1hMnTowYMcLd3b3jXiorK/fu3bty5UpLS0uEUH19/d69e6Ojo7GTtBQKZePGjVeuXCkuLk5KSlq8eLG1tXVBQQGHw8HSVUhISEhISHFx8c2bN9v1LD9mhT0jhCQSCY/X/mQUj8erq6uLjY1dvnw5FnNOTs6ePXu8vLw+++wzPp/ftvFff/01bNgwWSc2NjZjx47FfiJwuVypVEokEqOjo4uLiydPnixr5u/vv3v37kWLFvW/5c2wnw6a3GN2bc7+7F+oJLKPqecYu2AikcjmNWa8eRifezbC9cMZgz4iEfrGiywUCDr9hwTK4PF4YrFYx68RUqlUhRWqu/0COTg4XLhwQU4DGo3GZDIDAgJkW/rQ4SOLxYqPj1+8eDF2Mzk5OSwszN/fH7tpbGy8evXqH3/8UXYqVSqVyvIHNqTIxsZGmR39+uuvq1atsrCwwG6amZmtWbNmx44d3333P4MCsrOzt2zZoq+vjxCSZV/5FMassGcCgdAxFZFIpISEhK+++kr2BIcMGVJdXZ2VldWx8evXr0NDQ9tud3d3f/XqlZ2dXVJS0r1793bs2CEQCPT09Nq2YTAYhoaGdXV1tra2yjzTPoREImksu0uRND7n7NWSax8MHO9h4iLbbmdo42Pu2chv/L34jwfVWd+8s9aYNkAzIfWGmEhECPW/30aaQfoPvAPBU9uTVV3pdiKsrKyUfX13isFgODg4YIcjGDZbo4Niuquurm7jxo0IIQKBQCaTFyxYYGdnh92Vm5v71VdftW3MZDKpVKpAIMCqYy9duvTIkSM8Ho9Go7m5uY0bN07J/7mSkpL9+/e329ixVM306dOxXKU8hTEr7JlAIHQ8fBGLxS0tLe0unY4cOTI7O7tj47KyMgcHh7bbPT09k5OTx40b9+TJEzqdzuVyq6urXV1d2z3Wzs6usrKyT1yg7RYKhaKZI0KJVPLDvZ+KWKVfBPwfg8Lo2MCUbDrPb+b10r+XXl+/773vLTuMINM2EjKZSCRq+Hi63xCJRBQKRcePCJWh+AXKyMhgs9kTJ05ECIlEolOnTkVHR6s9Lg0yNzdvd7QkI5VKO/6aIBKJWLEChJCFhQWWRJuamvLz8zdv3rxy5cq2FwK7YmlpuXXrVoUH7D2gMGYVwirydESn09udLLW2tq6qquJwOEQicdy4cffv3xeJRNh54Lb4fD6NRlN5nLpj98NDpY3l83xnUkldZg4CIoxzCqFT9Jb9teFQ+E5jmpEmIwRACyn+Ih45cqREItm6deuOHTu2b98+ceJElZQW6xN8fHzu3bvXdktLSwuXy8WOpdhs9qNHj7DtTCYzKCho/vz5N27ckDUmELqscuXu7n7//n3Nx9wbLi4u7WLuaraog4NDRUVFu41SqTQzM3P48OHDhw/PzMwsLi7umAgrKiqU+RkBOnUm7+LT2uezvafLyYIyI22He5p5rLv5rVAs1EBsAGgzxYmQQCBMmjRp8+bNa9as2bhx4+DBgzUQlpaYNGlSenr606dPsZtsNnvHjh2ygUJVVVVHjx6tr6/HbnK53OvXr7etGurk5PTw4UNZLszJycnOzsb+joyMTEpKevbsmaxxZmbmv//9b3XH3BuRkZEXLlxIS0tramqqqamJi4uTSCSdtnR1de1YftLGxiYpKWnkyJF0Ol0ikbx586bdOfaGhgY9Pb0+dEVZqzyufpaQlzTHO4JKoipujRBCaJxTCJVE3fcIKisBXafT5445HM7OnTsLCgqw05thYWHvvvtu2wYUCmXr1q3x8fHnz59HCJHJ5Hnz5skmOVhZWU2bNk2WC/l8/pQpU4KDg2UPf+eddwoLCz///HNzc3MymWxubh4REYHdRaVSt27devLkSWzkEYVCsba2lt2bl5d35syZ6upqGo125coVhFBgYOCUKVOwe6uqqg4ePIgQam1tbWhowFLOO++8M2HCBIUxy+9ZPn19/R9++CE1NfXgwYPYeCh/f//t27d3bDlhwoQvvvhiwYIFbS/tuLu7P3nyBJs+ERAQcOfOnXaPSktL++ijj5SJBLTTyG/alrFn2qAPuzU1goAIU90/OPg47nb5vdH2I9UXHgBaTvUV6q9evXrgwIG2J83YbLazszOLxWrb7C2P9ZKlwZr1UhRk46+53fVZN27c+PbbbztWqOfxeCQSqd2YBYFAsH379k2bNnXs59ChQ25ubmFhYUruVyQSLVq0aN++fbJpl/1Jc3OzoaEaZ+9turMdSdEEl3E9eGx505szeRePfxCrnRcL+UXPWCm/Wn25G+9A+iQulwuDZZSB2wtkQjMOsoaTYP3WjBkzdu/erXwivHfv3rhx4/plFlS3O+X3XzQULQ5ov66CkuyZtkMsfPZlHt4Sska1gQHQV0AZJtATAoHg+++/37JlS25u7v79+zueVzAzM9u6davyHQYFBfWthRe0BE/E2/fo58nuE8jEnv+oHes0Orf+xaOqJyoMDIA+BA6Z1eju3bvJycldLYTWp1Gp1PXr1yts060OexeRjjqRm2hvaDfQqP06ut1CIZInuozfk3n4xKSDZKJOT74GukmnE2G76hOYyMjIIUOGqKT/UaNGjRo1qtOF0ADoverW2isvry4J/LT3XQ0ydX1YmXW5MCVi0OTe9wZA36LTibBj9YnW1tbt27cbGRnBbDag/Y5knwi2HcakqmYYzoSB4449O/X+wHEGVLhSC3SLTifCjhgMxrx5827cuCFLhHJqRCCErl+/fvPmTYlE0tTUNGDAgMWLF8tff04ZStZqADquiFWSVf30q+GLVNWhBcNskJn7mbyLMUM0UeoZAO0BibC9qqoq2SIs8mtEIIQcHR3XrVuHtS8tLT106NCWLVt6GcDAgQPHjx8/ceJEMzMzrBwukUhctGhRSUkJZEEgc/TJyRCHkcpPn1dGqMM7sVm/RAz6SDunUgCgJrglQkFJnrixQZN7pDp5kgaYyWnAYrEyMjKuX78uG+6osEaEi8t/V/d3cnISiUQqCdXNza2wsNDGxuby5ct3797dvXs3VqtBJZ2DfqCgoeglq3iSq7KzU5RkpMccbOFzJu/CF/79amwXAPLhlghbMlJE1WWa3KPBmKn0gLEdt9fV1a1btw4hVFJSEhQU9MMPP8hGMCqsEVFbW5uWllZRUSGVSu3t7dstGtBj7u7uycnJY8aMycrK0tfXb2pqqq6ublsQGOi4uKdnQuxHknoxZaIro+1HHnh0dLb39AF6cFAIdAV+E+pnr8Jr1+3Iqk9wudy9e/dmZ2cHBQVhd8mvEVFQUBAfH/+vf/1r2rRpCKHa2trHjx+rJCQlazUA3VTEelXAevmhm4oPBzFMPUM/S+/E/CtwpRDoDphQ/1/6+vqrVq1KTEysrq7GtsivEXHp0qUNGzYMHjyYwWAwGAxnZ2cVnr1UplYD0E2ncs+Psh2ujsNBzDt2I668vNoq5KipfwC0TTcS4atXr2JiYpKTk9UXDe4oFMrSpUtlVSDk14ggk8nl5eXY301NTbt27aqsrFRVJAprNQDdVNlS/aj62TBrNS6ca0wz8jBxTSrsvMYWAP1PN35UXrp06fPPP+9YZ67valt94uOPP/b390cIOTo6WllZbd26df369fJrRMTExOzfv//o0aPYEWF0dHRtbe2mTZuWLVtmYmIiv0aEQgprNQDdlJCfNMx6iB5ZvQvxjLIfcSonYYbnFIrajjsB0B7KVp/IzMxks9l2dnbFxcWTJk2S01LJ6hNAO3Wr+gRQkqqqTzQJmv+VFLN0WIwh1aD3vcn3a865qe4fTBjYyfgyTYLqE70B1SeUpNSpUbFYfP369ffee0/d0QAA5LhSmOZp5qGBLIgQGmk37FzeZQ3sCADcKZUI09LSJkyYQCAQ1B0NAKArIok4qTBlpN0wzezOzXggT8x7UpOjmd0BgCPFh8xcLvfly5cffPCBkj2WlZX99ddfxsb/1BokEom7du3qeYBA48RicXNzc7uNcGq0N1paWnrfye0395hU5gCiIZfL7X1vyvA39zuTe9GF7qSZ3XVKxOF0+g8JlAGnRhFCdDqdRFJQU0XxC/T333+/efNm586dCKHGxsbm5uZRo0bJ8lxHDg4O7777bmJiomyLRCJZvny50mEDnJFIpI4XtCgUCiTC3uj9NcLk138E2w+Trf+nAcPt/Hc+OMghci0ZuI1Y5tPp/M7+IYEyyGQyJEJlKH6BwsLCZHXG8/Pzi4uL5WRBDIVCaduGzWb3JkQAQBHrVU1rnZephyZ3SiVRh1r6JRVeXTh0nib3C4CGwYR6APqAiwXJw6yGav46fZDN0JTiP4RioYb3C4AmdSMRpqennz59+s8//4SJEABoUoug9VZZRoD1UM3v2lTfxNrQ+kbZ35rfNQAa041zx+Hh4eHh4T3bDY/H27FjR88eCzSp7ZLiQEuklVxzN3U1oNJx2fswqyEXC5LHO4fisncANEATF1GZTOaaNWu04ThSIBDIKkuATpmYmMTExOAdBfgfSYWp77uoZYltZXiauqcU/VHMLnUZ4IRXDAColSYSIZFI7H25WpVQ1QIfAGjM09rnIonY2ej/27vT8KauOw3gV3fRatl4ky0L7wbb4N1gwIGwtJ2WlNCGJEw6EKBjJpAJmU6bNEszmSZ90mYhUJqkJSThMaFkiBO2sjqEBMwOjhMHG6+yjRfAC3iXJcu60nxw6pAFS5Z1da6k9/fJElfS+5znXP53OfecKFIBJBJJVnj6vprDj+X8J6kMAILCYBkAUdtXc2RaOIG7g7eaps349Mopk8VENgaAQFAIAcSr19x34dpnGeEpZGMEyPxjJkQeb8SQGfBOKIQA4vVR/fHk4ElK1n0P0d9OVnjG3loszATeCYUQQLz21x7J0maQTkFRFJUUlNBhuNHQ3Ug6CIDroRACiFTFjWozb44JiCQdhKIoSiKRZIan79cXkg4C4HoohAAitb+2MDMsXUKJZdWX7PD0Yw0nMcsMeB8UQgAxMlpMp5rPZ4WnkQ7ytUB5QIQ6/FTLedJBAFwMhRBAjD5tPBUbGOMnVZEO8g1ZYWm4OgreB4UQQIwO6AuzwkR0OjhsSshkfWdDq6GddBAAV0IhBBCdxp7m6/0diUHxpIN8G0OzaZqph+uOkQ4C4EoohACic6ju48ywFPcvuuSI7PD0Q3XHrDYb6SAALuPQXKMlJSWHDh3iOM5sNi9atCg7O1voWAA+y2LlC+s/XZ3xIOkg30/rF6Zk5SWtpdNJLAsFIAT7hdBqtZaVlT399NMcx/E8v379+ri4OLuL1AOAc85dLQ5RBocogkgHua2s8LSD+qMohOA17F8apWl61apVHMdRFMUwzLRp0xoaGoQPBuCjDuiPZoalkk4xmjTN1OLrX/Sa+0gHAXCNsd0jtFqtxcXFSUlJAqUB8HE3jV2XOypTQ5NJBxmNgpUnBiccrT9BOgiAazi6HiHP85s3b66rq3vooYeUytFWyrZYLJ2dnceOfTWuTCKR5OTkYBVAAEcUNnwyNTRJyoh9+ejMsLRD+qP3Jd1NOgiACzhaCBmGycvLKysrKyoqioqKUqlu+5xvW1ubXq//05/+NPLOr3/963nz5o0zqEv09/eTjuCpTCYTwzDDV8hhrBzveAdqPvpJ9A+MRqOgecYvQhbWNdhb2lIWHxAj6A9ZBgZ4nu/rw2VYZxiNRo7jWNYdC7CLllKpZBhm9G3G0EAKhSInJycoKGj37t0rVqy43WY6nS4nJ+fwYZGu2IJzU+dwHIdCOB6OdLyyjkobZZusEd3jg98rOzzt+PWzGROFvZ05qFQOMgx2W+ewLItC6IgxP0eo1Wq7u7uFiALg4w7pj2aFp5NO4ajs8LRPrhSZeTPpIADjZb8QVlRUVFVVDf9ttVp37Ngxf/58gVMB+ByjxXSy+ZzIx4veaoJ8QoRf+OmWC6SDAIyX/VPm6OjoXbt27dmzh2VZi8WyYMGC1FSP2VcBPMXxxtPx4ptle3SZ4WkHaj9aED2HdBCAcbFfCFUq1cqVK90QBcCX7dcfma71sDmbpoYkHtIfbTO0h6k0pLMAOA9zjQKQJ9pZtkfH0my6ZuohzMENHg6FEIC84Vm2aYnn7Y9Z2gzMwQ2ezvN2PAAvM2S1FNZ/mu0540VvpVVpVJzis9YvSAcBcB4KIQBhZ1ouaFQhwSKeZXt0mWGp+2uxbD14MBRCAML21xZ60OOD35WuSfm89VKXqYd0EAAnoRACkNRmaK/urEsJ8eCJ7OWsbEpIUmHDJ6SDADgJhRCApIN1RzM0U1nasyfBmqZN319baKMwZAY8EgohADG8jT+o/3hahMevcBvlP1FCUV+2lZMOAuAMFEIAYs5d/SxQFhCmDCUdxAWywzP31R4hnQLAGSiEAMTsrTnk0cNkbpUZlnLhWkn3IIbMgOdBIQQg43p/W9VNfapmCukgriFn5VNDkg9jlhnwQCiEAGQc0BdmhqVxHj5M5lbTIzL21RzBLDPgcRzaCfV6fX5+vkqlomn6wQcf1Ol0QscC8G5DVstB/cer05eTDuJKkWqdjJF+1vpFjjaLdBaAMbBfCHt7e7du3fr8889LpVKDwfDqq68+88wzWPIYYDxONp0NV2lClMGkg7jYdG3m7uqDKITgWexfGm1vb3/00UelUilFUSqVKiMjo66uTvhgAN5sV/X+6d5YLdI0U8s7qtoM7aSDAIyB/UKYkJAQEREx8rK5udnPz0/ISABeTt9V32bomBIymXQQ15MyXJYmdV8NnqMATzK2wTJlZWUcx+EeIcB47Ko6MF2bJZFISAcRRI4u61Dd0UHeTDoIgKPGcKuvtrb2yJEjjz322Oib3bx5s6qq6vHHHx95Z+nSpWlpaU4GdCmTycRxHOkUHslkMjEMw/M86SAe6daO12vuO9l87pHMPLPZO0uFmvGL8As/UnvsJzELxv9tQ2az1Wo1mUzj/yofZDKZeJ738SEdUqmUpu2c8jnaQDU1NR988METTzzBMMzoW8pkMqlUGhT01ZoyEokkMDDQ7qfcg2EYkSTxOMw/kQ7ikW5tusNXPk0OnqyWevP9hRxt9l79oZ/G/2j8X8XTNEVR6HjOwW5LUZQjl14cKoTV1dU7d+58+umnh4fMjM7Pzy8uLu53v/udI9/sZhzH4YzQOTzPMwyD1nPOSMezWPn9+iPLUu737oP0xJCEo1eOX+6syghLHedXWVmWpml0POdYLBaO47y7s7mE/XuEVVVVH3744VNPPSWTySiKam9vb25uFj4YgBc60XQ6WBmoVWlIBxGWhJLM0k3fWbGXdBAAh9g/UtixY4dSqXz99deHX964cWPhwoWRkZECBwPwQjsr9twxcSbpFO6QEZZ67EpRc+/VSH+MrQOxs18IX3jhBTfkAPB6pW1l/WbD5KB40kHcgaPZ6dqsgsp9j894hHQWADsw1yiAm7xXsSt3Yg7tpU9NfNcsXfbxxtNdJqxHAWKHQgjgDvXdjTU367PGPXjEg6g4Vapmyu7qA6SDANiBQgjgDu9d/nDWxGmMF6014YjZkTP+UXNkYMhIOgjAaFAIAQTXOtB+/trnOdps0kHcLUgemBAUu6/mMOkgAKNBIQQQ3Ac1/5gZkSVnZaSDEHBn5KwPqvZhxjUQMxRCAGG1GTrOXL84S5dDOggZYSrNRP+JB/SFpIMA3BYKIYCw/l7+QZYmTckpSAchZl5U7nuXd5txUghihUIIIKA2Q8fxptMzwn3u7uCtIvzCdWrtP2pxUggihUIIIKBtZTtztFlK1ndPB4fNj57z3uUPTRYsIgFihEIIIJTm3qunmi/MifSJOdVGp1VpYgKiPqzcTzoIwPdAIQQQypbS7bMjc+SsnHQQUVgQc2dB1b7ewT7SQQC+DYUQQBAVN2rKOyp9drDod4UoglI1U94te590EIBvQyEEcD0bZXut5K0fxM7lfGwqmdHNj5rzUcPxa/2tpIMAfIOjhdBisZSVlQkaBcBrHG883T/Yn6nxoZlFHeEnVd4xMeeNkq2kgwB8g/1CaDAYNmzYsGHDhq1b0X0B7DNZBv/2ef5d8T/ynYUmHHfHxBk1N/UlrV+SDgLwNfuFUKVSPfLII08++aROhwU2AezbXl4Q6R8RMyGKdBAxYml2YfwPNxa/OWS1kM4C8BWHLo3K5Rj2BuCQpt6W/bUf/ThuAekg4pUcMjlAqn6/ci/pIABfwWAZAJexUbZXzr8xP2q2v1RNOouo/TThXwoq9l7tu046CABFUZTrh7Q1NTWdOHEiNjZ25J2XX3554cKFLv8hJ/T395OO4KlMJhPDMBzHkQ4iaoevHOsx9abHTjEav7EC37degpyS5kZM/+OZP790x/9IqNHupFoGBnie7+vD04fOMBqNHMexrE8PXVYqlQzDjL6N6xsoKipqxowZIyNraJqOjIy0m8Nt1GocqjuD4zgUwtG1Gtp3VO3KS1+uVCq/+68Kha/PsvYtc6PveKt0+6etp38+6a5RNhtUKgcZBrutc1iWRSF0hCANpFAo4uLihPhmAHGy2mwvnP3z7KiZGlUI6SyeQSKRLElc9E7p36eFZ0xUR5COAz4N9wgBXGBn5W7jkPEO3QzSQTxJqDJ4QfSc50+vt1h50lnAp9k/IxwYGHjzzTd5ni8vL1+/fj1FUffff39MTIzg0QA8xOUbVQUV+x7O+iUeHByrHF2Wvrt+S+m2R7LySGcB32W/ECqVyt/85jduiALgiboHe35/6uWfTb4rQOZPOovnkVCSexIX/a1ka1roVCzTAaTg0iiA8yxW/tmTL6VqpiYHTyKdxVMpWcUDU5asv/B6Y08z6Szgo1AIAZy3qfhN3mr5QfSdpIN4tonqiB/HLnjyxB+wSBMQgUII4KT/q9j9Rdul+5N+jluD45cZnpYcPOnJE38Y5M2ks4DPQSEEcMbhuo93Ve1/MOVfZayUdBYv8cPYeQpW/r8nX8IgUnAzFEKAMTvWULSl9O+rUn/hL8OD3i4zPHCmf6j/D2fW8zbUQnAfFEKAsSms/+T1kndWpT0QogwmncXbMBL6geR7OgZu/P7Uy1ieAtwGhRBgDN6v2LuldPu/py8LU4aSzuKdGJr9xdT7egb7fvvp7w1DA6TjgE9AIQRwiMXKv3rhr/trCx/KWBGKc0EhsRLmgeR7lJzi4Y9+e9PYRToOeD8UQgD7bgzcfPTjp670NP1Hxgo8OO8GEolkUcKPMzQpGy/+rc+MRWNAWCiEAHacbD6Xd+S/I/0n/mLqvRgj6k4zddMWxNzZ0n/tL59twWMVIBwUQoDbumHsfPbki38teeffptw7Lyp39JXzQAjhqlCtKuxKT/Oqg+s+b71EOg54J6xTBfA9TBbTh1X7Cyr35WizHslezdLYU4ihJfT9ST+rvFn7x3Mbk4MT12auxLJN4FrYvQG+wTA0sF9f+H7F3tiAqLVZq4LkgaQTAUVRVHLwpITA2LMtF9YW/jZ34vRlU+6NDogkHQq8hEOF0GQyvfXWWwMDAzabLS8vT6PRCB0LwP30XQ0H9B8du1I0OSh+ZeoD4Sr0c3HhaHZu1B0zIrLPXS1e9/FTk4Li7pl01yxdDkszpKOBZ3OoEG7ZsmXx4sWxsbG9vb2vvPLKCy+8IHQsAPewUba6robTzRc+aTrVbx7ICktdl70a40LFTM7K50fPuTNy1qWOynfLCl4+//qcyJlzo3Izw9JkDIYygTPsF0Kj0WgwGGJjYymK8vf3T0lJKS8vT0lJET4bgCCG+KH67saKm9Wl7eWlbeUyRpYYFH9X3I+iAnQYDuMpGJrNDEvNDEvtNnWXd1S98+V7Lb2vJAYlZISnTA1JSgqahNnvwHH2C+H169cTEhJGXiYnJzc1NXliIRwcHPziiy/uvBMr5jijvr5erVZHRnrYXRmjxdQxcKNj4GaboaOl/3pTT3NjT0uroU2jDNWptVH+E9dkrJggnyB0jOrq6vT0dAkWqRi7oSGLyWQaZYMJ8gmzI2fOjpw5aDE39DQ19jSfaSlu6b2q5JQx/pGRAboof53WL0yjDA1WBE6QB/jUsU5tbW1oaKhWqyUdROzsF8Lu7u7AwK/HCwQHB5eXl4+yPc/zPT09JSUlI+8kJib6+fndbnuTxdTY2+JY2nEpLy9fv379uynvuuG3vM+G7Zt0Ot2yZctc+7UWq8VkGXRkM6Pl6/8NB4aMw5My95sNNspmHDIN8UN9Q/1Gi8k4ZOoz9/ebDb3mvj5zn4SiA+UB/jJ1gEw9QTZBp47IDEsNVYWyErfeVdq4ceNrr702YYLgFdf7tLQ0+7e2qRzYUsZKk4ITkoK/OmrvMvV0DHS0G26UtH7ZY+rtHuztNfcZzANqmZ9aqvLj1GqZUsEq/DiVklNyNKuW+VEUpeKUtISmKMqPU40cuLA0q2DljqT1kzqS1H1eyd8wZcqUe++9l3QQVwqQ+bv8/r3rR422trZevnx59erVwy9pmn7uuefmzZt3u+2/7LicX7HT5TG+a2BggJvv/8rZ193wW97namxnh7T/qqtbj6VZOSu73b9abbZ/bsbIGTlFUTbKRlGUgpUzEtpmsylZBSWRSGkpxzBhshCpQipnZUpWqZIq/ViVWuonkptGAw29EYwmVI7pScfMwPvZzNZouW6sH4yW66jvHHjwNr7PbOgf6u8fMgxYTCZ+0GQxGi2DvMVyzdhKS+gBy4DNRkkklMFitNlsw6ePvNVi5L86XJNQ1Chn9v1mw1hzCqp9cl8fd6nu7DXSQVwpKShhbeoqx7dXKpUMY+fA134hDAgI0Ov1Iy87OztHP7DV6XS5ubmHDx92MOVs9czZcTMd3Hg8zp8//1+v/tfWi39xw295n0cffTQmJuaxXz5GOohHsg7w4RPCwoPDSQfxPC1ydY+V0gXjwUFnrF69Ojs7++HN4PPsAAAGF0lEQVRFD5MOInb2Z5bRarV1dXUjLysrK6OiooSMBAAA4D72zwiVSqVCoWhsbIyOju7v7y8rK1u6dOko23d0dJSXl69Zs8Z1IV2jvb29sbFRhME8wpkzZ9RqdU1NDekgHqmvr++JJ55QKBSkg3geWefVDL4Pu61zzpw5U1NTU1paSjoISXPmzFm+fPno20hs/7wNMwqj0fj2228PDg5ardaVK1eGh492haetrW3z5s0REaK7lDE0NHT16tWYmBjSQTxSe3u7TCYLCAggHcQj6fX6+Ph4jBp1gtlsvn79enR0NOkgHqmtrU2pVKrVPv0kyfTp0zMzM0ffxqFCCAAA4K2w+gQAAPg0FEIAAPBpKIQAAODTvHYZJudWzDCbzVu3bu3p6aFpevHixUlJSULnFKHxLDZy4sSJc+fO0TSdnJy8ePFi4UKKlnOtV1JScujQIY7jzGbzokWLsrOzhc4pEs41F9bDodDTXMvmpTZt2lRfX2+z2Xp6ep555hkHP/Xuu++WlpbabDae559//vmuri4BI4qVc01ns9m2bdtWUFBgtVoFi+YBnGg9nufz8/PNZrPNZrNYLC+++GJnZ6ewKUXDuc7mdBf1JuhpLuSdl0a/d8UMRz547dq19PR0iqJoml65cmVhYaGwQcXH6aYrLy9nWXbp0qW+/JCAc61H0/SqVas4jqMoimGYadOmNTQ0CJ5VBJxrLqe7qDdBT3Mt7yyE37tixli/xN/fv7a21qW5PIDTTXfy5MklS5YIlsszjL/jWa3W4uJiH7km71xzuWTv9nToaa7lnfcIx7pixojQ0NDKysrk5OTBwcH8/PzhQyef4nTTURTV1NR08OBBs9kcHBycl5dnd6Jb7zOe1uN5fvPmzXV1dQ899JBSqRQmoLg411zjaWSvgZ7mWh5cCPfs2XPrJKgURfn5+a1Zs4amnT/NXb58+dtvv33w4EGWZe++++6jR4+OO6YYCdF0nZ2dRUVFv/rVr1iWPXv27N69e++7775xJxUjIVqPoiiGYfLy8srKyoqKiqKiolQqcS3oA14DPe27PLgQjnIhbqwrZoyQyWTr1q0b/rurq8tbD5eEaDqDwbBs2TKWZSmKys3Nfemll8afU5yEaL1hCoUiJycnKCho9+7dK1asGFdKT+Bcc42zkb0Deppreec9QpesmLF79+65c+e6NJcHcLrp4uPjjUbjyEvfHDLjko6n1Wq7u7tdmkuknGsurIdDoae5mncWwpEVMyiKGl4xIyUl5dYNiouLlyxZUlBQ8L0ft9ls27ZtCwwMjIuLc0dcMXG66RYuXLh9+/bhv8+cOZOYmOiewKLiXOtVVFRUVVUN/221Wnfs2DF//ny3ZSbIueay+ylfgJ7mWh58aXR0a9asGVkxY926dQ6eoBQUFDQ3N/M8P2fOnNzcXKFDipNzTafT6ebOnbtx40ae54ODg1euXCl0TnFyovWio6N37dq1Z88elmUtFsuCBQtSU1PdEFUMnOtszn3Ky6CnuRBWnwAAAJ/mnZdGAQAAHIRCCAAAPg2FEAAAfBoKIQAA+DQUQgAA8GkohAAA4NNQCAEAwKehEAIAgE9DIQQAAJ+GQggAAD4NhRAAAHya1066DeBBqqqqnn32WZ7nQ0JC3njjDalUOvx+SUnJpk2bOjo6Jk+e/Nprr5ENCeCtMOk2gCh8/vnnFy9eXLt27bfet1qtK1as2LFjB5FUAL4Al0YBRCExMbG6unr479LS0ueee85qtVIU1dTUFB0dTTQagJdDIQQQBZVKZTKZhoaGKIoqLCysra29dOkSRVHV1dVJSUmk0wF4MxRCALFISEior68fGhoqKytbu3ZtUVERhUIIIDwUQgCxSE5OrqysLCkpycjImDVrVmlpKc/zKIQAQkMhBBCL4UJYVFQ0d+5clmVTU1MvXrxoNpvVajXpaADeDIUQQCyio6Pr6urKy8uzsrIoipo3b15+fn5CQgLpXABeDs8RAogFTdNBQUEajYZlWYqi0tPTu7q6cF0UQGh4jhAAAHwaLo0CAIBPQyEEAACfhkIIAAA+DYUQAAB8GgohAAD4NBRCAADwaf8P0L9zqrN8I9gAAAAASUVORK5CYII=", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.5\n", "\n", - "\n", + "\n", "1.0\n", "\n", - "\n", + "\n", "1.5\n", "\n", - "\n", + "\n", "2.0\n", "\n", - "\n", + "\n", "k\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", "\n", - "\n", - "2\n", + "\n", + "2\n", "\n", - "\n", - "3\n", + "\n", + "3\n", "\n", - "\n", + "\n", "Marginal q(k)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(k)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real k\n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "−0.9\n", "\n", - "\n", + "\n", "−0.6\n", "\n", - "\n", + "\n", "−0.3\n", "\n", - "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.3\n", "\n", - "\n", + "\n", "w\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", "\n", - "\n", - "2\n", + "\n", + "2\n", "\n", - "\n", - "3\n", + "\n", + "3\n", "\n", - "\n", - "4\n", + "\n", + "4\n", "\n", - "\n", + "\n", + "5\n", + "\n", + "\n", "Marginal q(w)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(w)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real w\n", "\n", "\n" @@ -2579,165 +2032,170 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.5\n", "\n", - "\n", + "\n", "1.0\n", "\n", - "\n", + "\n", "1.5\n", "\n", - "\n", + "\n", "2.0\n", "\n", - "\n", + "\n", "k\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", "\n", - "\n", - "2\n", + "\n", + "2\n", "\n", - "\n", - "3\n", + "\n", + "3\n", "\n", - "\n", + "\n", "Marginal q(k)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(k)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real k\n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "−0.9\n", "\n", - "\n", + "\n", "−0.6\n", "\n", - "\n", + "\n", "−0.3\n", "\n", - "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.3\n", "\n", - "\n", + "\n", "w\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", + "\n", + "\n", + "2\n", "\n", - "\n", - "2\n", + "\n", + "3\n", "\n", - "\n", - "3\n", + "\n", + "4\n", "\n", - "\n", - "4\n", + "\n", + "5\n", "\n", - "\n", + "\n", "Marginal q(w)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(w)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real w\n", "\n", "\n" @@ -2771,7 +2229,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As we can see, the marginal $q(\\kappa)$ concentrates most of its mass around the true value, indicating a good approximation for $\\kappa$. However, the marginal $q(\\omega)$ is quite off the true position. " + "As we can see, both the marginals $q(\\kappa)$ and $q(\\omega)$ are not quite off from the true values. Specifically, the means of $q(\\kappa)$ and $q(\\omega)$ are approximately $0.75$ and $-0.18$, respectively, which are quite close to their true values. " ] } ], From 5c5d53509a68f52e2150ff37e9b189297a05cb98 Mon Sep 17 00:00:00 2001 From: HoangMHNguyen Date: Thu, 12 Dec 2024 18:30:26 +0100 Subject: [PATCH 3/4] fix constraint for offline learning --- .../Hierarchical Gaussian Filter.ipynb | 2629 +++++++++-------- 1 file changed, 1317 insertions(+), 1312 deletions(-) diff --git a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb index 954c730ef..25422e23d 100644 --- a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb +++ b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 268, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 269, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -80,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 270, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 271, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -150,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 272, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -160,759 +160,759 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -949,7 +949,7 @@ }, { "cell_type": "code", - "execution_count": 273, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -1001,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 274, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -1055,7 +1055,7 @@ }, { "cell_type": "code", - "execution_count": 275, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -1067,7 +1067,7 @@ }, { "cell_type": "code", - "execution_count": 276, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1077,161 +1077,161 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1263,7 +1263,7 @@ }, { "cell_type": "code", - "execution_count": 277, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -1273,101 +1273,101 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1397,7 +1397,7 @@ }, { "cell_type": "code", - "execution_count": 349, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -1439,8 +1439,8 @@ "end\n", "\n", "@constraints function hgfconstraints_smoothing() \n", - " # Mean-field factorization constraints\n", - " q(x_prev,x, z,κ,ω) = q(x_prev)q(x)q(z)q(κ)q(ω)\n", + " #Structured mean-field factorization constraints\n", + " q(x_prev,x, z,κ,ω) = q(x_prev,x)q(z)q(κ)q(ω)\n", "end\n", "\n", "@meta function hgfmeta_smoothing()\n", @@ -1458,7 +1458,7 @@ }, { "cell_type": "code", - "execution_count": 350, + "execution_count": 77, "metadata": {}, "outputs": [ { @@ -1503,7 +1503,7 @@ }, { "cell_type": "code", - "execution_count": 351, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -1514,171 +1514,171 @@ }, { "cell_type": "code", - "execution_count": 352, + "execution_count": 79, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9eWBb5ZX//b3ad1uWvMj7viV2YmeHhAAhCWEvS9sUKIR2hkI7LS9tp7y/aafD9KX9tdPOtAzQEnYS1kAhUEICCWRPHMfxvtuyLS+SLGu1dunqvn9ItmVbkuXdse/nL+ve514915Luuec853wPQVEUaGhoaGhoViqMxZ4ADQ0NDQ3NYkIbQpoVxM9+9rMf/OAHUw7bv3//o48+qlKpIg/79NNPH3300YqKijma3TSw2Ww1NTXnzp1raWkZHh5e+AnQ0CwnaENIcxWzf/9+Doezb9++kHsTExM5HE5fX9/olnfeeef111+f8rTHjx/fv3//0NBQ5GFVVVX79+9vb2+fzpRnS3d397333hsbG1tWVrZ169aioqKYmJjS0tL//M//HB1jNBr3799/9OjRmb1FV1fX/v37L168OEdTnpoNGzYQU6HT6RZsPjQrDdZiT4CGZuaQJOnxeLxeb8i9brfb4/EEr4Jfe+21ZrN5oWY396hUqs2bN2u12tzc3LvvvluhUAwODra2th47duzdd9/993//d/+wgYGBRx999Lbbbrv55ptn8C5VVVWPPvroz372s82bN8/p9MOycePG2NjYkLtaW1t7e3sFAgGPx1uYydCsQGhDSLOCeP/99xd7CrPimWee0Wq13/jGNw4dOsRkMke3Dw8Pnzp1ahEnNkuef/75kNu7urr8zuIrr7wiFosXeFY0KwfaENKsIOrr671eb1lZWfBGj8fz5ZdftrS0xMbG7ty5My0tLeSxFEWdOXOmurqay+Vu27Zt1apV4d7FZrOdOHGiq6uLwWCUlJRcd911DMbYGoTb7a6vrxeJRAUFBUaj8ciRI2q1Oj09/eabb5ZIJJHnf+bMGQA//vGPg60gALFYfNttt/n/7u/vb2pqAmA2m6uqqvwbExMTU1NT/X9rNJqKigqVSkWSZHZ29o033igSiUZP1dnZqVQq/cNGD8/IyJDL5aNjenp6Tp06pdVqZTLZ9ddfn52dPWGebrf77NmzXV1dZrNZLpfn5eVt3LhxwpynxGq13nHHHXq9/qmnnvr2t789rWNpaKYHRUNz1fLCCy8AeOCBB0Lu9UfbVCrV6Jbk5GQulxs8RqlUrl69evTnwGKx/vjHP953330AqqqqRoeZTKYdO3YE/3AeffTRX/3qVwAOHDgQfMI333xTJpMFj1yzZk1HR8foAH8OzrZt2z766KNgy5eYmFhdXR35ektLSwEcO3Yswphf/OIXk3/mP//5z/17d+/eTRBE8K64uLiPPvpo9PA77rhj8uGvvPKKf6/dbt+3b1+wXWcwGI8//rg/BO2nqqoqPT19whk2bNgQ+dIm4PP57r33XgA7d+70er3TOpaGZrrQhpDmKmaWhtDpdBYVFQHYt29fbW1td3f3n//8Zz6fn5ycPMEQ+v2tnTt3Xrx4UaVSvfXWW/Hx8f5hwYbw4MGDBEEkJSX97W9/q6mpqaysfPLJJxkMRnZ2tsVi8Y/xG0KFQiEUCp966qnTp0+fPn167969AFavXu3z+SJc73e/+10AJSUlFRUV4ca0t7e//PLLADZv3vzlCG1tbf69W7duffrpp/0ecGVl5TPPPCMSibhcbnNzs39ATU2Nf63xvvvuGz28v7+foiiSJPfs2QPghhtuOHLkSEtLy9GjR/3riE8++aT/cJ/Pl5eXx2Qyf/Ob39TX16tUqoqKir/+9a+PPPJIhOuazK9//WsAeXl5RqNxWgfS0MwA2hDSXMX4DaFcLt8cCn8sLoIh/Nvf/gZg165dwed89tln/U7MqCH0BySzs7OdTufosOPHj/uHjRpCq9UaFxcnFApbW1uDT/jzn/8cwJ/+9Cf/y9GqjBdeeGF0DEmSfpPc1NQU4XpbW1vj4+P9hycnJ993331//vOfg91NPw0NDQBuu+22qf5/FEVRb7zxBoAnnnhidMuhQ4cA/OxnP5sw8r333gNw4403kiQ5utFut2dlZbHZ7L6+vtGr2717dzRvHY6PP/6YwWCIxeKGhobZnIeGJkro8gmaqx6z2dwYCpIkIx/48ccfA/jpT38avPH73//+hAxG/7Af/ehHXC53dOOOHTsmrDV+9tlnBoPhm9/8Zn5+fvD2xx9/HMDnn38evDEmJuaf//mfR18yGIybbroJQFdXV4QJ5+fnNzU1/fCHP0xMTBwYGDh06NATTzyRm5t77bXXtrS0RL7YcNx5550ALl26NOXIAwcOAPi3f/u34NAon89/5JFH/Ous/usiCKKtrU2v189sPi0tLQ899BBFUa+++mqEhVgamjmETpahuer51re+5b9HT0AqlZpMpggH+pNK1qxZE7yRz+cXFBQEl8mHHAZg7dq11dXVoy/9f/f09Dz11FPBwyiKIgiiu7s7eGNubu6E5JHExEQAWq02woQByOXy55577tlnn62pqamoqDhx4sQ//vGP8+fPX3fddbW1tQqFIvLhQ0NDf/jDH/zRzuDKvGjslv8CP/744y+++CJ4e2NjIwD/BUokknvuueeDDz7Iysras2fPDTfcsHv37qysrClP7sdoNN5+++1ms/npp5/2rxHS0CwAtCGkWblYrVaCIILzIf0kJCQEv/RLt0zYOHmL0WgEUFFREWwd/cTGxrLZ7OAtAoFgwhh/DovP54tm5gwGo7y8vLy8/LHHHmttbd2+fbtWq33hhRd+85vfRDhqaGhow4YN3d3d5eXlDz74oFQq9c/qqaeeCleLGYz/qeLgwYOTd0ml0tG/Dx48WFpa+vrrr7///vv+epVNmzY9//zz69ati3x+n8/3wAMPdHR03Hnnnb/85S+nnA8NzVxBG0KalYtIJDIYDDqdLikpKXj7BLfMX8Gm1WqD80vDDXv66acnxFrnm4KCgscee+w//uM/RqsdwvH88893d3c/+eSTf/rTn0Y3ajSaCS5sOMRisc1ma25u9juv4eByub/61a9+9atftbW1ffXVV++9997Jkyd37drV1NQU+cCnnnrqyJEjhYWFb775ZnD0lYZmvqG/bTQrF79hm+DA2Wy2CettIYcBuHLlSvBL/5Lh+fPn52OqkfGrrowaD7+fN9nJq62tBTChJm/CVUQ4fLoXmJ+f/4Mf/ODrr7++5557DAbD119/HWHwhx9++Mc//lEqlX766adT1lPS0MwttCGkWbncfffdGMnnHN24f/9+i8Uyedjzzz/vcDhGNx47dqyuri542B133CGXyz/55JOQpsJqtc5+wm+//fbk89jt9nfeeQfA+vXr/VtSUlIA9Pb2ThjpDwIHi4mTJBksUhr5cL+m629+8xu73T5hl9Pp9Hg8ABwOx+QcJf/KpcvlCnddtbW1Dz30EEEQBw8ezM3NDTeMhmaeoEOjNCuXBx988Nlnnz1x4sT999//k5/8RCQSffrpp08//XRaWlqwGdi8efM999zz4Ycf3nzzzb/+9a9TUlLOnj37r//6r+np6cFGRSQSvfjii/fdd9/OnTuffPLJbdu2KRSKvr6+pqamAwcO7N27N2Sp+7T47W9/+9hjj911113bt2/PyspyOp2tra379+/3hyv96akAhEJhUVFRY2Pjvn37ysrKeDzemjVrNm3adMMNN7z00ks/+clPPB5PWVlZb2/v73//+8li1oWFhf5/xRNPPJGXl8dms7dv315QUHDvvff6/w8bNmx44oknSkpKWCxWd3f32bNnDxw4UF9fn5ycXFVVtXfv3ocffnjz5s1ZWVlut/vLL7986aWXJBJJOOFTkiTvvPNOm82Wnp5++PDhw4cPhxz22GOPrV27dpb/QBqa0Cxu9QYNzWyYvbJMb29vcBIHm81+7rnnJivLWK3W22+/PfiH85Of/MRfeD5BWebIkSM5OTkTfmVZWVmffvqpf8CossyE2T7zzDMAXn755QjX+/TTT092mAiCuPHGG1taWoJHVlZWrl27dlRExq8s4/P5HnvssWBlmcLCwubmZgA5OTnBhx8+fDhYOG1UWcbtdj/11FMTMn2YTOZ1113nr3yvq6ubnFWUlZV16tSpcBfldDqjuVP9/e9/j/CfoaGZDQRFd6inuWoxm82Dg4MSiSRkFoZSqSRJMisri8UKRD66urp8Pt8EQ0WS5NmzZ1taWiQSyQ033JCUlKTVam02W0pKSnDhIICqqqrq6moOh3PNNdfk5uYajUaj0ZiQkBCs1ek/YVVVVVNTk8vlUigUOTk5wfVwXq9XpVLxeDy/MM0oJpPJYDDEx8dPqS6tVCpbW1vVarXH40lISFi/fn04fVS3263RaLxeb2xsbFxcnH9jW1vblStXrFZrXl7e1q1bmUymUqlks9mTT+JwODQaDUVRE2ZlNpvPnz/vvwqFQlFWVjZa5g+Aoqimpqb29natViuRSLKzs9evXx9BaJSiqMjVk34SExOFQuGUw2hoZgBtCGloaGhoVjR0sgwNDQ0NzYqGNoQ0NDQ0NCsa2hDS0NDQ0KxoaENIQ0NDQ7OioQ0hDQ0NDc2KhjaENDQ0NDQrGtoQ0tDQ0NCsaGhDSENDQ0OzoqENIQ0NDQ3NioY2hDQ0NDQ0K5olYQhfeOGFyRL4IYmmjzbNMoYkSVoUcIVD3wRWOPPxBVgShvDNN99UKpXRjAxuCEezAnG5XD6fb7FnQbOY0DeBFY7L5Zrzp+ElYQhpaGhoaGgWC9oQ0tDQ0NCsaOaxQ73BYDh9+nRtba1UKv3xj388f29EQ0NDQzPnUBTlA5hBnZyXK/NoCD/++OM333yTzWbr9XraEM4tFEUNDA+nSCSLPREaGpply4murna9/p7i4oTl3hJ5HkOjjzzyyMmTJ/ft2zd/b7EyGbTZ3qitfbm6uk6rXey50NDQLE/O9/aeVam0NtvLV670ms2LPZ35ZR49Qpo5R221Xuzrq9No/ClTh1taJFxuZmzsIk+LhoZmeTEwPHx8JJPfTZJv19fvKytbxn7hkjCEfX19P/zhDyUjgb6srKy//OUvIUfabDZiBQSsJ2N2uQ63tfUND0/Y/lZ19ffWrBFxOIsyq4XHbrd7PB4mk7nYE6FZNFbsTWDB8Pp879XVOV2u0S1ut/u1y5f3lZYK2OxFnJgfu93u8/mi/w7weDwWawpLtyQMoUwme/jhhwsLC/0vpVKpSCQKOZKiqHC7ljFtev3HLS12j4czyeB5gKMq1XfXrGGsjFsDg8Hgcrm0IVzJrMybwEJyrLPT7PVOuNs4KOqoSvVAaemi32oIghAIBHP7MLQkDCGfz9+wYcOmTZsWeyJLDofXe6yjo0ajiTCm22Q63dNzfWbmQk2KhoZm2dKm11/s6wu5S2k0ftraekdh4fJ76F4ShpBmMiRFVQ0MnOzutns8Uw4+3dOTExeXRieR0tDQzAKzy/VxS0sE3ZZqjYbJYNyal7fMotPzaAjPnz//4IMPWq1Ws9mck5Ozffv2V199df7ebjlRrVZ/1dU17HZHOd5HUR80Nv7TunUrZ7GQhoZmbnF5vW/X1U355H15YID0+W4vKFj0GOkcMo+GcOPGjZcvXx59yV4Cq6xXBRf6+r7o7JyumJ7Z5Xq3oeGhNWvYV8X6maEKytfgHMS6P4OfvNizoaFZ6ZAU9WFzs9ZmC7FP9R7iNkKUNbqhWqOhgLtGsjqWAfNYR8hisaRB0OvbU0JR1Mnu7mMdHTOTlO2zWN5paLBG7UcuJsrX4DbD1gP95akH09DQzCden+/9xsY2vT7EPtcQzC2w907YXKPRNA4OLsTkFgRaa3Sp4CbJvzc3n+zuns1JlEbj3y5fVlutczSpeWO4E5nfhmwTbF2LPRUamhWN1+d7r7GxdWgo9G5DFXjxcKon7znS3h5NBsNVAW0IlwQ9JtPfLl+un4snLKvb/VZdndHpnP2p5hFrB0S5EGXBShtCGppFw28F20P6ggAoL0x1UOyGI0Tius3j+aprmfx+aUO4yFhcro9aWl6vrTXMXZc1q9t9sLbWuWT7l1Ik7H0QZUKURXuENDSzxzOjhtUGh+PV6uqwVhCAuRmCVIiyQdpBhni2vqJW65dFe0i6fGLRcHi9J5TKGo3GOw+dZvUOx4dNTd8pLV2KeV02FXgJYHAhpD1CGpqoGHa5HF4vARidTvXwsNJk8pAki8EwOZ0WlwsAgyAkXO616enlSUlMxtQeTpNOd7ilxUWSkQZ5TOAlAgR4iXBqIMycsN9HUV8plfetWjXzC1sa0IZwcbB7PG/W1mrmczGv3WA4oVTelJ09f28xQ6ydEOUAgCibNoQ0NFPSMjT0UXNzZKPloyiT0/lZW1tlf/9t+fnpMTHhRto9npPd3Zf6+6d832aze8jD2ZYI8JLgCGEIATQNDQ3abFe7DCltCBcBu8fzRm2tdv5TWs6qVD6K2pmdvbSqX63KgCFki8HkwqUDN36x50QzC+z9qP0/2PLG1CMpEpQPDLqSKlo8JHmiq6uivz/6yOegzfZadXWeTFamUKSIxWIOx//z91FUr8XSODhYo9G4IzuCAACd3f4PDUPIgqer68ZYBWw9IYdRFHV5YOCWvLzoL2oJQhvChcbp9R6sq5ulFRwYHj7W2XlPUZGEy4088nxvr8Xlur2ggLt06gutnRCN+KnCLFiVtCG8urF1oesA1v5u6pLQpv8LjxVrf7cg07rq0dpsHzQ26uz26R5IAW16vb8cgsVg8FksBoMx7HL5oramXp/vUGPjzjhrfmLWG116ESHc6Akr9Fin1d6Unc1ZOneY6UMnyywoFPBBU9PApCYS06JKrX67vl7IZn/e0RHN+IbBwb9VVg5N/+c0Xwx3QpwT+JtOHF0GuI0Ahf5Ppx6p/RqOgfmf0FUPBVT09b1UVTUDKzgBr8837Habnc7orSCAGo1Gyuev5RsFXOG3V68+PWBUO7zwWEIOdnq9c5LxvojQhnBBOadSdRgMMz7c6na/39h4eWBgX1nZPcXFeru9OVz1z3iMTucbtbVLxRaOrhGCNoTLArcRnFj0TWUIfR4MXYArfI4iDQCg32J55cqVzzs65iONLhooirrQ13dtWhpIB5g8KY93S17eB7YS18CXY4MGPgc5li9aGcWK41KGNoQLR7/F8vVM6+VdJPlRS8vzlZUygeD75eUyPp9JELfl5x/t6Igm3A9g2OV6rbo6tHjEAjO6RghAlE1XUFz1uAxI/QZ0Z+ENJdA1iuEyfCRcUT26rUwcXu/BurqXrlzps4T2vRaGVr2ez2Klx8SAdILJB1AcH58jT/pEw4ZVCQAuHfSX4DaOHqKxWjuNxnAnXPrQhnCBIH2+T9rayBk94nl9vnfq69kMxhObN+/IymKOZL6kx8RkS6WnekIvYk/G5vG8XV9/pL19WkGSOcalA4MNTmzgJV1BsQxwGyHMgHwT1F9EGjZ4Bkk30YYwHBTwYVPTbCJGczMNijrX23tNWhoAv0fo3747N9/EkF9svwTKB2MtAJDjIkxno74RLUFoQ7hAnFWpZpYg4ybJQ01NYi731ry8yQkvN2Vn12o001pIuNTffzAKjfn5wqocy5QBIMqCpXmykiHN1YTbCI4UiTugOxtp2OBppH0D7iUQk1iSnOzqWnQrCKBBp/NRVJFcDlDwecAMpOMxCeK+kvKL9oTK9vMw1YGfBO+4Uvouk6l/UR3Z2UAbwoVAY7WeUalmcKDaat1fVSXhcu8qLAxZAiFks6/PzPy0tXVauhJKo/F/L12q6O9fBMfQ3gdB2thLUTbS78PnZWj4z4WfC83c4DeEgmQ4w3eQpkgMnUfK7fDa4FsmApVzSMPg4OkZ3SLmFjdJHlcq9+TmEgQB0gkGBxi77cTyeA+XFF3QWs87MyBIC14j9BN9dGqpcVUawpk1Z1gsPCT5YVPTdNe9h93uox0db9XVXZ+ZeWteHjN8IeA6hYIgiMqB6SXjOTyez9vb36mvX2glNns/+CljLwkmyv8HN52G8vUFnQbNHOI2gCMFNwHO8KmD5mbwEsFLAEcK9+L7PUuKXoslcjvcBePr7u5sqTTV3+J7ZIEwmFiJYl+uqMqZcN4smGwI2/T6bpNpYaY6t1yVhvDvzc1XR7MhAMBxpXJaoUuPz/dOQ8NfKyt9FPXDjRtXJyREHk8QxO35+ad6emYgtN2m179aXb2g/0xHPwQpEzfGFMHrgK0bAJr/iDN3o+onCzclmlniNoIbB15kQ9iI2NUAwJHRy4TBDAwPv1VXt1gJosGozObGwcFdOSOJbEELhMGIFVsfLt90ycjoHnZN3juDXqpLgavSEHabzX+trPx7c/Ppnp6zKtVSDkwPDA9P11f7R1sbj8V6csuWW/Ly+KyoFA/kAsENmZnv1NdPoRwYikGb7Y3a2oWzhfZQhhAEEm+A9muY6tH6LDK+DeXrcF+Vj5YrEX9oNLIhtDRDUgQAPDldQTGKyek8sDT08d0k+XFLy235+WP3nFAeoR8xh7M9iX9WH8J8DAwP12m18zfPeeKqNIQAbB5PnVb7VVfXcaXyrfp605LsOkQB003RrBwY0Fitt+Xns6KQzQ1mfXJyllT6QVMTOf3HMZ3N9kp19QJ1brL3jlsjHMVvCDtfRs4jSP8mEq6D+uhCzIdm9rj04MjAjYdbDyqMZ2NuRkwxAHDltEc4ysnubscSsIIAvurqyoiNzZfJxjaF8Qj9lMpjdG4iZOvTL5XKpWDap8XVagiDsXs8h5qaoiynW0gu9fdHXw9EUdTX3d0Xenu/tWoVe5pW0M/unBwOk/lOfb1n+mEWo8PxRk2NymyewftOD8dAaCGupBuhOYHud5C9DwBSbo9KqYRmKeAxgxMDBhsscdj1P0sLJIUAHRodQ2e3LxHnqc9iadLpdo8GRf2QzgiGkMkSbBEZz4ZK8LG63TPLDVxEloMhBNBvsbxeU2NbSu2S+yyWL6KTQAPQa7G8VlPTbTJ9v7w8jh86HDERauIzF4Mg7i0uFnE4hxobZxCmNzmdr9XUfNjcrJ6dAtwUOAbGJcuMIsoBg4W4MggzACDlNgwcnXyNNEsOrxUMNhhcAGGjoxQJawckBYDfI6RDowDwVVfXYlb0juDx+Q63tu7Jy+NNWIgJHxoFAJZgHV/bZTSaXSFWCi/29i7lFavJLBNDCGBgePilqqqlUIgDwOp2H5oqSkkBWputVqt9rabm783N65OTH16zRsCOTpif8qH5jzDVTdhMAHcUFDi93gt9fTOYNkVR9Vrti1VVr1VXd82HToTbAAYXLEHovZkPoGAkR4afDFE2BiPWpdEsBfwLhH7CGUJrF3iJgbsql/YIAaDTYGjW6RZ7FgDwaWtrilhcJJdP3EE6GCweP9wdiclnk7Y1SUmXQ+VAkBT1QXPzVRQgXVbdJ0xO58G6utUJCbtycqZsyzB/uEny7fp6c8QlNxdJvlVXZ/d4kkSiTSkphXI5Y1qdklyDYHChOQ6CiZhxXTH9fuH+qqr0mJhAGvT06TGb36itjeXx4oXC/Li41QkJwb8Hh9cbWFHv/TuMNSiNugTQ3gdBati9a54Z91KxC4OnkHj9dCdPs6C4DOMMoSuUIRzNlAHAlcPcsEBzW6p4fb4j7e3Rj/eX9wk5nBSRwAfGoM3WaTQyCSKWxzM4HP4MCSmfXySXlysU07qTVPT36+z275WVhdhHOrekJGQVFb1VVxfiiZ7Jg8+1IVnxanXN9oyMyTkNRofjSHv73UVFkw9dgiwrQ+inYXCwTa/PjYsTcTjbMjLEHM5Cvjvp873f2Bi5v4SLJA/W1SWJRLf4C1dngL0f4hzEbUDPO4gpDi56BSDhcu8oKPigqemf162L1sUMhcnpNDmd7Xr9kfZ2CY8n4nC4TKbJ6TQ4HOkxMZtTFOlXfiXi8kYNocnp7LVY4vj8RKEwdLLPhCLCyPAVMDfPePI0C4TbCE5c4O9wpYSWFsSMGkIZnCvdI7zQ26t3TCzCC4fT632rvj6Oz+c4DRcHapjCVKkg5tq0NABGp7MoPl7K4xEEobVaL/X3dxqN9xUXR2kL2/T6cyrVI2VlIX+tcQzr9WmJ7Li46zIzT4UQSSbA4MZxCIVY3KjTrUlMnHyGhsHBGzIzpVGu9Swqy9AQAnCTZJNOB6BlaGjv6tUKsXjB3vqz9vbI4Vm/rm6KWLxnxlYQgKNfIE618xVg8idqtQAA8mUyldn89+bm75SUTM/XDAUFmJ3OYB9XZTares5AXyZx9yXUVjMYLKvbrbZa/WuTHCYzWyqN5fGYDMaAxUIBpYmJqxMSOCGLCMPBldGV11cBE0OjocJ95mbEXxv4mytf4SprNo/nbG+0moJ9Fsvfm5uL4uNvysokOl9CegqGTyH9kTG13hGkPF6eTPZBU9P7jY33rVoVQYLDj8psPtzaen9JSSwvdEbMTomazYsDsD0jo3VoSDM5QZTFB2lfn5x8TqUKaQh9FFXR339zbm6UF7uILJ81wpBYXK4DdXXGqB++ZgNFUceVyitqdYQxHp/v9ZqabKn0lry82XSNX0U1PbpxK5vBQEwRLKHdphuzshgEMbOCiiigMHgaSTsszPgOdXubXj8wPDyaoeMmyZahoYt9fedUqi6Tqdtk+qS19b8vXPhM2V/rTu0xm5VG49RZvhwZnVVxFTDBEI6GRj3DGB5JFrM0j/MIV/Ya4cnubld0i2fne3vfa2zclZOzMzubMDeAwUbKbZBfg96/hxzPJIj7iotZDMZbdXWRf1+NOt37jY33FBUlh3ESeCxWHkMNdiwABkHcXlAQ4m7F5MPryIuLMzqd4RzcarX6qlgpXOaGEIDd43mnoWEGlebTwkOSHzY3h0wmDuaEUpkkEu3IyprNe61LiL2Hcz4moWx9SgokReHihwyC+Nbq1QRBvD0fOmpOHUBBmAV+IpxRpYA7vd7KQctHOslr1dVv1ta+Vl09HLmKnxu3wl2HpY76KEz1AX01P7yEwJfB58LpO/HlVrgNMFyBtQsxJYExKztrVGe3V0WhsGF2uT5oamrU6ZZfEg0AACAASURBVP6pvLxQLgd80H6NpJ0AIN8EjPR/mASDIO4pKpILBC9WVYXsuWb3eA63th5XKr+7Zk22VDp5gJ9CuZzlGftkU8TijamTVveZfJAOBkGUJiZWh3EAXCR5+moQIF3+hhDAoM12eD6l/IwOx6vV1Q1T9WhWmc3NQ0N7ZhEoIIDtGRm3y0wMaSkY7GvT0tjCZBCMcGLHTIK4t7g4QSh86cqVOe7K69SCpwAAXmIkqeUJeCxgB55A1Vbry1VVg7bwHew4Mrjo0OgSRvkmOl4M6Kv5GV0jvLAPXBnS70PVE6j4Psr+MPq5gx0Lz/DKLIzxUdQnra0RSiaG3e7TPT1v19e/ePmylM/ft3ZtIOnP3AR2zMgKCIHkW6A9Dl+IugUABEHckpd3a17ecaXyLxUV/2hrq9Fouk2mdoPhs/b25y5d4rNYj61fnyAURpjq6oSEcb4+cFN2drxgfL43k++XGy1LSqrTasNd1/ne3shxsqXAijCEAJp0uovz0EOZ9Pkq+vr2X7kSUmEhGIqiPmtv35ObO7FYJzI+F3wBt2lVQsKPNm26ISsL+kuQbQQg4nDWKRSQFMNUH+4EBLA7J2dbevqbtbWRrM50cWrATwQAXlKUHiEAeIbBHktkNbtcr0Wo4ufKaI9wSeM2YODo+NBoPJw6GKuhv4gtB7D2dxg8DV4Csr47dhTBAEe6Mp3Civ7+3vCaFRRFHWpsNDqdZQqFv/PoWA6L7jzirxkbyk8GPxnDnRHeK1sqfXzDhu+UlMQLhUqj8evu7sr+fhGH89iGDbtycjiTGroFI2Czs2Ik8FiCVyLZDMY9xcXj0mpYAd1tuUAQw+O1h8+N+Ky9fYmXFS7PZJmQHFcqxRzOlBrW0aO12Q41NkbpaTXodFwms3BysU5kBo6CLULijlSJ5J6iokDay+ApZD/s339tWlpVz0ZP21+RcF2gqDkUa5OS2Ezmgbq6e4uLM2JipjeHkDi1kG0CAF4SHFF6hD54TMGGEIDD4zlQV/fNVavy4uImDmeLQTrhc4OxoHm/NNHiNsDWBf0lJGwLbPGvEaoOIePbAVGSG44FexUB/NFRXoj0imWM0en8qitSD+qK/n4mg3FHfv7E7AFbN3weiPPGbeTKgxvEhyNeIIgXCJASdYYaAKA0MZFJWsESghhnL5NEom+tXn2osTGwAMnkj7Yk3JSScrGvryBYoS0I0uf7rL39n9atm23a3rxx9XuEDjX6DkczkPT5Pmxqqpwjv7BKrX456nijj6JOdnfvkGgxPKl4yN6Hvo/Q9UaIwygvLM2wD3CYzLtHraBDjaELSL7FP0TM5ZanF0KcB/3lyHNYFR9/V2Hhh01NX3V1zUGM2KEJ3MjYYoCCN4qew7YecGSTtSo8JPluQ0Ooz4UAJ45OHF26uAyI3wZD1Zip40jhtaP7baR/M7BFUgDepEdPnjySPPcy5bO2Nk/4TAW11XpGpbp9shUEYKiCfNOEEimwY+GZF1V6FoNxTVrahLjoKHlxcQ+vXRsoymLyR5vUF8fHGx2OCIGxgeHhaBZHF4tlYAgHYFVGOZYCPmtvP9zSMgM1zlGsbvc79fWftrZG+FpPoEajkfJ4GT4lTJNKifs+AjcB9r5At1Ln4Fjo39IGTqzA1Xt/aUkcYcbna+HSo/sg0u4Gayy+vzUjg52wFfoKUFPMJ0cq/cH69QPDwwdqa2fVod5rBagx344XMV9muCPwpGIOSh0cj/+B8b3GRt2E4C2XThxdwrgNyPwOgLE6QhDgysHgQro20oGxa2Gomu/ZLSkadboIVVVqq/Wturo7CgpCyCtSXgx3BPTKg+HEBtqz2HrCJZHOjLKkJAmXC6cafEXIAcli8QOlpTwWa3SNEACDIDalpl6IWBbypVJ5qb9/KajKTeaqNYSWFngsAOAagscyupAWDdUazV8rK1uGpp3DTQGX+vufu3SpNVQ6VoSjzvX2bktPg9sIazvgG7fTbYZ8M9ixgUCH+hgGTwd2mhuS0679fnxnBtMI9RewtOHSo+h8LSBLPYKYw9lasBEcaaCfX0QEbPb9paWpEsmLVVVdM26h6dSOi2tFjo669TDWwDEAS3OI33MQzTrd85WVr1ZXV/T1BRJKOXG0IVyiUCQ8w0i/FwRrnOvAS0D6fVMcm7ANujPzOrslhdXtPtLWFm5vk053sK7ujoKC0HHF4Xbwk8GcpErIkQbuGI7+6D2BKWExGFvT04Fw7dICJIvFdxYWgsUP7s1brlB0Go2G8LVqLq/3SHv7gdrapdB8cQLzbgitVis5H6ULunOB+jl/TdI0b5cGh+PdhoZXq6uVUStqaqzWV65cOdLePt1ShGadTshmZ/BJsCXgSGELKrHwmAOBeG5c4GvtGoLhCsPnVvAYu3Hy+9c/EBe/GoYqqL9E2e8x3A74xi2bAwCuSU2VxqbBHlXUlwBuzMq6s6Dg45aW6fZKDODQgJc09pKfFClx1OsAJwaqD8AUBrkOYVGZzZ93dPz3+fOv1dScdmR0GzTk0vvZhGRp9gKbL9xGsCXgxOGaAxAFlQNlPYicfeEPAwDEb4XuLLAUPYM5hwI+amkJ1w/gYl/fcaXygdLS/DCrazA3TdBQDMCJhccMUHAOwmsLeAWzZlNqaoy/vj6cOP4IBTKZiCceXSMEwGUyt6SmRl4HBdBlMn3U0rLUPvt5NIR9fX1btmzJyMiIj4/fv3//HJ/dNQSHOvAHXzGzEl2V2fxmbe3h1tbIxac2j+dIe/v+qqroeyoFc1alujY9HS4duPEQF8DSOrZvNBDPkcJtgM8N0glR9v3imkedv99SdAODK4W0HIYqaI4j+TZsO4QNf5u4WgCwmcw9+asIxzSsWrZU+khZ2VmVasqqjxA4tYGUUT+RPULSAdlGgAoXFw0JBfSYTF8NJ7ze3P9f58+/29BwrLOzf17bYsyOXovluUuXln6a+JzhNoArA4CMb4MYy7mrj3vg/9ao//vChYlR7mD4CnDiYG6a/1kuPudVqs4wQVGvz3dWpXqgtFQhEoU+OBAXLQyxi2CByYPHCucgWMJplDCFR8hmb/O7g/CrIYZqlzYCgyBKElNAjvuUN6WmqszmyAKTABoHB//R2rqkGtnPoyF88skn165dOzQ0dOrUqZ/+9KddUz0pTAOvFaQTDjUoL7w2iHPHPEKPBW3PT+tk1Wr185cuXejrC+7S7qMojdV6oa/vjZqaP50/P+PQdotO43Ob8+Pi4BoCLx6SCYbQNGII4+A2wjUEblxJ4e6cjv8XTC7W/wUA4tah+y2wRRBlQZwfToQ6P3vbdsalac0thsu9v6TkaEdHz7TaEHossCrHibrx5PCYA2uckyEdYImR+R1/ycf0YPLhtTu93pahoQu9va9VV9csjf5tE/BR1JH2dq/P90lra9PSaCkw77gMIf37y/39Tq/X4nK9VlOjjVBTlLANg8s/OjowPBzBQ6ofHEyRSCK1XbN1g58UIi7qhy2F2wDXEGJXB7yC2XFjdvZYcVcUaohrMlbBYw1uxcxmMLZnZn7R2TmlkatSq//R3r50gj3zVT5hsVg+/vjj5uZmgiBKSkp27dr11ltv/fKXv5ybszt1AS/QoQFHCm48hkesi0MNtx7wTcvGm12uYx0dxzo6OEymkM0GYHG5Zq9MRlLUcWXXHm4D4S6BUwdxLniJYLBgVUKUDQR7hHEYboNriC+Q7VqzG/GvI+NbgQftuHWw9yLvsSneTJC6XajVxRCN5mlMO0EovG/Vqg+amh5eu1YWlTauD70fQr5p/E2QAW48nNrQnSVIB5h8cOOjn9UYzHGLEF6f77OODpXVenthoXAWYuJzzqnu7tEmjp+1t2fExi6p6c0LbsNYHf0IBodDNRI18bfL/ud160KXrMVvg/oL5P1gvqe5iLi83kgChz5PRW/37rxQ3t4oTt24NYgJcGJh7QRLBEH65I5s0yWWx1sbrBcaroF2EEkSaZKAo/GYgu8G5UlJ1Wp1g05XMlWhWtXAgNJo3JaeviYpaUpl1PlmvjzC3t5eADkjLY8LCws7O8OWf5Ik2d/frxxBP2UqinMQvERw5TA3gisbJ9rkGgRFwTPDGJqbJI1Op9HpnBN9zsr+fhkHOWwjzM2B0CiA+G1j6TCjhpArhdsY5xt6pDBRzOUi68Gx4jm+AvxkKHZN+XaEfONdUk3KNBXGM2JibsjMfLu+3hKqweZEhirAYCN+68TtEZYJSQdYM5WfZwqCDaGf5qGhZysqDre2dhgMUwuWzjMen++DpqZTQSJSNrf7H62tEQ5ZJrhDeIS1Wm2wKzBkt38WrtlQwjYMngzkPS5TPmltjZA50q1u9LmMmaLxNbKWFuiD4jquIXDDVx5zpLC0gZcAvmL2HuE1aWnM4GL5iMkyo5TECSYUOPl1bb7o7Iwml8LocHzS2vpsRcXpnp5uk8nico0e5fB4huz26DPzZ8l8eYRms1kYJOEjEomM4dNSVCrVj370I+5IB8GsrKzDh0OXBlqtVgCkXU2yYikOmjRqMyddyiZXu/RulwsEwbKrGYDHrqcWu/eHxe0+o1I9lOqlXMkwNRIeo5uQwO0GP4/t+dpr6qAE6WynwSsRUm63mB2zhd2wTuxmCe8bnhRhZ5a9QorXY6rIO0e8ltCeu0vKebW/38zLj36qq2Uyh9v9Wk3N3qKicFL0ftiGam/izZR7YhSUwZIzbP1eUWmIQzw2L8mkIsuKhoFBsRgeqzfoWI/HQ5Kkx+Op6Omp6OkhAC6LRfp8xXL5puTk6JzaOcPr8x1qaemeFFiuHRhQ8HhlofT4lw0ci5qAyBX0nfRR1KWeHvf4D7pSpZIQxMbkyb5FAldxN+voZsem932C6UnvWqdScVoKVKrV1RFLls+qTVsEamrgmCfp1tGNLHMb4dJ6xIHiE7ZT5xUWhfvtMBgillNLCnNICDg+l9thChtEnQoBi5UrEgXfeUT2fhsZQ011zymIkx3V6EhOevBGOZebFxtzurXqJonGK9sK1hSP5jq3+2hQ+gWDIDgMhnPEBK6Oj9+RkcEgCC9FidhsAHa7nSTJ6JsW8Hg89lQRmvkyhHK5fHh42OfzMRgMACaTKSG8p5yVlfWXv/xl06ZN0ZzZxWS2mOykKOUrLZPlplJ4wq9U/XZ22kaGE+wYuHTgytlwYGHbEAbQHEfSDoCgKOpoS8uW1NQEZh3i1mDwNFhCDm/kySDhOraporTg2nJDhans/yRI0xViMXHYDdNpbPgtJrt04pujevfkbTj7rfi+d+8kU96V/M+0Jn5tRgaPw3mjoWFzaurm1FR2yG6CLh0oNzsmO8QucSrUDZyQ/3Ofk82PAXNGHwdPArMr+LQEQbBYrODfgA8gGIxmk6nZZJLx+UliMYfJlAsEqRIJm8FwkaTSaKQoKlsqjeFy2UymmyR1dnvj4KCQzS6Uy+P4fCGHE7p7YkQ8JHmoqWnA4Qh51WfU6oKkpMRwSRDLASvESZyg72qjTuegqMn/jbNqdapcHqI2YPNzaPtfYdWDuKVmcv5XZMQL2FhtBrTq9WfV6tA/BwCA1mbTuajSwrUM3SmOVzu24u4ZglPDYRFgsAHArWeLksDiAOCzWI4JPpYgHgBTqGByuOArOKQe/Im9maZG8yXAuHHzg3HBglNuExhsUezUT3Li+Pxs42DPpCvdLup/sZu5XURydV8gY+90J+UDRiPqbWazsqHB6/NxWax7ioryZTIGgyEQCGbTvWcy82UI09PThUJhbW1tWVkZgCtXrtx+++1zcuYes7nCxLZYnSXxcRssJ4jMjRsYstcvW21dndtyVrM8JkjL5yqZeHpQJHTnINsAdswVjcbp9V6Tloae04gphKQQniC/IXZ1ienduxQ+Rr0G6SNtdcU50PZOFFKaFrJNUNyMtb8r/PrmYp6xyRlWWj4k6xSK3Li440rlny9eLEtK2pyaKvJ/v30uqD5E8s0wNYTO5Ia/pl4XammWgs8dUNuaAaFCoxHQOxzh2sGEbAxS0d8PgCAIEYezMTl5a3p6lL8uq9v9bkNDhCxiD0m+39j4T+vWTU9a9irCbZjwXQ3XeoUCPmxqeqSsLGnyY0H+v0D5JvoOI/WueZrmwtNjNh9qbIycW3dOpdok0DGFRaA2wdQwZgidg+DKYO+DKAukA5QPLBGAWB7vkbKyYZercmDA4fFIeLwCmcxqlvT398sLSuWJJQRL3uLWVRG5017TsakUXHJz3S1IbxzTaIy+b6g4ZzXz8uTuEjFeTZ608DKRc63rc5jqEBsiVhQ9/rpDl9f7bkPDI2Vl0ohCqTNjvtYIeTzeQw899NRTT3V1dR08eLCysvL++++fkzOvS5Q9Iqn6Xvm6jRn5BJMDriyGy30k3aOzWV+ovHzKVaDyxnjcFgATH6DmG7/MmNuktdm+7ur6hl8UzW0EWwr5JsjH/N1r0rO+sWodo+FpCDPHnoVFORBmztxmAGAJcc0BCFKRuXcPvhKymRi6OK1qrRgu956ion8qL/f6fC9UVr7T0HC0o6Op7bjXY0f32zDVu0RFDYOD7zU2XlGrx52XwQFLpBrqP9LeXjkwMKruTXkdSm9CnXZwhiW0QRpO8wdFUcMu14murrfq64ejWCht1ulevHx5yloavcPxUXPzksoRn0tGyycAAB0Ggzp8GM1Nku/U11tDhvhW/xIN/99yqin8qqsr0rfdbRiyWZVG43p2FzgyCDPHdDA8JjC4kBTA3gP4FwhlACRc7gOlpRIuN0UiuauwcG9Jya15eblxcWszS29N5W3K35IjlWYrCm8RtH6/vHy6sQ0Gab9jxy8YvEQMnh3bOlUR4RiinGJfY4jW3279NampFf0DZPKtGDw1rSlFwEdR56ZqdTcz5vFx9Xe/+90vfvGLPXv2JCUlffrpp7JwFaPTxdoJjjSgBlv0pP8pRixb/U37B73x17YMiY5pKZ2Di84zFLBOoVi4/sheKwCX03SoU3tzbq6MzwcoeCzgxIBgjaZN3piVdV1GBqT7cHQjUm4bO1ycG2VF/NRk7BV/cc1dEsvbGhUlKZzczDoysTzezbm512VkqMxmk1l12YiPvQUcwufzeb2DXRmxsUVyeZ1We6GvL0cqTRaLZQKBze1utea267s3pmZorNbzvb0MghCy2Rang09liAYHv+jsLFMoyhUKKY8HgKSoqPLEWPzgit35psNgeKGycmdOTmli4uQbitPrbdfrr2g0XVGLMLTq9Uc7O2/OyZnbMM6SYHz5xJSdOM0u14G6uu+WlgonhNFS70D9r6H+Mpp0sKUI5YOlZVQyyehwhO2m4qfn3RO2tdemxHOcPDDY4CvgsYC0gymAQwteIoQZ0J0HAJceXHlRfPzt+fmCkEtcBAu3jCSLxhSjY79CLN6RnX2soyPE4DBcw+lQxKUieTfUx5C0I7DV3g/BFCmjAUTZQkdHTqZ0XOsJnwdeW2JsUoJQ1zjMLJ3T+FzL0NA1CoVAMMPV0HDMoyEUCoXPPffc3J/X3DKWiz/qywtSwU1Is55NS9kIUaZv4CiZtY/0+V6prq5Sq9cpQovmzTFemxfMd5Tm3LjkQI8LzzCY/OBy40SRKKBgFLcesavHSXKk3Q1p+dzMRJQNUXYeo39rovCMxzhdQ+hHwGYXyuWwHtu8qtwjKnCTJEiHkBfQFy1XKHotll6zud1guNjXJ+Rw0rjcx1OZvMTAsrnWZnOTJN+rlxubkHOzweG4PDDwypUroxIbxfHx9xYVTWEhCBYIxkI2oHB4vZ+0th5XKvNlsnihkMVgOD2eQZtNY7UanM4ZuHcVfX0EsHBPYwtGUPmEymzujkKuT2u1vlFb63dugjYTyPg2NF9crYZQdwbn78ddff5X9YODkb4kbmOv1a2xO+/NBgz+dFACgjTYeiApgmsQvAQI0uDoB0XCNXRdasINxcVRPUVJimBpAajNqanten2UgllyPu96bis4UiTtQuUPgD8Edjj6o/UIWUJwYkti0B6cOhro1UxsSEk5p1KVchjwuSL0xpkWFFDR3586uVnN7LgKFzDEOZBvDrE98Xp0vAReAlgShsfMYDDYDMbe1atfra5OFovDajfMHV639T3r6liue/dI0cgEBXeCIG7NyxsLI5Q8Pa4nkSgHohzMFds+BCd2R+XjlNdxdjYRYpcevAQ2g8FmMDD+sTRNIkmTBM3fUIUgaZtEf87wsNbfbiKOz9+Vk7Nr5D9DUtSB2toTXV03ZYdKvQnGX0q4sJ2Y7B5PjWYOpDr8XOzrSxaLS5dZEmlQ+cSZqKNVgzbbi1VVdxcW5gTfyGQbUf8fcz2/hUL9Bez98JjBjoHHUqeN9LWhLK1fuFbdKOhiujhjdRGizIAhdGoJSWFqbLxbJJaz+lfHdhTlfAtRxhI4sWCJYO8jwLjX9Lv9vCemFPxjEsSdWfGsPgkIBmQbYO+DY0Ro2z4QWRZ4HKKcQq6ew2SN1TK59P6gbr5M9nl7u4YtT/LawJkbQwhgYB7Shq9C0e3Y0tAfkr/YTpAGtgheu1/vII7Pvzk396Pm5hmuUXksURboOL3eA53DfBbzjjjN2BOc2xTsjRXKZOnBqVlp3xiLRcw5fAWYfIiybpKob8rOnmFojiLhsYAdXdINVxZC6M5fTT8JJkF8a/Xq5qGh6intDUsw46rQpcOR9vblpkQ6EhpVW60R+ipMxuZ2H6yvf6+hYUyDLW49DNWgvLD34uSt6D4Yrvf6UkR9DCwhzM0Aer/85lDL6xEaADRoByimcLWYgrF6zBAKMwLLhA5tSUru98rLH9v9+H26nxfZvgotrhaOmGKYmzBwRDD4+d6SkshZWmwGY29JSRrXGZgGwUTiDqi/COyOPlkGgDiXY+sa12nVrQdHBoAA1iUnX3YmwTt3LcHnh6vQEEZAvgVMHkCALYI3cPdcnZCQIBROKQUbGlM9tCemHNWm1++vqkrmer6RzGK4g1YIPMZgK7I5NZTwyrwizIS1e2t6+p0FBSEWtKfEbQQnBkR0XxKuPHpDCIDPYn2npOSEUjlFVC1mFYbORTWBJYzT6z3U2Dib5l9LC/8TEicWwNddXdONGFMU1Tw0tL+qKiBHx5ZAmA5TI7rfgc+Ntr+i9t/mY9Zzj0sHaydS74SlGRR5bsAABg+dL4MKEYTxeB3HDaLdeQWEJA8uw5gh5CvgNkF3ju0x3LRqKwAk3ogtB0AQ0wsRSYpgbobmC3gsiVz8U3l5uOodCZf73bVrc+Pi4NKDNzINxW5oRg1h1MkyAEQ5MFSOC3iMeIQAyhWKZqfIaF/S7emx3AzhKGxJcLnCrfn5TRH7gYXFpYO9d3zjpDF8FHWpv39/VdWXSuVt+fm7pQZCmDKuTCIoNJosFmfEzmStblYIs2DrArA2Kene4mKm2zC99LxQ6iFhYYlAkROrHSLKysj4/HuKiz9oahqMINAs3wyHFta5E6pdJPqHh6fMqr8KIB04UgJbN9hiEMwek6ltvA6U1+eL8ho9Pt+hpqZz/g52so3QV6D3AxT/AuX/Be3JeZj6nGLthEMNzXEkXI/YElhaBjV1rb40pN4Jjmxcl2zNCf8D4un2mgw+mRYrC5SdjEnGMJCxFx7L1pwSCX/EdCl24W7t9FYEYophrofmK3Di4FDLBILvl5Xdnp8fXLVCACWJiT9Yvz6wqBGsXJNwHXTnAIAiYWmFOOpV7czvQHc+p+H7cZyRzz3IEArZ7Gti3Z+rlrqE0DI2hGPPIHwW6+6iosOtraETuCPgGoKPhCOE0LOPoj5sbm4ZGropO/vx9euzpVJ4rOBIwWCPxQGCQqObUqJ+wppDRFmjJqQ4hvlt3U/5tiD1L/UXU3QyC/pCR0VwH13XEOCDN6xH6CcrNnZPXt5b9fXGcJFDggXFrrFn1aWKw+utmqr1RJte/2Fz85yo9y0aNhVMDaj7tf+LcWJSoOW1mprfnjnz8pUr0ShsURT1ZWfnl52dlGwjVIdg7Ubi9ZCWw9ICrx0AbJNL1JYGDb/BkTVo+QsUu/yu2JnWi5R/gS3xBujOBQKk1k6YaqF8vV/5ec2QbXf+KgDgJyNpR3BvbYYoc+fWH163e3oiGBOJKYbqQwjTEbvKv6DDZjLXJSf/YP36H27ceEdBwe0FBY9v2HBPUdFYDqpryB/DBABxDrxWODUwNYCfErI9fWhE2bi5khCkblL/PqC879KPnRbYEs8xub0z6P+6kCxXQxgzoaY+PSZmU0rKwbq66RUXuoYQUzT51+h/mPX6fPeXlmZLpYEVOK8VLBHYMQGnkPLCqQU/CQCPxVo1lQTtvMBPhtsA0gkAzX/KE+EHgi/GHFNzA+yROkpP+EJPTXB0tPsgLO0gHVPKPq2Kj9+ekfFadXXYRsGSAriGQC2yrGhkLvX3f9bWdnmq/o6Ng4Nv1dXZw3Snuwqw9UCcD9X74MQ1DA5OKBWwut1Gh+MXW7cmiURfKqPtFnuut/cVTZKm7yJS7wx0F4otgeEyhtvwSe4S7cxs7ULBj+EdRvItiCnq1PU2qnsCKtW8BIgyA96V9iQUu71p3/xYw92TXyCUjEiRBan15sbFfa+8/NqoxRzCElMEjxmK3eAp4Bz3TBYvEJQrFOsUivgg2UtggpYpAdkmDFVg6ALit0zvrRkcrP/L2pRUbu87cA4C1DgzzxLsiXd9qVQu5UfA5WoIJXBPrObZmp6eJ5O9WVsbrknmRDwWMDgQ58M+LinO7HK9Vl3NZTK/uWrVuGI4vyHkjBhCazd4Sf6k4eL4+BmIeM0BBCOQnO3SoeNFXP9ZjP7rhwpTt6WnEy49PMNT9HEcXzQ9NaOG0GOC2wyrMsIaYTDlCsXdRUUfNTd/0NTUbjBMymwiwBKPizkvMUiKujww8O3Vq092d/dOVWivNBr/t6Jixo29FhlbDxK2IWOvnSX/fJKgdrvBkBMXx2YwduXkdBoMYZ9sJtHnjXnVurFXdkfgtXwLcH8POwAAIABJREFUhi6g+21Q5BINBli7kPUgbm2EMMPAVHwwGOuz9QZSLgEk7YClGZ2vwOdGTPFpHZkQm1ScmDb5NFmxsQ+Ulk5XKD803HjwEqDYPQ0N7gmi3vJNGLqIoQuQhUrLnwKCu+lvZYokKF+ZeNNgibLYFhmfXzWzNuALwjI1hIJU/9rYBHZkZRXK5S9fuaKJJgHX3y9CmB7cU75Rp3upqqokMfGuwsJxVtDnAkGAwQY7NqCpP9w+qkG1elHcQT9+6YrmPyJjL2KKkXwro/f9HdnZ34rXcvih0luCceknt9qJBGckNGrtAVceMITRtZ7IjI19fMOGzNjYcyrVH8+ff7u+/lJ/v9pqDSSYcGKXcqeCOq1WIRLly2S35ud/1tY2ZfKIw+s90t7+4uXLUdZ7LSHsKggzsOaZL4TfnfxA2a7X58XFAeAwmbfk5R1pb4/W2BMMd/ret9Qxav8PM2AI30HOPgx8PseXMHt8bjgH/U3HfBT1QXObgx0Ppxq8EUPIjkXuoxDnIXmP1ma/olbvCVNIuiYpfJelGbD9EyRcN4UhbPmfsRuaSz/OEMo2QV+BoYuQT9Mj9EOwrt3+a3bhT8bphABgCeG13pSdfbqnx7XY7WLCsUwNIT8ZXgfcIe4y2zMydmZnH6yrm7qZuFMHrhzsGDBY/lYjp3t6vu7q+k5JyZbJ+Z9em18VcCw0OmIIxVxu5sKnyYwiyoKpDp2voOinAJB5P5RvAih0nH14w3Ucty5s+ozPA9IOdkzovSERpMKugs8Dew9kG0Ha4RqKxiP0w2Ox1icnP7x27RObN5cpFFqb7ZPW1v86d+6vly//w5RUOzg07SXeBYECLvb1+VOCC2UyFoPRGF1vXq3N9mZt7UtXrlzs61MajYveUioqbD0QpA8hrtY5sSySpKgukyl3pEAwXyaTcLlTl8eMIsp1kr7XqqsbBwch34yBzwEfVv871MeCW78uCWwqCFL84lZX1OqB4WFw48GRjtNHJJhIuI4UZHzS2rojO1sUSoCbw2QWycN3WZoBsk0gmJEMoc+F2n/D8W0wNwKAa2gsaxQjKUtO7TSKCMcj5nI3ZRZO7KHIEsJrSxAKi+PjP1lijelHuQoL6qOCgCQfltaQpffF8fGJItEHTU1dJtMdBQUhOi10voSkXXAN+Vf4wE+BQ31x0F6n1e4rKwvdc9VjDRhCTgyG2+HSgSLBSwCwKj5+JqULc4UwE03/haSbIMwEAMVO1P0SnS9j8GTymmd2N7/xqdsUemF8RB5iGu/FlkCQBlM9rN2Qb4E9G6aG6A3hKDwWq0gu998jfBSltdlUfVUdZvsJbdXeVauSlljngYt9fUI2Oys2FgBBEDuys//R1lYc9Yfeb7H0WywAWAxGRkyMvxWGiyRXJyTM8V1yTrD1QJhxvrd38s2sx2SSCwTBYmA7s7Pfrq8vTUwM3cwkFG6S/KC5uTYubj2Rl595L4QZ4MbDUAXpmoDM0FLA1uXXhHJ4vYG6LK48ZOX7caVSwuWuDaOlUCiXc+dDk52vCJa2GIfhCmKKUfBjnL4Lt7dPDI1ypBCkQZA+m//ztWlplwcGxqVKsYQgbQB25+a+Vl19rrc3oK61lFgaX6z5QJyP4bZwO2V8/vfKytgMxstXrkzMV/SY4dBA8+VoK10jYt/tNFxRq7+7Zk3YzuPeEUMozABFouMlvzvIZDA2Lkq+6CiiLLh0KPxp4CXBwpYDqP45GByIstYlxhcJwpQuTKt2YhTZRuhOw+cCNx6ibBDErGTEAQZBKESiTYkx98SbdubkvNPYqI1Qa7HgmJzOsyrVbfn5gUwH3Zks+3kpjxfIIDVcjl5x2OvzdRqNdVrtFbW6cXDw/cbGL8L3sl44fC5ovxp7aesZ5qTUaUPkUdcPDk6w3EkiUZZUerpnepmfFEW16fVvc773nudGu8eD5D2o/ik+SoHy1RldwDxg7YIwC8DRjo5A3lNcORK2TxjVPDTUMjR0Z0FBuCyYOY6LjsIL7xHqzkO+BVkPwm2EUzsua9SPfAvir5nNm/PZ7BuzxjeYZPJBukD5/DIal/r7oxHkC83gaWi/ns30wrF8DaEoG46BQMLkZOx9LAbjjoKC9cnJr1ZXj/tgrJ2IWQWKouy9LVbWgbq6l1ScFK770fXrx2skjmfUEDIFyH4Y2Q8j4ToAZUlJcYvbIlhahoy9kG0Y2xJTjDW/RdrdABBTdEesNiZkM16HOuAQTwtRNgg2hBkAIMoBWzLdVnOh4cTCbSpJSLgpM/NAXV3VhN4XiwRFUZ+2tV2Tljb2Edt6YKjalR5/qrvboTkHzQkMT0MBecLJz/f2nu+NmNa7ABiqcG6kbwzlhUNzRuedrNPk8HpbhobWTrqz78zOrlarZ/LsIi1rtvieu3TpAu9WjyAXipvnTJJ+9li7IMqq1WprRwO/7JgxAWQAQIfB8Flb2zdXrQqn8CLhcrPmacUkQmh06ALkWwACceuhr5zoEQJY+zsU/j+zfP8NKSnjxBdBjLaREXM4dxYWftTSMpPWQIZKGKthuDwfCeTL1xAy2BCkh0yZgduA7oP+PzckJ99dVPRhc/OHzc3dJpPe4XCYu4Z5ORWMTX81bzzTry1LSnpyVdw2iXGKbgleK9hBOg78ZLAlbAZje2bm3F3SjJAU4Nq3J27Mewzl/w0AkkK+rfnuwsIQcTx7H/gzksJJuglx6wCALUH+v8zkDJNhx/pXXovk8ofXrKnVaP7nwoWjHR21Wm3z0FDlwIA5ivZJc85ltdpNkuMWjO39iFufMHy+WOg42TeIrO/6V5dnzHGlsn0GQhBziL0fTk3gxmofaEB+pXpw8qgranWhXD65SYKIw9mRnf1pa+vMHlzsHs8xLf5A7ntzeO0FjVHvcCyJFSZbl46V9llb2IBTrVb7cUvL3pKSCBLHaxIT52vFhBsH0h5api5gCP2Rm7MgHeCMTwLgJU0vLSAUBHB7QcG4a2OJRqurc2wnVyfEf9TcPL0P0m2C9iSyHgJXzhhunuUMJ7Nc1wgB+HM3BiApmrjdYwXpgtfmL3bJio39l40bq9Tqr7q6bB63wxlDMK25MtktReWZcQkAYHOMk7u0doDBgWB8mNtrHeuuOcKWtDRx+C7VSwJJEbrezIiN3ZObe6SjI+guQ8ExMA29wXHnLBj7m5ijFppsCTzDfokfuUDwSFnZkN3eptd3Ggz+1tUnu7vXKRSrEhISx1dKURTVaTS6SDJfJvOvVHl8vob/n73zDoyiTP/4d7b3li3ZZNM2hfSQ0Jt0FRBEDiuCJ+BZTq+od3pc07vz9H5e1TsLHqJnwYoFRBCkSBNIIRBIhfSy6dlNtu/O748Jm83uJtl0IPP5A3bfeWfm3d3JPPO87/M838bGQ+XlXBYrS6uVcrkiDidCKh3sPanFYjlcUbExM7PndkZFBoUuRvG/ForC/mOIyXSJQ92O4ahnuEnyw4KC1YmJ4xZ4TPlhbXngaw1NpV+YM/xNEQlk19XdkRJYtHmyRnPeYDhWVTVvqCtDDpfrspV3ucOx79QpDpMpYjAiFAo5ny/l8YRstpDNVgqF3FEQa+0Li7HqAxvbzgjgl5Ak+UlhYYvZvCEjQ+2TtOcFQRD+3vPIQYCngaW+OyzAQ1clQHYr3oRMw7nfghMyMhM2fqiFwgiptCfNlCXsNoT2drSdW5y49P3Cy1+VlNySkBDsEbsqINKDI4MsjdmWAzwwsgO+rg0hX4vm7wO0dyvotnqyPjlM5iydbpZOB3M16vYg7sFe/bvvwldoOw+2yNcQOoxg9wrikHK586KiRuBTjCrSJKpe8LTwcBdJ7rt0qfs2Z2sGSziEOJfRgmCAJYTDBHSn5ysFAqWXJpnRZjtRXf1hQQG14ivn8SKkUgZB1JlMBCDmcncVFwvYbKfbbXE6o6TSu1JTnW73OYOhxmhst1rbrdaF0dFTw4LTYAPMDsf7588v1etDvOe9zbUQ6MDgIHYTny1bLGzcXVKySSwn7K2+cXSDwel2f3rxYpfdPmPsa9UCsNSAJUDbWbd22RclxY5AFdgLm5rEHE5f3g9BEKsTE7fm5FDqlUMcxpU7qd3larBYWv0yN5QCQUJISJJKpROLR1X90el2f1LPaokUBZxNazSb602mH0+f3v8EUoREEjLSinq9oGZHfQyhxx0EEDINbecgC/zsMiIkq1S9DWEnAFgNABgu8x0pKW+dPft1WdmNsbH9fVft58DkQxwPc1X3LVeaQlz6Es5On/vtMLneDSFVYcHtQNMxdF5GyHTI0rrrcdtafX04Sz0MBz3Jfz2wxZ4S3sCV4mE+2NvB7jXjf2NsbPDBcuMGVwmeBpffhv6+mTqdVizeU1pq6OyEOWhBsiBgEMQIJI9TqYScwLcPCZd7c1ycR/avyWymFOQzNJooqZQgCJvLZXY4mAQh5nA8N0qPGEiLxfJOfj6XxUoLwvGyOp07CgpS1Wrfh3pLTbcPzVEAmKzRnG1oyLHpptrbhmMIAZDA12VlNpfrhrF/tDLXQrMYbXknqqvrOlp8Z9IAkiSPVVUt6HcJQMLlLouP/7SwcFNmZmCN2QFhCalFpr5oNpubzeYT1dVKgWBtcnLo6MiuOdzuD/JzLll43QEBfpS3tcUqFAOKTo/6M03AZcLmkz1R9LxQCHS+C4QjSrJKta+srPvP3uMRWg0A4Ori8NQbMjK+KC5+My/v1kmT+vSejcVwWSGOR1cVQmYAAJNPSlJgLOoV9zBsrvo7db9ESqWzIiJi+xJpZIlAsOBoR1sezFXgqWGpBQBnJxicXos3bgdqd6PyA4gnUUEuvSBYINg95aTtzfDVXCbh6PBWXIoPCRmfmmpD4IadOPsUGr8DECWVPjR16h0pKeGuSipfOCBRUmnAQjlhYvHmrKxVkyYlXamkoxQI1qWl/WzmzBk6HWeYk1eeBE1/yt9Gw37vpxOVQJAZGpoZGhotk1Fmj8tkynk8CZcb0F0I4fPXpafvKysrHKgiYrPZ/N/cXJ1EssDfJplrvL80giBWJiQcahe3d43MIt/B8vJPCwuHmG7otuHgksGVXKcw1yB8ZWNj4ZHKStg7/BeQLrW1uUkyfiCh1BSVKlWtfu/8+SGOnykIUsqn2Wzelpd3wRBcaZXB4HC53jt37pKhvB+l68ttbQOGwISJxcmjnRgTMHC0NQeKqT1vQ6YNroDiIJFwuREe1bkeQ9gIgkm95rFYdyQnZ2m1/8vP31VSUtraGiCCxtaCrgpYG+HsorLRADgi1/f6ICPBNewRCtnsu1NT+Ww2SZLfVVUdraz0BLMxCCJCKk0ICTlSFWq31KOjAKobQDrRlg8Ajk4IdD2G0NGBivfBD0XCj/tcy2GLu+XmHSa4nb6GsLcSPZfJvCXez628apEkYuZ2nHoAK4sBEECySpUsPFyd9M8Sd4TN5apsb6ei/gRsdqxCMVWrjZLJmrq69l26VNHeTn3nBEEkhISsSUriMpk6iSRLq7W7XAyC8NjLZXFxC6OjC5ubGYCQw+GxWHvLymoGqkbWC8ojDPDgSMJcCzBw6S1ol/hOWQeNSiC4Nz19R0GByWabFhbmby8NXV1namsvNjXdFBeX4Z8Z5nbA1uLj+SkFgjkqzhfV1g2h5IjM1503GNotlo1ZWYM+lrkODd/CdGkQqgIUllqHcv4nTf9zyMywNvor5B2tqpoXFRXMp1sYHW12ON7Oz789OVkWMFC5H1gCuKyAO5hnd0fjiU9LXnHe8s8AP9NQcbndH1+8WNHeDnubz9yPBzdJVnV03JbkF5TQm6WxsaM6eQsE8ghJF9ryocjqaVHOHO2a5ime2VGuEi1nAMBqgDDC80xDEMQUrTZZpcquqztZXV3f2UmSZKxCkaHRSLhcAZslsrcxxAmo3weBbpSWMymuYUN4U1wcn80GQBDE/KiomeHhVG1DEYejEQrZTCYAZlT43qoi2Fog0sNqgKMdAJydEEbCWAwAthZUvIOQmYFV7z2wxXAaATVszeCHw1IHkD0/jKPXvOhNcXGBExKuWsJuRrYDbfmQZwCAwwRTaUTkzAhGd7qI0WZjMRjek1oqofDe9HQXSTZ1dXXYbBqh0OfW5u//8VisTK+5xFsTE1/Pzh6EYDJbGjhN2N4Klggx96LtLKo/hygG4Su7N1nq0XgYUXcHeYZQkej+yZM/vngx32CYHRERLhYTBNFsNhc1Nxc3N7OZzBSV6rEZM/gBA+KtBvBU/sFBs8LVRW2Xs+vrpwW9ANk/1UZjdm3ttMEmp1obAKAtF+I45P4ciqmIXjfQPgBImOv2GRyNrGjUfgXSSeXPeag1mYw2W7KqJ3NAxOG4SbKvquLL4+JO1db+Nzf3pri4YGahvSDA5MFp8a7mHJiW02g64XY7Pi8sbLda50VGDj84s8Nq/ayoqDvJyt6nJEuN0ajg8wNfHleIlctHK2vCG9UcnH4Qab8H48rfrLEIfG0vh37ST7rFIkaNNI3mm0uXXCQJUSxqPofDCEcHpMk+zj2fxZoXGUnFUpkdjotNTd/X1JgdDrPDbnbMms4U3ej4CqGLRnWo1+TUKAOYExmZ3vtxj8tiJSqViUqlTiJhX7kLT4+dEt55HJJEEIyecthOE4SR3R5hzRdQzR3ACsIrXsbeDL4GTH6v39JLbmmJXp+l1QY6xNUMgYi1qP6k+13l+9DeBEZP0qSEyw24tMMkiFCRaFJIyKAf8AGVQND/wpIv3hpP3lgM4GkAAvJMJDyCrqru8lEA2s91a38HjYzH25yZOVsXll9fs/3s2Tfz8o5VVcl4vPszMx+bPn1RTEyftzlbCzgB5rsIjnyVpOJwRYVp5OrDfVtePuhqc5R/0JoDANWfo+z1oPayNuU4Y7Prm8APhakYkWt9LP2pmpoZ4eHediZdo3l81qxZEQEKTAMgCGKmTndPWtqJ6up3z50bXOVJz/Ra/xgOQX8f3HaSdB0qL3/r7NkBy6D3z/nGxteys3tSjf1z765Q3t6ulw+gXjS4a37IaBZCHIey13paWnO7k5o8MLh9rXSOFAI2O5F6SGKwIYpF01FwFWBL+vkdBWz21LCwDRkZD02d+nha6C901Zc6yRN2/ZBneoLkmjSE92dmLtXrg+nJCMm6RVjMkKUCAFMAtxNuBxyd4KoBBiy1sLf2mi7oC5a42xBam8FVgiPxE+CVEQRxU1zcVVg9KCgi16LqiiEsfRXxj4zBOWdHROh6Jd72C7ePEuFWg2fxAAQLEatRt7c7RK3jIkj3YGUrCIJIYRvukZX9fObMn8+ceV9GxpyICPmAlt7eEq8M5CiwZUqyaWqYdm/ZEDPr/bE6nV8MtmajpR4iPVpz0FkOlxXG4mC0jsvri/dY0wBAnonIO30qDZns9rLW1szej31RMhmLwZgfFdVPPkOYWPxAVlaIQDA4W3ilUld/OLtAEOAoPFazqqNjW27uG7m5u0pK8hsaBjEDAdR3du44f/7Tixd7rV3ZmgN6hCRJFjY1xfW7VhqnUPQsm402k/8PBc/1XPytOUHd6EaankkgaQpa88DTBPtAA8DewuXK703POOOI/bLGOoKPkv5ck4ZwEP4HP0w75VdZcVeChtnSbn0+lgBcBRq/gzQ5qC/BEzhK/Rn0Fv6FvZ3gyG+OjQ1QjPtaIWQaXBa0n0fTMbhsoz0RQcEgiNWJicHG1rJEIF2E269UkLURPK+5AX44FFmo/Qrmmu50T1tQJbB74TT2H6PoTwjZdHtioClxggmWcF6otLGr62zwFagHorSl5URNzSB2sNQjbAVa82A4iNBFiLwTlX5lFnpzsanpvQuFLmoyjR8Gke+j5+na2ozQUG+DR1wJxOWxWFP7nbxlEMTNsbFakei9c+eCDZ9hBnED9Sho9r7b1hqNOXV1nxUV/ePkyY8vXDhSWZldV5fX0HC6tvZSa6vPI4XZ4citr9+el/d6dnZxi98khI9iwxXK2toIgojq284RBDFG7iCFLBWq2ajd3f22NcfXIxwTYhUKKVWQSxwPgjE4Q2hrATdEzOE8NG2GgM3empMzemX3r0lDODhStizSx3bPaHGksNSDxQcIcBQwlkCaGtRBWOJuy2dv6ZakuGIIJVzuZE7NpozE8UnzGjEIxKzHkZU4tRnxD4/qurQ3SoHg5j4UagIQ0Cm0GsDvHROhvgH2NtTugjQFPBWsvQ2hyzqwaXQYuxXSgyaNKONIEwJ/Fo6C5Wy/MyXlwOXLtSZTgA5D4mB5efCCf7DWQz4ZLAEuvQnNQsSsQ/m7/XQ/WVPz8YULTrsR7MAuu4sk8+rrfTIv1SKRZ+p4Rnh4/1kEBEEsi4vTiETBhpKyBAF+lOaTKPy/nmhYzwIeS9Q9K9CbLofjQlPTofLy3SUlXxQV7SktfefcuZdPn/60sHD/5cufFRa+np394vHjXxYXV3YEmkhwWUC6As4oHq2snNevuO4snW4Q8x8jgmJad3gg6UJ7PuTj4BESQPcjEYONkGkQRg/WEALgMpnUktOuvqv5DJMJYAgBAZu9jArjZEthrgFLDABcBThSCIObyaTWCN0OOM1gSymPUMBwPMp45/FZM1dzs3XqSQMf5Con/Q9Y8BUSH0fsxrE87ZSwsGDrknOVhL33E7rbDmeXb3FwggndrbA1Q5oMrsrX7BkLB5a4c5gG6xGmuvMhTkhSKsP9b3YcGRztSoHg1sTEDwoKgtLCDAKX2/1hQUFjkGU8LfXga6GYguYT0CxEyAw4jAGDBp1u91clJd0ZYA5j9x+LH0XNzWqhMKR3Hd1Ir88u4XIHrIZDEMTyuDiVQBCUXLb/DbR2FzouAoye6RmPuxb83RZotVjOGwzHq6ryDYb6zs7+Zpz7WCCsaG+3OJ39qIWESySLg1vNGUnkGWg7CwDGYvA0/WR9jCpTtdpukY3QpeCHBTXFTWHrFZc0PyrKZLON4LSKNxPCEAJI12hS1WqwpbDUdj/QieKgXhDs/lT6hLEQXAVAgC1hODrWyqqUNW+i5ktY6v3rq12DEJCmIO5Ho72E7s/NcXHpwUS6c5WEj0doNYCnDOC/8rWY9BPw1AE8QocRltoBMuocJjgt/XXojZbrUnIZlPM0w9+os8RwdAKIVyhWxMe/e+5c2QiVD7U6ne+eO1cV0HfxgSqhrsiCMBKiWAAQ6b0Vpykq2ttfz8k541ESd/TpEWbX1U3xi4ON6h0PGcwcCUEQK+Lj4xSKN/PyBlgE8rFt9nYYixCzAVxlTyqUZwGvD49wuAQyhCRJHrh8+Ya+c0iYDMZtPjreY4N8MtrzAaD5xJBE50cGPpud5V16gsEF6QY5UNFt0gWnCV6VjBgEsSw+/mhV1WjUm50ohhDAivh4pVgBa2N3dWyBDvLJwe7MEsJlQeNRhN4EgMGWrhaX6dt3I2w58n4JvrYnTJlm8DAIYk1S0vL4eHE/+h4I5BH6LBB6Qy1ucVW+s6kOI1x2WANUju7BaQTpCly2OBCTRWZPQaIUtdr3U3jdwROVyrXJyXtKSz+8cKHVMghb2xdGm+2ts2ePV/maNF8sDeBrEbYcCY92twgiYO6RtqgxGt/Oz3/r7NkmbxfTYQpoCFsslmazObG3A0QQhI8hDBOLI4OIDaEWz7K02h39z5H6eBKtpyGfDAYbHHmPBHcfa4Qjhi1A7kRhc7ObJFO9ckh8mBYWphzVgmp9wQ8DScJSh/pvoL1xHAZwhVkREb2eA4L5deytYEt9lBEjJBIOk1k8CmXoJ5Ah5LPZ61OTpAzLkDweAnGbkfAIRDEsBuP21PR091kYDmHmdrjMEEWP+GgnINPDwx+fNWtTVtaimJj4kBC+f8IGz98QNvRpCCmoQgfeFfIcJrBF3jbADzecFrAlQTqFXBZrMs/gMYRMgvCtWdrbO4mWyR6ZNi1cLN6Wl/dVaWmN0UiSpNXppKrQNXR2Hq+u/vjixZNBx8K4SXL/5cvH+rGFpBP2VnBVUExF0i+6G4XdhpAEjldXbz97trytzXfHPjzC07W1WVqtj4sTKZH4l5gP4B/3wZyICK1Y/PHFi33aQqbXGqHbgbaz3UW2uIorhtANRzu4CgBgj5FH6CLJb8vL+8mRF7DZ88ex5rB8Mlpz0fAttEvHbQxUIIW3UxhM3JMl8J/2tLCwY6OgTXYNJ9QPAalcv0GS/45gzVB0IXmhAKRc7p2pqWFCHo43QbMYPDUSfz5kzTkaHwggQiKhxMxIkuy02zvt9lartcFkKmltNXS64TSBdIK4YiMtDQOHO1Gzo6Ira10OIyRJMNf0WaXJ0QmW8Epxy4GXVTI0Gm7nl94laqdqtccqKx2eSH2/mzKLwZgbGZml1Z6urf2yuLjJbOYymU63m81k8lmsSUrlpJCQ49XVVqdzYdBxhgcuX7Y4HIv1+gD549ZGcJW+yf4CHYzFhs7O3aWl1X1Nrjo6/A2hzeU6bzA8PM230mNmoPTZJJUqhM9vCc73XREfv6e0dFte3u3JyQFcKG83ov0chFHdVSw4chiLAMDe3l1VEaPnEfoawlM1NUqBoK8ceYIgViQkBHikGzPkGbj0XwgjhlntdvjcEB19tqHBRc1qBvPrdJb5ByoDSNNoDpaXVxuNwUw2BM/EMoQQ6EKY1k0pUe+1ioYQsyBgszdlZXXL8/JCEbEaABIfH+lR0gAAQRBiLlfM5WrF4hSVarFef6yqan+JDLbWK2GiJKyNA6sHc5WwNfX8UTmNkKag9ss++1NCIkxeMPEyBEFMCwtDTili7vU0CjmcLK32VO0VIdk+1qsEbPaC6GhPSD0JmB0O4ZWbZpxC8XZ+vpDNDjaSCDheXV1nMi3R630DdqhImd60s8K+q8o+25XTZz10lxkMln/Rwbz6+jiFwsf54zKZyYHmBhkEMT86emdhUAJyDIK4JSEhp75++9mzsXL5Er2+lxR2L0N4vkdIgSOHrQ3oPW85GmuEpBMOo3dkVqfdfry6elNmZl/5tGFTAAAgAElEQVR7zAwPT+l7ynQskE9G0d+R+MR4jgEAIOVyM7XabGr5ORhDaLoETYAkLjaDcXtS0ggU8e/NBJoaBQAGG3ytWBx2f2bmgDUg/FkWF9fzl5nwCCLWjvDwaPplTkREmkKEzsvd722tYAm9K+AERhDRswvphNsBYSSc5m47Z6lF+du9+jtNYEt6TcT1TYJCoRIKYSr1ES2Z7b0oEtxNmQCEXq6DgM2+KzX1u8rKQWVclLe3v5Gb+3p2dr7n6Ru9DKHV6cw3GN7Jz/9XsS231dHfDcVPUAWAmyRP19bO9IuCSVGr+yqqnqpWq/pW5vNnilb70xkzQgSCN3Jze0UVMflw27tjKKyNPUVTPWuEngVCjI5HaLoEgc7bsT5w+XKWVqvgB1YrmxIWtjQ2doTHMFhkGSDd47tA6GFeZGR38WGPKlNfWBvA5PclEZyp0fSTrzk0JphHCCD9OcjSuUzmuvT0jy5cKB5IbcBDRmhomndkY8qvR2V4NH1DEMTNcx9j7H3sHC8E4gRYG3wzCAMiSUDdV93quN35AAQE4eiqhmQSjMW+gTMOE1hiEESP3ghF5yWQpHfRagZBLNbr4eiAuRriXhKjUh4vXaPJo0K9GRyQJNyOwUZUyXm8lZMmfXThwn0ZGX3dbQNS39n5WVHR7tJSpUAg5XL5zeUMU4y7uLixq6uhs9NFzdn2o+ZB4ejwF13Kqa+X8/n+soL9SDkyCGJRTMyHBQXBj5/DZM6PioqRyT4rKlIJBNPDw0NFIhGHA5YQ1kam6TIkk3oMElMAuOGywmrokZJm8uGyBVmkewDs7XDbwNPAWOit8l3U3FzV0fHQVN8JdgZBREmlM3S6xNGWmAgGaSLU86CaO97jAAApjzc9PPxEdTVYQj8Bn96YyiAe02eIiWcI9fdR/zMJYm1S0rvnzgXOnPVCxOEs1eszRlFRmiZYGJLE1bf8I/zrjd/LXmyzNgS18sHgQhABUymkKZ4wSKlikqOzwCyZBFMZnOZeVoqaGiVdvh5hax6YHG9DmK7RqIVCVH0C1VwwfWvK3BAdfa6xsdvqUE4hZ9CTEJNCQrrs9rfOnr0nLW2wGnsOl6veZKo3mdDYClKB+t5yBCwh3HaQTo9qii9+HqHV6TxSUbEhI8OnY5xC0b/ibpJSGadQDDZpJFIqfXT69LMNDcerqxu7uhgEEcabKTp/EgSDI4ogy8ocbrfF4bC5XHxriqysOMZqiFYvvGIeCbAEcHahoxCShL70IoKi4zzaziLuIZhKPZN1Rpttd0nJ3Wlp/n7wioSEKVdPtWGChSXfjfcgepgbGZlTV2djCQOoRHnTeQmqOWM1KGC0DWFLS0tOTg5BEEuXjmfMUl+wmcy709J2FBRU9lGhQ8bjLdbrk1WqccgBoukDUj5lRtrK6Y6vGxWVHWH3MrXpMh7vRHV1bkNDwAQjHovFViSbOoogTaHCIJNVqlXTNjD2pBZEbDBXnevgheS5jE7GlVk1hwk8NVw22Hp7il2V3qHzXBZrYUwMANTvRdjN/ueV83iTQ0NzqEUR9hANIYAsrZbPZr9z7tzqxMQBZf8C4+wMHFtL1Uvi9HFMR4fPgI9UViapVP4aqsHU110WF/fqoMRGAABMgpii1VJ2pcNmqzeZzC0OsrPcIZ4CEBwmk8di8Vgsc0NFi7X2iCV6z9mim2JjE0KuZFDY2tBwAABCpg/qvL1wdMJhRPUn4MiopyiH2/3RhQszdbrwQOY/YCMNhYDNnhsV9W1Haa9Abh/cDpjrIBjTUNtRNIRbt279yU9+olarlUrl1WkIAfBYrHvT0z+9eLGo9xwpAWRptTfGxfVTO5hm3Ej8KbE7RUMQmtkvQ6gAsHLSpKywsMKmphaLhcditZjNNUYji8HQy+XL4+NF7viyz2Z1xj8prDkVFsYTp6QAgGZOVuWvoE+CvX1urOB/BkGLsREsEZxGsMUgmOjymhq1tYC0e4s53xwXJ+VyARL1e5H8dMBhzouMPFtf7yLJYcZuJCmVYg7nowsXlsbGDlK9CADgMHUn0fvAkfZnCO3tEEZ73jWbzecNhkf8gkUjJJLoIHSFQgSCxXr9vmFUHpdyuVIuF8r59q4UjrD3rKONj6YT8xPXXCZ1u0pKOu32LK0WLBFazwAEzNXDMoTOLqhvgOEINAsAuEnyowsX1ELhnEAKG2wms0+xdRoAwCydLr82trnqI5Auf9kyALDUgace48zsUTSEd9555/333//xxx//9a9/Hb2zDB82g3FXamplR0d+QwNVC59JEDN1uv5ne2jGE14oIm9H1cfeFfLCxWLvh3Gn283qKeetSVBHgMwHq64nfDRmPY6uxYxtaD4hddauTpyz/aO/u8WJcJjAkoAke0WNdlVCnAjjRWouMVGp7C6r334eTH5farcyHi9Lqz1TVzf8IEadRLI+I+Ots2flPN6gS1Y6TWAHupjZkv6WCR3t3kW59paVzYuK8lfjCl4ZcZZO19jVlVc/bO14/9RGjhxMLiSJegb73vT07Xl5IQJBFEuI9vPQLERr9rBO5+yEYBp0t1LpwocqKgDckpAQMHEwVCgcvvzh9Q2LwViRlPH2BQUsdYELcpmrx75Q1ygaQumYCY6MBFFS6YhHItGMIslPQdjfXwvLR9Qi+h5UvAfSBdW87pbwWyCMRNgymKvRVRURw5vFOHe8zQxnF9hikI5ehtBcCVE0LHWwtcZoJ61JSkLFu8j5OcQJ0AaYF/UwLyrqrMHgYImoKmvDQSUQrE5M/OjChYenTetf/dWXviqledWOD4C9wxO2V9TcbLTZ/LWFuSxW0mDSA25JSHC53ecMhuB3CQphFDQLKR8ihM9fk5T0ycWLG3UiOYML5Sw0n4TT1FfR1IFxdoIlgjAKQI3ReLah4aGpU/uydvTTczDEyGRTwiNyOiv6NITB1/waIa6KYJnW1ta33nrrwIED1FuVSnXfffcF7Gmz2Th+1StoJg42mw0Ak8kEOwxxT8IWbBU0aFZx854i+WFOtsbt2evmEgBMbjjRdMTVfH6RCg3Sey5d3OEimQCX6TS7rlQ5YXZWuELmMjjyZJ5pRUIC6XS6Kz9xxz1KuG2usNvIvofBBTKUytMGPmGtdw9KhzYQeqk0QaH4rrJySfCCPqSL6bS4wIff2QmmiLAaAo/KZWXC7QIHLpfZ6dxTWromMZF0u326xoeEuB2OoH8DAFih12t4vP3l5a6hpoI5nU6mz4IFSwGZwvMBoySSOTrdjtryjbp0thsMfjhpqiS9Aj4HBdPZ5SJ4cLksTudnhYXLYmN5DIarj59SxePZgr8mJzBLEmfUH/+02jXbbwvJ7Kp2hS73v1w9OJ1Om83Wj9CHD2w2mzGQ1tuwYovff//9mED0dZX0hdvtNplM7VewWv0052hohglH4VbdQBgLSb6vW0MKIghzFdFxnpClrp66Spv1a4CKv7+yRmhvJ+CKUevXRQt+ENLMZjDgtjEaD7v1DziTf0/K0vs/82ydjsMRjVRa27yoqPyGBmPwd1unCSwRAt41WJI+PUJHjzv4VWlpmlodEWg+dmih1FPDwjZNnqwcTELIYJkWFhYp1+xo0licTpKvIyyD0W70xu0E6QSTZ3U63y8oSFQqJ4UEkl++Au0RBglDNfdO1j4J22+N0NYCJnfs6/4PyyO89dZb582b59/u+7w2EEql8rHHHpsxY8aAPe12O7f/usw01zUul4vL5Q72AutGvx71ezjSKN+EAWksLDWMriIoMsQCweapU49WVR2rqnKCYBJuLps3jbg4IyNKPGUKSr5HRwGLy0X9YchSOeI+k+e84XK582Nivm06PsRh90bKZE4JCztWU7MyIWHg3gCsXeBIA5+aHwJDi+8mWxNMl8CRgyNnMpkna2o6bLbbU1L8A6dlPF6cUhn8g7k3EVzupqlT38jJ6Ri8/8RisYL5JlckJBysqNien39rVGik5egQv3x3J1hCq9v9/oULUTJZ/wnyPBZLK5UO7QuZcHDVXLl+sx5vVQs62itgLKZikWCrgyCy/x+LxWJxudyR/Z6HZQiFQqGQDpGiuVYIX4nU3wZImxNGwFKHtnzEPwyAyWAsiI6eExFR11DNSdGplfHM3RuQuRMAxHGo+RwAancj/JbgzzwzKjH7+9Yg1JKCYk5ExCtnztQYjT1RM235kPum93Xj7FNKCVwVQElZeSVXGI7AWARhJLjKi01Np2pqNmVlBUwfSggJGc7NSMTh3J2W9mZeXrAK9YOEIIjFMTFakejzy5clLlUcuypOoRhsLiacnY1kyAe5uRmhoQPWzo6RyWgrOAgi75CfvmujYslnddUVVh6UM8HkwVzd/9r/KDGKa4QFBQV/+MMfqqqqysvL77jjjsmTJ2/ZsmX0TkdDMwBMHtJ+H6CdwQVHjqbvMP1VTxubyYwS88C2oPEAeCrIMwFAHNddYL12N+bvCv7MbJH2Ju75j4Y3fA88FusmfeSukpIHp0xhEATsbaj5HC5zT/lNb+wBCmf3IE1BR0GPIXR0oKscMRtQ8c5lInZPRen6jAx/TQmKISY1ehEqEt2RkrKjoMA1yPzC4ElWqRKVypL8NyttXR8U1GnF4iytlqpTM6DJsrtc31U2ZB9sj2efY12+fPzEif77O8LDK776aqRGPiGwbYCxkJTNaSvb1XT+zVZC4TIchTwLrNKA3WOyssImjYoE+igaQrVaffvtt3vehtKVWWiuWoRR6LhIRQb2wFXCUofS1xD7QE83awPOPgV+GGQDqV54w+AmCy1TFOyc1is67FT9Gn9J4WAw16QYd5/jzf2usnJBdDRsTeBr0XQcgggI/LRwHcZuZaKAyFJQ+RE0i7vftpyBPAPCyKqQ23ZebrsjJUXTx5QPh8mMGXy1Xn/iFIrViYk7CwtHQ22VgkEQiSJXYrh0ceyknPr6UzU1hq6uLrsdAJfFipRKV8THS3ovuHTa7QWNjcerq+OEpPDI4bk/uFM80OIfAbjM5jbzwPVpabxggJWCTjc/dFkkiUiCgGQ5CUbASyE3J+dCa+s1bwhpaK5eBJEgmL5miavC0R9AfQOi7+5uIVgQ6FDzJZYeHfQp4h68uePlWtGT3bInlTugmjOwhlRALPWwt65MSNiakxMlk8U4miCKAV8Lw0HEbPDt7DBCFNPnoXihIBiw1IEfBtKFtjzEPZBdV3e4on1NUnI/SjcxMplvgspQSVOrO6zWA5cvD9x1yLAlcBhZ/LAZ4eEeiUQ3SdpcrjO1tVtzctI1Gmqmt9lsPmcwNHV1xSkU96ana7py/g3i11u26PzqjNOMMS+//PKH341WubirIn2ChmacEUb6K49j8vPIfLGnjjNF2u+hnu8jShcUqb9h70nfEGV4lwitMxlha0H7+SEaQms93A4Rw35bUtJnhYUPhLWIJZEQT0LtrgClvftKIvQgTUFHIfhhpLn2klt39EKF3eXamJnZf5nv+H6DJwfL3MjIVosld/i59n3BDhAfyyAIPot1Q1RUqlp9zmA4WF5OEISUy50TERGrUHQvi3Z0BQ64pbm+oA0hDQ0Q9yPAbz5GGCg4IvreAI3BwORjyr8E5367YcmprwtOnGNyya5KuCxg+tqbOIUiU6stMBgK+5JGsTSAwYa9LUYWMVOne7e68/6QEB6DDX44uip8BKECiuv2QhxP1u4+bI3NqamUsrWzYsJS1Or+7/1MBmPEpRVWJCQ0dXVVG/sVJRgygQyhBwWf7y0M2Qtn5xCnr2muKSaYHiENTUDE8T46SqNC6GIYi3iE4zaNeWMU9KpIdFz0bCQIQsbj3ZWaem96eopKdVtSUuD1OdINWzNEsZQI3+wIXSyr+f3SJqfbDVEsOi/17uyCywpWv6HdgvAD7bLLrc2bNHUPJIenDmQFASQqlaKRrmvBJIg7UlPFo5Qc5TGELgtI5yB2pA3hxID2CGloxgoGF5JEtOWjoyhCrd+QttBQ8GrNpHtcbrdeLlcKBN59OUzmXWlpr2dnW529b9y2JnBk4Km61WjtHUslhp3k5M+KitbqY4mqT+EtATRQSA5JkgfKyy85VT+MYfAaKyBcE8zn6Ed9cDiIOZyNmZkfFhR0L6OOIB5DWL8XLDFClwS7o7OLNoQTAdojpKEZQxRT0JoDYyEkidDerGk/MkUbOj083McKUsh5vFv8s+Yt9eCFesmyNxE81erExE67fV9NJ+my9Kqj3e8CocXp/ODChTqT6b54Oa/1ODghYAzskKmEwuhRq8or5/E2ZmbO0ulGWPjMYwgt9WjLAxl05qKzk7aDEwHaENLQjCHyLLTlwlgESRKYPLBFsPUnV5uqVvvKO1gbwKcMYTsA2JrAVTEJ4q7U1IbOzo+6MuztRT2d+zCELpLMra9/5cyZED5/fXo6XxoPW2vgNVE/pmq1o5o2zmEyb4qLe3jatJHUM2JL4DTB7YC9HTwNOi4EtRfpBOmiPcKJAG0IaWjGkG6PsAjSRADghcLa0P8ey+Pje01FWhrA0/Z4hNZG8FQA+CzW+owMsUj1UpHpeFVVd7kWr5KhFE63+3h19T+///5CU9O6tLQbY2MZBAG2GDxNf1kWV+CxWJPHJCFYKRBszsrKCA3t3wpxmcwomUwvl4eJxf3pHxEsMDjoKgdXCeVMtJyBK4iCxs7OAZZXr2JOnjz5+98HKh9xLTNSGTsBjjxKx6WhoQmALA3GYjB54IUCAD8UlgZIU3o6dFXg0DIwONDfj8SfASAAKuP7cEWFu+kk7C0QhIHBgcsMtwNdlVDOpHZlEsTyxMnTGe9/1y78V01NukajsndKBAqe0chiMEjgUmtrdl1duESyISND5TMZG3NvMDf9LK2WOygFqGHAYTJvS0y8ITKysLm5y+Ew2mwdViufxWK53WqpNEQg0IpESqHQY/3sLtfesrI+czDYYhiLwddCHI/G71D8T3DkiHuwvxHY28AZgaIB4wKDwWCN1S81Zoye6PH19k3R0FzVMHmQJILJ637r7xG25kIYibRn8d1qaOZTpd0IgrghKlJX/pf32ltdsZu7V/LYErSeAUvQbVOvoAybsaZ+X1vCxoLGxpo2l8kGS0uZiyTdJBkjk61NTg6s6xtEvX8GQUwPWoZ3pAgRCOZGRnq3mEymgHVeOEzmqkmTpFwupZ3rC0sCUwnU8wECsZtBunDxBZBuEH07GbbmoSSMjj4VFRVur6J0kZGR/jYvOTlZq9Xi+kIlEHBHonK9P7QhpKEZWxRTQF65i1EeoTemEsgyoJyJrL/h5A9x8xkwOABw9ld6e96s+duO1TZ29+TI0fgdwpb7Hl8UC7dTTpjmRUbC/Ali5/rMjg6ZFJVKxuMN3G9cuSE6urS1tcY/H5EtgakU/Cu2gWCCJYajDZy+KwNYr1JD+Oyzz3Z1dQFoa2s7cOBATU1NuN8Dyr59+1599dVvv/12PAY4WjAZjFS1urylZcSPTBtCGpqxRf9DuK9UHPX3CI0l3bWzo9eh7HXU7YVuFer2oOZzLD0+ny0vaDG2U4KdHDkshl7Tqh74WlgNYMvgsgyQTR80TAZjYczAi4jjDgGsnDTp9exst0/xUrYEBKOXzgY3BLaW/gyhvQWS+ADtlTvQVTVC4w2CqDshjPZu2L59OwCHw7Fs2bJf/epX/lbwOmZyaChtCGlorn1Uc3te80PRlt9rq6kE+vu6X4cuQfMJ6Fah/hvoN4IbwgYW6/WfXrwIAMJo8NQgAs0U8TSwGMBVgSMfqaDHrNDQ/ouuXT1ohMKZOt2J6uperWwJuMpeIlzcENha0U8x7b6mRt2O7kilMaCPmVuSJDdv3qxQKP70pz+N0UiuDiKk0tGQdKYNIQ3N+BHQI/TUuFHORsEfAaDpGKa+RLWlqFQHebw2qzWwL9h9WA1ac2APA2e4Skndx2Ox5gesQHa1sigmpqy1tbGrq6dJGOX7TMAJga0RfeF2wGkOPKvsX9l8zPnDH/5QWFh4+PBhxqgFUl61pKvVI37MCfcl0tBcRfA0vQyhvQ1uK/hXgl9CZqA1F/ZWGIugmEK1MQhiVsRAyqV8DawG2FoDVBIfEjfGxo54TbVRhcVgrElK6hVtz5H7ahdzFbD1PclmawY35OpMIvzwww//97//7d69WxCoDsN1T7RMNuLHpA0hDc344RMsY6LcwSs3X7YYIj1KX4ViinfNl0ytVti/WWLL4LbDUjMi0f+xcnnmNSgmGioS3ZOWxu7HYaLWCPviag0Z7ejouO+++zIyMv7+978//fTTTz/9dHt7+3gPakwZjWcTemqUhmb84ITAYezRTjKV+tb+Vs5C8b8Re793G5vBmBMR8c2l3vW1feCpYboExbRhDlDB569OTBzVUjKjh14uvzc9/cvi4haLJcBmtrQ7F9NHuIqi/zia8YPH473zzjveLZxAT0WzZ8+mtdCDhzaENDTjB8EATw2roVtZ3lgCiZ8hLHu9V3wNAGB6ePiZurq2gPd3Cp4GXVXDnBoVczjrMzJGSxFiTIiSyX48ffr5xsai5uay1laHy7vKKAGOAvbWXqGkHmzN3dV/rjK4XG4wgudhYWFho1Mb/bqENoQ0NOMKtUxIGUJTCcJX9tqqmg2C0Z1Q4QWLwVgcE/PJxYvoC54GBHM4uRNsJvPutDT5VZ84OCAMgsjQaDI0mnar9euysmJvlUdqdjSgIbR3T41e/b7wBx988L///c+7Ze7cuVu2bBmv8VyL0IaQhmZc4XktExpLkNjbIxTHY9G3AZf6UlSqHLm8vK2POH6+dpixHrfEx4cFKuBy7SLj8e5OTe202+tMpi673eF2t9vl57taTP5dSTdsreAqdRIJZ3RKmYwgy5cvnz17tnfLxAyiGQ50sAwNzbjCv5JBcfEvcLQHSIrQLAi4H0EQqxIS+rxN88Ogvz/wpgFHxGKtTU7OuE5XmEQcTkJISKZWOz08/EZ91P3qOrl/XpqticcV3zIpeVNmZn+1vK8OJBJJZG+USiUAl8vV0dGjyfXOO++8/vrrwzmRzWbr8s5IGYiSkpL77rtv4H5+OByOm266yW63D2HfoUEbQhqacYXyCHOfQMX7WHoMrEE8y8v5/KWxsX1uZg5uVpPDZEbJZEv1+h9Pn546CqlaVyO8UIWrblNm5tSwMEoBkcVgTAkLuy+868lE3tSwsGs0SoiisLAwOTnZ81YkEkkClpkNmjfeeONHP/pR8P2NRuPx48eHdi7tKKt9+UBPjdLQjCv8UJz7HSSJWHIEnEEnSE3Vagubmi73NUEaNEv0+jkREdf0fX8o8ENhaRBxOLckJCzW67vsdj6bLWSzkfsaFBkD7z5+mM3m06dP22y2mTNnSq/oJJeWlhYUFHA4nClTpoSGhhYVFTkcjpycHADp6ekzZ850uVwATCZTdXV1VFTUwYMHZTLZ3Llz3W734cOHXS7XokWLqPrdLpcrJyenurpap9NNnz6dIAiz2VxdXd3a2pqTk8Pj8VJSUgC0t7efOXOGyWTOnj2bd2U5ub29/cSJE3K5nM0OEI5bXl7e2tqjwRkZGalSqXz6sFisxx57bCzVM2hDSEMzrkhToJqLOe8Ho//gD0EQqxMTX83OtjgcA/fug1iFYk5k5ASzgQAod7xbtonPYvE9d962fCTfNG6jGoiLFy+uXr06MzOTz+c/9NBDu3fvTklJeeutt5599tlVq1aZzeZt27bt3Lnziy++6Orq2rp1K4AXX3zx1VdfNZlM//jHP7Kzszdu3BgVFaXX6w8dOnT33XcXFhaKxeKLFy9GRUV9+umnAH75y19eunRJp9Pl5OSEhITs2rWrqanp+PHjBoNh69atWq02JSXl8OHDP/zhDxcuXGgymR577LFDhw6p1eqysrKFCxfOnTvX6XR6GzwPu3fvPnr0KACSJL/88st///vfDzzwgE8fm802depUs9nMH6uqfrQhpKEZVzQLoVk4nANIuNzlcXGfFhYObXcZj3dbYuJEtIKgFmgbAdI3qqjtLOST+9rpjdzcS4Fu8aPE5qysOEWvUnmPPvroU089tWnTJgBvvPHGb37zm88+++zjjz/+y1/+cscdd3i6PfXUUwcPHgy4LlhXV3fo0KHo6OjTp0/PmDFj9+7dK1as6OzsVKvVDQ0NoaGhL774IlW8ze12Z2ZmHjt2bN68eXfdddfJkyepA7pcrvvvv/+tt95asGABda4XX3zxxRdffOaZZ9avX//nP/8ZwE9/+tPKykqfUz/22GOPPfYYgN/+9rcNDQ0bNox/vTrQhpCG5jogTaOp6ug4U1c32B0lXO6GjIxrq3zaSMLggC3yrUXXVQkmL3BOBQBAxuMFiK8ZNXyUkJ1O5/HjxxMTE0tLSwE0NTXl5uYCuPnmm3/84x8fOXJk2bJlN910U8BpSQ96vT46OhpAfHw8gIULFwIQiUShoaG1tbWhoaGXL19+4YUXCgsLbTZbdXV1WVnZvHnzvI9QWVlZXV399ddf7927F0BpaSkVmPP999//+Mc/pvrccsstX331VcAB7NixY8eOHSdPnuReHVmqtCGkobkeuCkurtlsLh9MtS2dRPKDpKSxvKdfjVB1z70NYb/uIIDbvSJQxh6Xy+VyuRYsWKC44iZSTtVjjz22YMGCXbt2bdmy5bnnnjt27Fg/B/GYH8rt835LSf6uWLHiJz/5yQsvvKBQKFatWuUfwGm329ls9pIlS6h15SVLllBLlW6327PSzOwjpPm777574oknDh8+7L86OF7QhpCG5nqAxWCsS0//rLDwQlPTgJ2FHM5snW5WRMTVnxsw6vBDYanvlbXSfg6y9PEb0ABwudysrKyOjg7PLChJktS/aWlpaWlpTz75pFAoNBgMQqHQ0k/tob6xWq2lpaUbNmwQi8VGo/HUqVMrV64EIBQKzWYz1Sc2NlYikbBYLMqb9AwjMzPz0KFDM2fOBHDw4EH/gxcVFd1xxx07duxISEjw3zpe0KzfHOUAACAASURBVIaQhuY6gcVgrE1OjjMYDly+3NV3DtZMnW6xXt9fNeoJhb8SVlseou4ep9EExSuvvLJmzZqTJ0/GxMSUlZWxWKxt27YtX748Ojo6Kirq9OnTs2bN0mq1LpdLq9WuWLFCp9O9+OKLwR+fx+MtXrx4zZo1N9xww549e9RXcmnmzZv3i1/84t57742Li3vmmWf++9//rlu37gc/+IFKpTp//nxKSsozzzzzu9/97sYbb2xoaHC5XKdPn/Y/+COPPCKXyz/44IMPPvgAwN13302tMo4vtCGkobl+IAgiMzQ0San8vqYmu66us7c5lPF4i2Ji0jV9rn5NRPjaXgIgAFrOIOvv4zSaoJg6deq5c+cOHjzY0NCQlZVF+WSvv/76iRMnWlpaNm3adNNNNxEEwWKxcnJycnNzzWYzj8fbsGGD0+kEMHny5Ndee406lFAo3L9/v0fU8O233540aRKAXbt2ff755+3t7Tt27DCZTNQ0bFxcXGFh4cWLF6ky3ytXrpw6dep3333X2tr68MMPz507F0BGRkZ2dvY333yjUCj++Mc/XvSrAviXv/zFO80/Li7O/wNyOJyvv/56LJcPCcqfHV9mzpz5r3/9a8aMGQP2NJlM4uur7BPNoDCbzVwut6+1BxofHC5Xl8Nhc7lsTieDIMIlkutgJnSEbwKFf4O1Hpl/7X5rNeCrVPygZ3o5IiLi5MmTOp1uxM5IMyRefvnl0tLSl156qaurSyAQjGzOK+0R0tBct7CZTBn90NA//FC05fW8bTkDxdTxG82Eo6ysbPPmzd4tHA7nm2++GeNh0IaQhoZmAuOVUw8ArdkIoQ3h2BETE0Ol8HsYl/JGo2gI9+/fv3379pKSEplMdt99961fv370zkVDQ0MzFPjaXsEyLdmI29x3b5oRhslkhoSMvwDyKBrCb7/9duHChb/4xS8qKio2b97M4XDuvPPO0TsdDQ0NzaDhh/YKlmnNgeK18RsNzfgwiobwhRdeoF5kZmYeOXJk3759tCGkoaG5uuDI4TLDZQWTB3M1QHaLJNNMJMYil4gkydzcXCoql4aGhuZqggBPDasBAMrfhWrOeI+HZhwYlkfY3Nx8/vx5//Y5c+ZwvKoXvvTSS3V1dY8++mhfxykvL7/ttts8WSN6vf6LL77w72axWP7zn/88+eSTwxkzzTXNRx99lJaWlpSUNN4DoRkfTCbTm2+++dOf/nQEj8lnqxw1h0mOnFf8knneIbKz03srSZJPP/20UCgcwTPSDIELFy6kpaV1dna+88478+bNo2qlBgOPxxtQ0WlYhrCkpISqMu7DBx984Fn/fOedd1588cXDhw/3cyVFRERs2bJl8uTu+n4ikUgkCiBJ09raum3btmeeeWY4Y6a5ptm/fz+LxZo2bdp4D4RmfKisrHzvvfd+/etfj+RBk3/OLHgOnZexaJ9Qleiz8dVXX62vrw+4H81YMmXKlFmzZolEoj179mi12tTU1BE8+LAM4ezZs/fv399Ph48++ujpp58+cOBAwPIBPYNgscLDw/V6/XAGQ0NDQzMUotcheh1cFjAD1B+nymzSXN+MYrDMzp07f/azn+3bt4+eyKKhobnaCWQFaSYIoxgs88Ybb1it1vnz5ysUCoVC4a0YSUNDQ0NDc5VwVdQaDQsLYzKZnIHUQV0uV11dXURExNiMiuYqpKmpSSAQ0JELExaHw2EwGOjKnxMZg8EgFosFAkGQ/e+5554//vGP/fe5KgyhwWDo6uoKpqfNZrtKFI1pxgWHw8FkMhm0hNAEhr4JTHAoTeDgK7FptVr+QOrTV4UhpKGhoaGhGS/oJ2saGhoamgkNbQhpaGhoaCY0tCGkoaGhoZnQ0IaQhoaGhmZCc80I81oslq1bt1ZWVs6cOfP2228fF/FGmjHA4XCcP3/+3LlzIpFo7dq1nnaSJHfs2JGdna3X6zdv3szj8aj26urq7du3m0ymH/zgBzNnzhynUdOMJNnZ2fv3729paUlOTl63bp0nRrS9vf2NN96or69fsmTJ8uXLPf2PHj36xRdfyOXyjRs3arXacRo1zYhRV1f3xRdflJWVCQSCxYsXL1iwwLNp3759+/btCw0N3bx5s0KhoBr7ujCC55rxCG+55Za9e/fGx8c/88wzzz777HgPh2a02LZt29q1a19++WWfX3nLli3PP/98fHz8rl271qxZQzU2NTVNnz69ublZq9UuW7bswIED4zFkmpGkoaFhzZo1LS0tERERb7755oIFCxwOBwCn0zl//nzqSejhhx9+7bVu1cDdu3evXr1ap9PV1NTMmDGjo6NjXIdPMwJkZ2efP38+MjKSxWLdfvvt//nPf6j27du3b9y4MSYm5ty5c3PnzrXb7QCcTucNN9yQk5Pjc2EMDvJa4OTJkyEhIVarlSTJ3NxcqVTa2dk53oOiGRVcLhdJkh999FFqaqqnsaOjQyQSFRQUkCRpNpulUmlubi5Jki+88MLy5cupPv/85z8XL148HkOmGUmcTqfdbqded3Z28vn8U6dOkST52WefJSQkUJfHnj17oqKinE4nSZKzZ89+/fXXqf6LFi166aWXxmngNKPCK6+8Mnv2bJIk3W53fHz8zp07qddpaWk7duwgSXLnzp3eF0Z0dDT1elBcGx7hkSNHbrjhBmqGJDMzk8Ph5Ofnj/egaEaFgMnyubm5EokkJSUFAJ/Pnzt37pEjRwB89913S5cupfrceOONR48eJem82GscJpPJZrOp1y6Xy+l0Ulo0R44cWbx4MXV5LF68uLq6uqKiwm63nzx5csmSJVT/pUuXUhcGzfWBw+E4depUWloagPr6+tLSUuq3JghiyZIl1G/tc2FUVVVVVFQM9kTXhiFsaGhQqVSet2q1uq6ubhzHQzPG+FwAGo2GugDq6+s97Wq12m63Nzc3j88QaUaBxx9/fNmyZcnJyeh9DXA4HLlcXl9f39DQQJKkWq2m2jUaDS2ZdH1QVlYWGxsrk8mKi4v/9re/Aaivr+fz+WKxmOrguQkEvDAGe7prwxCyWCyXy+V563A4BixMSnM94X8BUNMDLBbL6XRSjdQL+sK4bvjjH/947NixN954g3ob8CZA+Y6ea4C+M1w3xMTEZGdnf//993K5/OGHHwbAZrOpyXCqg/dNYPjW4dowhOHh4bW1tdRrl8vV0NAQFhY2vkOiGUvCwsLq6+vdbjf1tra2lgoODA8P98wN1NTUCIVCqVQ6bqOkGTn++te/vvvuu4cOHfJ4e943AZPJZDKZwsLC1Go1i8XytHsuDJprHSaTKZfL09LSnnvuuQ8//JAkybCwMIfD0dTURHXwvgn4XxiDPd21YQhXrFhx9OhRg8EA4JtvvpFKpZmZmeM9KJqxY9q0aWw2++DBgwDq6uq+//77FStWAFi5cuXOnTup58GPP/6Y1lC9PvjXv/71n//855tvvvG2aitXrty7d6/JZALwySefTJ48WafTMZnMFStWfPLJJwAcDsfnn3++atWqcRs3zQhhNps9r7Ozs3U6HUEQSqVy1qxZ1G9tNpv37NlD/dY+F0ZmZmZ4ePigTzmS8T2jyaOPPhoXF3f//fer1er33ntvvIdDM1rk5uZOmTJFr9fz+fwpU6Y89NBDVPv27dvVavX9998fGxv7xBNPUI1ms3n69Olz586966671Go1FVZKc01TXl5OEER0dPSUK3zzzTfUprVr16ampt53331KpXLv3r1UY25urlKpvOeee2bNmjVv3jybzTZ+Y6cZGdatWzdv3rz169cvXrxYoVDs2bOHaj948GBISMiGDRsmT568atUqt9tNta9duzYtLY26MPbt2zeEM15L6hMnT56sqKiYNm1aXFzceI+FZrTo7OwsLi72vBWLxQkJCdTr4uLi3NxcvV4/Y8YMTwe73X7w4EGj0bhkyRJPgi3NtYvVar1w4YJ3i16vl8vlAEiSPHLkSENDw5w5c7x1SZuamg4dOiSTyRYtWsRiXTNFQmj6wmq1nj59ura2NiQkZMaMGd7rHbW1tUePHtVoNPPnz/dEmPd1YQTPtWQIaWhoaGhoRpxrY42QhoaGhoZmlKANIQ0NDQ3NhIY2hDQ0NDQ0ExraENLQ0NDQTGhoQ0hDQ0NDM6GhDSENDQ0NzYSGNoQ0NDQ0NBMa2hDS0NDQ0ExoaENIQ0NDQzOhoQ0hDQ0NDc2EhjaENDQ0NDQTGtoQ0tDQ0NBMaGhDSENDQ0MzoaENIc1EwW63b9q06fe///2APf/0pz89+OCDVqu1/27btm178MEHy8vLR2iAg6CjoyMnJ+f48eOlpaUWi2XsB0BDcz1BG0Kaa5innnqKw+E899xz/ptaW1s5HI5YLPa0OJ3ON998c+fOnQMe9tNPP926davD4ei/26FDh7Zu3WowGAY77OGQl5e3ePFiuVw+derUuXPnJiQkiMXiGTNmbN261dOnoqJi69atJ0+eHNopzp49u3Xr1sLCwhEa8sD8+c9/Jghi6dKl/qpw27ZtIwgiKytrwJ+DhmbI0IaQ5hrG6XQ6HA6Xy+W/iSRJh8Nht9s9LUwmc8GCBdOnTx/DAY4wp0+fnjt37sGDBzMzM3/zm9/84x//ePLJJ2+88ca8vLzdu3d7up09e/bBBx/86KOPhnaWvXv3Pvjgg0eOHBmhUQ/ML3/5y2nTph04cODNN9/0bq+trf3FL37B5XLffvttNps9ZuOhmWjQas40EwUul3vo0KHxHsWwePrpp81m8xNPPPHXv/7Vu72pqSk/P3+8RjV8WCzW22+/nZWV9fjjjy9dujQyMhIASZKbN29ua2t7/vnn09LSxnuMNNcztCGkmSiQJJmbm8vn85OTk73bzWbznj17KisrNRrNzTffrFQqA+7udDr3799fVFQkkUiWLFkSFRXV14laW1u//fbb6upqHo83ffr0qVOnem81mUwlJSVKpTIqKqqurm7v3r1tbW1xcXHLli3jcDj9j//48eMAfvazn/lsUqlUS5YsoV5funTp0qVLAAwGQ05ODtUYGRmpUqmo15cvX87Ly6upqSEIIjExccGCBd7nvXDhQm1tLYCqqirP7pMmTRKJRJ4+hYWFJ06caGlpCQsLW7x4sVar9RlPZ2fn0aNHKysrrVarUqlMS0tLT08nCKKfT5eUlPS73/1uy5YtGzdu3L9/P0EQW7du3bt3b1ZW1hNPPNHPjjQ0IwBJQ3PN8vjjjwN49tln/Tc1NzcD4HA4npauri4Aqamp3t1OnTql0+k8fw5CofDDDz+cPHkyAKPR6OlWWVmZnp7u6cZkMp9//vl169YBOHnypPcBX3jhBaFQ6P0ntnjx4qamJk+HgwcPAti4cePLL7/sPd2XmJhYXV3dz4d1uVzUkS9dutRPtzVr1vj/mb/22mskSdrt9qSkJJ9NkZGR3h/B5ymB4siRI9TWxsbG5cuXe2/icrnPPfec9wC++uorhULhc4S77767nzFTOBwOauJ669atFRUVYrGYy+WeP39+wB1paIYJbQhprmGGaQgNBoNSqSQIYsuWLcXFxSUlJb/+9a/5fH5ISIi3IbTZbJQVXL9+/dmzZysqKl5++WWBQBAWFuZjCJ999lkA8fHx77333oULF44dO0YZy7lz57pcLqoPZQijo6NFItFf/vKXU6dO7d+/f+HChQBuvfXW/j/vnDlzACxatKioqKivPvn5+dQw1qxZs/8KNTU1JElardaUlJS//e1vhw8fLikpOXny5BNPPMFisVQqVWtrK7X7iRMnNm3aBOCnP/2pZ/e2tjaSJM1mM/U93Hnnnd9++21RUdHOnTsTEhIAvPLKK9Tu7e3tEolEIBC88sorhYWFVVVVx44d+7//+79f/epX/X80igsXLnC5XIlEMmvWLAAvvPBCMHvR0AwT2hDSXMNQhlCn0830g5qQ7N8QPvnkkwAeeeQR72P+5Cc/oZwYjyGkIjgWLlzodrs93V577TWqm8cQXr58mcVihYeHt7S0eB/wtttuA/DFF19QbylDCGD//v2ePkajUSaTMZlMi8XSz+c9fPiwQCCgdo+NjV2/fv3WrVtra2t9un322WcAfvaznw30/ZEkSf72t78F8O9//9vT8vzzzwN49dVXfXpS0bkPPPCAd2NdXZ1EIlGpVFarlSTJb7/91v8rHRTU2QHMmDHD6XQO+Tg0NMFDR43SXPM0NTVd8KOoqGjAHT///HMAPktQ/itSVLfHH3/ce5Xrhz/8oc9q4o4dO5xO5yOPPOIzMfjII48A2LNnj3djZmamZ1UPgFgsnjVrlsvlqqqq6mfA8+fPLygoWLdunUwmu3Tp0jvvvPOjH/1Ip9OtWrWqoaFhwM8bkFWrVgE4ffr0gD3fffddAL/5zW+8G7Va7W233dbU1JSdnQ1ALpcDyM/PN5vNQxuPZ8Vx9erVTCZzaAehoRkUdLAMzTXPli1bfve73/k0trS09BX2QmGz2S5duiQWi/V6vXd7ZGRkSEhIS0uLp+XixYsAMjIyvLtxudykpKSjR496WvLy8gDk5uY+/fTT3j3b2toAVFRUeDdOmjTJZzwajQaAwWCgJhv7IiYm5t1333U4HKdPnz5z5sy+ffu++eabXbt2LVq0KDc3l8fj9bMvNYwXXnjh2LFjtbW17e3tnnZqJrkfzGZzUVERl8t95ZX/Z+8+A5s40oeBj1ZdsnqxintvuGJjbJrpxUAgCSUkJCGEkIPUI/Xun/dSLpcGpHCQhLQjhEDCEUroHWxMsQ3YGPcuV8mSrN73/SCfMbJcsCXLZX6frNnZ3Udg69Huzjyz3WFTRUWF/cjp6emxsbHjx4/Pzs729/fPzMycNm3anDlzBAJB7wfv1NDQ8MorrxAIBAwG8+GHH65YsSIgIKCf+0LQgMFECI1RWq0WRdHOsZRd8fn8rolQo9EAALr35PP5XV/aE97p06c7b352YrFYONx9f2uddzg7IQgCALDZbP0JHo/Hp6enp6env/zyy1lZWbNmzSouLv7tt99Wr17dy14lJSVpaWnt7e2TJk2aP38+i8VCEEQmk3322WdO52J21d7ejqKoxWLpOnO/6xu0HwGLxZ4+ffrdd9/du3fvTz/99NNPPyEIMmfOnG3btjl84XBq3bp1CoXigw8+QBDk7bfffuaZZ86cOdP7cFMIGjyYCKExikqlYjCY1tbW7pscisXYZw60trba57f11M1exWbXrl2LFy92fbg9mzRp0iOPPLJ79+7c3NzeE+E///lPhULx73//23631i4rK8thVqJT9nfn5eUlk8nsObsnTCZz69atmzdvLiwsPHfu3K5du44fPz5v3ryCggIikdjLjj/++OOxY8cSEhJef/11DAbzxx9/nDt37vvvv1+7dm2f4UHQYMBnhNAYRSQSQ0NDNRpNWVlZ1/bq6mq5XN61JSYmBvzvzmcng8Fgv2XaKSEhAQBw5coVd0XcM3uC6XyiZp+VYbFYHLrZJ92vXLmya2N+fr5DN/u0QodrRC8vr9DQ0Pb29qKiov6EhCBIXFzcK6+8kpubm5iYWFZWVlhY2Ev/xsbGv/71rwQCwV5Exj7FnkQi/fWvf62vr+/PGSFowGAihMYu+5S7zZs3d23sfnnU2Q3tUgnz+++/d8iXjz/+OB6P37lzZ1VVlcMRbDabfczqIP34449di8bZNTc3Hz16FACQlJRkbxGLxQCA7vnD/tC063gcjUbz6aefOnSzTwuRSCQO7U8//TQA4O9//3v3+6j2u8f2H9D764VisVj7PWSj0djLW7MXkXnnnXc6i8hERka+/fbbKpVqzZo1aLcapBDkSh4dswpBgzLIeYQymcw+ROXll1++efPmrVu3Xn31VQqFYn8c2Dl9wmw223PMo48+mpOTU1RU9Mknn5BIJPud0q7zCD/55BMAAI/H+/jjj8+dO1dQUHD48OF33303KCjov//9r71P54R6h4DXrFkDALhw4UIv75dIJPL5/L/85S+7d+8+f/784cOHP/jgA3tBgOjoaPsEBvs7pdPpeDz+xRdf3LZt2zfffHP37l0URd977z17zz///LO0tPTQoUMJCQn2R3dz5szpPEtZWRmCIEwm86233tqxY8c333zT2NiIoqher7dPeE9PT//5559zc3NzcnL27Nnz1FNP8Xg8+74//vhjRETERx99dPLkyZKSkuvXr9vvcwYEBBiNxp7e13fffQcASEhIMJlMXds7/+V/+umnXv5ZIGiQYCKERrDBV5a5detW10EcNBrt4MGD3SvLNDY2dq3WjcPhtm7d6rSyzA8//GBPrl2NGzcuNzfX3mEwiXDdunX2y7WusFjsI4880tTU1LXnkSNHgoODO/vYK8vo9frMzMyu+6anp2dlZTkkQhRFd+zY0XWoZ2dlGfv1mcPAHyKR2FkK4OjRowwGwyHC+Ph4eyZ2SiKRsFgsAoFQUFDQfevt27cJBAKDwei97A4EDQYGhfccoBFLJpMpFAoOh9O9ppfNZqusrEQQpDMfoChaUVFBJBIdxrwYjcbz58/X1tZyudyZM2cyGAyJRGIymQICArqOCrHZbNnZ2cXFxV5eXhkZGUKhsLW1VaPRiMVihzEgRqPx2rVrFRUVNptNIBBERUV1zbV6vb6pqYlGozkMQ5VKpWq1WiQS9T4FAkXR4uLiqqoqe+bz8fEZP368w/jVrudqbm5GUZTL5dLpdHvjrVu3CgoKbDZbVFRUcnKyxWKpr68nk8ndS4aq1WqpVAoAcIiqtbX1ypUrzc3NVCrVx8cnKSmp8+AAAKvVevv27aqqqra2Ng6HExoa6jDzxEF7e3tbWxuJROqe4+0aGhqMRmPXtwBBrgUTIQRBEDSmwcEyEARB0JgGEyEEQRA0psFECEEQBI1pMBFCEARBYxpMhBAEQdCYBhMhBEEQNKbBRAhBEASNaTARQhAEQWMaTIQQBEHQmAYTIQRBEDSmDYtEuH37dntJwz51X2INGlOsVissCjjGwQ+BMc4dvwDDIhHu2rWr+xJuTun1encHAw1nRqPRZrN5OgrIk+CHwBhnX8/LtcccFokQgiAIgjwFJkIIgiBoTHNjIrRarVu2bJk/f/6aNWtKS0tde3CbFt4fgyAIglwA13eXgfrggw8OHjz46aefZmdnT5s2raKigkqlDv6w5hqzcp8Sa8LKUmRhc8IGf0AIgiCnNm7cuGfPHk9HAXXYtGnT22+/7Y4juysRms3m7du379+/f/LkyTNnzjxx4sTevXufeeaZwR/5gunC99Tvw33Dn85/GsyCN3chCHKXxsbGL7/8csGCBZ4OBAI7d+6USCRuOri7EmF9fb1MJps4caL9ZXp6el5enksS4aywWbPCZmlMmvxP8snXyN4TvQd/TAiCIKeoVCqLxfJ0FBAgk8nuO7i7EmFLSwuNRsPhOo7P4XB6mSBRV1e3evVqCoVifxkcHPzjjz867anRaDp/vhFww++ynzpG7bqooeFOr9ebTCYsFuvpQCCP6foh4G5Wq3XIzgX1yWw2q9VqnU5ntVoxGEw/9yKRSHg8vvc+7kqEXl5eBoOh86VOp6PRaD11FggEL730UkxMjP0ljUbrpXPnpjmz51i+tZCtZBzTjU86oWEFi8USiUSYCMe4Xj4fXAv+pg0reDyeRqMhCEKhUPqfCPvDXSlELBabzebGxkaRSAQAqK6uDggI6KkzgUCIiIhISkp6oFPE8GPOYs/ia/D+8f6DjBaCIAgas9w11ITNZs+cOXPnzp0AgMbGxmPHji1fvtzlZ1FSlLIamcsPC0EQBI0dbryp+Nlnny1YsODo0aM1NTXr168fN26cy09h5pktzbDwIARBEDRwbkyE48aNq6ioKCkp4fP5AoHAHaeg+9Ap1yg9bf3HhX/MD52fIk5xx6khCIKGLZPJVFtbGxoa6ulARgb3zsIjEAixsbFuyoIAAL8gP66RC3qov8rIZeTfynfTqSEIgoatysrKKVOmeDqKEWNkT0cPF4UrUaVBbui+yWQ1TTdMp1a5oJYNBEHQyBIUFHT27FlPRzFijOxEiEfwDfiG2sra7pvKWsp8UB+xSjz0UUEQBLnJ8ePHX3vtNfs6RFVVVU888YRSqezera2tbceOHUMe3Ug1shMhAEBD0yjrnPwe1FfWywnyCFtEjbwGAIAa0bJvyoqPFg91fBAEQa4zc+bM7Ozszz//3Gw2r1q1Kikpiclkdu/W3t6+f//+oQ9vhBrxU9GtPKtXvZe53IwPxndN65p6jZwlNyvMdXfrOBGctm/bapHa8NZwabKUx+d5Ll4Igkawv5/7+z8v/3PITrd59uZXJ77atQWPx//yyy+pqakXL17k8/kvvfTSkAUzio34REgPpcvKZbT9NMAAfs/7gf9VGyC3kpFgRA3UmkpNUX5RC71l7vNzs77Lwu7BTnt5micjhiBoxPpg+gcfTP/AszEEBgauXr168+bNFRUVri2wMmaN+Fuj0+On21bZzs4526xsPvb1MbPNbG/n6ri8IB4xmBgkCRKqhFNXTyViiWlPpAVoA85dOefZmCEIggassLDwP//5z9KlS19//XVPxzJKjPhEiMVgMwIynk58OvIvkdHy6IuXLgIANEaNn9XPN8Q3cFxgoC2wNaqVSWcCAMgUsjJeSbhA6MyXEARBI4hWq12xYsVnn332yy+/VFVVbd++3dMRjQYjPhF2ojFpNeNqBFcFAIDy8vJ2bDuWiGXwGfJYefLi5M5u8fPiRRjRwZMHPRcpBEHQAH322WdTp05dvXo1kUjcu3fvt99+W1NT070bkUiEs+n7b8Q/I+wqaU5SeUF527U2002Tnqq3NwYvDr6vEwLARCDOElvnWrEYWFoegqCR5P/9v//X+XNYWNitW7ecdgsKCrp06dJQBTXijapE6EX0Ou17+tlTz+oRfehjPX4bCpoaBK6AGzdvpCamPtDxS8pLas/Wzlk/Z9CRQhAEuUZ7e7vDaq8keDHgiwAAIABJREFUEikyMtJT8YxEoyoRAgDiJsXF7o7dvny7OLDnqfQYUCuuxeRgQOKDHbz+Un2yNLm6tDowPHCQcUIQBLlERUXFF1980bVFJBJ99NFHnopnJBptiXBm0Mxfnvplin8fRfZ8MnxIu0g2ow0hPsBTUlGz6Br1mvC4EIQPLkoIgiAXSUpK2rVrV+992tvbm5qaIiIihiYku7y8vLi4OBzugbMMiqK5ubnjx48fsskho2ewjB0Wg+0zCwIAQv1CS7GlZZfKeu9m09gstR3LPFVVVhFQQvRT0TQNTVWrckGsEARBbvN///d/KlXHJ9WlS5fWrl07mKPV19d/9tlnD7RLcnJyZwAPxGg0pqSkGAxOiki7yWhLhP1XH16PvdXHYJni34plu2VmpRkAUHOlppZd68f2O88533C0YUhihCAIGqDNmzer1Wr7z9OnT9+7d+9gjtbY2Pjtt9+6Iq6+EYnEsrIyEok0NKcDYzkRTpk2xWa06SS6njpo1BpGA+MC8ULF9xVNt5tE9SJqAhUAkLIohdJGUTQqhjBYCIKgDqdPn160aFFqauqmTZu0Wi0AwGw2v/XWWxMmTEhJSXnyySdRFH333XdNJtP69euXLVuWl5dXXFxsr8FtMBiWLVt2+vTp6dOnp6WlnThxoqys7KGHHkpNTe3Mc3fu3Fm1alVycvLMmTN//vlne+Pf/va3pqamZcuWLVu2zH6ttmfPnjlz5qSnp3/44YcWS8eds8OHD2dkZEybNu3EiRPdIy8oKFizZo1erwcASKXSVatWSSSS7t0sFsvrr79uNg/hbG90GJgwYcLVq1f701OlUrnwvD99+VPBdwU9bT20+9CVLVeUeuWlf10q/qD49BenTRZTx6avD1369yUXRgL1k1artVgsno4C8iTXfgj0bsmSJQcOHBiy0/XH2bNnAwICLly4UFdX99xzz61cuRJF0W3bts2ePbumpqahoWH//v1Wq7WxsZFEIl25cqWyslKr1R4+fDg9PR1FUfs14ooVK0pKSn755RcGg7F48eK8vLysrCwGg1FcXIyi6I0bN06fPt3Y2JiTkxMcHHz+/HkURQ8cOBAQEFBZWVlZWWm1Wnfu3JmYmJibm1tZWZmZmfl///d/KIrm5uZyOJzTp09XVVU99NBDAIC2tjaH+B9//PF169bZbLaFCxe+/vrrTt+jPVPqdLqujV9++eULL7yAoqhGo7HZbK79V3XjYJnKysrq6urOl1OmTCEQCO473QD4ZviyD7KLyop+qvjppbCXRDwRwui4RJbpZH7VfryHeAwSI/2NdASDRIB7z5nTHknT79DXN9f7Cnw9FDsEQR6gP683ZA3dsyvyLDIp9b47hFu3bv373/8+depU+88sFstoNGq1WhRFrVarv7//ww8/DAAQCoUYDMbPz08sdjJ+/sMPPwwMDAwPD3/ttddWr16dmJgIAJg8efL169cjIiLGjx+vUCiKiooMBkNaWtrJkyenTZsmEonweHxQUJD9CJs3b96xY0dSUhIA4JNPPpk/f/577733008/rVmzZubMmQCAf/7znwcPOqlbsn379qSkpIULF8rl8g8+8HDV1k5uTIS7du369ddf4+Pj7S9TUlKGWyLMiM7Ye3Rvxr6Mt8Bb2nytnCjnvMLB4DAAgBMnT6QR0sQxYgAAgnG8gczlcK96XZVfk/suhokQgsYQcgaZnEH2YABVVVWffPJJ51qDMTExbW1t69evr6ioSElJ8fb2fvbZZ19++eXeD9KZHb28vEQiUefPGo0GAHDgwIFXX3116tSp3t7e9fX1RCKx+xGqq6tffPHFzo90Pp8PAKivr583b569JTg4uPteAAAajfbSSy9t3Ljx7NmzeDz+gd67+7h3+sSCBQu2bt3q1lMMBgaDSVmXQiQTWURWdnk2bj9uwsUJ7Blsk9UUcTcCZPS6byAGUw3rvkMQNKREItGKFSueeeYZh/Zvv/12x44dFy5ceOyxxxISEqZOnYogCIqiAzjFxx9/vH379vnz5wMANm7caDQaAQAORxMKhV999ZX9wrSTt7d3Y2Oj/eeGBucjCiUSyfvvv//ss89u2rQpJyfHaZYdeu4dLGO/YX39+vWB/X8MgWBWMIvEAhiwMGzhjagbhmsG1IBmncrywnoFTQzqZcewpDB/tb/RahyyUCEIgtatW/fhhx8WFBQAAJRK5YEDBwAAFy5cqKmpwWKxcXFxFAoFQRAAgI+Pz8WLF9va2h501AmZTL5z5w4A4Nq1a7/++qu9USwWNzc3FxYWKhQKFEXXrVv3xhtv1NbWAgCam5uPHTsGAFi+fPn3339fWVlpMpnef//97ke2WCwrV6586aWXvv32W/uN2UH9W7iOG68IcTicVCrdt2/fjRs3xGLxyZMnvby8nPZUKBT/+c9/zp49a3/p7e29evVqpz3NZrP7hhJtnLXxZPHJWZ/NGoeOK08rN1t6O5GXtxcFoWQXZE+OmeymeKDuzGYzgiA2m83TgUAe49YPAQfD8Bv8o48+ajAYnn766ebmZiqVumTJkqVLl9pvVMrlcgqF8vzzz0+ePBkAsG3bti1btmzdunXr1q1MJtM+mx5BkKSkpM6J6tHR0VQq1f5zYGCg/Q7nli1b1q5d+/nnnyckJLz55pv2K0KRSPThhx++8MILGo3m0qVLr7/+OoFAyMzMlMlkXC7XPklx+vTpb7zxxsyZM7FY7FtvvXXnzh2H2fT79u0LCAh44403AAA7duxYunRpfn6+/QllVwiCJCYm2tN5Vzabzfw//Z9rj8Viux/KAWYw/9PffffdJ5984tBIoVDsdWBRFLXHajQaJ0+enJmZ+c477zg9TkhISGpqqlAotL/09vZ+4YUXnPZUq9U0Gm3AAffpVvOt4priOGFclH9Un50Lvyu8S7u7fPly98UDOdDpdEQiEYuF1dLHLnd/CHS1fPnyJ598csmSJUNzOqgXX331VUlJyZYtW7RaLYVC6X8ixOFwfX5iDOqK8NFHH50+fbpDY2fu7QyUSCTOnz+/sLCwp+NwudwXXnhhwoQJfZ7RZDK59Z7yBP8JE/z7DsOOHkmn36ATCITe/ktQYK414wOGyzPhkc5qtcJEOMa5+0Ogqz6vJKBB0mq1N2/e7NqCIEhaWprTzlgslkgkWiwWIpHo2uprg0qEDAaDwWD0p+f169ejo6MHc65hKDghmJRDOnr3aGZ0pvMeViDfJQeNgP0mG8CPbgiCoPspFIrdu3d3bcHj8T0lQvdx4zPCGTNmREdH83i8ixcvlpaWfv/99+47l0dgWViTt0l2QoZGoU6/ntzZfqdZ1cy0MfF1eFrgEN3MgSAIGil8fHy+/vprT0fhzlGj77//fkBAgM1me+qpp0pKSjofAY4mAY8GzNTPPJ1/uvumXw/8ilfhIzZEVFGrqguru3eAIAiChgM3XhGmpaUN/RXuEMMxcOoodcTxiNyc3KjHoyhMir39wN0DscWxrPksPpNv8bVYaiyejROCIAjqCXwUPFiRSyPxj+C1Bu2tX291NhafLmYwGPwEPgAgMDqQo+Z4LkAIgiCoN6NtYV6PEEYILUwL+A60Slv5PH55a/ly9XLeap59a1J4UgVaoWhUsEQsz8YJQdCD0mq1CgVcasbz7JW43QQmQtfwFfheZF80/GGYs25O0cmiYK9gol/HCG8CllBPrtcV6MaLxns2SAiCHohIJHrxxRdffPFFTwcCAQDApk2b3HRkmAhdJmJxhOVHy7Wd1+Ja4swP3Vf5wig2GqqGrmI9BEEusW3btm3btnk6Csjt4DNCl/EWe9sybWqN+jrpelhMWNdNvlG+TCXTU4FBEARBvYBXhK7kG+/rG+9rtjkWQoyJjmk+1CxXyNkstkcCgyAIgnoCrwhdD484FlTDY/GNpMbC2z0WmYMgCII8BSbCIWLgGdrL2z0dBQRBEOQIJsIhwo/g02V0T0cBQRAEOYKJcIiEjgsNtga3aFo8HQgEQRB0H5gIhwiOijPgDPl38j0dCARBEHQfmAiHTjuzXVEFS1RAEAQNLzARDh28H57aTPV0FBAEQdB9YCIcOuIIsUAnQFHU04GMYGXysrPVZxUGeGENQZDLwEQ4dLj+XD/Ur1Ja6elARiqNSXNs9zHB74L6T+v/uPqHp8OBIGiUgIlwCGGBlCitLIGJcIBO7zv9uO3x0NmhnGgO7xzvh5s/eDoiCIJGA/cmQhRFGxoa3Lp8xsiiZWs1NRpPRzEi1ZbWJtUk2R62EeIJ4iXiSHpk2Ymy/CY4CheCoMFyQSIsLi6eP38+n8+nUu8bCVJZWTlu3Lj09HSRSLRly5bBn2gUIAYQaa00T0cxIlVfrS4QFPB9+QAAgAGMRxibwKacX3L0Fvg1C4KgQXFBIiSRSE888UT3xUo2bdo0Z86cmpqaGzduvPvuu+Xl5YM/10gXEBkgNohtqM3TgYw8lFYKNfjeNy2cAMd6ljXbOvvi3osOPVVGVfe65xAEQT1xQSIMDAxcuXJlcHBw18b29vY///zTvqBlSEjInDlz9uzZM/hzjXRsMdsLeBVXF3s6kJEGBUKj0GFxKywXq5ykZElYDn1X/XfVa6deG8LgIAga2dz1jLC+vh5BEH9/f/vLsLCw6urqnjpbLJaGhoaq/2lpGc11yGqZtc03mj0dxQhTXVmtwqjEfLFDe0xijK/ZV6lRdrZYbJanqp7KzMu8WXuzRdtyqfbS0EYKQdDI06/1CCsrK7/++uvu7Zs2bfL29na6i0qlolAonS+pVGp7e49rL9TX12/cuJFIJNpfhoWF7d+/32lPjWbEjzTRBen4hXy1Wu3pQEYGg8ZA8iJVFFQgFMRP7afX600mExaL7ezQRGhqy2mbmDrR/jKvPm8imKhkK4k/E0swJbeR2wkbEzwUO+QWo+BDABoMnU5ntVoxGEw/+5NIJDzecWk8B/1KhEQiUSQSdW/v5eh8Pl+lUtlsNgRBAAAKhYLP5/fUOTAw8IsvvpgwYUJ/gqHRRvZgk8RJicY8IwlDwnv18X8zltk0NsQLQW1o65etJYElWAXWKrbSaDQsFkskErsmQq1Qa6wy0mZ1/FbIimRML2bc+rg/Dv2RQksJyQnR2rQChqDrwVEU7f9fETQMjfQPAWgwEAShUCiu/RPuVyL08fF55ZVXHui4vr6+dDo9Nzc3JSUFAHD9+vVly5YNJMBRh0/nHyEcibgaEToztGt7say4rK1scfhiTwU2fOSdzePl8MSvi4vyirAA61/lbwIm7SSt086CcQLCcULnS14NzzTOhMFglj60FABQkFvQdqdNkN6RCCW3JKpTqnZy+8QXJg7BG4EgaERwwTNCvV7/+++/nzlzxmq1/v7778eOHQMAEInEtWvXbtq0qbCwcMeOHYWFhY899tjgzzU6SMQSS4nFoTF7Xzb+d3x2XbZHQhpWMDcwRmC8eeSm8bqxJqRGEieho/TIyEinnUNiQvysfmXNZQAAvVYfbAiOSIvo3KrgKvTlHfMrym+Wo3+itYxa73bn9/MhCBqbXJYI8/LyFi1a1JkIAQAffPBBenr62rVrjx07dvLkSSaTOfhzjQ4+UT5U1X1zLovuFs2Rz4n3ir+953azZkwPpbl+8zrDypDMkvBL+AKVIH5WfNrCNOtTVgKB4LQ/gkcULEXFzxVmq7n299oyYhmdfm8BZEIIgd3KBgCgFtR23FY0rmjuurkWYGmqbxqi9wNB0LDXr1ujvWOz2b/99lv3diKR+K9//Wvwxx99kkKTTEdNqBbFUDEAAIAC5AhSEloyI3PGwq8WZl/LfnjGw56O0WPk5+S2YNu0lGmnL5y24q3z2PMAAEJfYS+7RD4bidmKqf+4XmvTYpdiu24KjQs1XjLaLLbcvblmrHn2otkYDEZCkZAKSfZjVtyuUJ9VJ7wKB9RAkKPSttI2XVuab5qnA3E7WGvUA0Q0UTVS3VDVYH8pKZBozdr0h9MRL6ROUIepHbvjOAqqC2L0MYmZiRgMhrmMyV3C7c9eCBHhr+cXcYv4z/OnRk3tuonL5DYgDeXfl/NqeKxHWAgGAQAYxAZrjdXeQXNG46P10Rl0Ln8vEDTSFZ0raj40Jm5QwUToGSovVVNVx9056RVpmbiMgqcAAPAiPKWd0uuu9zRpmr7OdTKtZeSqOV7TxG8ieBEAACmBKcmByf3ckcvkLly30Jfj231TPate36qvyKyICo6yt/Aj+Jx2DgBAWiWl6Wl12Lq7hXdd9A4gaPQgtBNEKifzBUYfmAg9A/VGTY0mAABqRvltfP+0jsoDPH8eW8/u50Gu5l3ln+RbUau7ohxajW2N8W3xoYtD++76IKgzqSWLS2bFz+psiYmKoVloWqm29c/WPEFeO6e9tazVtSeFoFEAp8P5Wf20JucDtkcTmAg9gxfIs1/51V+vL0KKJoZ1jOb3CfDxsfoYzIb+HMRabs2wZRTcLXBjoM6crzmfI8lxYT1P1IhWnKqo+bGmkdnI9HbxoKq5YXNXxK7o2kLCk6oJ1YZvDDK1LHZBLDmQTG4i97T74duHR81XDQh6IBQDhQzIZeVlng7E7WAi9Izw8HBvszdqQ3U3dPX+9fZnVwAAPAmvQlTVNT2Wo+uK28atw9Xpcob6+Zb6V3XJryUxX8VYbI6TQAagprSmZkuNPFeOUJGwFWF97+AKltmW41OOB24MjBBGhI8LF+lFTrNd4d3C5MPJl69fHpqoIGhY8bJ4NeOaW6pHc81LOxeMGoUGgMvkliAl8j/kGC0m9uHYrpvayG2WOktkqPNpc530Zn2wKbh0Rmn4+XBrm1V9VK1p0bQj7dF/jR5kbFqdNu+nPNECUYh/SPet7fr2ZEsylUtNliZfqL4wM3jmYM5VUlVC/Z1aElySsTwDhwzdb+P0hOmdP7OFbBVGVVhVGB8cf18nG8AdwTXjmtErKOhX1SMIGg2ys7PHp4wn4olsK7tGVIM2op6OyO3gFaHHtJHbBHcFpamlyb73DQnR0/X6xr7X2CspKlFilanjUytsFaqvVUcaj/zA/cFL56WQKxx6osYH+z0uulDkK/cl7iIeOXGk+9aKsgo5Vk5/lk4mk0uzSx/oyI6BoWjpH6VNPk2zVs4ayizYndRLWnmnsvPl8YrjK/evLPulTGaRCZ4VhGhCpK1SD4YHQUOmtro27FxY8Z1ijV5DBmRqGJWupPe92wgHE6HHMEIZzaHNS2csdWhHBAhR3lF/XKqTKgyOic1OViJrZbR6Ebx2CXY9jjyumqF65+l3JARJZUll12511+tqttU8UGCkYtLtcbctUyzeud7dbxi2VbXJaXIAACmNFF8Xb787qjVr/yj4A0UfLOPuu7pvvGF80qNJD7SXOzDDmd53vDVGDQBAb9F/dPijd2reUdWqriZfFXKFRcyiimMVno4RgoaC9JDUCqyKBoWsVdaGtPmF+QlNvc3iHR1gIvSYmIUxMStiurdz/DgMHcP+86Fdh4784uSyDABAbaKiQSgAYErylKlTpm5I3gAA0DA0qhpV126aCxq6jm5UGfsZlVVhZegYsemxgZMDxUB84c4Fhw5IE2LkGwEA4mSxECM8k3PmvYvvvbn5zfRD6aV1D3aBaL5oNoeasVRs313dLHROKIPAyPtPnqnMVPxN8W+63/wj/ENeDXl55ssAANZMllgivpZ7rfuOX1z74qrk6pDHC0Fu0VzazNawb3jfsLZaFTKFCqfy9vbGoJimplFeiQk+Ixx2/AP9DRYDakWlBukk6SQShqQ36Mkkx2GNIq3IHGMGADwd/3RnI+KD4CvxAID93+wneZHiEuMwJkw+Pt87zzs2Ixb0Q+2l2qvEq49xHwMAKHnK0qulM8bN6NqBqWKC8faTgcrAyvBz4UKK0BfxbSW21t6tjfCPcHZUJ0qaSzLMGaL5w2OWEgI4qzmknaT6/fW3wC3vp70pYgoFdEzonBA54eb4m8wTzK/NX6+fuL5zp6N3j6Kn0KMhR1NXpnoobghyJelx6R3fO958b3wpXt2mthKsAIAmUhNSigiFo/m6EF4RDjtMGrMKX3X+4PkzF84gRKSOWFd0vMihj9lkJqGkIJ8gh3ZhsJCj5Wj0mpTWlJjqGMt/LeX+5Wpfta7EycjS3Sd2X6+4fl+TFRCKCc2hHbUkhIlCv1Y/lVEFAJC2SS//cRm1omKzODA80N5hyvIp1KXU8KRwxjOMVp9Wa+0DTDMov1zeQmtBvIbLb6DIW6Rbq2t+onnpq0vFYscVgBPmJrCCWEnnkgqrCgEAqBltPtE87sC4ZdRlqdWpLhk9C0GepWvR0TS0lAUpHDGHrqebVCYTxQQAUAqU5mKXzZUanobLxxDUFT+T71fs51XghcagimQFr5gH7k8xUqm0DdOGxTjeVAwLCWNamdfPXm8ltuLW4MrIZWmL0gTjBDw5r/tZgvODJeckXVtaslqqbFWp4zuub1gxrPFg/Pc3vgcAFO4rjL4TffuP21KMlMPg2DsQsUR+NJ80jYTlYNmhbJaC1f/3KKgSmMaZ+t9/CMQJ4tJ905kk5xMZ+Sv5RF8iYw9DsV3RvqW97mZdbkKucKMw3hafU5ozxKFCkMvVHK25TL8czA32DfD1tnhj2jE2LxsAgB/PF8pH8+UggIlweAqJCbGwLWmWtLCpYTPSZtTb6uUV8q4d2qRtapyTNe4JeEIjrlF8W6wJ1fiIfOb8dQ6XwU2KTrLYLIrG+wbdSNXSIGuQj9THhtrsLbXyWnWWuja+trPGLoaMwXKxbVlt+eX5oW2hF8ddFBeLm8nOaw+GxoT6W/y1xn4VoVC1qLhmblx6XH86DxcYELs69ljYsbfVbz9Pf/7H2B+XLliKIWAaeY2KbOcDmiBopEB1KKOJwZnKAQCw6WwlRkmX03F0HAAgLjrOjJrbJG2ejtGNYCIcpkIeCSGOJ2KoGC+Cl9RLWl123xR7dZtaR3A+j15JU7JsrHHTxnW2ELHEKq+q6pz7jnCn8I4MLxOiwryKPEWr4uoXV5u3N6M09In5T3TtxlrI2oBuQPYi5d7lDy1+6BfmLw0+DU7PSyQTZXhZcVFxf95deVb5beptCqm/VVWHj/XL1m94ekN4ZPiX8760t7CmsCJaIlDb6J9rBY1iNTdqbmBuzB432/5Sipf6G/wpLAoAAI/gy73Kq69XoxbUqhidVZbgYJlhCsfH0ebR7D9b+BZz43336HUqnY1kc7qjRWwp1ZdOZk3u2mgeb+Zd5GnkGi+2l71FUaYgcAl6o77qWpWl2WLD2yInRzLiGY5hiHC0p2mSXZLYR2IxGMyqZ1Z1FsHpTkFT6Mv1ILHvd2dptNj8ncc//MXwY2L494b7hkSGFINiSZ3EN8BJyW8IGhGUd5VqX3XndF41VY034ensjhmExmAjs5gp/UJqRs3iTY5P0EcBeEU4ArD8WCQlqWuLtd2KUp1fgkzLnBa53rEqzaLJi/K5+aU/3pveQJfSKcEUagw1rjqOZ+Kl/CWFPZWNZTiZyeAl8Ep+PZnL5gIAeBQeh8zpKU4kACE2EvvzjmhaGs/fyWPLEaoN39baBMt2QyMYW872jb33Tc7CtgAAuPyOddAikiLMRvNXlq+UBmVtaa1nQnQnmAhHgNDwUG+TN+iS+LA6rNOkBQAg4UlcmpNl/GavmU02kG9cvQEAMFgMQYag0NjQ8JRwLoZLnUvF4/GDjzMkPiRAE9B3xXArYJvZoSEuXmXCg3QUnapV1Xc/CBqWlA1KDaqZEH2vkCDZm2wABh6749tqjDBmd/ru9X9Z3+DTUH6m3ENhupELEqHNZtu9e/crr7yybNmyysp7ZU1+++23ZV2oVPCTYoD8ef5tmLYWyb3StzgDjsJ4sAdsZAK50bex/VY7AKCgpABFUC+OF0JG2M+zhYmuGRImFAs1eE1WTlbv3VrqW5owTQKGwCUnHQ7MDDMYzSMJoGFBV6iTbpaiZie3gmoP1TbkOH943x/leeW11Foy7t5kZW4ANxfJ7bxTisFg/jn9n2KaOGVeSog8pEZeM+BzDU8uSIQWi2Xv3r10Ov3IkSNy+b3BjUVFRVqt9tH/IRL7ddMMckpKklaX3xvtQjFR6JwHLgDoO8HXp80HAFB1o0rB7BjoiHBceVdA66/V3+qjUKqkWtJGGlV5A8/G49TwcTvkRk3VTYrDijJdWe0hJ3cmjXeN1QX9WrLGKVu1zRJ431zYmMAYy8NOZscyvZlaivbKxSsDPtfw5IK/XgKB8OeffwIAtm7d6rApLCzs0UcfHfwpIAPLYK2/N16LbqEzeQ+8bl94eHgJKLmedz2xIZG+zC2FdCOmRLB/YLcb2xlEx3E3nbQSrZY5qpb6ZAgY+EIX3FuGoJ40/trYEtBiCDP4n/TXNmupAmrnJp1Mx7VwVe0DvOVmNplFahE76b71wPEIfknEEqf91T5qcnOP63eOUO59Rnjq1Kl58+Y999xzt2/fduuJRj2yDxnf1vFRa7FZmCiTxxvIYJMGTgP+BF5H1gnC3HJnkilmAjw4fOGw/aXTxXtxchxeOKrShkAk4Fh6HEMEQYNkMBnEVvHsZbOXJi/NYmcVHi7surXkRkk+Lp9v5Pd+EKvcipqc3FY99/O5alJ1qG9/n9lTxBSKZuRNfOpdf68IL192sjZpSEhILwXokpOTQ0JCeDxednZ2ampqdnZ2YqLzkfXV1dVLlizpvHcaFha2f/9+pz01Gk0/Ax5leGIe/ga+TdFGwBFaZC04gNPpB7IeLymSFHApoH5yvVrtZD6+S2DDsfE34jfrN5vbzOQW8tMbn8ZgMF07MLVM1BsdWAB6vd5kMmGxnq/T3RWNQtOhOoVUgSPBG6RuNwY/BEorS0kIiWqgAgMQxglJl0hd/3zMpea2oDZzmbm+pp7JcXKjyGAwNP/RLGoRKYVK/vL78uW5onOJTYm2lbb+/z2yuCyL0eK+D5A+6XQ6q9Xq8KnSCxKJ1OeR0bczAAAgAElEQVRgwP7+3b7zzjvdG19++eXFixf3tEtmZqb9h7lz5zY0NOzcuXPHjh1Oe/r6+r799tvx8R3LolKpVBqN1tNhe9k0ikXHRN86dqvqWNXcVXOra6tRHBpACxjAcSZOnnhVfTUtJc3VAd5DW0KTEqWr81ebcWbEhrSqW0PE9xb4tZqtLCvLN8aXRhrI/yMWiyUSicMtEQIAqrBVfCXfL9TP04GMCWPtQ0AlVZnIJvu7Hp80XnVOhcPhyGQyAADYgEgjok2kNdc0E5uITiez5vyUQ9fR9yTtWZy/GNEgVOG926qYyxhtqDYiuL+18gEAXiFeBJSgAzpvmvdg39iAIAhCoVD6nwj7o7+J8Pz584M5jUgk6jqg1DEIHE4sFgcFOZaQhrpiL2Wz97LrG+vbFe1Y/AAzAYIgaZluzIJ2vPk8W5oNQ8Pkbc1TlCi6JsKq3CoNokkgJbg7hiGmxCtxTTiYCCF30DXrMIyOz30qiVqMK24qakocnwgAqLpbJcPIUvxSTtFP6ep0YKLjvr+f/z21PZXzIieVnrqnbk/0/ui4FzpKGzbJmhIMCcJFDzZoHIPDKLHK9tp27xjPJEJ3cOMzwtzcXPtKrVVVVT///HNGRob7zjUW+IX41XvXl+0r0yl0JtLwKlfdHcJEMFiMnqs31hgBACiKoha0IK+AdJYkSZT0ufuIo6foNdIxd8sOGhp4OR7vfe/mnoqpai3vKOAgyZdIuVIAAFaARaSOn+dKg9I32xdMBBQ6BQAwedlkhpJRWdxxTVJ+sbyGVoMjP/D9/HZyu1QiHdh7GZ5ckwhDQ0MxGIxarU5JScFgMHV1dQCAV155hcFg+Pv7x8XFLVu2bO3atS4511g2ftX4UG2oplSDUkZGZUtKEIUmpwEAmn9uVv5LKTomak5pXjhvoafjcj0LywKnEkJuQtfReb73BscRA4j45o68SG2ksqPZAACeP4+mdrxjfPn6ZS6W6zu9436pL9tXEilpPNioNCgBANxKrnbcQMZvm+gmQ0tfdTNGFNckwvLycrQLPz8/AMDly5clEkl2dnZ7e/unn36KILCKzWARKURTsmm6YToYIY9IgqKCfA2+ZrXZWmf9fvL3xNeIybOTPR2UW5A4JLx2VA2FhYYJi80isAj8A/07W4KigvhaPoqiUqVUYBYkJCcAAEJCQ0QWkeM47ZtAEaAAXZ6mTVo6yR/xf3/X+20FbYgRSZzQj9LA3eAFeKJyVM0Ld29yotPpPj4+MAW6UMisEB1FF+gb6OlA+oXFZVkR6819N3NJuZumbRrYAJkRgSFisA3svvtB0AOqaarBYrAk+r1qw0I/IQtllUhKcnNymyhNJCIJAEChUQyI4XbxvYlqWqM2RhUTkhFy3+EQwJvDe6v1Ld1h3V7aXr5XH5MunOKKuQxdjxOFRyI42nukQYBwnRChjpjvFi2UlsimSMW0Ub5iX2hwqN6it2gtOCr8m4JcSVIjoRFofqDLOCwM0DA1F/deZCEstv+9r19ynrzuSt346PH2lzeybjAIjECB45dmcjwZz8KfbT8bjYseWEjiADFqQc02Mx4Z0rsgx68fb2ptWp6x3OVHhn+0Iw9CGzFZEACg99Y36ZpmTprp6UDci0fhXcBfMBQbwsaHeToWaFRRNipxNMcP6rDHwxjfMbA6LCGF0NnoN9WP8DtBZ9ZR8BSpSsq4wVCEOf8CivPHLQcDTyckJomMIdc014SKhqJ0/r/P/3tBwgIenhdwOiAUDS2OKk4KTHLtKUbSRyo0EsXNigMLABYz7Gb+uVw7s721dMQsxnTiwolmdbOno4D6ZpPYSAKSQyPCQgTPC8gJZKbvvRn0gnABHUs/ffX0vqv7JF9KUAo6aeEkN0UlxUslNX0M/5aoJN1rS1lR6zc3vtl8YLPN1q8VSWVqWWZWpmq7qvrb6lZqq4VtuXn45gCD7hm8IoTci8/j83kDeQ4x4hADiLi7OACATWlDGAhw5XxfF7vyx5XkO8nnss+1zm7dkLzB0+FAPZLIJYnaRO/JTmbsYbwwtEzHh+4afw3hAiERk4iGoX7L3DirVe+lb29q773PuzvfjTfE80X8R5/uqDhtsVme+/q5N9rf8LJ6tZW20WfTiUl9DLrJv5DPI/HqefUECSH8+XAf1Mfra6/8qvykYFdeFMIrQghyjdDoUG+dN2pC5d/IVVeGxaJj145fyzmc49AouSYRF4lbF7dmMDJop2gS1Sic1jlq3Dp1S0aVkbn9LXIdPjM8kZTIW8xzaxYEAAA2sMl6u6TTmDR/0/1tecDylIaUkjsl9sZTBafeV7zvN9lPv0H/LPZZ9Wm1VWHt5SAAAM5djnqceuGTC/3X+wdyAvFcPGUyJZ4V77I3AgCAiRCCXCXYN9gKrCW7S8pMZe2X2kEff+BuV1JUIsoV+dz2uX3n3khCtUZtPWPNGZ8TGRvJWceZhpt26c9LHgwS6l1wZTA+/QEGpBD5RO/XvEnjHG+lupyXyIui6q30dnldOUAAdxX3jv8d7ZmO2Yptl9uUQiVpEimYFbx+6frv0O9qd9XqTT0u3KZsUrLN7MRpiRgMJpIbaW8kjiciLBdnLnhrFIJcppnSHNYQVjW3ynTG1HCkIfWhVACAscYoLZLKKfLIqZFDM8ruo6yPyK3kucVza8fVEhEi8RDx4umLAr0gNzYXV4nzofmsmLsCAIAhYMBiMGn/JI1M48X1GoLAoAdSeKPQhrHFpcR5OhAnBL4CXVZvdf+bq5qtZGsACIhbEGf+t1ktUau8VGnKNOEjHRXd5obMDXw2sOW7FuMnxp9pP7/9/NteBMdfwtqztWX0skdJbl/LD14RQpDLEEOINb41C5IX8BbwuHe47bp2gIKGXxvKb5eTr5Cvfnz1aOHRgR3ZZO1vUb2TZSczLmWsLFmpDlBPemhS8qJkvBDPZDJN8abpBdOnaKckr75X08Avwi+HlVN1oGpgUUFupbipkIiG6Y1rrpjrZ/OT6WSdLTaDTXdWB/5X88rcaNaz9AAAH7bPae7p9p/b7+66q6fqKcJ715Hh3PCJb04MnB+4Tr9OulVqrrp/ZA0KWHUsXNJQXK3BK0IIcpnkRR05Jjo2OvdMbuWByuDQYKVVOfHNiURAxP2CQw+hN1tvJsx4sJrjJ46e4Ofz71DvJK5IjBHF9NITRdHmw82h7FDeOh4f6RijFLmm456SJdZik9kITELXXYTThZz/clAzisEP4+E9YxJfxifPH6ZL4GKIGCNirKutY4ew5YXyj3M+XqtcSwd0C95Cn0IHAFAUFFxkR35JezjtyMkjcxrnkGY7uWdLSiSxo9lfffHVU0efEr8g7mxvLGpsRVvnTpg7BG8HXhFCkFuw5rHCq8O1l7QNkQ0kHAmDwwQ+GaiepKbn0JuONfX/OFajNfxmOCGGMME6oep0H5dux88cn2GcEfB4AAZxktVwPjhCPMGhcVLEpLvI3aoceFE4vLRIWnA2XELs8F2nRUFStDa0yv+Uq46rXtK8RE2gfh70uSZLY9PaAAA8Pc87sGOwaww/5vknng96I0iUIHJ6KDqRHrMwBm1Hbep7A3AashqqBdVk3FB8FYCJEILcIjgyuIHaQDfSp8+f3tkYNy3uZNpJ9CZq0/Q9iQq1oagJrfit4i7xbsySGGWSktHqvK6VTW2rO1RX/lF5/LV49WQ14vUAf9cIBmkObtbn9ThgAfKI8uvl1bRqHDJ8b9qZ6WZdo05/V38g8YDPGz4+833+8eg/LuAvFP9SrDPovK3efkEPMHJ1QfiCHCSn8Uaj/aXVZBXIBJEZke6J3RFMhBDkLoKlAkmahEa+b7LXM1OfOY49LjnY97MfyXaJ4mMFvg6vy9ABAIJjgv0N/valzbpSNitbv2wtKyorCS9hv8aOnPLAnx0pGSl0Dd0kH+5re40phGqCLbRfU849BcfHRdVFNeIaX5n7ir2FjCMnPZ5EaiWVnCxpxjXj8A+QxXEIThmsVBWopLXSsn+VKT5WlBJLY4J6exDgQsP36wYEjXTBAcHBAcEOjUQsEZmGYM9iLU0WnLDHP0Btq9asMG+M3Kg2qw8kHgAAcPlcGUZWVVkVHHLvmGab+fbu20qecs6aOSTcAAfNh/PDf6T9mP6f9LCXw4ZzHYAx4sj5I6ybrABdgF/qsF7nmevDpRXQdFN1XetGhQvD90Xum1kw8xb91oMecOKUifTv6YafDWW+ZePmjZvKnerSeHsDrwghaKitSl71BeEL2c8yVNvjupJ3zt65Q7+z55E9R1Ye6Zx00UhrbChu6Nrt098/DTQFZj6VOeAsaDfvmXkKg+LcD+fym/JbtC2DORQ0GFWyqpisGBqPpnxUKWALPB1Ob8QBYkAEovGOj/2WLlmaR8jT8B54neoYYcx58vlTolOZT2b68/2HsqI3vCKEoKFGwBKeeuqpoz8cnbZjmnitmMR0ksNoNTTDNMe1T/UCPaPu3mPCc3fPLa5YzJrBwhIGW8pVQBOgT6OWHyzXdl97x/bOG6Y3bDG2qUuG7is5ZJe9PzuBlRD3xHCcO+gAy8EyX2RicI73EPAIPur5KDJ+IINcFm5YSCfSXRHdg4FXhBDkAVG8qIUbFt7F35Vuk2ady3LYWlRUhLViJ6U6VkzmhnO57Vz7z5o2jegPESGAQEt1zSqPQoFQ/KJ4DmvOz+jPgVGBgXcC65rqXHJkqJ/y6/OnyKYEPBTg6UD6C0Nyfifdh+7DIXMGcEAmiYlgPJCVXHBFqNfrT506VVRURKfTFy9e7Ovr27kpJyfnzJkzAoFg1apVFEpv9XggaKzhe/EXvrQw93yuMFuITkUx2HufKbVXaylCSjgm3GGXqMiotiNtrSdbQTAw/GYoZhUvWbXEhSEhXghtLQ21oSyElSPP0f6q5b3IG5rx6xAAoCqrCsvE+vv4990VcikX5N5nn332yy+/1Ol0+fn5UVFRV69etbfv2bPnoYceAgAcPHgwIyPDavV07UUIGn7GZ4yXYqV3Lt3p2siQMphRzO6daUTa4bjDDdcbML9ibvjdyFyf6Y6Q7HMQk55ICjYESz6SnN56+tSdU1YU/v26HbmVrPeD81g8wAVXhNu2bWMyO/5oiUTitm3bUlNTURR9//33t23b9uijj1oslqioqGPHji1cuHDwp4OgUaY2ojb+RjzI6Hip0CoCzAG8BJ7Tzi8uelE/T9/a0PpwwMNujYpAIgS8GaAsV5ovmhkHGZvPbn58zeMimvMJ0Z0MOQZCFAFhwGcuA0HT0vj+Y2LNsuHGBb+vnVkQAIDH4wkEAgCgoaGhpKRk/vz5AAAcDjd79uyzZ88O/lwQNPqkZqRaTVbVbyrDDQMAIP9WvowgI5AcS8B0IuPJ/gFDcfcMg2BY4ayodVH8lfzHjI+VflVa1lTW+y61F2uL8oqGILbRR2/R+1h9fIJ8PB3IWOTKUaPFxcW7du06d+4cAKCpqYlGo1GpVPsmb2/vwsLCnnaUyWRfffXV/v377S/5fP6LL77otKfRaLQnWmhsMhqNAAAsdlStdy8gCzawN2RUZSSXJRvVRnmVnMQh2d/pcOEDuBu4qp9UhbsLxRvFPZY7QQHTzCyvLXdr8KPjQ6CkqER+U572eFpny93auzwMDyWgw+u/fvgxGo1YLBaD6e+MVxwO1+cnRr8SYVZW1qJFi7q35+TkhId3PM+XSCSZmZn/+te/EhMTAQAIgths98oi2Gy2XkLBYrF0Op3FYtlfcjgcBHF+qYogSE+boLEA+R9PB+Jiby57U6aT1RbXinJEHITDnMwcdu+RAIKfCKZ/Rd91etfaeWuddtHKtQRAwCvxbg1+dPwCyPPl3i3eXd9IU10ThoQRIkIPRjUi2H8B+p8I+9OzX4lw4sSJNTU13du9vDqWj2pqapoxY8aGDRuef/55e4tQKNRqtSqVik6n2zsIhT3+B7NYrCeffHLChAl9RoLH4/H4oZtlCQ039l+AUXZFCAAI4YaEgBDgB0pul8QZ45gJTCx++L1HPMCmY6dnTz9VeMriZ1n8xGKH7S1NLShAWTqWW/9IR8eHAKeNw7fxDWYDjdIx+0XXojPRTaPgrbmb/Reg/4mwP/r1xcp+xdad/etMa2vrrFmznnzyyVdffbVzF5FIFBcXd/DgQQCA0Wg8ceLEvHnzXBg3BI1KokUiI8OIpQ6/LAgAAEA4Veg3xS9pXFJMbYzR6ngHT9GkqKBUUG1Uq3GwQ0xLG0r1llEyflLWKCv/tFxXcW8ZW4vewjFxmpCmyvLKzkacDIcXwizoGS54Rrhhw4bq6urz58+fP38eABAVFfXFF18AAN577701a9bk5+fn5uaGhobOnDlz8OeCoNGNHkGnhbtmgrxbYAB5MpkMyCVFJVdzr06dcF/pGYPUYGPZ6g31pipTYGTgYM5j+o/pPP586sZUNpk9uIg9r/RsqcVgoe2jIXMQ0ngSAKDqVlUDrgFHxWlrteB/NWQYWgbXj+vJQMcwFyTCv/3tb88991znSwajowTUokWLsrKyzp8/P3Xq1MzMTNdeyULQaDUi/lKUQqX8phzc/zQD247F+eOUKiVagw4mEZYVlRFQQhgm7NKXl8avH+/DeICBlIfOHJo9dfbA6nu5Cb+eXzOz5m83//bu+Xd9xvsAANTF6iZuk5gitjRb7H00Jo2v1VccIO71SJC7uCARxsfH97QpIiIiIiJi8KeAIGhY8Z3gizuAs9gsXUeQUrVUrAAra5eZG82DObj8ilzmLZv/+HzMDkzjvxt1j+nCAsL6s2O7tj01J/Wy7PLsFbMHE4ALSUokOptu2oRpvqG+sm9krEoWNZjKaGWQJ5LpGLrlWkci3HtwbyaSiWPA4s+eMeIHX0EQNPTEEWJv4J1TnNO1kW1hi33EFBGFoOx7ekOzptn5BisQtYgYExgICQl+OZggJOj36LuvwujU7dzbCkQRUR6hU3c8kLOhHl7Sr/FyY4V3BR7BR3AjrrOu15yt0V3UGayGmJgYv2A/npGHWtHGLY3Ty6YTJoz4OSEjF0yEEAQ9OAxoYbc05TV1Nui1ehyK8xH6iAPFXH0fz7oaFA3Xt15vVt7LhddqrrU2tJpKTbIDshpQkxqdaj9L/NPxCEByL+T2crSSspJzv58DABiKDY2+jSW0koofKy7vu/yP7/7B/Bfz86ufD+aNDoZRZRS2CAXpHaspxc6OZbeyFVmKLeItIewQjpDDR/nXD10v15er1qrYM0f809CRCyZCCIIGghxH9mm49/Suob6hBduCxWBDAkIwKEbeJO9l3zvX7kwGk2+euGl/qTVpGbsZ5h/M1fur86ryTgac7LoWnTRBSrnWY8l+FEWrDlfFlMQ0tzQL5AJ+PF/8sLhWV0uVUJ9TPFeD1IjOiW7fvD3ot9s/VtCyrUVe1fHei/5TdJV+NS2yY9Z8akjqMdqxAxEHdj65E4PBAATICDL/In/8LHy8oMcHTNAQgLekIQgaiIiUiIZzDU2tTUK+EADQ2thqIBoAAHgEX0Gr8Lrmlf5Qek/7YsuwRfSioKoggAKAAblXc1k4Fu81nlQqJRgIL/LuKyw1ec7kO/l3Ss6XRGQ4GXBw6OahZENyBavC+qvV1+brF+OHIEj0m9H2rWaJOe5cHO1PmiHIQGL0uHZxpaIyqy5r1bhVXR95Zt/O1h7VchZyksYl9fPfRNYgMyvMxl+Mn3h9kuyVHNseO+2FaV1HPz3z0jNd++O5eIPZkJaS1u1I0JCCV4QQBA0EFoetpFZWXumYCYcvxOsZHTP/0FAUX+k4JQ5F0S2/bfn3gX+jNjRIFeS3xE+Dau5m3wUA2G7b2vzaCFhCvCA+IyDDm+rddUc8gm+b1EbNouYV5zkc02wzV5+uNvub/Zf6h6vDa6m1DkVn8D748NXhN6k3C44XdH8LNqNNnaU+8O8DWTuyWKdYZ788qyvoeLiot+jBUSCmiL0Pel89fbWf/ybV5dV3yXd583mvYl4dpx5nnGXkMZwXT7cLWRDit8KvnweH3AdeEUIQNEC6CJ34rhjYwOVvLzO0jPGrx9vb41PjrflWs8mMJ3SkQ5PVdHLnyeVty6026wXqBQ6GE+sXmxOZk5qVak2wBioDgWOZmvvMnDqzSFZk+6+tZF2JmCyuba/Vm/UR3Igz5WeWWpaKZ4tx3riTwpNEf6LT3WmTaJzTHPvVZ1fqU+rGO40cMmdW1CyABxcqLrQfaScGErE07KF9hxKwCeEvhhfmFopOidoT2hlcRp//IJp6jYljIieRyUlkPuh7HQmsYJhWThhr4BUhBEEDFJUcxdPxZP+UseQs8XqxN6vjSk7AEdTj6gtyOy7Cvjzx5c1/3QxpD6Gvodf618Zcj6nn1QMA5i6YexW5Wv9VvRQrDfAL6P1c0Q9Hs7xYJ/efNFlNV3Zeqf6hGgBQc7nGTDfjvHEAgDlr50ybNc3pvpOTJysxymv7r93efPv4z8dNVpO9XXVX9a3vt5NemkR7iEZbQJu9cfZJwsmq/VXXrlxLr05nL2UDBIxLGXebd7v+5/r+/IPg5XgvH6/+9ISGFZgIIQgaoEBu4IchH56YeyLqrSgOm9N1k1Ks1N7UAgCOFx5/KPchvxi/iNciaELahFUTsghZlEQKAIBBZCQ/k9xgaajzrevP6cRLxYsUi97a99YU45QoU9TZnLMTmycypztZwdgBBoORR8p9SnwUdEVsXeyGrzZIdVJjo1FlVj0/73kspuOyjIglhi4JJUqI4rNiebqcF9pxV3PiqolGnbH8s/ILxy/0fiKOnuMfAteXH3kw/Zyg41apqalffPFFf4puq9VqGm0YF6CC3Eyn0xGJxNFXdHv0qWusAz+AWym3LPmWWJ/YkMdDOjcZLAYS7t64lRJZCYfC4VF6e5bWqXZnLaGFQJxCLJGV8O7yrDhrxJv9KtmBoqhKp2JQGeYys2y/bHvY9kesj9xpvLPqlVUOPb/b+x2TxnxkwSNdG2813Gq53BJdHt22rC0uvKMqWo4kZ1vWNqvc+uvzv2IwGGm71PylWfg3IQYZAbWBRi6tVkuhUFxbgAk+I4QgyPX8RH7Vs6vjT8VjsBifZffVSOuaBQEAEdwHKD7ls8RH9aeKNZmVYk2pKq5qjWmNAP3aHYPBMKgMAAA+DE9Jpzx5+UkzxsxId/LYb+0KJ4tMxYvjwQqQ832O7KzMngjLWssq/lPxOeZzi81yrepaanBqaXEpBU8RIaL+vx1omIC3RiEIcovAlEBiCpG+kI4huOzLO5aLxT2MAxiAw+HoG+iTFkwawEEYUxnyIDkBJcxIn/FAO4bNDYuRx8jUMpvBpvlBk0pPZa9jN3OaJeclAABZraxz3Cw0ssArQgiC3MV7tnffnQZKwBQMeN/klcn10voHrc3NEXMaSA3Fu4pj1bHN2Oa4DXFYBMuZwfH6zUtr1BolRlww/EQdkUbSFaFer//qq688HQXkSQcPHiwpKfF0FJDHqFSqb775ZvDHwWAwfvyBTOCjTaLFtcdl+2dHrI3AIlgAgF+YnxKnLNpcNM0wLTY5dvCxQb3bt29fdXW1a485khKhVCrdsWOHp6OAPOnIkSN5eY6zqqGxo76+/ocffvBgAIGpgaK3RMtXLg9iBXU2KtIVSo6SvYFNFg+j5Z9Gqz/++KOgwEl5hMGAF/IQBEEPoPt4xdmTZ4PJHokFco2RdEUIQRAEQS4HEyEEQRA0pg2LCfUikQiLxRIIfaxLabVaGxsbfX19hyYqaBiSSqUUCoVKpXo6EMgzzGZzS0uLj49P312hUaqlpYVGo1EoPa7M5eCxxx57//33e+8zLBJhS0uLVqvtT0+j0UgkOq+rC40FZrMZi8U6rDAAjSnwQ2CMM5lMeDy+/5VlhEIhmdzHIKZhkQghCIIgyFPgN2sIgiBoTIOJEIIgCBrTYCKEIAiCxjSYCCEIgqAxbcRUltHr/3979xua1LsHAPwRdfwsl3PasanV5v68WBMmY3Nb7g/TBZs5YjmIRsXGXjToVb3rVRFRLwr6w6Ia5ZtiVMMahTgLhxlsCxPa6oU0yNr0GG7QUrzm0T33xXOvd3e/4v52r3au+f28es7XB84Xzpfn6zme4/nb7du3P3361NjY2NfXl9mXUYH/HwzDzM/Pz83NCYVCs/lf74TDGI+NjXk8HpVKNTQ09Mcf/3iVz+LiosViiUQiBw8ebGxsZClrkEkej+f58+crKyvV1dX9/f3pe0S/fv06OjpK07TBYOju7k7Pd7vdExMTYrF4cHCwpKSEpaxBxgSDwYmJiYWFhS1btuj1+vb29vRHk5OTk5OTO3bsGBoaKi4uJsGfFcZflzNnhPv377fb7ZWVlWfOnDl79izb6YBsuXPnjtlsvn79+oajfPr06QsXLlRWVj59+rS3t5cEw+FwQ0PD8vJySUlJV1fXixcv2EgZZFIoFOrt7V1ZWdm5c+fdu3fb29sZhkEIJZPJtrY28k1oeHj45s2bZP6zZ88OHDigVCqXlpa0Wu3q6iqr6YMM8Hg88/Pzu3bt4vF4fX19IyMjJG6xWAYHB8vKyubm5nQ6XSKRQAglk8nW1tY3b95sKIzNwblgenpaIpHE43GMsdfrFYlE0WiU7aRAVqRSKYzxw4cPa2pq0sHV1VWhUPju3TuMcSwWE4lEXq8XY3zx4sXu7m4y58qVK3q9no2UQSYlk8lEIkHG0WhUIBDMzs5ijB8/flxVVUXKw2az7d69O5lMYoybm5tv3bpF5nd0dFy7do2lxEFW3Lhxo7m5GWO8trZWWVlptVrJWK1Wj42NYYytVuv6wigtLSXjTcmNM0KXy9Xa2kqukGg0moKCgrdv37KdFMiKHz4s7/V6t23btmfPHoSQQCDQ6XQulwsh9PLly87OTjJn3759brcbw3OxOY7L5fL5fDJOpVLJZFIoFCKEXC6XXq8n5aHX6xcXF/1+fyKRmJ6eNhgMZH5nZycpDPB7YNlQjWgAAAO3SURBVBhmdnZWrVYjhGia/vDhAznWHA7HYDCQY72hMD5//uz3+ze7o9xohKFQaPv27elNiqKCwSCL+YBfbEMByGQyUgA0TafjFEUlEonl5WV2UgRZcPLkya6ururqavTvNVBQUCAWi2maDoVCGGOKokhcJpPRNM1auiBzFhYWysvLi4qKfD7f5cuXEUI0TQsEgsLCQjIhvQj8sDA2u7vcaIQ8Hi+VSqU3GYb5j39MCn4nfy4AcnmAx+Mlk0kSJAMojN/GuXPnXr16NTo6SjZ/uAiQc8d0DcDK8NsoKyvzeDwzMzNisXh4eBghxOfzycVwMmH9IvC/d4fcaIQKhSIQCJBxKpUKhUJyuZzdlMCvJJfLaZpeW1sjm4FAgNwcqFAo0tcGlpaWtm7dKhKJWMsSZM6lS5fu3bs3NTWVPttbvwhEIpFIJCKXyymK4vF46Xi6MECu43K5YrFYrVafP3/+wYMHGGO5XM4wTDgcJhPWLwJ/LozN7i43GqHRaHS73V++fEEIORwOkUik0WjYTgr8OvX19Xw+3+l0IoSCweDMzIzRaEQImUwmq9VKvg8+evTIZDKxnCjIhKtXr46MjDgcjvVdzWQy2e32SCSCEBofH6+trVUqlVwu12g0jo+PI4QYhnny5ElPTw9reYMMicVi6bHH41EqlRwORyqVNjU1kWMdi8VsNhs51hsKQ6PRKBSKTe8yk/f3ZNOJEycqKioGBgYoirp//z7b6YBs8Xq9dXV1KpVKIBDU1dUdP36cxC0WC0VRAwMD5eXlp06dIsFYLNbQ0KDT6Q4dOkRRFLmtFOS0jx8/cjic0tLSun9yOBzkI7PZXFNTc+zYMalUarfbSdDr9Uql0sOHDzc1NbW0tHz//p293EFm9Pf3t7S0HDlyRK/XFxcX22w2Enc6nRKJ5OjRo7W1tT09PWtrayRuNpvVajUpjMnJyf9ij7n09onp6Wm/319fX19RUcF2LiBbotGoz+dLbxYWFlZVVZGxz+fzer0qlUqr1aYnJBIJp9P57ds3g8GQfsAW5K54PP7+/fv1EZVKJRaLEUIYY5fLFQqF9u7du/69pOFweGpqqqioqKOjg8fLmT8JAT8Tj8dfv34dCAQkEolWq13/e0cgEHC73TKZrK2tLX2H+c8K46/LpUYIAAAAZFxu/EYIAAAAZAk0QgAAAHkNGiEAAIC8Bo0QAABAXoNGCAAAIK9BIwQAAJDXoBECAADIa9AIAQAA5DVohAAAAPIaNEIAAAB5DRohAACAvPZ3+g1lJctbdkAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2Ac5Z33v7N9tX2lVe+9WbLcMbaxAVNtTCdczFGSC4HcBV6SEO69y+U4Lnnv7g3vy/EGSEwJxgabYsA4GIwNxt2yrN7bqq5WK23vbXbeP1ZlJe2uVrKarfn8tTvzzMwzuzPP73l+laAoCjQ0NDQ0NMsVxmJ3gIaGhoaGZjGhBSHNMuKXv/zlT3/602mb7dmz58knn+zt7Q3f7MiRI08++WR5efkc9W4G2Gy2mpqac+fOtbS0WCyWhe8ADc21BC0Iaa5i9uzZw+FwHn/88aB74+LiOBxOf3//2JYDBw68++670572xIkTe/bs0Wq14ZtVVlbu2bOnvb19Jl2+Urq7u++//36pVFpWVrZp06aCggKJRFJSUvJv//ZvY20MBsOePXu+/vrr2V2iq6trz549Fy9enKMuT8/atWuJ6RgeHl6w/tAsN1iL3QEamtlDkqTH4/F6vUH3ut1uj8cTaAW//vrrTSbTQvVu7unt7d2wYYNGo8nOzr733nsTEhKGhoZaW1uPHTt28ODBf/mXf/E3GxgYePLJJ3fs2HHbbbfN4iqVlZVPPvnkL3/5yw0bNsxp90Oybt06qVQadFdra2tfX19UVBSPx1uYztAsQ2hBSLOM+Oijjxa7C1fE7373O41Gc88993z88cdMJnNsu8ViOXXq1CJ27Ap57bXXgm7v6uryLxbffvttkUi0wL2iWT7QgpBmGVFfX+/1esvKygI3ejye48ePt7S0SKXS7du3p6SkBD2WoqgzZ85UV1dzudzNmzcXFRWFuorNZvv222+7uroYDMaKFSu2bNnCYIzbINxud319vVAozMvLMxgMR48eVavVqampt912m1gsDt//M2fOAPj5z38eKAUBiESiHTt2+D+rVKqmpiYAJpOpsrLSvzEuLi45Odn/eXBwsLy8vLe3lyTJzMzMG2+8USgUjp2qs7NTqVT6m40dnpaWFhMTM9amp6fn1KlTGo0mOjp669atmZmZk/rpdrvPnj3b1dVlMpliYmJycnLWrVs3qc/TYrVa77rrLp1O98ILL/zgBz+Y0bE0NDODoqG5ann99dcB7N69O+hev7att7d3bEtiYiKXyw1so1Qqi4uLx14HFov1hz/84YEHHgBQWVk51sxoNN50002BL86TTz75m9/8BsC+ffsCT/jee+9FR0cHtiwtLe3o6Bhr4PfB2bx582effRYo+eLi4qqrq8Pfb0lJCYBjx46FafPrX/966mv+q1/9yr/31ltvJQgicJdcLv/ss8/GDr/rrrumHv7222/799rt9scffzxQrjMYjKefftqvgvZTWVmZmpo66Qxr164Nf2uT8Pl8999/P4Dt27d7vd4ZHUtDM1NoQUhzFXOFgtDpdBYUFAB4/PHHa2tru7u7X3nlFT6fn5iYOEkQ+tdb27dvv3jxYm9v7/vvv69QKPzNAgXh/v37CYKIj4//05/+VFNTU1FR8dxzzzEYjMzMTLPZ7G/jF4QJCQkCgeCFF144ffr06dOnH374YQDFxcU+ny/M/f7t3/4tgBUrVpSXl4dq097e/tZbbwHYsGHD8VHa2tr8ezdt2vTiiy/6V8AVFRW/+93vhEIhl8ttbm72N6ipqfHbGh944IGxw1UqFUVRJEnefvvtALZt23b06NGWlpavv/7ab0d87rnn/If7fL6cnBwmk/nSSy/V19f39vaWl5e/8cYbTzzxRJj7mspvf/tbADk5OQaDYUYH0tDMAloQ0lzF+AVhTEzMhmD4dXFhBOGf/vQnALfcckvgOV999VX/ImZMEPoVkpmZmU6nc6zZiRMn/M3GBKHVapXL5QKBoLW1NfCEv/rVrwC8/PLL/q9jURmvv/76WBuSJP0iuampKcz9tra2KhQK/+GJiYkPPPDAK6+8Erjc9NPQ0ABgx44d0/1+FEVRe/fuBfDss8+Obfn4448B/PKXv5zU8sMPPwRw4403kiQ5ttFut2dkZLDZ7P7+/rG7u/XWWyO5dCg+//xzBoMhEokaGhqu5Dw0NBFCh0/QXPWYTKbGYJAkGf7Azz//HMAvfvGLwI0//vGPJ3kw+pv9/d//PZfLHdt40003TbI1fvnll3q9/sEHH8zNzQ3c/vTTTwP46quvAjdKJJKf/OQnY18ZDMbNN98MoKurK0yHc3Nzm5qafvazn8XFxQ0MDHz88cfPPvtsdnb29ddf39LSEv5mQ7Fr1y4Aly5dmrblvn37APzTP/1ToGqUz+c/8cQTfjur/74Igmhra9PpdLPrT0tLy6OPPkpR1DvvvBPGEEtDM4fQzjI0Vz0PPfSQf4yehEwmMxqNYQ70O5WUlpYGbuTz+Xl5eYFh8kGbAVi5cmV1dfXYV//nnp6eF154IbAZRVEEQXR3dwduzM7OnuQ8EhcXB0Cj0YTpMICYmJg//vGPr776ak1NTXl5+bfffvvXv/71/PnzW7Zsqa2tTUhICH+4Vqv9r//6L7+2MzAyLxK55b/Bzz///Jtvvgnc3tjYCMB/g2Kx+L777vvkk08yMjJuv/32bdu23XrrrRkZGdOe3I/BYNi5c6fJZHrxxRf9NkIamgWAFoQ0yxer1UoQRKA/pJ/Y2NjAr/7ULZM2Tt1iMBgAlJeXB0pHP1KplM1mB26Jioqa1Mbvw+Lz+SLpOYPBWLVq1apVq5566qnW1tYbbrhBo9G8/vrrL730UpijtFrt2rVru7u7V61a9cgjj8hkMn+vXnjhhVCxmIH4ZxX79++fuksmk4193r9/f0lJybvvvvvRRx/541XWr1//2muvrV69Ovz5fT7f7t27Ozo6du3a9c///M/T9oeGZq6gBSHN8kUoFOr1+uHh4fj4+MDtk5Zl/gg2jUYT6F8aqtmLL744Sdc63+Tl5T311FP/+q//OhbtEIrXXnutu7v7ueeee/nll8c2Dg4OTlrChkIkEtlstubmZv/iNRRcLvc3v/nNb37zm7a2tu++++7DDz/8/vvvb7nllqampvAHvvDCC0ePHs3Pz3/vvfcCta80NPMN/bTRLF/8gm3SAs5ms02ytwVtBqCqqirwq99keP78+fnoanj8WVfGhId/nTd1kVdbWwtgUkzepLsIc/hMbzA3N/enP/3pyZMn77vvPr1ef/LkyTCNDx069Ic//EEmkx05cmTaeEoamrmFFoQ0y5d7770Xo/6cYxv37NljNpunNnvttdccDsfYxmPHjtXV1QU2u+uuu2JiYr744ougosJqtV55hz/44IOp57Hb7QcOHACwZs0a/5akpCQAfX19k1r6lcCBycRJkgxMUhr+cH9O15deeslut0/a5XQ6PR4PAIfDMdVHyW+5dLlcoe6rtrb20UcfJQhi//792dnZoZrR0MwTtGqUZvnyyCOPvPrqq99+++0Pf/jDZ555RigUHjly5MUXX0xJSQkUAxs2bLjvvvsOHTp02223/fa3v01KSjp79uzzzz+fmpoaKFSEQuGf//znBx54YPv27c8999zmzZsTEhL6+/ubmpr27dv38MMPBw11nxG///3vn3rqqbvvvvuGG27IyMhwOp2tra179uzxqyv97qkABAJBQUFBY2Pj448/XlZWxuPxSktL169fv23btjfffPOZZ57xeDxlZWV9fX3/+Z//OTWZdX5+vv+nePbZZ3Nycths9g033JCXl3f//ff7f4e1a9c+++yzK1asYLFY3d3dZ8+e3bdvX319fWJiYmVl5cMPP/zYY49t2LAhIyPD7XYfP378zTffFIvFoRKfkiS5a9cum82Wmpp6+PDhw4cPB2321FNPrVy58gp/QBqa4Cxu9AYNzZVw5Zll+vr6Ap042Gz2H//4x6mZZaxW686dOwNfnGeeecYfeD4ps8zRo0ezsrImvWUZGRlHjhzxNxjLLDOpt7/73e8AvPXWW2Hu98UXX5y6YCII4sYbb2xpaQlsWVFRsXLlyrEkMv7MMj6f76mnngrMLJOfn9/c3AwgKysr8PDDhw8HJk4byyzjdrtfeOGFSZ4+TCZzy5Yt/sj3urq6qV5FGRkZp06dCnVTTqczkpHq008/DfPL0NBcCQRFV6inuWoxmUxDQ0NisTioF4ZSqSRJMiMjg8Ua0Xx0dXX5fL5JgookybNnz7a0tIjF4m3btsXHx2s0GpvNlpSUFBg4CKCysrK6uprD4WzcuDE7O9tgMBgMhtjY2MBcnf4TVlZWNjU1uVyuhISErKyswHg4r9fb29vL4/H8iWnGMBqNer1eoVBMm11aqVS2traq1WqPxxMbG7tmzZpQ+VHdbvfg4KDX65VKpXK53L+xra2tqqrKarXm5ORs2rSJyWQqlUo2mz31JA6HY3BwkKKoSb0ymUznz5/330VCQkJZWdlYmD8AiqKampra29s1Go1YLM7MzFyzZk2YRKMURYWPnvQTFxcnEAimbUZDMwtoQUhDQ0NDs6yhnWVoaGhoaJY1tCCkoaGhoVnW0IKQhoaGhmZZQwtCGhoaGpplDS0IaWhoaGiWNbQgpKGhoaFZ1tCCkIaGhoZmWUMLQhoaGhqaZQ0tCGloaGholjW0IKShoaGhWdYsCUH4+uuvT02BH5RI6mjTXMOQJEknBVzm0IPAMmc+HoAlIQjfe+89pVIZScvAgnA0yxCXy+Xz+Ra7FzSLCT0ILHNcLtecz4aXhCCkoaGhoaFZLGhBSENDQ0OzrJnHCvVer7epqam2tlYgENx7773zdyEaGhoamjmHoigfwAyo5HytMo+C8PXXX//DH/4gk8mYTCYtCOcWiqIGLJYksXixO0JDQ3PN8m1XV7tOd19hYey1XhJ5HlWjP/vZz3p7e3/961/P3yWWJxqr9d2amreqq+s0msXuCw0NzbXJ+b6+s729GpvtzcrKPrN5sbszv8zjipDJZM7fyZcnaqv1Ql9fvUbjd5k63NIi5nLTpdJF7hYNDc21xYDFcmLUk9/j831QX//4ypXX8LpwHgVh5Gg0mt///vcKhcL/NTU19fnnnw/a0ul0stnsBezaUsHodH7e1tY/cV7mBQ7W1f2otFTE5S5WxxYYp9NJURQ9x1rOLNtBYMHw+nwf1dW5PZ6xLRav973q6idKS6OWwC/vdDoZDAYRseWSzWZPO2IsCUHI5/MLCgrS09P9XxUKRagHnc1mL8N3oFWrPdza6iTJqX+ngySPdHY+UlLCWAYGbYw+ALQgXM4sz0FgIfmus9Pgdk96yywez+H29t1LYKjxPwCRC0IGY3oL4JIQhGKx+J577lm/fv20LZlM5rIaBB1e77GOjprBQQCh/vhes/lcf//W0WnEtQ1zlMXuCM2iQT8A80qrVluhVgcdbXrM5i87Onbl5y+uJPQ/AJELwkhYEoKQZipen69KrT7Z1eWIIJ/Q6Z6eTJksVSJZgI7R0NBcqxidzsOtrWHyttQMDjIZjB05OXMrhxadeRSE1dXVzz///ODgYE9Pz/bt29euXfv73/9+/i53LVE9OPhdV5fF5YqwvY+iDjU3/92qVUIOZ147RkNDc63i8noPNDTYA0yDQakcGCB9vrvy8hZdRzqHzKMgzM7O/o//+I+xrxJ6vRIZ5/v6vunsnOlRJqfzQH39YytXsq8KrZG1E32fwTmEwl+DG73YvaGhWe6QFPVJc7PGag2yb+AoZKXgJ41tqBkcpIB78vMXrn/zzDwKQpFItHr16vk7/7UHRVHf9/Sc6u6e3eEqi+WDhob7CgqugnVh6/+DuQX2PsRtReIdi90bGppljdfn+6ixsV2nC7LPY4a+EmxJoCAEUDs4mBsdXTTq6n+1Q+caXSq4SfJQc/OspaCfLoPhT5cvD1gsc9SpecPaiZynEHsDrF2L3RUammWNhyQP1Ne3BZWCAPSVYAnhHJy652h7u83tnt/OLRS0IFwSdBuNb1RUNAwNXfmprG73+3V1+iVeqsbSCVE2BOmw0YKQhmbR8JDkwYaGToMh+G7KB0M1Em6BQz11p83t/u7KJu5LB1oQLjImp/NQU9Pe2lqD0zlX57R5PPvr6hzTGb0XDcoHWzcEGRBm0itCGporx+n1+mZeok/ncLxTUxNSCgKwtIEbDUkBPGb4giz+qtVqrd0+0+suQejwiUXD7vGcUCprBwfJeSi5rnc4DjU3/7CkZCn6dTkGwJGBFQVhBi0IaWgiweJ2W10uJoOhdzjUFovSaPSQJJPBMDmdVrcbAEEQYi53Y0rKmsTESOpFNAwNfdHa6ibJcI1cWvCTAQZ4Cjg1iEqZtN9HUd91dT1YVHQFd7YkoAXh4mDzeN6rqdHYbPN3iQ69/nhn5y1ZWfN3iVli7YQoCwCEGbAqF7s3NDRLnabh4cOtra6wIcUURZmczq/a2ytUqh25uWFSEFvd7u+7uy8PDEx73UajS+vh3BAP8OLhGJwqCAE0a7UaqzVOKIzkRpYstCBcBGxu997a2qH5lIJ+zvf1+Sjq1qyspRX9aumEMBMAOHIAcBvAkS1uj2iuCNcwWl9FyUuL3Y9rEI/Pd7yzs2JgIEyQ+yS0dvve2tosmawsISFJJBJzuf6AP6/P12c2N2g0dRqNx+eb9jxDNttRDUPIhkepvFmaENRMCICiqMsDA3fm5kZ+U0sQWhAuNE6vd399/RVKwX6z+Vhn5wOFheLp0m1f7O83u1x35eXxWEvmv7Z2Qji6TvUvCuV0mM3VjKUdjf8Lec9OHxLa9kd4LCj6xwXp1lWP2mI51Nw8CyMcRVEden2HXg+AQRB8FotBEFaPJ3Jp6vH5Pm5qukVuzY3P2KvUC8Hb4AsuCAHUaTQ3Z2Zyl84IM3NoZ5kFhQI+bmpSX1l4Q8XAwMGGBgmX+2V7eyTtm4aH/3T58vDSsWlPFoS0mfAqx20ARWLgy+lbDnwFS9v8d+iqx0dRF/r63q6uvnJXFB9F2Twei9sduRQEUDM4GM3nl/KNfE7UD4qLzw6aB2wukMF90V0kWT8XHu+LCC0IF5Szvb2dev2sDze7XAcbGmoGB58oK7unoMDodDYND0dyoNHp3FtTMzz/ytiIsIzaCAEIM+kIiqsetwGsKKiOTNOMIjF8Dq4Q8Wo0o/SZTG9XVx/r7PRGoMCcDyjgQl/f9ampIB1g8qQ83o7c3E9sK5wD34030p6HbzwHZIVKNSNBu9SgBeHC0W82n+ya5aDv9HoPNTf/6fLlOKHwR2Vlcj6fSRA7c3O/7uhwhff7GsXqdv+lpqZFq51dB+YSq3J8RSigV4RXPy49knZh8ETgyBgEQy28NriWwBO4VLF7PHtrat6urlYtakX4Fq1WwOGkiMUgnWDyAeTHxOQqEg6rPJRdBQAeIwZPwDU+p9fYbOHCMJY8tCBcIEiK+qK1dRaxPgC8Pt+BhgYei/Xshg3b0tPHct0mi8XZcvn3Ece02j2egw0Nf21rm4+AjUjxq9G4MSNfadXoNYDbAFEOpCugORmu2fAZxG6hV4Sh8KfO7zIaF7cbFEWd6+3dmJICwL8i9G/fnp1rYcZcaLsIUDDUgqJATlDbnu3tXfjezhW0IFwgzvT0zM5BxkWSHzY2Snm8O7KzOVMSat+cmVmv0czozJcHBvbV1loXKzeSVTniMupHmAFLG7xLQ2dLMzv8fr8Jt04jCIdOI+UeekUYipNdXVdiN5kr/Na+/OhogILPPSYImQTxQMnaCpv0YvslGGrBlU8yGXYbjf2LupC9EmhBuBCordYzPT2zOFBlsfz58mU5n78rLy9oCEQUm31jRsaRtrYZKei7jcb/V17uD66YRa+uCHsfBKnjX4XZkJXh8xS0v7HQPaGZK/yCkJ8cysMeAEBh6AySd8FjBhWRMn9ZUafRnO3rW+xewEWSJ5TKO/zlBkkXGGxgfNiRcLmPF+dc1hjO2hMgzJzqO3NqVqPcUoAWhPOOx+c71NQ0U22kyeX6sr39YEPD9qys27Ozw5T+KouPZzEYlyIIjw3ERZLfdHZ+UF8fSeHfucSumpDGnsHG5k+w9Sha/9+CdoNmDnHrwZWDFwtnaNdBcxvYIkSlgCOFe/HXPUuKHqPxi7DlcBeMk11dOdHRiSIRgDEDYSBiSepjqah1xZ8xCuCdLAjbdTrl1WkpvCoF4V/b2pZuIs0pfNPRMSMfaDdJ7q+r21NZyWYwfrZ2bUFMTPj2BEHszM093dMzi0TbHXr921VVloVUkzpUiEqavDF6HVxDI+uJngO4/HM00jWcrx78K8LwgtDUCGkJAHCjae1oICqL5YP6+sVyEA2k22hs1mpvzhy1XAQYCAMRpt726Kr1VUaiyxLEN+q4Urn48nzmXJWCsFWn+9Ply1+2t19Sqcr7+9VBi0kuDVQWSySpjAI50tYm4nKfu+66W7KyIoyCl/P5N2dmflBf75z58k5rt79bXW12hfX3m0MmrQj9EAzE3gDNSVg6cPkZCNPR9J+04fCqYUwQusKsCJshKQAAbgztLzOGweHYV1sboeP3vOIiycOtrTtzc/ljY06wFaEfIYezNT7qjC6ImkptsdQOBqnZtMS5KgUhAJPLVaFSHW1v/6qj4/26uoUbx2cCBXzV3j6j+dHF/n6t3X5nTk4kaXMDKYuPz42O/qixcRZTS53D8U519QJVbrL3QRAkYyHitkJzEsp3kPkY8p9D9DoMHl+I/tBcOS4duNHgxcI5DIR43k1NEPsFIb0iHOdkd/csJq/zwQmlMlMmy5bLxzeRjlCCEMAKhUTvJlTBcoMc7+xcIjcVOVerIAzE6nZ/3NgYSfa8BeZif3/kblQURZ1QKisGBh4qKmIxZvO/bM/KEnI479fXT5NRPhhGp/PdmpqF0O87BsBPDLI97iYMnoByL7KeAICkndMHaNMsEdxGsKVgcMHkwx3C+9/cAnE+QK8Ix9FYrfUazWL3AgB6TKY2nW5ygn7SGVQ16ofB5G8UGYOGTNg8nshjupYI14IgBNBnNr9XW2tfSobDXpPphDLS0grdRuNb1dUDFsuPV62S8kI+fOEhgHvy8+V8/keNjbMwvJtdrvdqaz9sbOwzmWbXgYgIqhoFICkA6YQwc2S4TN4F1V9BLbnJDc1kvDYwmCMjZigzIeWDuTVAENIrQgD4rrt7KZjT3CR5pLX1jpwc7qTorBA2whGYUWU8Ta/JZAxWSPWSStV3VYVSXCOCEECfyfRWVdWih6P6sbjdHzc2kmEXqSRFDVgsVWr1m1VVR9raNqakPFJSwo80cS2F1ldg7Zy0lSCIHbm5Xp9v1q7YzcPDb1dXv1lZ2T4fIU1uIwgm2KJg+wik3I3cp0e+CdLAi4Xu0tz3gWZu8S8H/YQShPY+cOQj/zuHVo0CQLtO17oE0jxRFHW4tTVNKs2LnpIw3edksvhRbHbwI1l8ts+2Mj6+IpgPhI+iPmlqWlIrk/BcxfnCp6J3OPbW1KyIjb0lO1vE4SxWN1wk+X5dXXhXTKfXu6+ujvT54oTCG9LScuTymVVKcg7D50XfZ0i5D8KMwD0EcF9h4Z7KyjSJJFUimd0tqCyW9+vqhByOQiDIlctL4uMFAe+Dxe0e+XkHv4WpEXk/j/S8QV1Gx1g7MZQw4TZovkXMhhn3nmYh8cdO+AnlLzPmKQOAGwNzywL1bani9fm+6uiIvL2LJI91dAg4nCSRyEdRQzZbh17PZjIlXK7e4bC43U6vN04gyI+JWZuUNCP3ggv9/Uan84mysiD7SOf1STHphYX76+qCBBwzeSCdaxIT3qqq3paePtWaY3I6j7a3319YGHlnFpFrShD6qR8aatPrs2UyAYezOTVVNF2hormFpKgPGxoGwzqy+qVgqkRy66yr5jpUEGZBVgrVF8h7ZtJOEYezKy/vUHPzT1avFoSa0EWA1e22ut1dBsOxzk4BhyPmcgnA6nabXa5EkWhDclLq5X+UshljglBrt/ebzTI+P0EonJoEBwitFw2KIBVmulLBkiewnCQ3xIrQ1DziKQPaWQYAzvX1Re6bZvd49tfVJYhETK+1qqOeLUyVRYlvzsykAJPTWZaQIOFyuSyWymwuV6mUBsNDxcURysKm4eFylepHZWVB28cwrFuSYlky2Q1paSeD2PwYYHBkbCJZLK4fGiqLj596hsahoRszMuT8kB43S4drUBACcHm9jcPDAFq02oeLixNEQXVxcw9FUV+0toZ3ObF5PPtqazNlsiuqHW9XCcXJVmEmCAYcavATJu3PlstXxscfamraXVISJhg/cmxuty1gjTtgsXxa/jk06VFebVxNNUEwLG73WHULFoORKpHI+XwWg6EymymgJC6uJC6OF35FOAmOnI68vgoIFIShVKPm5vGSk8veWcbicp2LOC1nj8n0WXNzaXz8tvR0KP+CBD5cZ5D2IzCjJrXMlsszZbJPm5sPNjQ8WFTEns7hrstoPNrevrukJFRN05tFahZPDmBzWlqrTjcw1UGUyQdpX5OYeLqnJ6ggpICL/f135OREeLOLyLVjIwyK2eXaV1dnCGbOnXMo4JvOzvAxNG6SfLempkChuCIpCJSg+afrr+cwmRAXhFI0bU1P57JYBxsa5itWd+gU4m6yM6RdGqXSYAis8eT1+ZQGw+WBgYv9/X1mc7/ZfLS9/f9cuHC4s7/SndKp17fpdNPHTnGjl/mIeXXg1gcXhD4PnKMukabmEU8Z0CtCfN/TE4lfN0VRp3t6DjU17cjN3ZaeDnMrfC6kPQRJEfo+C3oIgyDuLSgQsNn76+rCBzDUajSfNjc/WFQULxQGbcBns3NYav8/yyCInXl5QebTLD5IR7ZcbnI6Q5U7rRkcvCqSn1zjghCA3eM5UF8/3yGrbpL8qKHhQn9/+GYnlMoUsfiGtLQrudb6BMU97NPC2NVrk5IgKYC5OWgzAnigsJDHYu2vq5t7q7VLB9IBcR748XBGFD/rJsnqIdMRrXhfXd0H9fXvVFebwkd/cmhBuLQZPgerEm4DOFNshJQP53+IYxvgtcHSBnPLSFoZLHevUY3NVq0Ok5F1BJ3D8WFjY4de/0n01+oAACAASURBVJPVq7PlcoCC5lvE3wwQiN0KjynU9JdBELvy8pJEoj9dvtw4PDzVe9zidh9qbj7d0/PYypVhfAgKYmKYbj04I25QCULh+qQpuhwmH6SDAErj42tCLADcJHlVhFJc+4IQwJDN9nlLy/yl8tM5HG9XVzdP5wPWbTS26XS3ZmfP+kIMgrg5M/N2uZGQFIDB3ZiSwhYkg3SFGlkYBHFPfn6qRPJmVdXsal+ExDk4Eg7Iixuf+E+L1wK22P9RY7W+VVUVzpjKlcNNC8IlTPsbaHstuI2w6n/ApYNiI2r/CeU/QfE/j7fhyJZt3m3fdLXYTC7Xd11de2tr/1JdnSASPbpypdDvlWZuA8GGMBsACAYSb4f6GKjgaz6CIG7Jyrq3oOB8X9/LFy581tJyeWBAaTA0Dg8fbm19vaJCzuc/tWZNdFjTXZFCAbdx/F8DbsrMjBMIJjRiRvnTja6Mj6/TaELdV7lKdUmlCnOtpcCyEIQAmoeHp12uzQKvz3eut3fP5cua6dK8UcCX7e135uZODtaZBh8wotgsjY//+fr1m1JTobuE6PUABGz22qRkSApgbAh1PEEQN2Zk3JSRsa+uLrwLz8xwasCLAwBePBwRZ1TymMEat9daXK6/VFeHNKlyogMrf9IsOdx6qL8OYiM0t6D3E2z5DKtfRc8B+NzI/YfxowgmOJLlaf0939cXpuKuj6I+amx0er0bU1Ke3bDhhrS0cR8W7QUorhtvKsgARw5LOL/TVInk71at+vGqVWkSidpqPdfX1zQ8rIiK+od164I6eQYiYLMzZNJJgpDFYNxXWMgOHL6YfH8Bimg+X87nt+pCTlu/7uhY4mGFy0UQAjihVM5tHocBi+W1S5eOK5WR6F3rNBoBm50TmMEoomscw9AZAKkSya68vJFY++GziFnv378xJYUdsw76y/CFU34Wx8bemZOzv65uzqpIOwbBiwcAflyEqlGAgtsEzgRtjIskP6ivbx4eDtKcIwFpD39fNIuJSw9TMww1kwVh70dIewhsMbjRuOGvuP4DEBPHmWXpL6NzOMIrCS/09/NYrNuzs3Pk8gmCyjEAjxGSiXEIvFi4p3+XpTzeqoSEnbm5j5SUPFBYuDElJWRcYACl8fEMrxUsPogJ3pSxAsHDxcXjCZCZ/LHavOuTki6Ejl32UdSXbW2LUPQtYq5+QegahvqbSBr6KOrT5ubyuVgXUhRVrlK9U10doRsOSVHfd3ffJDXC1j15n0uLwRPo/STYZXww1cOu4rFY9xYUjBir3XpovkPiDn8TIYezNrMUglQYqsP3IT8m5oGioiOtrcc6O+fgiXRqwI8DALYUPs+kWtXBsfeDLZrq7eb1+T5uarrQ3z9Fd02ATZfsWcK49Yhei+Hz4zZCjhxeC7o/QOqDI1ui10KQPvlAbgycwaY+1y4URX3Z1hbGba3fbD7f17czNzdIPLGuAtHrJ4/VHGnIbHZXBpvJvC45ecJCP4BMmeyJsrIRhS2LP1aJqUChsLrdQVOP+hm0WoOG3i8Rrn5BaO+DuSnCthTwVUfHZ83Ns8jGOYbJ6Xy/vv6r9vbIvTGr1WpFVFSKtwXGusn7ej8C5YOldcRq4jGOq/6tHWDyha7e3SUlUsKG7++E14ruD5B4x5gRG8DGlBRO3CZoL4wpUUORJpH8dM0af1rRK6pQT9rhcwfkE4mDI/RS29YNzXcAYAqIqp6Ij6KOdXR80NAw2UWbG00LwqWLS4f0vwGo8RGTYIATDdI5prEIjqQYxpoF6ODSoX5oKExUVZ/ZfLCh4Z78/CDpFSkSllZIV0zezpGNrAgdAxg4OoddXZ2QIOJy4RwEb3JQlp9YgWAkB9aoahQAAaxPTj4fNqHVic7Oc7294fNtLRZXrSC0dY+U6XHp4DHPSIFWq9G8cfly49DQTN1nfBR1vq/vtYqKjpmkH6OA8319W9LS4NLB3D4xPT8FtwHxN4ItHnmsVV9i+OzITmNDaur1P5Y3JbPMGDwB9Teo/B9Q/gWZjweeX8jhbCnYBFYUbNMHJ/FYrAcLC3Oio/9cWdkWWqc/DY5RA6Gf8I6jziEMn4VLC3MTxOHSTLTrdHsqK/98+fK5vr6RpTYdQbFkoXzwmJH2EAjGhKUDLxap9weWNQ9C7Ga/wn+ZYHa5vg6dR6ZWoznY0HBPQUF2ULuJVQluLFhTghzYUniMAGDrncNMPWwm8/rUVACwqxAVLDk+ACBOKLynoADMqMAi9WXx8T1GY5jaqx6f77hS+W5t7RIskHDVCkLNyZGFoEsLiprpusHgcHzc1PRWdXXkGTVVFsueyspvOjtnuppsHBoSc7nJPC9YIrAEsAc4UHksYPJBsMaDx11a6C4zKTJVxNuBbx7f9ohUUQx9JQa/Qcm/QXMSLh3ibpx0iQ3JydHS1AlnDg1BEJtTUx8sKvqqoyP8DC4kzsEJgjC8vwzpADMKfZ+AYIEXO+251Vbr8c7O/754cU9l5Xe2tPbhgSX42gRFtzB1rJYIHiPYIvDisfpVCNPHtyfegYzHplGWKJaRIPRbZELFL53t7T3b2/vYypVZsiB6SAAwNU22DvrhyEZUo64heCxzVbzzuuTkkeyJjmmSQGXL5WK+KFAQcpjMjSkp33Z1hb9En8n0SVPTUrMXzqMg1Ol0u3btEovFWVlZhw4dmuOzu7QjBc1dWvBiZxeZpDKb36+r+7S5Oby3i8np/KK19a3Kyll4XVIUdba3d1NqKpzD4MZAnAdz6/juMUU8Rw63AT4PvDYiKvFv5W1PuF9fk7Wa4CogXw19JdTHkXIvNn2IVS9Pdj0AWAzGHXlFhH0G5s8UsfiJsrKKgYFQAUDhcGrAD0gkEX5FSDoQsx4eWyi9aCgGLJbT1tj3Wwf+69y5fXV1f21r65nXshhXRrfR+HpFxZxYoK8OXPoR02Duz8AYT01SHffzf6/Tv3LxYriXRZAKJheWZZE/70xPT3eISgAen+9Cf/8PV6xQRE02nI/g14sGfXEYbDA48FrhHAKTNzIYXhkiDmeTfzkIwD4QPgkUgyBWxCfCO2H9ty4pSW2xTOsg2qrVft7SsqRk4TwKwl/84hcCgUCj0bz99tuPPfbYwBxaSr12eO1wqEGR8Jghyh5XoHmtUP5lRier02j+WF5+trfX6HSO/TNen6/fbD7T2/t2VdUr5eVVavXs/rTmYQ2DtGbJZHANg6eAOA+WSYJQCgAcGVx6uHXgyEvztqc1Pwt7H9a/BQDy1eg5CIKAOA/y1Ui5L+iFstKvv4lVMaO+iTic3SUl33Z1zcyVlHTAqpwwW+Qq4DaEimqC1wG2BGkPIXrdjLoH+FNX2D0k2anXXx4Y2FtTUxFBMPLC46Ooo+3tpM/3VUdH3dKoMDfvBObaDqBKrfb6fFa3+92aGnUYWbg8FoV9ZvOpnp5Qe+s0mlSJJFzZNVsvuDGBEUcT4EjhNsA5DEkRnHPwXtyUmTmeItihCl43NIDStGJ4LYGuCSwGY2t6+vHOzmmtTnUazWfNzZ55znMSOfOVa9Rms3300UeVlZV8Pn/r1q1bt27dv3//888/Pzdndw2BFwuXDs4hsKXgxcIyWpDIoYa9H6CmsVJMxOJ2n1AqTyiVTILgslgcJtPscl35hIWkqG+7uu5i1xCeEri0EKSDnwifF/Z+RCUDAStCrhxWJVxagSB6+6pdkP4vZP3dSHlo+WpY2pH1o2kuJszYxO8blnFqDTPwgonm8x8sKjrY0PBoaWnspGjZUPR9BumKCUpOggmuHM6h4G8OaQeTP3K/M4U57pYGwEdR3yiVvVbrrvz8UAkSFx6Kor7t6hrLV/BVe3uGVLrAqd4XAbd+3Fl0FJ3D0T/q7uT0ej9ubHxyzZrggbOxWzB8Zvqn+mrG6fUeCqMDpHyX+nvvyM0PvtePayiUxwoAcGSwdoHFhzAdpkgdBkMh5/NL4gLsHRHkx48VyRL5jAG3KdBIXBoXV6lW12g0QbOPBlI/NNRtMl2fkrI6MXHazKjzzXxdvre31+Px5OeP/M0rVqxoa5s7TYhzGPx4cOQwN4EbMyFpk3MIlA+eWUaOkxRl93iMTuecLNsv9vfH8Yg0tgmmZjiHwVMAgOJ6DJ0eaTEWssqRwa2PhfZHuTECDgf5z40X7YtKAS8W8dunv170up3SwTSpdPqWAaSIxbdlZ39QXx9RKIi+EqQDcTdN3s5LCGkmJB0jEn0WTLTG++nQ618tL/+4sbFZq130gmcukjzY0BCYQ9nh9R5pa5u/NEZLBZduqiCsGRwMvHG9w/FFSwg/jtjN0HwPciGSAC8KFEV91twctGitn05VHeHWp4kmvhrWThhqx7+6tODFhLwGRwpLK7ix4CVcuWr0+tTUCdlEHdOoRv2skPEnhTMSBHFnTs63SmUk76bF5fq6o+OVixdPKJVtOp3Obje7XH4Ds8npHLBYrsi5fSbM14pQr9cLhcKxmBixWNzUFHLO0t7evmHDeNm5srKy06dPB21ps9kIgiBtapIlA5doVveb2ckSjq/IpXO73QBYdjUD8Dp0PmqRp+RGl+t8b+/jqT7KEQtjI+HWeggJ5XZDUMgZOu0x91C8BLZLR4pLfG63nBezkVNTKvIxRTutUxRKrJJXSek2ajoLJUe0EppzOxXSv6iUBnZq+MaB5EmljuTkd2tqHiooiAmbeImtqyQV23yeyVpQJjuGsKm8wuIgh3jtXopFzeqBZlBshsfqDTjW4/H4fD4PQVSrVNUqFUEQTILwUVRBTMy6hISEEBmE5wk3SX7Y3DzVItKgVn/P461NCD2Xv/phW9QMhsgV8Ez6KOpST4974h9drVJJWKyNU9NUMpJ4suuIb7Y41x2guHGT94bFPwjMtuMLxAWVqj6sGv+c2riRr/KpT3gVN49tZBmbCdeQRzBiFGQ7hsioHF+Id4fJEDHtA6R8A0kIOV67x2mmGKG1rGERstlZAkHgyCOw99t9kmnHnLzomKODQyRngr5HzuEUREefbq/bLjP5pKup6ebBbrf7u4letSwGY8zfKlcuvzUzE4DX55PxeADsdrvP54v8GeDxeKzpCp7PlyCMiYmxWq0URfm7azQaFQpFqMY5OTn//d//vX592NgjAABFUV4WS2mxegQJ3w4xfS5GkjTqcu+AnZ28lnCBLYJ7GBwZi7JjUQrz6soRvQ4gKIr6qrl5c1paDKMO8jIMnQaTz+aNDtOK69nG8tXrn1ltvGhY9Y9x0RkxUVEwuKE/hbLfYOponv1QRFdP2ITyH8f0/uUeInO/4A8z6vi65GQem/1+Y+OqhITrU1J4QZ8btx6khSXNDqJ2FiZjsJUT9Df3Odk8MZiz+jt4IphdgaclCILFYk16BxhAu8nUbjKJudwEoZDFZMbw+UliMZvJ9Pp8HTodBWTKZBIej8tkOr3eIZutWauNYrEKY2OlXK6Iyw1+v2Fxk+SnDQ0apzPoXZ9Tq/Pi4xMXqv7XYmCDIJ4d8KzWaTQuYOqvcWFwMEkuL5r6+m/5AHW/FVTuxi0XZnRhiqKECzvjmSkNQ0Pn1ergrwMAYMBi0bt9xfkrGENnOdGrRpI0AXBr4VRz2IyRlC4ePUuQADYHgIjLtbpcE/QM/BgATEECk8MFP55N6sDLwEwZPgOCffP6h6Vi8fhGjxkEIZBGMJOLyc02Grum3OkW4cAbSuoGrprv/RYp9864V8DYGbut1j11dRTAZjLvzssrio0lCCIqKmpuJ0PzJQiTk5PZbHZTU1NRURGA+vr6rVu3zsmZ23S6b7U8q8G+Ilp2ne07IuNHG5iKdy9brV0dm7OKWW49ZCvhWYy8dpQPA19DXAC2uFyl8lHU+qQk9JyCKAfiPHgDQsVlZWWmj3YksYmagcTkghEvUFEWhk5DlDf7DsRsgKQIq/9v9vc7V0RZ6+0zGyxK4uIyZbKT3d2vlpcXx8ZuTEkZMeNTXqj+ivibYGqEuDC48ZUfD5cmmGmWAum6ItWodwYxCWaXyxyiokXQtL/Vox6zHCZzQ3Ly1vT0CGs3mpzOA2HLL/vT5fzdqlWRZLS6KnHrIcwc+0ZR1LkQoTgURX3e0iLl8ZImTwsIrPhX9H0K9TdIuGU++7qgKA2Gz5qbw2vGz/X1XSfUMaLyEb0WhjokjApCpwZsMewDEKTC54LP4zeRREdFPVFWZnO7q9Rqm8cj5nDyYmKsRrFK/buYgpLYxNUE+3CTd7icyJpxrJG5PZllXNvwIZIugTH6rDoGIi2gLcoqZn46NWBC5FHly/IqmBlbHH+FuRXiKxjWRiOvPST5SXOzkMOJmYd3ar5shAKB4Ac/+MGLL75os9mOHz9+5syZ3bt3z8mZ1yXG/VRy6ck1azam5xEEE9wYCZf7RIpr2GZ9veLy9668Hq/M7bZQFGVbYAOS1woAHtOAxXK2t/fu/HyCIOA2giNF9FrIVvpbEQSxNTPnrsJSouElCNLGYyGEWYhKBSuEI3UksCXY9jXEBUj/m9uI70VcTpBENmERcjg7c3OfXruWx2K9WVX1Xm3t4dbW2rbv3bYBdB+g9HUWQUGVWv1ebe2F/v4JZlQGF0x+51D/5y0t5/r6+s1mv62IIp0tnrgq9eAsy2AFJDOcV9wkebqnZ29NTRijzhi1g4N/jiCWxuBwhPOVuNpxTXCWadPpwuSd95DkwYYG09TflmCg6H+i8d/nqY+LwsnubjLMn+61DtmsvSbTKlYXuDEQZoynXfSYQbAgzoe9BwBcWnCiAch4vN0rVgjY7FiB4Lbs7PsKCrZnZaVKJIUpK7bHOMpyrksSiRLjCm7mtf1k9WrOzHL6g0na7rr13wiCCe3F8a326V1GRxBmFaIpSIF7l25jSnKFetCbcCcGT8yoS2EIM9+6QuaxQv3LL7/85JNPpqamKhSK/fv3J8yVycSqBFsCggUCyPs5mDwAouiCB51f9sVe16oVnBiiNHY21XmWQRClcXELVx/ZawXgcBg+7hjYkZvrV2fDYwRbCgZ77MG6JSvruuRkCB7HiW0TJsLCLIjnqFhJ+sOC77bfK3e/11dHCdLADll1LChCDufGjIxNqal9ZrPZ3N8yaD/qWcGgSC9F8fTqFLF4dWJi7eDgJZUqQypNFImio6KsbnerOW/A0LshJd3odH7R2ur0eoUcjsXllBPJQoPhhFJZHBu7JjFRwuOxGAwPSXKZzOmVGwE5nBaAHpPpjcuXt6alrUpMnOrraHG727TaqsHBMAUEJtFpMBxpbb0rP3+pW7RmwcTwibPTDU8Wl+u92tpHV66c7O6b9hDqX8TQGcRuno9uLgR21Zhfid7h6A//eHR/cNxcvDkplm1ng8EBPwluPUgnmLyR/L2CNOguQbEZLi24MaXx8Xfk5AT3vGWwcc9oTJq4AMq9CoFge2bml+3tkfd9M68jVpaMhNugPjb+FzhUkXjKAIAwi29rz06VteoCMpNQXnitMZK4RJGuwcpd6ZnL8N92vX44Pj4tVOTlbJlHQSiTyT766KO5P6+5ddx3f7S4HQQZYAlTbOdTEldCkEqpj5MZj5EU9XZVVcXAwNrEyGY3V4jX6gbr/U5DcWxqfkwMAHgtYPDGFQ5Aokg0Ut9ScT2EmRAG6PSTds405Dwk4gJwYzMcF7fFSb5zG2cqCP1wmMwsmQzmr8vyir3iIq/Py/JaWLxo/94ihUJjs/WaTGqrtWFoSMDhpArYuxRMtiIJwC1ZWQan0+n18rxama4JWXdY3O7KgYEDDQ0Oj8fj87EZjBSJ5OHi4mlUkf6fzucJ/A3nFZfXe6yz8/ueniyZTCEQsAjC4fVq7Xa1xWKZlb9P9eAgQRB35V2RamgpEuA12mUw9EWQ60DncOytrd1dUiILjJwjmMjYjYEvr1ZBqL2Acw9jV7f/W+1Ev9nJeMxdZofe6VwjI0DGAADBAD8J9l6IcuHUgBeLqBT0fQr4CJfuppSYTflh4yvGkBT6M22tSUxs1+sjzJ4YF8XfzGoGR4aEW1H9C5SOLs0jV42yRWAJS2Ss1sALug1gSwHG2sTEk93dK7mAzw3G3DhtUBRVPjCQFhPamXZWzKMgnC94cZCvCrI9bhuU74IbC7aE8JhYDAYL+JsVK96qqkoUiabYJ+Yet9t6wLIiIcpzY3r66CZDYHZsArgzJ2d06CdQ/E8TkjRKiyEN4nU5SzbuR1TSlsv/ADi+C1sHfhpcOvDjWQwGi8EBKzpwT5xAMKFQp84WWKF3ZLCzDvoNhCIOZ2t6+tbRX8ZHUR/U1x/r7Lx92jLF/giKhRKEflxeb9PwMIIWh5o5VWp1kki0emFmYwuGWw/uyPNwpnf6JLd+dHb7ny9fvjs/Pz9wIIteh6b/nPMOLhDqY7D1wmMBW0RRVP3QUJi2lKXtG2fBTVFKhosP7ugvIEyHrRuiXDiHGKKsjJhEt4qr4OsLZe3ZmcGzZwSBGw0GF44BgmDd63jzrajdYXJ++mEzGHdnxzP7xCCYiNkAS7t/DQoAdhXEuZFeWpiVy9Jymcxx84dL6382smSyo+3tAxxFotc2h96LmrmtMQ7gqsw1Gr0OsrIg2wVpiN0EQQrYQnht/nwHUh7vjpycz5qbZ5mvkrRHmPTZ7vHs7bBEc6g7pJpxjd/EypZFsbFJga5ZGX+LpJ2z6VUkSArBlkCQsUU4eEdOzmxVcz54TFPDxYLDjQlSUN4bPIiQQRAPFBV1GQzTV2Zh8ecqj+Iicqyz81rLRDoaUN9vNoepqzAVp9d7sKFhX13deN6Z6LXQV4LywanBxSeg/hrU1ZFdFgDU34DB8aeL6vn6Hn3HRyNlZIJRM6DicIQFAhKGmvEAQUE6rD0A4NSsTMl9pLT0Rzc+ftfAz7NtpyCObDnoR1IAUzMGvuL17vtBcbEgrODhMpm7S0oSWPYRycdgI3YrBo+P7J4u0egERFlse1dBoFewS+cXhARBrElMrHDGL/1X+CoUhGGIuwnMKIABlmAspr5QoUgSi08olbM5oaEW6mPhm1AU1TA09OfKyuwoz44EJhGoEJ9Y02tD8qyyq1wJwgxYu9YlJT1QVBS+JnVw3EawhCAiM79zo+GckvHVn3E7aHMm829WrDjT0zNNKQ9RLnQXwzW4GnCT5MeNjbP0GFqCUD6M5hM5GbbYbCg69fq3q6pG8txy5ODFw9yMnoMwt6D6edT9y5x2d95wG2BqQvJOmJoB6pxKA68VyneDCnK3x3XSEHVbbj4hzoFzaHxFyE+EWwtDNdejvbFoEwAk343Vr8BjgWg6fUkg4kKYm6A+Brcxhkv8ZNWq5MBpdwByPv/xsrI0qRRO7Xg3Em4dL+w6XaLRCQizYKwrDcwj49L53XwAlCUktDuFWuvSzRLs59oShGOwxYERFLdnZ7fpdK2zqDrkGoa9b2LhpHFIijrT2/taRcWF/v77Cwu3SQyISoY7UBAax1SjyWJxqOdyHhGk+33SChWKHxQXs30z9MAcndlFBFsMnxu+iXrYsGllpDzeg0VFn7e0TC5DGIhiE6zdmEk+8aXJoNV6sKEh8hqWSxSfCye2wqECWwiCqTQYOifOY5xeb4TlWbw+3+ctLd/5ixVEr4PuEno/QfE/Y80f59DPcL5wDcNjguY7KDZBthLmZvVgfQcZj7SHweBMqJKtPQ+PCcDJ9trsKHeCWA5RDoBxCUQwkXwvrMob0tKFvFELTuqDuG/Y7wkYKZJCGBsweAJsCRxqCY/3+MqV9xcWpkmlYzoqJkGsSUx8cvXqeH8gpitAEMbdMJL91V8eVZgV6XVTH0D/Z+ktv1LwR+0X7vFxg89ibZG7jvbNJJvxYnANC8JxgcRjse4rKDjS2hoqyCwkzmH43HAG0fuTFPVhQ0O/2XxPQcHfrVqVIhbDawVXDoI57ugYsCJchOUgRlaE/o/ZIvYPNf8gdHSO7x06NU0JQ7d+bGYXEdzo8Vx3/okI6QArXBBhslh8V17egYaG4VAmDQYH8TdPuy5fdGwez7Q1rboMhg8bGq6WqlLBsfVi6BQa/h0cuT/J6qT9e2tr//f5869XVESY/e50T8+XbW2kfC36P4epCfE3Q74GpoaR7GvupTqA1ryAo6Voex0Jt0BcAFPzmZaLFD8BAOJvxNDpkRz09l4MnUXn273d3zfqTNuzCwAgKhmK6wJTaTMl+Ttu+seNd7494RIzkoIAJAXo+xS8WEiL/RnXmAxGcWzs4ytXPrt+/YNFRQ8UFf18w4YdubncsfQRbt24IBTlwa2DSwtzM7iK8e3TX7cQt9cSPsf6wZdH1MITJ9BrozlOL9kQ1nq66FzDgnCCE3OyWLwpNXV/Xd3MggtdWohzp0oLF0keqK/nMJkPFRWNu+F4rWAJwZGM1AmjyLG6fVFsdsFcuzlFRFQynEPwuQGg9b/TubanBMfH638aqkcilkLh0gWtMBCSwKSvXXth7YDXPm00fW509C1ZWXtrakIu2f0vdmjTy1KgvL//266uC9OVYWrX69+rqZnxhGzpYOuFIB3Kv4Ajr5kSSeJPaPCPmzZlyeXHOjtDnWMSFQMDfx5M6Os+haQ7weCAFQVxAQxVsHXjsyTMqfP9nGFVIvV+mBqReAckBS1DqmZ190iIFD8J/AToLgGA5iQSbvEk7DisInfk5vAl/hQEBOJH4qYIgihUKJ5cs2bNlftSSQrh0iLhFvAnpx6V8HiFCkWRQiGZFLsSuCIkGJCvha4c2guI2YAZwRbhur0lUgZ/4BA8RlBkYCVhgiW4XeE6oVQuZXXItSoIJVPfnw3JycWxsXtraiL1g/daQDAhyoN9giDUORxvVVXJ+fx7CwomeP97rGAJxy9t6wVX4RcDhQoFc1HSqxNMRCXB1gu3Ea2v4oYjgqFjP8xPvTkzk+Exwm0KYtULZEaqUQQUlPdY4NLDooww4/aK2NiHV6z4uqPj/fr6+qEhp3dSLlMCbNHiZAuKDI/PV6lWP1JScqGvrytE8bkx+szm8MKEQgAAIABJREFUP166dLqnZymPCyGx9SBuG5LvtrJiv5ki6tr1+my5nEEQN2Zk9JlMkVe9HqLkey2rlNJR37GYDRi+gO4DIB1QHw976CJh7UbO07h3EKLsYUbiZ0Miyt4P/miodPzN0F1CzwF4zJCVfKdlpkQn5calTz1NplT6YFFRpIVfwsOLB0eOhFvBS4i0KtOoe+cIMRugLYf2ImKum/HVCSZn0/7VMgJtb0xWI7EEKWxzokhUHiy70xLhGhWEUYmwBVnrbElLWxkf/1ZVlSqMUWoMpxY8BQRpgSvCKrX6nerq65KT7xgPhACAkVUXgwOOdEQQWtpHjAFAcez0ldnnC2EGbF1ofQXJOxG9FvE3E32HNqWm7o4b5vOlcIWNEJixanR0RWjrBkcKa2fkpSeSRKKfrV1bEhfXMDT0ysWL71RXn+7p6TIaR9LPB5vZLB1qBwdTJZJ0qXRnXt5X7e3T5pJxk+R3XV2vV1Q0a7VXWeIZWw8EqSj9/Vec+x2T5yto1+ly5HIAbAZjR27uV+3t4XKsBEIwvcn3HhyO6fXHI8ZcB+0F9HyA1Aeh/mqOb+HK8XngUCMqBQDp833c3OZiyeHoH8/Gwo1BztP++DyVxdYwNHRriDCh0ulqFc2M6w8g7sapK8IJKP8y/tYHrggBxKwfXRHOXBACYPI2bn+Fm/80Em6duF0Ar+2mzMzzfX1Tn5klwrUqCFPgMQcdOjempNyZk3Ogvv5if/80tXJcw+AqwJEBPr+284RSWa5SPbZy5aqpWXK8VrAEAMAeVY2OCkIJjzfT0khziSAdpia0v4HCXwNA+m50vQcg03b2idUbee7QVWQpL7xWcGYSjM9PhK0XFAlbD6LXw2OBSxfeRhgIi8FYERv7cHHxLzdu3Jqe7iLJ0z09b1y+/H8vXjxkSCofGIqoUNSCQ1LUxf5+vw04Ry6PYrNrB0NUpJqI3uH4sKHh9YqKU93dTcPDtoWqOHNF2HsgSNMQ8U1U5qQ9Xp+v22jMGlW8Z8pkMVFRlyMvxy0pdvuI92prqwcHEXMd1F/BY0Hpv2Pg61DeaouGvQ/8BH9sa8XAwJDNBl4M2JIJcz4GBwm3eQXZX7S23pqVxQ+W1Z3LYhWELkUwGxJuAYMNfgIcIX52nweX/x7fbBrJ6+acKAij10F7Afa+WQc0R7HZ12WVQjCx9A1LAK8tms9fGR//WXPz0qxQdo0KQhAQ5cAcvAJibnT0j1etahwePhjKo717PxwDcA2PPCVRyZRddaqnp12vf2zlSkXQ7D5eK9hCAGBL4NLBbQDp9KtKihSKxcywJcxA8x8Qcx1EuQCQeDucw+g5iKHvFdl33yHThlxpjaaHmMG1ODLw42FqgK0HwgwI00E6Z5Fxm8VgZMpk2zMzHy0t/dXGjY+WlmaL2FqH4+2qqsF5iKW9Qs719kZHRaVJRmYMN2VmnurpiXQlBAzbbCe7uz9qbHz5woW3qqoONjR83NS0v66uJjJputDYeiBIOx9sEtltNMYLhYEj/vasrDM9PTMKGvH6fIdbWt5pN9Z5M6jUhyHKAUs4oUTfUsDa5c8JZXW7v/dHj3AVQZNzftXREScQhFIIFSoU81KQNsyK0FADUQ5yf4ZTO4EpK0KuAtxYyNeM1L6YFdclJ08OYWQJ/HGEN2VkeHy+2cXbzDfXqiAERLn+KNegSHm8x1eulPJ4b1ZWTvZX9FphVUL9DVxafyndIUr+XoeuTad7pKQk6MwOALy2EfuwIBUeMzrf8scAsRiMdVOLsS0kggzY+5H/i5GvDA427kPF06BIiHJK4uJKBCHcNWfqKeMneh2GzsBrAy8WwiwQxOxLT4wi5/NLFZI75cadeXkfNjf3R6LWXih0Dke5SjWez1ZXnuK4HCcQlPu9ZkwN0EZaY8hHUf1mc4tW2zg01KHXf97SsiQK/FJe6C+Pf7X1mtiJQT0A6zSa/IkeYYqoqLyYmO9nPvD1mkyfcnbvc99odrmQeDtq/ycOp/s1GUsC24gg/LKtbcSeLSuF4vpJrWo1ml6TaUduyBQtpXEzK8QYKWEEofY8Yq5D3j/A3g+XdoLXqJ+YDbPUi47CZbG2Z07UFrCiQDoBH4MgHigsrNNoIjceT0ZXAe35K+leKK5hQZgNe/+I6W4qrmEGQdyenb05LW1vTc2EP8bSCXEBSIfP1l9rYrxdXb2vn1Mg9P541SphmGQNfk8ZACwhcn6K5Hug2ARgTWKilDfLaplzg7QECbdOSOQoX43C55FwOwBICu6UauRBi/E6RlxeZ4YoB5QPglSAgDALzKjgZZtmClsKjzEvOnpHVtaHDQ3n+vqWgqcJRVFftLbekJY27oxn6YT2wi1pcef6+mxDl9H/BUzNsz5/5cDAqZ6wbr0LgL4Sp+8e+Uz5YFd9P+Qlp/z4No+nXa9fOcXidXNmZsPQUEQm+UnEbFA62H+8dOkk6xYHxYV8zXiVhkXH2g1BeoVK1awd9TXjRE9aETYOD59QKh8sKgpVDkLG549pEeaYcILQb/8jIF8D/eXJK0IAJS8h75krvH5pXFzGBGMQASYfXjuAKDb73oKCL1pbZ1N63liP4dMYvuDPGja3XLuC0J/Z3Tq1VBbgNqDzHf/H0ri4HxQX/7Wt7YP6+hatdtBqNRi6hjmZp6n1rxrW1g4bt6SlPVckXycwTDOce62BHsMQZYMbzWWxNqfOoFL8vCAtxravJ28sfAHr3wQAcT7X2nx/YWGQQiqOfkTNIvaRQPyNIzWnOFLk/v3MzxAMjsSfqSBLJvvxqlU9RuP/uXDh85aWcpWqenDwTG/vtJkVJ0HOxVLrQn8/gyAmpHR3qCApkpsvrhR7vu3uRfruK4yEO9XT0zhHKU9nib0fdtVIKK1joMqXVz0YxNO4cmCgSKGYWt+Yz2LdmpV1pLV1duWo3CR5yhD1vxnP7rFsONlvUJnNS2ECBFuXmpESKj6Eoqhylerrjo5HSkqCm1EAAKVxcXNbWnYcbgw8luBrgDFHmOi1GD4Hry0wGTIACDPGSxrMFoIgduTmTvAlHNWOAki1X1iTmPBJU1Pk5gMA8Jih/hoZfwuOhGEJbvO6Eq7CpNuRE5UChypITUivFaQTpN2f/StZLP75+vU1g4OVarXV7XY5ogi2J0se/dCKxARpPADYLPAETGltPYFllcbPOSUp0fUpKeEz/i0+4gL0HEgUiXbl50+uJmofwP9n77wD2yjv//8+6bT3tGTLe8V2nHgkcTbZkAQChFVICSWsQknbL9CWpgvaUuAHLV/KlxUaNg3QEqCkIYvsRWI7sR2PeCTee8vWlu73x9myLMuyvOP4Xn8k1nPP3T2STve5z/N8Pp+3YUSTujKPlfbhJgUPBkcGeycdNCHj8e5JTjbabCUtLfVdXQ6Xi8tmv3/hQqJGk6TV0nXA3RpPLooqaGqyOp0JajWtkWu02S42Np6orCRZrFSdTsLjSXm8SLl8uCXoGrq7T1ZVPZSW5lFathUsDvTX49Lfl/I0rxtnVDvlBlpedaRFwymK+qKgwBIXlz5WKmbDha7p03Ye+utrGov3WJIHdnFRVFZd3aZkH5sAzNRq8xobj5SXr4gcvn567/Fr7fzaDvvR7GwWQQgIwqBQKAQCGZ8v4nDEXK5KKPTOkBtPujurPu3mOjg+TDJFUZ/k5dmczi2pqYrBp4IIYKD3PHYQ4GthrvcOWjHVwGHuKdumnIv8v4CrHJsJmwGohMIwmazcnUrkNoT2DjR/vzRxaUNX91dFRRtp0dZA6C6HKAI8DeTJ7PYs4P6xHfA1bQgF+n7LG25oq2ZtRe/zGpsg0vX6dL0e5lpUn0Xso/36cyT99OXbzoMUextCeyfIfhVylQLBwtDQMXgX44osAR1FAGYFBTldrm+Ki3ue3K0tYPN64mCvBgg2SCHsRqBnFlfC5XrG7i4NDz9bU7OvtJSOLGURhEEqZRFEfVeXjMcTc7kHysoIgnC6XFw2O0Iuvz8lxUVRuQ0NdUZjfmPjFwUFS8LDFwX8fRlttp15eetjY/vNe5uqITCALUDUfTyeeo2sdXdx8cMyBcvWNpqnbBdFfXPpUpfVep1b1WQiMdWAzUfbBUfQ6q8vXXJwFAO75Dc1qQQCP8lwG+Lj38rMjFEqw0Y8GUiK4OwG4KKoNqu1e0DtBTGXG6dSJWg0UXL5uObs2pzOz2rYHeG+1Wzqu7vbLZafzJvn/+4eIZeP74qJQA9LnbchbD4NzYIey6eai7bs4RX1HiZJGo0PQ2hpBEA4ujcmJHyUm/vVpUs3xsX5ixjqLARbAFEEuit73o4sibi8B07zqDTMB3BtG8LgnrlyyomWc+i6DGUqpAk9UvK2Vu+pP1srGo/6KHRLSvp5hNZmH0V1PcqK0twQEzOSOtcTDD8IHDGqdiF0Y6per5dI9pSUVHZ0wFwzonlRHxAEQRLEGNQV48hhbwfHd+iNkMPxlHky2mw1nZ0UsCwigvYRXRRlczpZBOG5ZrOqd1XfaLO9f+ECj80OpMBHt93+z7y8eSEhiV6x726BVr4OwEyt9kJ9/RmzYaGtdfTTTYfLy61O5+qoqPGaTxsMUzW0y9B2/nhFRWNny0BtS4qijldU3OBXTkvE4dwUF7ersHBLaqq3MG+AsEX+FQy6bLbsurrsujopj3d7YuLILa5fLA7HJxcyqyykZ4E0T660tUUrlUN+Q/PH+xHZfevzxDNBUGgAXzeMOmrDJ0Gj+ba0tOfBus8QNgCAo5vkaX44a9aekpLtWVkb4uNDB6vD3J4PlxWiCJgqoUwHAFJMiaPQngd1xhiO9qq/U/slTCZbGBoapxok6ZsjAQB7J9ouoOMi2Pye1HhHF1gkrJ6Syi7UH0DZu+DroV3qfRwWBwS7p/ghAGuzjyontBJ9L4kazaCjutpY8gXOPUq7zjqxeEtq6ubZs2OICmKQ8vMEMEOt9imZHSGXb83IuDMpKVWv55Mkh80Olcm2pKY+sXDhdeHho50l7l0m9EHFZ2g64dkg4XJnqNUJarVbMZFFEHySHCxyQcLl/nDWrGMVFUMmLdQYje9kZc1Qq324+ybvVdX1cXEnOyUtXWNTMPNUVdU/8/JGmJLssuPEHSPZ0VwDw021DUUnKith7xiYV3qppYXLZkcpfHiKnsSpVBkGw8e5uSMcPzmEIXTTabV+kJOTFXj+YsBYnc6PcnOrWqr8KF1fbmsb8qMIk8nix/vm4DNepjUTyjl9L1Vzx9UQirncvmggT0NIsOi/OSzWzfHxyyMi/l1Q8Hl+fm5DQ6vZ7L1waGtB1xXYWmHvhKAnds8e8RBU88Z2tFPYIxRxOHcnJwtIkqKok1VVxyoq3GXvOWx2uEwWr1Z/V6mzmGvRcRGaJYAL7XkAvZ5ngK3XEDq6UbETpAhxPxk01p8u8cXmw9EFl83bEDqMYPHc60BCDqcvnv7qR5GKOa/jzBasy6UbohSKKN6xprSXShBtcTgqOzoq2ttBEEqBIEounxMSEiQSdVitB8rKLre10bWV2QQxU6u9MS6Ow2arBIJEjWZDfLznc/HyyMgl4eElLS1sFkvE5fLY7N3FxeVDVSPrB+0R+oBC92U4utBdDt2aEfteCj7/RykpH+fmdlitS8LCWP0dLxdFVXV2nqupKW9vvzEubsbAyrGUA9amviJbvcdcHsT7ssq8RU+xxsKTK2lt/TAn56G0tGEfzVyLyn/3LLQMC1O1VbXsi6ZPnXIrLE092ageHK+sXBoeHsiRFhgMJrv93fPn70xK8hNF4htSAKcFoAJZ03K2nN9dusOx5rmMsat0b3c6d+bl1XR2emmr9TsvRVV1dt6emOj/UKujAxZ2GDEDDSHlQtuFfpLmqnkwDVEmfpQkabU9FQe5qh5FDksDhCGezzSJGk2sSpVTX3+ppeVIeXmn1Romk83W6aQ8npDDkVg6heJI1O2HIGRc3bYpbAjX9NZrIAhicVhYRkhIRUcHBUh5PI1QSN8piPCQ3dUlMDdAEgNLQ0/NF7sRwjB0lQGAvQNXPoJ8JrTL/J2MpJcJtbA2QxDsKcUO9BPgJQhiXWysv0SLq5Cw25D9BDoKIEsEAIcJnYWa4Pma3lAXq8NBslieSy8yHu/2xESKojpttnazWSMS0aEobgberkgWy7OOxs0zZrx57lyAkj0AwJXB7Mtds7WDLUD0/Wj+Hlc+gmIWdKt7Nlka0XQCoRsDPINSINiSmvplUdEb584tCA2ly6k3m0xFzc2lra0qoXCmVnvzjBm+lzQsDeCpB2YipwepCluvnK6uDnwB0j91RuOZ6uphLz/Tt8XWLIgikPs7KFID+1gomGv/W2dvIcNQtx9Ok5cdrezosDmdccq+fFMZn08A7YPUAFoZGakSCN6/cGFZRMQcvX4407wssPlwmIZet27LQf0BCq69ZWVtFsuqqKjRr1A0m0xfFBbW0Ukggxfgrero0AiFA0NnPYlXqQadBhxDVHNx/hdI/kOfmKixGDx1P5Ht+J/2zXKNDzO12n1lZXanE5IY1PwHji7Y2qGe7+Xcc1isOcHB9KqEk6KKmpsLmprMdnu3zdJpTounxDdTewndsnEd6pScGmURxAKDYVb/dFQOmx2jVMYqlUEikft5OT0qJdx4BNI4EOy+epWOLojCespDV38FReoQVhC0nAX9M2gGXwcWr9932btASADrY2Mns7LoCCEQuhFV/+55Vfk5tMs8Az55JOkzAIEgCBmPFy6Xe1nBQFDw+SuHFUbIVcHmS57C0gB+EMCCegHiH0dHIYwlPZvaczHMSGsxl3vvrFlrY6Ir21u+LCr6qqiooKkpSqH4aUbGQ2lpCwyGQRf2rQNykwEABE95o7T8VFXVYLZhBBwpLx/20dyGEEDFpyh+PaC9rM2nbDG5TW3g69Ceg9DbvcJfz1RXZ4SEeNqzZK32pxkZfuJ6UnS6+1NS8hsbd5w/H6BUUw9sIZwBJMnU70PkvXDaKJfzTHX1P7Kzi1taRpwsQ1HU2ZqatzMz69ypkANz73oZcl6UIIhlExPxpL8BPDUuv9fX0prdzx0EQIrHdWoUAJ8ke1R3WFyIItF0ElwFOFI/s9xsgkjSaO5ITNw8e/ajidonQ2pa7JzD1hiIApp1GDFT0hDeN3v29TExgTxOEqo560WXWHTpPFIElw0uOxxdPanilgZYGgLSHHEHjtLPg/31DmFrA1dOABvi48dATmVSCLsDlb2GsOQNxP1kAs45LyQkMvAqrJ4aT570GEIAAIsHw82o+aZHErKjAC5Hv0CnwIhm1dwqLnp0zpwfz5lzZ1JSml4/tKW3tiSpfRXi4SoUruYFBsOekhIfW0eEzen8srBweJl5ljoIQ9GaDVMVbB1ozw1E6/hS7aWD1iQAUMxC6G1e087tFktFR4dX2ehwuZxFEItCQwetwQSohcL7Zs+OVio/zMkZhi0MZJnQaQJFgR8EUkh3ru/q+mde3mtnz36en3+munqAsIk/Lre1vZ+Ts6ekpF+o1yAeIUVRhc3NsX4X/2ao1XqJ7yibsSf1ZeT+oScwEEBrVk+wycTSF9otS0RrJvhBgS/3wtpC8hV3JycXuiI/K+9qNZuH3mWkTElD6LsSik+EodqZj86LX9zzkiODvR0OM0gRuEo0HoM0oW/2wA9uGSD6edBL79DezuIqbklISJ2sZK/Ro14AWys6i9ByDtZW7/rx4wNBEDfPmOEz7sYHHAlcdsI1QMnP0xACEIVDloTab2GuA0FAFDaEwoZP7J2B/lZ70aLx1hkxPq5Mgg22cKFOarTZxlCGpqKjY3ily8z1CFmP1iw0HEbQcoTehvJ/+t8ju67us4uFLlIKAMKwgaH2Z2tqUnU6TxeZRRD0vB+XzZ7rt7IgQRDLIyLiVKoPc3ICDZ8J5AbqtlKkuM8GAK1mc0FT097S0r+dPv1hTs7e0tLjlZUnKyuPlpdfbGz0CtBoNZtPVlW9ce7chzk5FQOXsa3N4PpwpIpaWvgk6Wfak0UQ1wW2mDo2KNOhTEPN7p6Xk2QIw2Wynh+FNA4A+NphGULwVEIO55G58w1S2bvnz4/htIoXU3iNMFBSX1rmcOQ1tnTb7eDIYK4FWwAQ4CnRkY/IewM6CCmFvQxwG0I6vxtsFkstFEbxq9JTV6vHqXLgxECwEH43jm0Em4fYH4OYoCckOZ9/U3z8FwHWpOepYG0Gt/8qkaUBQSv6tehWouQt1P4XskQ4bbA2QexR/NBlg9PkGeLrA3snXREqcGayLpPS+9fJYj7OzR0wbCXL1nZXUtKO8+e1ItEwnGC/HK+oCJFKA40/NNdBnYHqr3H5fYTdCflMnHsMib/02ZeiqMPl5ccqKmDvBMf3nd3hcuU0NDyU1m+2LUgsdq+QZRgMp6ur7X7XgFdERlLAhzk5m2fP9uNB9uDzBtqWjYajmPHznlXpPkPo+25rczovt7VdbusXxyvicvVisZTH67LZGru7/d1tnRZQ9p5wdA/oHBL/055Lw8N1YrGfDmOPKgNtFxD+A1AutJ2HIm3oXcYagiDmhoTsKy0Fiwf5bIjCQQrplNChsbbQa9Iki7UoNJQAvr50afOsWeMxzinpEQ4XPkn2lL7lymCq6ZGJ4CpBigMNouNIYDeCcvQUJeJIYe+QkNTP+F89OmfO9ZwstWrqhIkORsoLyHgHkfch+sGJPO1MrTbQQnQ8DeG1TOiyw270nqoiSBhuhrkW0kTwNbD09wg7CvoekwfDbuyZXA0MgiCSXRcgifWdM86Rw94u5/NvT0z8oqCgR3Jv1FDAFwUFXhrxg2Kug0APZXqPR6hZBEuTz6BBq9P5RWHhMbrG6eCGML+pKUQi8coKD/Pwh0QczqwAHg1XRkbGKJXvnT/fYR3g63tBiryfTur2ofksKHvf7Le1pUdBs79H6J9um620tTW7rq64pWUIn2MQd7C0rc1FUbHKQYvUR8jlAcbWjiWKlB7hDmMJeKrhiWyPHWk6nYBeWQi5EcLQIVNC+7D1m4VeYDC4KOrcOCTGYJoYQgAJGk2aXg+ODKbqnqKg4khoFgdaYYgjgaMTxjJwFQABjpR0dN6lrJSWvoK6vTDVehdxmIoQbGgWYcbPvcsPjj/LIyMDinTnqb0NobURPLWPL1EYipgfQ6AHT+M9NWrvhKl6CIk7x/A8QoOAUpAUHTk8f+Ab4Ujom3K4THZbYuLn+fl5vtQbRoDN6fwkL694QJkVH1jqwNdDkQZBMKTxAAFxlJd4NUVRhU1Nr5892ycuYe8c6P3QZNbWpg9YDvfS3fSKoxmMlZGR6cHB754/P4TepJcnYe9EWw6i7wdP05cK5ZZTCHz+bVh4SboDACiK+u7y5WUREYO9WZLFujk+fkzyZ4aHYjbaLgBA8ymoAoiEGB94JNmvHi+bD5cD1FDz4ZQT9k7PTBWCINbGxJyqqhqParPTxRACuCEmRidVwtLQq5cUMYysTFIMhwl130K3EgDJk98hKzG07kbQcpz/JQRBYE2pfImrDAJYGxNze2LiEOllAw2huWFQiQw6smOgR2jvhNPq3eiF3QjKOah0yQBShN20CDOAGWq1d91LUgx7j3cSKZdvmjXrVFXV+xcu1HUF6rL4wWS377x48eDly0P0oz3C4Bv63H1RqGe8TFlb29tZWZ/l53d6emaDeIQN3d2dVqtXyQhigCEMfB44IyRkaXj4J/7T7b08idZzUMwCiweuoq+yudtQDccjHAa+YoNzGxt5JOkjtbSXBQaDIvCwhjFEGArKDksD6vZDv3ro/uNGhsHA8QwFCOQxxdYGjtQrgEMnFkt5vIJxKEM/jQwhl83+4cwEFat7sIdcvxCIvA9xWyGJ47HZm2anxDtyUX8QCz6CpWnYScoMvpip1f5k3rzH5827MS5utk7nI/CEpya8AkctQ2lFsYUgiH73RHsnSJHfmEkXHCZwJAEF6wMCDmcWvwHSHkPIIoh5Xk5h/5uyXix+OD09OShoZ17evwoKSlpbTXZ7m8XSbbe7KOpKe/vBy5c/zMn57sqVAIP+KYo6UVm5fxAxBACgnLC2gK+FegFmPdvTKAylp0adFHWgrOzj3Nz6gYbZYfRpCM/W1MwJDvZycKKUStGA2NqMgMU40/X6eLV6Z17eoHGknndPyoHW8z0PslxlryGkYGvrSZUbJ4/Q5p074XC5Dl254q3A54GEy10y8ZOibuSz0ZqN+u+gWzNpYwBEHE6/qvGBfDuWevB85KHNDQk5XjX2dQCmQbCMB2J55GZpzsfi20fyRCEKA6AWCn8wc6aaT8LSAO1SCEMQv/UqUkqb+qiFQrVQ6M6u7bLZWkymhu7uS83Nle0ul6MTlLMvb91S31MEwA/07KhbJMthhHQGTFXeaVVu7N0ghT1zAP5jagAAqTodx/iN2yMEkK7XHysv71NmJ0Ve3gkBpOv1s4KCztfVnaysbOzu5pOk1ek02+3BEkmcSrUwNPRoRcW3paVrA0sTAnCqqsricKyLjfWRP25pBE/lHR0tDIWxtKK9fXdxsbc2tRtbx0BDaLLbC5uaHp/nPZuS6ktOIU6tDhKLGwLzfVdFRh4qL38nO/u2hATDwPBLz7tn+0UIgntsHlfRky1qawcp6sl0HCeP0NIMbT9DeLKqKlQq9TFaAACdUjVYYb+JQJGCy++Brx2ojTPBLA4Ly6qt7UlECcQQGssg8fF4kajRHCgrK2trixl8RXYETC9DCKFBxrZtSQz/Z5u0KsAoAw8kPN6W1NSelDKeFoZbACDx6aHnuxlGBJsgZDyejMeLUigWGAyZtbXfXJLB2goB/ahIwdJIV7j2Bz07KupN3rd3Qrcatd8O2t/RCY4UbH4g8TIEMDckBOdKEP6DvhOS5NyQkBOVlT2vOWKfP3sOizUvJGSeh8/kovoqsYXKZB/n5gZewAxAdl1dfVfX8oiIGJWqn/E01w38lOqgO3rlfFHXhUEP5zSDYIHlXSM7u65TS2ncAAAgAElEQVRuRq+mlRvBIHODBLAsPPyz/PxAxk8QxMrISL1Y/O+CArVQeENMjNpzqpwU9i3ctudB1Vs20z01auuNlMH4eISUA/Z28Pruvx1W69mamkfSB01LWBYR4T+zcNxRzMalVxH/08kcAwBAzOXODQk5RTtzgXw7XWU+yj4DbILYlJQ0ggoe/plGU6MAwOKBrxOI9Ztnz/Yzpz8YN8bG9n0BUT9C2J0AQLCYBcKJYU5w8FyNAKbeEA9bG9j8oSUPhQZ09+ozUw64bBBHwNEbF2qpR8XOfv3tRpASt6a2f5K0WgWfD2OJp0cIYL7nokjA3olnPAWPzb4zKSmztvbKcCqy1hqNn+TlvXrmzOnqarN7jtFS5y6C2mG1nq6ufjsz8+3LjqIOv4GaAwRVADgp6lxt7cCAoOSgoMEqmc1Qq/XDSRtI1Gi2ZmTEq9XvXbiQ2+BRy5AtgMsKygVHN8y1fR+42xB6prqPhyHsugJBiGcVvb2lpfMNBp96GgSwJDx86aQoZ3miSAHlhH4y50XdLAoL49FJMkN+O5YGsDiD1XRNGOYVFQjTzCMEkPRryJM5bPadSUlfFRX1+6X5Zb7BEO9pO1OeH5fhMfhlxfzHyAM/PcNTQRwFc/3Q7iAASRxqv+1Rx7UbQYoBFgTBMFVDEovOIpj657n3hEoS3muE3RWAq8+zBNgs1orISNiN6C730n8Wc7mpOt1ZOoOexQPlGoE8r4TLvTUhYVdh4abk5GGloLVbLPtKS/eVlkp5PBmPJ2y7THZFOy9ebOjubnOX5/AqCjEQe8fAmeEz1dXBEomX9CBBEH4KKhEEsTIqykd65eCwCWJucHCYTPZlYeH3NTUZISE6sVgtFLJIIazNLGMZpHF9BokUweWAywpLY9+CMSmE0wK4xuBZ394Jlw08NToLIUtwN+c0NLSazbclJHh157HZMSrVvJCQ8PGRghoe0gTIZ0F73WSPAwBEHM78kJCjFRUgRe7wMd90lUHsT9hrzJl+hjDucfp/FkHcHB9vcTiGjD5XCQQ3xMb6SRJimDjks9fc8NeQgw+fVr1ea6mHIABDyBZAEIKuMkhnuMMgtZp4e3d+myQWxlI4ukE5+m6sdiM4UlBOb4+wNbOnZGIvaXq9UiBA9VdQLxioW7I4LCy7rs7RsygihqNrsCdcP0TK5etiYz/Ozb0jKWkEN9ZOq7XTakVLGygFmvvHGZEiuKygnINWVrK1e4kuddvtp6qqHkhN9eoYr1L5UeUFEKNUJqjVhc2+KuQNTpBI9Eh6elFLy8XGxuOVlZ1Wq5Y3T5hzlgTFEoTAWGh3Oi0Oh83p5NlmK4sKIqzNcQmLer0zosenN5ZAHD1YNmRAtOegLRexP0ZnsduitJrN+8vK7ps9e6AffENMzFVUYYrFwbqcyR5EHwvDws7V1ppIEcx+PRBjaUCVL8eO8TWE3d3dubm5LBYrI2MsRRTHCjaLdUdi4r8KCgazhVqRaE10dLRCMdFqqAyDQ6kXJSesTya+7dKUtAVvIg1zFHz+qaqqE5WVPstvSng8vjaxqbUQ0hlwGNlcaWpw8PUh97K/Tb4UtcVUndnBU5x1dVnYvd6PoxP8KDit3qVNuys8c8iEHE5PxazavdDfMPC8Uh5vTnDwmepqoDdeZviGEECCWs0nyX/l56+Jjg4kRd0Hji7wNQNaCZASr1StfvSX2ARw6MqVFF/RvIFERd4QE1PW1jYMsRF6iASRoFbThZttTmd9V5el6ZzDWO7SzQVYJIvFJ0keSZqrK1ucdfl23f7zl1ZFRc2mPyWOCLY21O2FbhWUc4d13n44umFrQ/WX4EhpJUKzw/HpxYvLIyJ8mv+QCRCXmLLw2OzrIiK+bSvqKd3sE8oBU80Eh+KPoyF89913H330UZlMZjAYsrOzx+9Eo4HDZt+VlPTfkpLzdXWeN1E2QSwMC7suPHwKqMxPQ2b8D75NEYMlnve/EIsBrIiMTNHpLrW0NHd380myxWyuaG/ncziRcvnqqCiBI6Lqq/nmpG38ynN6gs+hywyp5ydc/jXCE2HvXBAvfL9W1NDZAjYfdiNIKYhueMZS2lrhtHiKOd8YF9cjtlX3LWb83OcwF4WG9kTKDRIvEyCRcvl9KSk78/IsDse8gBMS+nAYQfqK76drxw9mCG0dniX/67q6iltaBgaLRikUIQEUkpbx+WtjY78uKgp81F5w2ewwmQyylfauBo64/0yAXBTVfGZu7M21ZNTXly512WyLQkNBitGaCcqF7qrRGcIuaBaj6TjtDjpcrp15ebEqlc/ZYC6brR6u1OI0Y25w8IXq2LrKfw06cW2uBV89wYEX42gIb7755jvvvPM///nPyy+/PH5nGT1sFmtDfPx8gyGvsdFkswEgWax5ISEq5oK+ahEaYLgZVbsgjnC3KQWCBYOVp+HoQ1UG2LOAGgh7d4ncjJM/wLy30XxGYKm6NWHhO58+5JTNhN0IjgSg+k2NdldCGo/OInoSNUWnS6S1FTsKQLAHFqSmkfB4PZFyo47m1wiFm2fP3nH+vEoojB5KA92bnnc0AP/LhB4eIUVR35aUrIiMHFghPT3gacBUna6xq+t09dCqF34hKO6ARQquAgQJWUIwi7spOfkf2dkaoTCOFKH9IrRLe8qMjRh7F5RzwJHQ4Tn7y8pkfP6qQRTE9GLxJFSQmVKwCGJ9QsqOXDllqoXQ1w+2uwrCiS7UNY7ujkqlEk9wkdlRoBWJVkZG3hQff1N8/NrYWMYKXu0kPo2YHwdaIQ9AxD0o/yfMNX0JVYYN4AcheB1EYeiu1In4y8hstJyBrQ0cCUhhv/QJWtudI4OtLUGjuSk+HpWf46tQZP3U57yom8V0pJxHcZkRI+fz70hM/LKwsMsWaMmbHuydIH3N1/XWjveNR9RobmOji6JSBkzMCkgyfjjR16ujo32UoBs9wjBol9A+hJTHu2vmzP9cutTolIDFhWYRnJZRPYU4ukGKoUwHR3q5ra24peXGuLjB1kqYedFAMEilC8NCB02/NlVBODYq1oFzVQTLtLe3f/DBB9999x390mAw3H333T572u12+7DEPBmuLex2O4vFcrlc4Ecg6Y8I/GIIvpWT+1tKYHBydVTPXiTWXwaLw+KFEM0nXK35i5SoV96dn7fTBQ4IHsvR7eoVomN1V7hUC9ncojkS88qYGJfDQZR/jvAfwtHlCruHGnwYHGCOTneiQQhzPeUabZVEg0QyKyjoSHn5upiAY+ooJ8thcrEEGHB2gpTA2uh7VE4ri3K5CB5crk6b7UBZ2T0zZ1IU5VXsZoZSSTmd/iUmvFgZHq4XCneXlFiHuV7YNzSn0+U1Zq4GKo37DepFojVRUZ9eKX4gZKaAYrGEIVRXJTWI1z4kLEcX/el1Wq1fFxVtiI/nEIT3AHrRCgTMDSoQlsUvqD29q8y1cMAWimWqcunWDrxc3TidTrvdHnjcBpvNZg21wjUqQ/j555//8Y9/HNiek5PDHk4xBbvd3tnZ2draswBDkqRzkB+J0+kcbBPDdGDkFwCpZCsXsOq/dXJ1VN8RWHA6Kb6B7K6k2nIp2cx16beaBNElbUYQfJbTTN/vCHsnh7JEh8QvFp/USesdFOW0m8mGg7bZf6PoKlB+hzRXp8ssFFuMXYPdPYfFgpCQt7KyMoKDFfyhEigBevAgRS4KoHwYQlZXqc9REbY2cGQulwsU9XVR0bzgYK1QOLBnslY7gq8jXqnUpaTsKiqqMQ5bMxkARVFDfpKJanWzyfRhQ8tdKrNcYICpyiWOG8G5QDlZLruL4HVZrR/l5c0LDg6XSv2cPUgoZG5QgUCoFt7Bemg775Fmc79kVsLWCoLjYov8GEKKopxOZ+CGcEgriFEawjVr1szypQ41LCsIQKPRbN26NZDIUrvdzg/s989wTeJyuXg83nAvsB6i70XDPp48wjufTxEDcxWruxCqFJFAsDltXmZt7ZGKim6AZFFyoSTDdjY9JYw7azaKY9FRQPL5qD8B6QyeLKCVDD6wIirq28aT5JCSewEgIcn5oaHHqqoGZrD5xtYNjsz3qfkq2Fq9N9la0FUBjhhcOUmS3125QgFLIiIG3nVUAkHU8KtS9JyZz78/Pf0f2dnNg1V3GxyXyxXIJ7kiKkrI5b6fm3tDqDrB+v0IP3x7Nzhio8PxSV5eqk63yK9emJDD0clkTIR5QPB1kEU8GEV8UCVtaqtAZzE0iwDAWAtRqP8viyRJPp8/tp/zqH6ZcrlcPkYqowwM407IzZjxPz6y2oWhMNegLQcxD6FXSnRuSEhL7RVOapRUEYX//BCLdgKAOBo13wBAzW4Ybgr8zHPC4s6eDkQtKSDmGwxvnDt3ua0tyh0101kI6SB20d4J7iALV3wtKAcsjT1KHTQNR9GRD3E0uPKsurrCpqYH0tJ83nLiRlc8jE+S9yQn/yM7e9Aq26NmvsGgE4sPXi47YtJHozRGqRp2nJGju8Kp+eL8+aXh4X6KBtDEKJWMFRwGhlvF39+zJeiG3TV5+WYJVHPA4sE0CZEyGNc1wqKioldeeaW0tLSqquqRRx6ZOXPm1q1bx+90DAxDQAqR6iuAmc0HR47GY5jzmmezSiQBOlH/HTgSqOYCgCQGxlIAqNmNJV8Efma2UL+On/MxQQQoKOEfDou1PiZqd3Hxo3Pnclgs2NtR8TmC1/UM0gt7J5395htZEjry+wyhw4iuUkRsQvk/CwTLjjaW35+aOph2fNxI3UE3SoHgnuTkD3NyhptfGDgRcvmDaelVuW9VknH7y8p4bHaaXq+XSAQkyWWzOWw2e3DT1WWzHSytLjneEs+zWMvLTw51LqfBUMJlqi0GDgfm29BZAPkS05XdjQXvtUJlrjsCRSrIUp87RKalBcfH+9w0SsbREEokkvT09PT09LvuugtAaOhEBwIxMASKKAydhRD3j4nnqWBpQOl2xDzc2y0C5lrkPQOuHIrZwzg+mx/NtyzU8E829kaiOowgRyAHBgAw18a0fWOQLv3u8uUbYmJgaQI/CI1HITS4a4r24SdlHoAsCVW7ELS852XLOchnQRx1Sb7h20rjvbNnDbYSyWOzw8YiQtIgld6RlLQzL89nMYSxIlTICtUKF4ZF5Tc1lbS2nq6upkvS2J3OILH4lhkzvIQwG7q7LzY2ZtfVpcoJwdGjGbfdJRkqV5IA7N3dbd3joP10LcMDNxUmsLQ36gAdQUC8liJIn8+L2VlZ+a2tU88QhoSEPPzww0P3Y2CYdEThINjeyRg8NY7dCkUaIjb1tLA4EITgysdYc2LYp4h+YEX769Wy/6no6ACA8p3QLB5aQ8on5lpYW9bFx76dlRUhl89AE8RR4Aeh/iAi7/XubO+XF++NIBiUC5Z68HWgnGjNpqIfOFZRkV1nujt5lp/CadFKJXuMak3EKpXrY2O/KS4ek6P5hiOFvZMQ6GdqtTO1ffPAFEWdr69//8KFaIUiRqkkWawmkymvocFFUTPU6kfS06WdZ4tA/GbbNsN4ZH0wDIfXXnvts2PHxungV0X6BAPDJCMKw8A07eRnMevPkPRPVEj8FXQrAyr27X20Z9h7kjfN2fwpS3O5rQ3WZrTnjdQQ1sFl58NyR2LiP/PyNPoWldwAWQLq9vgo7T2Iynwf8iR0FICvs3VVF9hDT+aUSnm8h9PTB6rsejLKBUIv0oOD2yyWPuGqMWeQ0gEEQaTp9fFqdWFTU3FLCwVIebyNCQnBbv/P3gVm2W8awBhCBgYgasvA7AIvQYkeYh4a4SlIEdJe4eZtu2f1mcNFZ88Uks7uK3BavGSkCGC2Tpei0+U2NGTX1fk+lLkeLBK29mCJYVVU1Melpi1KhYTFhSAYpgrvsv02v2uEACRxrtq9ezoMFxvqwgTa9bGxEUNFwJEs1tgaQgAro6Lqu7pKW1uH7joC/NbQEXE4c4KDfcfCOLqHUbSBYcrCFNJkYABkiZDPHPez6K9HRz5J2VYrOh6LJmbpglmdhfQWFkGIudxgieT+1NRbZsyIkMvXx8WF+ZabcMHaBHEULcKXotPNFdR+XNxodTohjoaxrF9fygmnGaQ/aQhKEPyfFmWHxfTzkJp74oKHtIIAZmq1Y66MSgC3JSYOrOg9NrgNocvm44nHD44uxhBOBxiPkIFhomDzIYlDey46i1TK6I0J160ueqc2ebPT5YqUywX9TQubIO5MSnorM9O7oJqlGRwZ+EE9arT2joWilg5S+Xl+/qaYaFbNl/06243giP3cyp0U9Z9LJR2QbQqhOA2VEG0M5H0MmUgwMgQk+UBq6r8KCsqHo0UcEBwpHJ0AULsHHFlfcNCQMIZwesB4hAwME4gyHa1Z6CyCbAb0ayWtR+NVykSNRuDLwRJzubfMmOGdmmapg0DXJ8tuaQRfc0NMDMlifVnR5nSY+80B+s2daLdY3r9wwelybYpRcFpOgqvwmqf1iV4iMYxbRU0Rl7t59uzVUVEDq3uPCrdHaK5DaxaogLM1xlzmnuGqhDGEDAwTiDIdrdnoKIR0Bkgh2EJPaaeBxCiVS72qmZjrIdD3GUJrE3gaArg9MdFF4cPOFGOrh9SRvcNnpIzF4ThWUfFOdnaiRnNbQgJHGgNri7/gUg/mjo876IZFEIvCwrZmZISPYbEOWnnRZYetrUdrPhAoBygHEywzHWAMIQPDBKJM6/EI6UIwAh0sfqW6geWRkcsiIvpem+vA14Er7/UIm2jRXQ6LdXtCQrRK+2Zx197S0k6rFfARMmp2OPaWlr76/fetZvPD6ekLDAaCIMCRga+ByLe0kCciLneE4sDDRMzlbp41a1FYGMdvkoZKKEzQaJK02lil0t+yJYsDFgfd5eCpoZ6PlnMBDcLR7X959Wrm9OnTf/jDHyZ7FGOM/4thNDBrhAwME4h8FjoLweL1ZL7zdbDU90ui6K7EiTtAORG9BbGP0W3LIiKkPN63paX2pu9hbYYgGGwenCZQDpgqoeoRyyUIYmlMcjo+OmUXv5XZEKVQaJzdUqGM39zMY7PtLtfltrb8xsYkrfbxefO8syMifuhbs7A/c4KDJ0yqms1irY6KWhQaWtzSYrLbOyyWTpuNx2ZznE6NXK4WCvViseeUMkVRh8vLj1dW+i7fw5Gi8xIEOkjj0HAYec9CGIxovzHAtja3IuOUg8VijUlt26uKoHHT9bvWPikGhqsatgCSOLB7YyMFOpjr+3VozQIpQvIzOHEHNIsh7ylqn6bXB19+cUdrjT36gZ6VPI4ULZl9NrUXUdD81Q3fLc548FJzc2tdSZVFZbE0WJ1ONkGEy+UPpKX5LhbjP9cQAECyWOM9LzoQIYeTouuXtWk0Gn3WeSEIYkVkpJTH2+0zN5+UwlgM7RKAhdhHQTlR8MKgIuk01mbwRltGbjwoLy/3VMAICwsbaPMSExP1AWsmTxXUQuGYhyvTMIaQgWFiUaYDvS4L7RF6YiyGMh3apUh5EWfux5ozPQnyub/XGU8uXf7hd1W9U6lcBRqP+pAFlsSido/A2Z6i06H9MqKXDZFHGDApOp34qq+lOSc4uKCp6XJbm/cGjhTGEvB7bQPBBimGrd1HIQU3V6shfPbZZ7u7uwG0tbUdPHiwuro6JCTEq8++ffvefPNNt8jrtQGLIGYFBRU3No75kRlDyMAwsUT9CK7ejIiBHqGxGKqMnm5l/0DdXoTchLp9qNiJNacWctU5LcYe6SKOHES97/RHgR6WBnBkcJoCcfUCgcNiXee5VHkVsz4u7s1z5xxegnYcKQgCfI8FTp4K1pYhDKHYlwByxU50j1sRnIGE3wVRhGfDe++9B8But69du/bXv/71QCt4DZOq1zOGkIFh6qNd2vc3X4f2vH5bO4sR0VsvVLcaTacQchPq9iL6AfA0bGB1VNTOixcBQBQOnhqErzQDfhAsDeBpwFWMVRpchsEguerdQRqVQLA0PPzQlSv9WjlS8NT96s9xVbC2QBI76IEG8wjp6NOJgfA9c0tR1IMPPqhUKv/85z9P0EiuDoJEIt3gJXBHDGMIGRgmD58eobRXS129APl/AYDGE0h/hW6LU6m0IlFjdzfkyYMelh+EtvMQBPtzd4aDmMtd7FeT9mpjcVhYSUtLVadHSqUozDt9kKeCtWnQQ7jscJjA9TWrHLl5jIY5cv74xz8WFhYeOXIkEPn1a4xZHmXTx4pp9yEyMFxFeK0R2jvgNPcFv6jnozULtjZ0FkI5h24jCGLhkIpm/CCY62FtAW9sDOH6uDj+lApBZBHExsTEfmUKuEoo0/t14qn8JXHa6E/vakwi/Oyzzz788MPdu3cL+6tHTRMMQ0lijQDGEDIwTB5eHmHnJUji+m6+HCnEkSh9G8o0z5ovyVqtbBCZwB64CrisMNeMiUc4U6tNGLUG78Sj4PM3z57tL8iQq4KtZdCtV2ukTEdHx3333Td79uy//e1vTz/99NNPP90+5hXprm68ay2NBVPpKY+B4VqDq4K9o087yVjivWSlXoBLr3nNxbFZrKVhYUMI+PG1MJa6/cgRo5dIboyLG7rfVYleLP5RSsp/S0oqfJoKrgyObh/CVTTWZnCvRkPI5/M/+ugjzxaur7XbhQsX6nTDFwubrjCGkIFh8iBY4GtgaYQwBAA6i721n9QLULod2sVe+6Xq9d/X1DT60UPnB6G7apRToyqB4IezZk2tSVEvtCLR/Skpl9vaipqb8xsbu+12j40EuArYWvuFkrqxNkMyLmLoo4TH491xxx1DdgsODg6e8KTPqcsUvsQZGK4F6GVC2hAaixGyvt9WzUIQLKgXeO3EIojVUVGf5OVhMPhBINijySDkk+Q9ycn+5XmnClEKRZRCsSIy8uDlyzn19XZ3ZgWdQeHbELZArcbVuUjYn08//fTDDz/0bFm8ePG2bdsmazxTEcYQMjBMKp7xMsZiSP6n31ZJHJb91+dSX6xKlaDRFDYNEvco0I8m1oNFELclJKiurVgMPkneGBe3NiamvqvL6nTanc42an9mZ2vzwK6UC9YW8NSJGs0Y62CMA+vWrVu4cKFny/QMohkNTLAMA8Ok4o6XKfobrC2QJXl3GFg7ppf1sbGDBoMIQhC1ZWQjosNMYsdag/4qgc1ihUilUQpFvFo9PzT8fm2tfmAUorVJJRDcMzvtzqSk8QjNGFukUmlYf9RqNQCn09nR0eHu9tFHH7399tujOZHVau32Mxs/gOLi4vvuu28EJ7Lb7ddff73NS4lzPGEMIQPDpMLXwVyHC79C2btYfWJYcgdiLndd7OD54AGIC7phEYRKIEgOCrotIeGxefMC0am/FuDrRfaa+1NSVkRGCkgSgIjLXR4ZuTXCsjVeGDfFHwUKCwsTE/vquYvFYunohCTfeeedhx9+OPD+nZ2dJ0+eHNm59Hr9RD6CMFOjDAyTikCH3D9AEoPVx8FVDHfvmVptUXPzxVEXndoQH58yDYMMBTqY67ls9tLw8KXh4Tank81isQkC2blQpEz24PxhMpnOnj1rtVrnz58vk/WsBJeUlFy8eJHL5aanp+t0uqKiIrvdnpWVBWDWrFnz5893Op0AjEZjVVVVeHj4oUOH5HL54sWLXS7XkSNHnE7nihUr6PrdTqczKyurqqrKYDDMmzePIAiTyVRVVdXa2pqVlcXn85OSkgC0t7efO3eOzWYvXLiQ35vS097efurUKYVCwfE1XXHlypXW1r70zbCwMI1G49WHJMmtW7dOpHoGYwgZGCYVWSKU6Vjy7xEXBb0xLq6yo6NHgHBEJGm109EKwrugAde9HNh2AYm/nJwhBUBBQcEtt9ySmpoqEAh+/OMf7969Oykp6f3333/22Wc3bNhgMpl27Nixa9eur7/+uru7e/v27QBeeumlN99802g0vvLKK5mZmVu2bAkPD4+Kijp8+PDdd99dWFgokUgKCgrCw8O/+OILAL/85S/LysoMBkNWVpZKpfrmm2+amppOnjzZ0NCwfft2vV6flJR05MiRH/3oR8uXLzcajVu3bj18+LBWqy0tLV2+fPnixYsdDoenwXOze/fu48ePA6Ao6j//+c///d//PfSQtxiW1WqdM2eOyWQSCAQDjzAeMIaQgWFSCVqBoBWjOQCfJG+eMePjnBxfKnwBnF8kumnKZgqOFoEO5gaA8o4qavfnEb6TnV3m6xY/TjyYlhaj7Bct9fjjj//qV7964IEHALzzzju//e1vv/zyy3/9618vvvjinXfe6e72q1/96tChQz7XBWtraw8fPhwREXH27NmMjIzdu3evX7++q6tLq9XW19frdLqXXnqJLt7mcrlSU1NPnDixZMmSH/zgB6dPn6YP6HQ677///vfff3/ZsmX0uV566aWXXnrpmWeeuffee//yl78A+NnPflZRUeF16q1bt27duhXA7373u/r6+s2bJ79eHRhDyMBwDRCtUFwXEXGkvHy4O6qFwntnz57SmYKjgsUFKYK1FTyP5cDuSrA4vnMqAAByPl8xUZ4KAF7/b8fhcJw8eXLGjBklJSUAmpqasrOzAdxwww0/+clPjh49unbt2uuvv97ntKSbqKioiIgIALGxsQCWL18OQCwW63S6mpoanU53+fLlF154obCw0Gq1VlVVlZaWLlmyxPMIFRUVVVVV33777d69ewGUlJTQgTlnzpz5yU9+Qve58cYb//vf//ocwM6dO3fu3Hn69Gkejzeyj2Vsma4/AAaGa4vrIiJaTKa84SwWJqjVN8XHj5PS6ZRBoIelvp8hbLvgf4HwDo8IlInH6XQ6nc5ly5Ype91E2qnaunXrsmXLvvnmm23btj333HMnTpzwcxC3+aHdPs+XtOTv+vXrf/rTn77wwgtKpXLDhg0DAzhtNhuHw1m1ahUd0rJq1Sp6qdLlcrmDXNiDZJ4cO3bsySefPHLkyMDVwcmCMYQMDNcCBLAxMVHC452qqhqys0YovC4iYuY4VPGfetDpK55ZK7GgG40AACAASURBVO1DGMLJhcfjpaWldXR0uGdBKYqi/01OTk5OTn7qqadEIlFDQ4NIJDKbzSM4hcViKSkp2bx5s0Qi6ezs/P7772+66SYAIpHIRGthAtHR0VKplCRJ2pt0DyM1NfXw4cPz588HcOjQoYEHLyoquvPOO3fu3Bl3NU3IM4aQgeEagQDWREfHKJV7Skqae29YXrAIYnV09HyD4WpPjpswvARAALRdQPgPJmk0AfHGG29s3Ljx9OnTkZGRpaWlJEnu2LFj3bp1ERER4eHhZ8+eXbBggV6vdzqder1+/fr1BoPhpZdeCvz4fD5/5cqVGzduXLp06Z49e7S9D0xLliz5xS9+8cMf/jAmJuaZZ575xz/+sWnTpttuu02j0eTl5SUlJT3zzDO///3v16xZU19f73Q6z549O/Dgjz32mEKh+PTTTz/99FMAd999N73KOLkwhpCB4ZoiSqF4bO7cnPr6zLq6drPZXV2TIIhQqXR5RESkYthJGtcyAj3Mdf1aWs4h9a+TNJqAmDNnTm5u7qFDh+rr69PS0mif7O233z516lRLS8sDDzxw/fXXEwRBkmRWVlZ2drbJZOLz+Zs3b3Y4HABSUlLeeust+lAikejAgQNuUcMPPvggPj4ewDfffPPVV1+1t7fv3LnTaDTS07AxMTGFhYUFBQV0me+bbrppzpw5x44da21tffTRRxcvXgxg9uzZmZmZ+/fvVyqVf/rTnwoKCrwG/+KLL3qm+cfExAx8g1wu99tvv53I5UOC9mcnl/nz57/66qsZGRlD9jQajZJxEKNimCqYTCYejzfY2gODTywOh9XpZBOEeIpIzPtnjG8ChS/DUo/Ul3teWhqwOxG3N7vjSENDQ0+fPm0wGMbsjAwj4rXXXispKfn73//e3d0tFArHNt2e8QgZGK5x+CQ5feNCh0SgR9uFvpct56CaOxVKbV8jlJaWPvjgg54tXC53//79EzwM5ufBwMAwjfFaI2zNHL2II0PgREZG0in8bialuOs4GsIDBw68//77xcXFcrl88+bN99577/idi4GBgWEkCHT91ghbsxD9wOSNZtrBZrNVV0FN13E0hAcPHly2bNlTTz115cqVBx98kMvl3nXXXeN3OgYGBoZhI9D3qH/QtGZh7puTNxqGyWEcDeGLL75I/5Gamnrs2LF9+/YxhpCBgeHqgquA0wSXFSweTNWgXBAycTHTjgmSYTp//jwdlcvAwMBwNUGAr4W5AQDKP4Zm0WSPh2ESGJVH2NzcnJeXN7B90aJFXI9A7VdffbWmpubxxx8f7DhXrly59dZb3VkjUVFRX3/99cBuZrP59ddff+qpp0YzZoYpzeeff56cnJyQkDDZA2GYHIxG47vvvvuzn/1sDI8p4Gjs1YcprpJf9Kpp8SGqq8tzK0VRTz/9tEg0DJ1IhvEgPz8/OTm5q6vro48+WrJkCV0rNRD4fP6Qik6jMoTFxcV0lXEvPv30U/f650cfffTSSy8dOXLEz5UUGhq6bdu2lJSeskYikUgsFg/s1traumPHjmeeeWY0Y2aY0hw4cIAkyblz5072QBgmh4qKik8++eQ3v/nNWB408X/YF59D12Ws2CfSej9jvfnmm3V1dT73Y5hI0tPTFyxYIBaL9+zZo9frZ86cOYYHH5UhXLhw4YEDB/x0+Pzzz59++umDBw/6LB/QNwiSDAkJiYqKGs1gGBgYGEZCxCZEbILTDLYPTQm6zCbDtc04Bst8+eWXjz/++L59+5iJLAYGhqsdX1aQYZowjsEy27dvdzgcK1euVCqVSqXSUzGSgYGBgYHhKuGqqDUaHBzMZrO5QxVCdDqdtbW1oaGhEzMqhquQpqYmoVDIRC5MW+x2e0NDA1P5czrT0NAgkUiEQmGA/e+5554//elP/vtcFYawoaGhu7s7kJ5Wq/UqUTRmmBTsdjubzXYXy2eYhjA3gWkOrQkceCU2vV4vEAwx731VGEIGBgYGBobJgnmyZmBgYGCY1jCGkIGBgYFhWsMYQgYGBgaGaQ1jCBkYGBgYpjVTRpjXbDZv3769oqJi/vz5d9xxx6SINzJMAHa7PS8vLzc3VywW33777e52iqJ27tyZmZkZFRX14IMP8vl8ur2qquq9994zGo233Xbb/PnzJ2nUDGNJZmbmgQMHWlpaEhMTN23a5I4RbW9vf+edd+rq6latWrVu3Tp3/+PHj3/99dcKhWLLli16vX6SRs0wZtTW1n799delpaVCoXDlypXLli1zb9q3b9++fft0Ot2DDz6oVCrpxsEujMCZMh7hjTfeuHfv3tjY2GeeeebZZ5+d7OEwjBc7duy4/fbbX3vtNa9vedu2bc8//3xsbOw333yzceNGurGpqWnevHnNzc16vX7t2rUHDx6cjCEzjCX19fUbN25saWkJDQ199913ly1bZrfbATgcjuuuu45+Enr00Uffeustuv/u3btvueUWg8FQXV2dkZHR0dExqcNnGAMyMzPz8vLCwsJIkrzjjjtef/11uv29997bsmVLZGRkbm7u4sWLbTYbAIfDsXTp0qysLK8LY3hQU4HTp0+rVCqLxUJRVHZ2tkwm6+rqmuxBMYwLTqeToqjPP/985syZ7saOjg6xWHzx4kWKokwmk0wmy87OpijqhRdeWLduHd3nf//3f1euXDkZQ2YYSxwOh81mo//u6uoSCATff/89RVFffvllXFwcfXns2bMnPDzc4XBQFLVw4cK3336b7r9ixYq///3vkzRwhnHhjTfeWLhwIUVRLpcrNjZ2165d9N/Jyck7d+6kKGrXrl2eF0ZERAT997CYGh7h0aNHly5dSs+QpKamcrncnJycyR4Uw7jgM1k+OztbKpUmJSUBEAgEixcvPnr0KIBjx46tXr2a7rNmzZrjx49TTF7sFIfNZnM4HPpvp9PpcDhoLZqjR4+uXLmSvjxWrlxZVVVVXl5us9lOnz69atUquv/q1avpC4Ph2sBut3///ffJyckA6urqSkpK6O+aIIhVq1bR37XXhVFZWVleXj7cE00NQ1hfX6/RaNwvtVptbW3tJI6HYYLxugCCgoLoC6Curs7drtVqbTZbc3Pz5AyRYRx44okn1q5dm5iYiP7XAJfLVSgUdXV19fX1FEVptVq6PSgoiJFMujYoLS2Njo6Wy+WXLl3661//CqCurk4gEEgkErqD+ybg88IY7ummhiEkSdLpdLpf2u32IQuTMlxLDLwA6OkBkiQdDgfdSP/BXBjXDH/6059OnDjxzjvv0C993gRo39F9DTB3hmuGyMjIzMzMM2fOKBSKRx99FACHw6Enw+kOnjeB0VuHqWEIQ0JCampq6L+dTmd9fX1wcPDkDolhIgkODq6rq3O5XPTLmpoaOjgwJCTEPTdQXV0tEolkMtmkjZJh7Hj55Zc//vjjw4cPu709z5uA0Wg0Go3BwcFarZYkSXe7+8JgmOqw2WyFQpGcnPzcc8999tlnFEUFBwfb7fampia6g+dNYOCFMdzTTQ1DuH79+uPHjzc0NADYv3+/TCZLTU2d7EExTBxz587lcDiHDh0CUFtbe+bMmfXr1wO46aabdu3aRT8P/utf/2I0VK8NXn311ddff33//v2eVu2mm27au3ev0WgE8O9//zslJcVgMLDZ7PXr1//73/8GYLfbv/rqqw0bNkzauBnGCJPJ5P47MzPTYDAQBKFWqxcsWEB/1yaTac+ePfR37XVhpKamhoSEDPuUYxnfM548/vjjMTEx999/v1ar/eSTTyZ7OAzjRXZ2dnp6elRUlEAgSE9P//GPf0y3v/fee1qt9v7774+Ojn7yySfpRpPJNG/evMWLF//gBz/QarV0WCnDlObKlSsEQURERKT3sn//fnrT7bffPnPmzPvuu0+tVu/du5duzM7OVqvV99xzz4IFC5YsWWK1Widv7Axjw6ZNm5YsWXLvvffScrZ79uyh2w8dOqRSqTZv3pySkrJhwwaXy0W333777cnJyfSFsW/fvhGccSqpT5w+fbq8vHzu3LkxMTGTPRaG8aKrq+vSpUvulxKJJC4ujv770qVL2dnZUVFRGRkZ7g42m+3QoUOdnZ2rVq1yJ9gyTF0sFkt+fr5nS1RUlEKhAEBR1NGjR+vr6xctWuSpS9rU1HT48GG5XL5ixQqSnDJFQhgGw2KxnD17tqamRqVSZWRkeK531NTUHD9+PCgo6LrrrnNHmA92YQTOVDKEDAwMDAwMY87UWCNkYGBgYGAYJxhDyMDAwMAwrWEMIQMDAwPDtIYxhAwMDAwM0xrGEDIwMDAwTGsYQ8jAwMDAMK1hDCEDAwMDw7SGMYQMDAwMDNMaxhAyMDAwMExrGEPIwMDAwDCtYQwhAwMDA8O0hjGEDAwMDAzTGsYQMjAwMDBMaxhDyDBdsNlsDzzwwB/+8Iche/75z39+5JFHLBaL/247dux45JFHrly5MkYDHAYdHR1ZWVknT54sKSkxm80TPwAGhmsJxhAyTGF+9atfcbnc5557buCm1tZWLpcrkUjcLQ6H49133921a9eQh/3iiy+2b99ut9v9dzt8+PD27dsbGhqGO+zRcP78+ZUrVyoUijlz5ixevDguLk4ikWRkZGzfvt3dp7y8fPv27adPnx7ZKS5cuLB9+/bCwsIxGvLQ/OUvfyEIYvXq1QNV4Xbs2EEQRFpa2pBfBwPDiGEMIcMUxuFw2O12p9M5cBNFUXa73WazuVvYbPayZcvmzZs3gQMcY86ePbt48eJDhw6lpqb+9re/feWVV5566qk1a9acP39+9+7d7m4XLlx45JFHPv/885GdZe/evY888sjRo0fHaNRD88tf/nLu3LkHDx589913Pdtramp+8Ytf8Hi8Dz74gMPhTNh4GKYbjJozw3SBx+MdPnx4skcxKp5++mmTyfTkk0++/PLLnu1NTU05OTmTNarRQ5LkBx98kJaW9sQTT6xevTosLAwARVEPPvhgW1vb888/n5ycPNljZLiWYQwhw3SBoqjs7GyBQJCYmOjZbjKZ9uzZU1FRERQUdMMNN6jVap+7OxyOAwcOFBUVSaXSVatWhYeHD3ai1tbW7777rqqqis/nz5s3b86cOZ5bjUZjcXGxWq0ODw+vra3du3dvW1tbTEzM2rVruVyu//GfPHkSwM9//nOvTRqNZtWqVfTfZWVlZWVlABoaGrKysujGsLAwjUZD/3358uXz589XV1cTBDFjxoxly5Z5njc/P7+mpgZAZWWle/f4+HixWOzuU1hYeOrUqZaWluDg4JUrV+r1eq/xdHV1HT9+vKKiwmKxqNXq5OTkWbNmEQTh590lJCT8/ve/37Zt25YtWw4cOEAQxPbt2/fu3ZuWlvbkk0/62ZGBYQygGBimLE888QSAZ599duCm5uZmAFwu193S3d0NYObMmZ7dvv/+e4PB4P45iESizz77LCUlBUBnZ6e7W0VFxaxZs9zd2Gz2888/v2nTJgCnT5/2POALL7wgEok8f2IrV65sampydzh06BCALVu2vPbaa57TfTNmzKiqqvLzZp1OJ33ksrIyP902btw48Gf+1ltvURRls9kSEhK8NoWFhXm+Ba+nBJqjR4/SWxsbG9etW+e5icfjPffcc54D+O9//6tUKr2OcPfdd/sZM43dbqcnrrdv315eXi6RSHg8Xl5e3pA7MjCMEsYQMkxhRmkIGxoa1Go1QRDbtm27dOlScXHxb37zG4FAoFKpPA2h1WqlreC999574cKF8vLy1157TSgUBgcHexnCZ599FkBsbOwnn3ySn59/4sQJ2lguXrzY6XTSfWhDGBERIRaLX3zxxe+///7AgQPLly8HcPPNN/t/v4sWLQKwYsWKoqKiwfrk5OTQw9i4ceOBXqqrqymKslgsSUlJf/3rX48cOVJcXHz69Oknn3ySJEmNRtPa2krvfurUqQceeADAz372M/fubW1tFEWZTCb6c7jrrru+++67oqKiXbt2xcXFAXjjjTfo3dvb26VSqVAofOONNwoLCysrK0+cOPH//t//+/Wvf+3/rdHk5+fzeDypVLpgwQIAL7zwQiB7MTCMEsYQMkxhaENoMBjmD4CekPRvCJ966ikAjz32mOcxf/rTn9JOjNsQ0hEcy5cvd7lc7m5vvfUW3c1tCC9fvkySZEhISEtLi+cBb731VgBff/01/ZI2hAAOHDjg7tPZ2SmXy9lsttls9vN+jxw5IhQK6d2jo6Pvvffe7du319TUeHX78ssvAfz85z8f6vOjKIr63e9+B+D//u//3C3PP/88gDfffNOrJx2d+9BDD3k21tbWSqVSjUZjsVgoivruu+8GfqTDgj47gIyMDIfDMeLjMDAEDhM1yjDlaWpqyh9AUVHRkDt+9dVXALyWoAauSNHdnnjiCc9Vrh/96Edeq4k7d+50OByPPfaY18TgY489BmDPnj2ejampqe5VPQASiWTBggVOp7OystLPgK+77rqLFy9u2rRJLpeXlZV99NFHDz/8sMFg2LBhQ319/ZDv1ycbNmwAcPbs2SF7fvzxxwB++9vfejbq9fpbb721qakpMzMTgEKhAJCTk2MymUY2HveK4y233MJms0d2EAaGYcEEyzBMebZt2/b73//eq7GlpWWwsBcaq9VaVlYmkUiioqI828PCwlQqVUtLi7uloKAAwOzZs/8/e/cd0NS5Pg78zclOyB6QhL2XsgQRXLgHarWto7a2tdbaq7Xj2nnvt7/bcXu71A6vtrW2vdZabb3WUfdWEAeggkjYK8yEJGTv8/sjXMQQhpAQxvv5i7znPec8UciT8573fU7nbkQiMSoq6sqVKx0tt27dAgDk5+e/9dZbnXsqFAoAQHV1defGiIgIh3i8vb0BAM3NzfbBxu4EBQXt2bPHbDbfuHHj5s2bp06dOn369NGjR6dNm5afn08ikXrY1x7Gxx9/nJWVVV9fr1QqO9rtI8k90Ol0YrGYSCRu377dYVN5ebn9yOnp6WPHjh03blx2dnZAQEBmZubUqVNnz57t4+PT88E71NfXv/rqqwQCAYPBfPTRR8uXLw8MDOzjvhDUbzARQqOUVqtFUbRjLmVnfD6/cyLUaDQAgK49+Xx+55f2hHfmzJmOwc8OLBYLh3vgb61jhLMDgiAAAJvN1pfg8Xh8enp6enr6K6+8kpWVNXPmzOLi4t9++23VqlU97CUWi9PS0tra2iZOnDhv3jwWi4UgiEwm+/zzz52uxeysra0NRVGLxdJ55X7nN2g/AhaLPXPmzHvvvbdv376ffvrpp59+QhBk9uzZ27Ztc/jC4dTatWsVCsWHH36IIMg777zz3HPPnT17tufpphA0cDARQqMUlUrFYDAtLS1dNzkUi7GvHGhpabGvb+uum72Kze7duxctWuT6cLs3ceLExx57bM+ePbm5uT0nwn/+858KheLf//63fbTWLisry2FVolP2d+fl5SWTyew5uztMJnPr1q2bN28uLCw8f/787t27T5w4MXfu3IKCAiKR2MOOP/744/HjxxMSEt544w0MBvPHH3+cP39+165da9as6TU8CBoIeI8QGqWIRGJYWJhGoyktLe3cXlVVJZfLO7fExsaC/418djAYDPYh0w4JCQkAgKtXr7or4u7ZE0zHHTX7qgyLxeLQzb7ofsWKFZ0b8/PzHbrZlxU6XCN6eXmFhYW1tbUVFRX1JSQEQeLi4l599dXc3NzExMTS0tLCwsIe+jc0NPz1r38lEAj2IjL2JfYkEumvf/1rXV1dX84IQf0GEyE0etmX3G3evLlzY9fLo45uaKdKmLt27XLIl08++SQej9+5c2dlZaXDEWw2m33O6gD9+OOPnYvG2TU1NR07dgwAkJSUZG8RiUQAgK75w37TtPN8HI1G89lnnzl0sy8LkUgkDu3PPvssAODvf/9713FU++ix/Qf0wXqhWCzWPoZsNBp7eGv2IjLvvvtuRxGZqKiod955R6VSrV69Gu1SgxSCXMmjc1YhaEAGuI5QJpPZp6i88sort27dun379muvvUahUOy3AzuWT5jNZnuOefzxx3NycoqKij799FMSiWQfKe28jvDTTz8FAPB4vE8++eT8+fMFBQVHjhx57733goOD//vf/9r7dCyodwh49erVAICLFy/28H6JRCKfz//LX/6yZ8+eCxcuHDly5MMPP7QXBIiJibEvYLC/UzqdjsfjN27cuG3btm+//fbevXsoir7//vv2nn/++WdJScnhw4cTEhLst+5mz57dcZbS0lIEQZhM5ttvv71jx45vv/22oaEBRVG9Xm9f8J6env7zzz/n5ubm5OTs3bv3mWee4fF49n1//PHHyMjIjz/++NSpU2Kx+MaNG/ZxzsDAQKPR2N37+v777wEACQkJJpOpc3vHv/xPP/3Uwz8LBA0QTITQMDbwyjK3b9/uPImDRqMdOnSoa2WZhoaGztW6cTjc1q1bnVaW+eGHH+zJtbMxY8bk5ubaOwwkEa5du9Z+udYZFot97LHHGhsbO/c8evRoSEhIRx97ZRm9Xp+Zmdl53/T09KysLIdEiKLojh07Ok/17KgsY78+c5j4QyQSO0oBHDt2jMFgOEQYHx9vz8ROSSQSFotFIBAKCgq6br1z5w6BQGAwGD2X3YGggcCgcMwBGrZkMplCoeBwOF1retlstoqKCgRBOvIBiqLl5eVEItFhzovRaLxw4UJNTQ2Xy50xYwaDwZBIJCaTKTAwsPOsEJvNlp2dXVxc7OXllZGRIRAIWlpaNBqNSCRymANiNBqvX79eXl5us9l8fHyio6M751q9Xt/Y2Eij0RymoUqlUrVaLRQKe14CgaJocXFxZWWlPfP5+vqOGzfOYf5q53M1NTWhKMrlcul0ur3x9u3bBQUFNpstOjo6OTnZYrHU1dWRyeSuJUPVarVUKgUAOETV0tJy9erVpqYmKpXq6+ublJTUcXAAgNVqvXPnTmVlZWtrK4fDCQsLc1h54qCtra21tZVEInXN8Xb19fVGo7HzW4Ag14KJEIIgCBrV4GQZCIIgaFSDiRCCIAga1WAihCAIgkY1mAghCIKgUQ0mQgiCIGhUg4kQgiAIGtVgIoQgCIJGNZgIIQiCoFENJkIIgiBoVIOJEIIgCBrVhkQi3L59u72kYa+6PmINGlWsVissCjjKwQ+BUc4dvwBDIhHu3r276yPcnNLr9e4OBhrKjEajzWbzdBSQJ8EPgVHO/jwv1x5zSCRCCIIgCPIUmAghCIKgUc2NidBqtW7ZsmXevHmrV68uKSlx7cFtWjg+BkEQBLkArvcu/fXhhx8eOnTos88+y87Onjp1anl5OZVKHfhhzdVm5X4l1oSVpcjCZ4cP/IAQBEFObdiwYe/evZ6OAmq3adOmd955xx1HdlciNJvN27dvP3DgwKRJk2bMmHHy5Ml9+/Y999xzAz/yRdPFXdRdEX4Rz+Y/C2bCwV0IgtyloaHhq6++mj9/vqcDgcDOnTslEombDu6uRFhXVyeTySZMmGB/mZ6enpeX55JEODN85szwmRqTJv/TfPJ1svcE74EfE4IgyCkqlcpisTwdBQTIZLL7Du6uRNjc3Eyj0XC49uNzOJweFkjU1tauWrWKQqHYX4aEhPz4449Oe2o0mo6fbwbe9L/ir45Vuy5qaKjT6/UmkwmLxXo6EMhjOn8IuJvVah20c0G9MpvNarVap9NZrVYMBtPHvUgkEh6P77mPuxKhl5eXwWDoeKnT6Wg0WnedfXx8Xn755djYWPtLGo3WQ+eOTXNmz7F8ayFbyTimG+90QkMKFoslEokwEY5yPXw+uBb8TRtS8Hg8jUZDEIRCofQ9EfaFu1KISCQym80NDQ1CoRAAUFVVFRgY2F1nAoEQGRmZlJT0UKeI4cWcw57DV+MD4gMGGC0EQRA0arlrqgmbzZ4xY8bOnTsBAA0NDcePH1+2bJnLz6KkKGXVMpcfFoIgCBo93Dio+Pnnn8+fP//YsWPV1dXr1q0bM2aMy09h5pktTbDwIARBENR/bkyEY8aMKS8vF4vFfD7fx8fHHadg+DEo1yjdbf3HxX/MC5uXIkpxx6khCIKGLJPJVFNTExYW5ulAhgf3rsIjEAhjx451UxYEAPgF+XGNXNBN/VVGLiP/dr6bTg1BEDRkVVRUTJ482dNRDBvDezl6hDBCiSoNckPXTSaraZphGrXSBbVsIAiChpfg4OBz5855OophY3gnQjyCr8fX11TUdN1U2lzqi/qKVKLBjwqCIMhNTpw48frrr9ufQ1RZWfnUU08plcqu3VpbW3fs2DHo0Q1XwzsRAgA0NI2y1snvQV1FnZwgj7RFVsurAQCoES39trT4WPFgxwdBEOQ6M2bMyM7O/uKLL8xm88qVK5OSkphMZtdubW1tBw4cGPzwhqlhvxTdyrN61XmZy8z4EHzntK6p08hZcrPCXHuvlhPJaf2utQapiWiJkCZLeXye5+KFIGgY+/v5v//zyj8H7XSbZ21+bcJrnVvwePwvv/ySmpp66dIlPp//8ssvD1owI9iwT4T0MLqsTEY7QAMM4P+iP/hftQFyCxkJQdRAranQFOUXNdOb57w4J+v7LOxe7NRXpnoyYgiChq0Pp3344bQPPRtDUFDQqlWrNm/eXF5e7toCK6PWsB8anRY/zbbSdm72uSZl0/FvjpttZns7V8flBfOIIcRgSbBAJZiyagoRS0x7Ki1QG3j+6nnPxgxBENRvhYWF//nPf5YsWfLGG294OpYRYtgnQiwGmxGY8Wzis1F/iYqRx1y6fAkAoDFq/K3+fqF+QWOCgmxBLdEtTDoTAECmkJXxSsJFQke+hCAIGka0Wu3y5cs///zzX375pbKycvv27Z6OaCQY9omwA41Jqx5T7XPNBwBQVlbWhm3DErEMPkM+Vp68KLmjW/zceCFGeOjUIc9FCkEQ1E+ff/75lClTVq1aRSQS9+3b991331VXV3ftRiQS4Wr6vhv29wg7S5qdVFZQp5BKEQAAIABJREFU1nq91XTLpKfq7Y0hi0Ie6IQAMAGIskTWOVYsBpaWhyBoOPl//+//dfwcHh5++/Ztp92Cg4MvX748WEENeyMqEXoRvc74nXn+9PN6RB/2RLffhoKnBIOr4Oatm6mJqQ91fHGZuOZczex1swccKQRBkGu0tbU5PO2VRCJFRUV5Kp7haEQlQgBA3MS4sXvGbl+2XRTU/VJ6DKgR1WByMCDx4Q5ed7kuWZpcVVIVFBE0wDghCIJcory8/Msvv+zcIhQKP/74Y0/FMxyNtEQ4I3jGL8/8MjmglyJ7vhm+pN0km9GGEB/iLqmwSXidel1wQgAiBhYlBEGQiyQlJe3evbvnPm1tbY2NjZGRkYMTkl1eXl5cXBwO99BZBkXR3NzccePGDdrikJEzWcYOi8H2mgUBAGH+YSXYktJLpT13s2lslpr2xzxVVlQSUELMMzE0DU1Vo3JBrBAEQW7zf//3fypV+yfV5cuX16xZM5Cj1dXVff755w+1S3JyckcAD8VoNKakpBgMTopIu8lIS4R9VxdRh73Ty2SZ4t+KZXtkZqUZAFB9tbqGXePP9r/AuVB/rH5QYoQgCOqnzZs3q9Vq+8/Tpk3bt2/fQI7W0NDw3XffuSKu3hGJxNLSUhKJNDinA6M5EU6eOtlmtOkkuu46aNQaRj3jIvFi+a7yxjuNwjohNYEKAEhZmEJppSgaFIMYLARBULszZ84sXLgwNTV106ZNWq0WAGA2m99+++3x48enpKQ8/fTTKIq+9957JpNp3bp1S5cuzcvLKy4uttfgNhgMS5cuPXPmzLRp09LS0k6ePFlaWvrII4+kpqZ25Lm7d++uXLkyOTl5xowZP//8s73xb3/7W2Nj49KlS5cuXWq/Vtu7d+/s2bPT09M/+ugji6V95OzIkSMZGRlTp049efJk18gLCgpWr16t1+sBAFKpdOXKlRKJpGs3i8XyxhtvmM2DuNobHQLGjx9/7dq1vvRUqVQuPO9PX/1UuKuwu62H9xy+uuWqUq+8/K/LxR8Wn/nyjMliat/0zeHL/77swkigPtJqtRaLxdNRQJ7k2g+Bni1evPjgwYODdrq+OHfuXGBg4MWLF2tra1944YUVK1agKLpt27ZZs2ZVV1fX19cfOHDAarU2NDSQSKSrV69WVFRotdojR46kp6ejKGq/Rly+fLlYLP7ll18YDMaiRYvy8vKysrIYDEZxcTGKojdv3jxz5kxDQ0NOTk5ISMiFCxdQFD148GBgYGBFRUVFRYXVat25c2diYmJubm5FRUVmZub//d//oSiam5vL4XDOnDlTWVn5yCOPAABaW1sd4n/yySfXrl1rs9kWLFjwxhtvOH2P9kyp0+k6N3711VcvvfQSiqIajcZms7n2X9WNk2UqKiqqqqo6Xk6ePJlAILjvdP3gl+HHOsQqKi36qfynl8NfFvKECKP9Elmmk/lX+fMe4TFIjPQ30xEMEgnu32dOeyxNv0Nf11Tn5+PnodghCPIA/QW9IWvw7l2RZ5JJqQ+MEG7duvXvf//7lClT7D+zWCyj0ajValEUtVqtAQEBjz76KABAIBBgMBh/f3+RyMn8+Y8++igoKCgiIuL1119ftWpVYmIiAGDSpEk3btyIjIwcN26cQqEoKioyGAxpaWmnTp2aOnWqUCjE4/HBwcH2I2zevHnHjh1JSUkAgE8//XTevHnvv//+Tz/9tHr16hkzZgAA/vnPfx465KRuyfbt25OSkhYsWCCXyz/80MNVWzu4MRHu3r37119/jY+Pt79MSUkZaokwIyZj37F9Gfsz3gZva/O1cqKc8yoHg8MAAE6eOplGSBPFigAACMZxAJnL4V7zuia/LvdbBBMhBI0i5AwyOYPswQAqKys//fTTjmcNxsbGtra2rlu3rry8PCUlxdvb+/nnn3/llVd6PkhHdvTy8hIKhR0/azQaAMDBgwdfe+21KVOmeHt719XVEYnErkeoqqrauHFjx0c6n88HANTV1c2dO9feEhIS0nUvAACNRnv55Zc3bNhw7tw5PB7/UO/dfdy7fGL+/Plbt2516ykGAoPBpKxNIZKJLCIruywbdwA3/tJ49nS2yWqKvBcJMnrcNwiDqYJ13yEIGlRCoXD58uXPPfecQ/t33323Y8eOixcvPvHEEwkJCVOmTEEQBEXRfpzik08+2b59+7x58wAAGzZsMBqNAACHowkEgq+//tp+YdrB29u7oaHB/nN9vfMZhRKJ5IMPPnj++ec3bdqUk5PjNMsOPvdOlrEPWN+4caN//x+DIIQVwiKxAAYsCF9wM/qm4boBNaBZp7O8sF7BE4J72DE8KTxAHWC0GgctVAiCoLVr13700UcFBQUAAKVSefDgQQDAxYsXq6ursVhsXFwchUJBEAQA4Ovre+nSpdbW1oeddUImk+/evQsAuH79+q+//mpvFIlETU1NhYWFCoUCRdG1a9e++eabNTU1AICmpqbjx48DAJYtW7Zr166KigqTyfTBBx90PbLFYlmxYsXLL7/83Xff2QdmB/Rv4TpuvCLE4XBSqXT//v03b94UiUSnTp3y8vJy2lOhUPznP/85d+6c/aW3t/eqVauc9jSbze6bSrRh5oZTxadmfj5zDDqmLK3MbOnpRF7eXhSEkl2QPSl2kpvigboym80IgthsNk8HAnmMWz8EHAzBb/CPP/64wWB49tlnm5qaqFTq4sWLlyxZYh+olMvlFArlxRdfnDRpEgBg27ZtW7Zs2bp169atW5lMpn01PYIgSUlJHQvVY2JiqFSq/eegoCD7COeWLVvWrFnzxRdfJCQkvPXWW/YrQqFQ+NFHH7300ksajeby5ctvvPEGgUDIzMyUyWRcLte+SHHatGlvvvnmjBkzsFjs22+/fffuXYfV9Pv37w8MDHzzzTcBADt27FiyZEl+fr79DmVnCIIkJiba03lnNpvN/D99X2uPxWK7HsoBZiD/099///2nn37q0EihUOx1YFEUtcdqNBonTZqUmZn57rvvOj1OaGhoamqqQCCwv/T29n7ppZec9lSr1TQard8B9+p20+3i6uI4QVx0QHSvnQu/L7xHu7ds2TL3xQM50Ol0RCIRi4XV0kcvd38IdLZs2bKnn3568eLFg3M6qAdff/21WCzesmWLVqulUCh9T4Q4HK7XT4wBXRE+/vjj06ZNc2jsyL0dgRKJxHnz5hUWFnZ3HC6X+9JLL40fP77XM5pMJreOKY8PGD8+oPcw7OhRdPpNOoFA6Om/BAXmGjM+cKjcEx7urFYrTISjnLs/BDrr9UoCGiCtVnvr1q3OLQiCpKWlOe2MxWKJRKLFYiESia6tvjagRMhgMBgMRl963rhxIyYmZiDnGoJCEkJIOaRj945lxmQ672EF8t1y0ADYb7EB/OiGIAh6kEKh2LNnT+cWPB7fXSJ0HzfeI5w+fXpMTAyPx7t06VJJScmuXbvcdy6PwLKwJm+T7KQMjUadfj25u/1uk6qJaWPia/G0oEEazIEgCBoufH19v/nmG09H4c5Zox988EFgYKDNZnvmmWfEYnHHLcCRJPDxwBn6GWfyz3Td9OvBX/EqfOT6yEpqZVVhVdcOEARB0FDgxivCtLS0wb/CHWQ4Bk4drY48EZmbkxv9ZDSFSbG3H7x3cGzxWNY8Fp/Jt/hZLNUWz8YJQRAEdQfeCh6oqCVR+MfwWoP29q+3OxqLzxQzGAx+Ah8AEBQTxFFzPBcgBEEQ1JOR9mBejxBECixMC/getEhb+Dx+WUvZMvUy3iqefWtSRFI5Wq5oULCELM/GCUHQw9JqtQoFfNSM59krcbsJTISu4efjd4l9yfCHYfba2UWnikK8Qoj+7TO8CVhCHblOV6AbJxzn2SAhCHooQqFw48aNGzdu9HQgEAAAbNq0yU1HhonQZSIXRVp+tFzfeT2uOc78yAOVL4wio6Fy8CrWQxDkEtu2bdu2bZuno4DcDt4jdBlvkbct06bWqG+QboTHhnfe5Bftx1QyPRUYBEEQ1AN4RehKfvF+fvF+ZptjIcTYmNimw01yhZzNYnskMAiCIKg78IrQ9fCIY0E1PBbfQGoovNNtkTkIgiDIU2AiHCQGnqGtrM3TUUAQBEGOYCIcJPxIPl1G93QUEARBkCOYCAdJ2JiwEGtIs6bZ04FAEARBD4CJcJDgqDgDzpB/N9/TgUAQBEEPgIlw8LQx2xSVsEQFBEHQ0AIT4eDB++OpTVRPRwFBEAQ9ACbCwSOKFPnofFAU9XQgw1ipvPRc1TmFAV5YQxDkMjARDh5uANcf9a+QVng6kOFKY9Ic33Pc53efus/q/rj2h6fDgSBohICJcBBhgZQorRDDRNhPZ/afedL2ZNisME4Mh3ee98OtHzwdEQRBI4F7EyGKovX19W59fMbwomVrNdUaT0cxLNWU1CRVJ9ketRHiCaLFoih6VOnJ0vxGOAsXgqCBckEiLC4unjdvHp/Pp1IfmAlSUVExZsyY9PR0oVC4ZcuWgZ9oBCAGEmktNE9HMSxVXasq8Cng+/EBAAADGI8xNoFNOb/k6C3waxYEQQPigkRIIpGeeuqprg8r2bRp0+zZs6urq2/evPnee++VlZUN/FzDXWBUoMggsqE2Twcy/FBaKNSQ+9+0cD441vOsWdZZl/ZdcuipMqq61j2HIAjqjgsSYVBQ0IoVK0JCQjo3trW1/fnnn/YHWoaGhs6ePXvv3r0DP9dwxxaxvYBXcVWxpwMZblAgMAocHm6F5WKVE5UsCcuh78r/rnz99OuDGBwEQcObu+4R1tXVIQgSEBBgfxkeHl5VVdVdZ4vFUl9fX/k/zc0juQ5ZDbOm6WaTp6MYZqoqqlQYlYgvcmiPTYz1M/spNcqOFovN8kzlM5l5mbdqbjVrmy/XXB7cSCEIGn769DzCioqKb775pmv7pk2bvL29ne6iUqkoFErHSyqV2tbW7bMX6urqNmzYQCQS7S/Dw8MPHDjgtKdGM+xnmuiCdfxCvlqt9nQgw4NBYyB5kcoLyhEK4q/21+v1JpMJi8V2dGgkNLbmtE5InWB/mVeXNwFMULKVxJ+JYoz4DnInYUOCh2KH3GIEfAhAA6HT6axWKwaD6WN/EomExzs+Gs9BnxIhkUgUCoVd23s4Op/PV6lUNpsNQRAAgEKh4PP53XUOCgr68ssvx48f35dgaLThPdkkcWKiMc9IwpDwXr3834xmNo0N8UJQG9ryVYs4SIxVYK0iK41Gw2KxRCKxcyLUCrTGSiNtZvtvhaxIxvRixq2L++PwHym0lNCcUK1N68Pw6XxwFEX7/lcEDUHD/UMAGggEQSgUimv/hPuUCH19fV999dWHOq6fnx+dTs/NzU1JSQEA3LhxY+nSpf0JcMTh0/lHCUcjr0WGzQjr3F4sKy5tLV0UschTgQ0deefyeDk80RuiorwiLMAGVAaYgEk7Ueu0s88YH8IJQsdLXjXPNMaEwWCWPLIEAFCQW9B6t9UnvT0RSm5LVKdVbeS2CS9NGIQ3AkHQsOCCe4R6vf73338/e/as1Wr9/fffjx8/DgAgEolr1qzZtGlTYWHhjh07CgsLn3jiiYGfa2SQiCQWscWhMXt/Nv53fHZttkdCGlIwNzFGYLx19JbxhrE6tFoSJ6Gj9KioKKedQ2ND/a3+pU2lAAC9Vh9iCIlMi+zYquAq9GXt6yvKbpWhf6I1jBrvNufj+RAEjU4uS4R5eXkLFy7sSIQAgA8//DA9PX3NmjXHjx8/deoUk8kc+LlGBt9oX6rqgTWXRfeKZstnx3vF39l7p0kzqqfS3Lh1g2FlSGZK+GK+j8onfmZ82oI06zNWAoHgtD+CRxQsRfnP5Warueb3mlJiKZ1+/wHIhFACu4UNAEAtqO2ErWhM0Zy1cyzA0ljXOEjvB4KgIa9PQ6M9Y7PZv/32W9d2IpH4r3/9a+DHH3mSwpJMx0yoFsVQMQAAgALkKCIOE0/PnL7g6wXZ17Mfnf6op2P0GPl5uS3ENjVl6pmLZ6x461z2XACAwE/Qwy5Rz0dhtmLqPqnT2rTYJdjOm8LiwoyXjTaLLXdfrhlrnrVwFgaDkVAkpEKS/Zjld8rV59QJr8EJNRDkqKS1pFXXmuaX5ulA3A7WGvUAIU1YhVTVV9bbX0oKJFqzNv3RdMQLqfWpxdSM3nkcBVUFsfrYxMxEDAbDXMrkLub2ZS+EiPDX8Yu4RfwX+VOip3TexGVy65H6sl1lvGoe6zEWgkEAAAaRwVpttXfQnNX4an11Bp3L3wsEDXdF54uaDo+KASqYCD1D5aVqrGwfnZNelZaKSil4CgAAL8RT2ig97npfo6bxm1wny1qGr+oT1Y38RoIXAQCQEpSSHJTcxx25TO6CtQv8OH5dN9Wx6vQt+vLM8uiQaHsLP5LPaeMAAKSVUpqeVoutvVd4z0XvAIJGDkIbQahysl5g5IGJ0DNQb9TUYAIAoGaU38oPSGuvPMAL4LH17D4e5FreNf4pvhW1uivKwdXQ2hDfGh+2KKz3rg+DOoMqXiSeGT+zoyU2OpZmoWml2pY/W/J88to4bS2lLa49KQSNADgdzt/qrzU5n7A9ksBE6Bm8IJ79yq/uRl0RUjQhvH02v2+gr6/V12A29OUg1jJrhi2j4F6BGwN15kL1hRxJjgvreaJGtPx0efWP1Q3MBqa3iydVzQmfs3zs8s4tJDypilBl+NYgU8vGzh9LDiKTG8nd7X7kzpER81UDgh4KxUAhA3JpWamnA3E7mAg9IyIiwtvsjdpQ3U1dXUCd/d4VAABPwqsQVVV1t+XoOuO2cmtxtbqcwb6/pf5VLf5VHPt1rMXmuAikH6pLqqu3VMtz5QgVCV8e3vsOrmCZZTkx+UTQhqBIQWTEmAihXug02xXeK0w+knzlxpXBiQqChhQvi1cTrqm5aiTXvLRzwaxRqB+4TK4YEcv/kGO0mLGPju28qZXcaqm1RIU5XzbXQW/Wh5hCSqaXRFyIsLZa1cfUmmZNG9IW89eYAcam1WnzfsoTzheGBoR23dqmb0u2JFO51GRp8sWqizNCZgzkXOJKMfV3qjhEnLEsA4cM3m/jtIRpHT+zBWwVRlVYWRgfEv9AJxvAHcU14ZrQqyjoU9UjCBoJsrOzx6WMI+KJbCu7WliNNqCejsjt4BWhx7SSW33u+ZSkliT7PTAlRE/X6xt6f8aeuEisxCpTx6WW28pV36iONhz9gfuDl85LIVc49ESND/d7XHSxyE/uR9xNPHryaNet5aXlcqyc/jydTCaXZJc81JEdA0PRkj9KGn0bZ66YOZhZsCupl7TibkXHyxPlJ1YcWFH6S6nMIvN53idUEyptkXowPAgaNDVVNeHnw4vvFmv0GjIgU8OpdCW9992GOZgIPYYRxmgKa1oyfYlDO+KDEOXt9celOqnC4JjY7GRiWQujxYvgtdtn95PIk6rpqneffVdCkFSIKzp3q71RW72t+qECIxWT7oy5Y5ls8c717jpg2FrZKqfJAQCkNFJ8bbx9dFRr1v5R8AeKPlzG3X9t/zjDuKTHkx5qL3dgRjC973prjBoAgN6i//jIx+9Wv6uqUV1LvibgCoqYReXHyz0dIwQNBulhqRVYFfUKWYusFWn1D/cXmHpaxTsywEToMbELYmOXx3Zt5/hzGDqG/efDuw8f/cXJZRkAgNpIRYNRAMDk5MlTJk9Zn7weAKBhaFTVqs7dNBc1dB3dqDL2MSqrwsrQMcamjw2aFCQCoot3Lzp0QBoRI98IABAliwQYwdmcs+9fev+tzW+lH04vqX24C0TzJbM5zIylYnvv6mZhs8MYBEbef/JMpabib4t/0/0WEBkQ+lroKzNeAQCwZrBEEtH13Otdd/zy+pfXJNcGPV4Icoumkia2hn3T+6a1xaqQKVQ4lbe3NwbFNDaO8EpM8B7hkBMQFGCwGFArKjVIJ0onkjAkvUFPJjlOaxRqheZYMwDg2fhnOxoRXwRfgQcAHPj2AMmLFJcYhzFh8vH53nneYzPGgj6ouVxzjXjtCe4TAAAlT1lyrWT6mOmdOzBVTDDOfjJQEVQRcT5CQBH4IX4txJaaezWRAZHOjuqEuEmcYc4Qzhsaq5QQwFnFIe0k1R2ouw1uez/rTRFRKKB9Qef4qPG3xt1inmR+Y/5m3YR1HTsdu3cMPY0eCz2WuiLVQ3FDkCtJT0jv+t315nvjS/DqVrWVYAUANJIakRJEIBjJ14XwinDIYdKYlfjKC4cunL14FiEitcTaohNFDn3MJjMJJQX7Bju0C0IEHC1Ho9ektKTEVsVa/mspCyhT+6l1YiczS/ec3HOj/MYDTVZAKCY0hbXXkhAkCvxb/FVGFQBA2iq98scV1IqKzKKgiCB7h8nLJlOXUCOSIhjPMVp8W6w1D7HMoOxKWTOtGfEaKr+BQm+hbo2u6ammJa8tEYkcnwCcMCeBFcxKOp9UWFkIAEDNaNPJpjEHxyylLk2tSnXJ7FkI8ixds46moaXMT+GIOHQ93aQymSgmAIDSR2kudtlaqaFpqHwMQZ3xM/n+xf5eBV5oLKpIVvCKeeDBFCOVSlsxrViM46BieGg408q8ce5GC7EFtxpXSi5NW5jmM8aHJ+d1PUtIfojkvKRzS3NWc6WtMnVc+/UNK5Y1DozbdXMXAKBwf2HM3Zg7f9yRYqQcBsfegYgl8mP4pKkkLAfLDmOzFKy+v0efSh/TGFPf+w+COJ+4dL90Jsn5Qkb+Cj7Rj8jYy1BsV7Rtaau9VZubkCvYIIi3xeeU5AxyqBDkctXHqq/Qr4RwQ/wC/bwt3pg2jM3LBgDgx/MF8pF8OQhgIhyaQmNDLWxLmiUtfEr49LTpdbY6ebm8c4dWaasa5+QZ9wQ8oQHXILoj0oRpfIW+s/86m8vgJsUkWWwWRcMDk26kammwNdhX6mtDbfaWGnmNOktdE1/TUWMXQ8ZgudjWrNb8svyw1rBLYy6JikVNZOe1B8NiwwIsAVpjn4pQqJpVXDM3Lj2uL52HCgwYu2rs8fDj76jfeZH+4o9jf1wyfwmGgGngNSiynU9ogqDhAtWhjEYGZwoHAMCms5UYJV1Ox9FxAIC4mDgzam6VtHo6RjeCiXCICn0slDiOiKFivAheUi9pVekDS+zVrWodwfk6eiVNybKxxkwd09FCxBIrvSqrch44wt3CuzK8TIAK8srzFC2Ka19ea9rehNLQp+Y91bkbawFrPboe2YeUeZc9suiRX5i/1PvWOz0vkUyU4WXFRcV9eXdlWWV3qHcopL5WVR061i1dt/7Z9RFREV/N/crewprMimyORG0jf60VNIJV36y+ibk5a8ws+0spXhpgCKCwKAAAPIIv8yqrulGFWlCrYmRWWYKTZYYoHB9Hm0uz/2zhW8wND4zR61Q6G8nmdEeLyFKiL5nEmtS50TzOzLvE08g1Xmwve4uiVEHgEvRGfeX1SkuTxYa3RU2KYsQzHMMQ4mjP0iS7JWMfG4vBYFY+t7KjCE5XCppCX6YHib2/O0uDxRbgPP6hL5YfG8u/P903NCq0GBRLaiV+gU5KfkPQsKC8p1T7qTuW86qparwJT2e3ryA0hhiZxUzpl1IzahZtcryDPgLAK8JhgOXPIilJnVusbVaU6vwSZGrm1Kh1jlVpFk5amM/NL/nx/vIGupROCaFQY6lxVXE8Ey/lLynsKWwsw8lKBi8fr+Q3krlsLgCAR+FxyJzu4kQCEWIDsS/viKal8QKc3LYcplrxrS2NsGw3NIyx5Wy/sfe/yVnYFgAAl9/+HLTIpEiz0fy15WulQVlTUuOZEN0JJsJhICwizNvkDTolPqwO6zRpAQBIeBKX5uQxfrNWzyIbyDev3QQAGCyGYENw2NiwiJQILoZLnUPF4/EDjzM0PjRQE9h7xXArYJvZYaEufsqEB+koOlWLqvd+EDQkKeuVGlQzPuZ+IUGyN9kADDx2+7fVWEHsnvQ96/6yrt63vuxsmYfCdCMXJEKbzbZnz55XX3116dKlFRX3y5r89ttvSztRqeAnRT8F8AJaMa3Nkvulb3EGHIXxcDfYyARyg19D2+02AECBuABFUC+OF0JG2C+yBYmumRImEAk0eE1WTlbP3ZrrmhsxjT4MH5ecdCgwM8xgJM8kgIYEXaFOulmKmp0MBdUcrqnPcX7zvi/K8spqqDVk3P3FytxAbi6S2zFSisFg/jntnyKaKGVuSqg8tFpe3e9zDU0uSIQWi2Xfvn10Ov3o0aNy+f3JjUVFRVqt9vH/IRL7NGgGOSUlSavK7s92oZgodM5DFwD0G+/n2+oLAKi8Walgtk90RDiuHBXQBmj1t3splCqpkrSSRlTewLPxODW83Q65UWNVo+KIolRXWnPYycik8Z6xqqBPj6xxylZlswQ9sBY2NijW8qiT1bFMb6aWor166Wq/zzU0ueCvl0Ag/PnnnwCArVu3OmwKDw9//PHHB34KyMAyWOvuz9eiW+hM3kM/ty8iIkIMxDfybiTWJ9KXuqWQbuTkSPYP7DZjG4PoOO+mg1ai1TJH1KM+GT4MfKELxpYhqDsNvzY0BzYbwg0BpwK0TVqqD7Vjk06m41q4qrZ+DrmZTWahWshOeuB54HgEvzhysdP+al81uanb53cOU+69R3j69Om5c+e+8MILd+7cceuJRjyyLxnf2v5Ra7FZmCiTx+vPZJN6Tj3+JF5L0fqEu2VkkiliAjw4cvGI/aXTh/fi5Di8YESlDR+hD8fS7RwiCBogg8kgsopmLZ21JHlJFjur8Ehh563im+J8XD7fyO/5IFa5FTU5GVY9//P5KlJVmF9f79lTRBSKZvgtfOpZX68Ir1xx8mzS0NDQHgrQJScnh4aG8ni87Ozs1NTU7OzsxETnM+urqqoWL17cMXYaHh5+4MABpz01Gk0fAx5heCIe/ia+VdFKwBGaZc04gNPp+/M8XlIUKfByYN3EOrXayXp8l8BGYONvxm/Wbza3msnN5Gc3PIvBYDp3YGqZqDff+haRAAAgAElEQVTavwD0er3JZMJiPV+nuzMahaZDdQqpAkeCA6RuNwo/BEoqSkgIiWqgAgMQxAlIl0md/3zMJebW4FZzqbmuuo7JcTJQZDAYmv5oEjYLlQIlf9kD+fJ80fnExkTbClvf/x5ZXJbFaHHfB0ivdDqd1Wp1+FTpAYlE6nUyYF//bt99992uja+88sqiRYu62yUzM9P+w5w5c+rr63fu3Lljxw6nPf38/N555534+PbHolKpVBqN1t1he9g0gsXExtw+frvyeOWclXOqaqpQHBpIC+zHcSZMmnBNfS0tJc3VAd5HW0yTEqWr8leZcWbEhrSoW0JF9x/wazVbWVaWX6wfjdSf/0csFkskEodaIgQAVGIr+Uq+f5i/pwMZFUbbh4BKqjKRTfZ3PS5pnOq8CofDkclkAACwAaFGSJtAa6puIjYSnS5mzfkph66j703auyh/EaJBqIL7w6qYKxhtmDYypK+18gEAXqFeBJSgAzpvmvdA31i/IAhCoVD6ngj7oq+J8MKFCwM5jVAo7Dyh1DEIHE4kEgUHO5aQhjpjL2Gz97HrGuraFG1YfD8zAYIgaZluzIJ2vHk8W5oNQ8Pkbc1TiBWdE2FlbqUG0SSQEtwdwyBT4pW4RhxMhJA76Jp0GEb75z6VRC3GFTcWNSaOSwQAVN6rlGFkKf4pp+mndbU6MMFx398v/J7alsrZyEmlp+6t3RtzICbupfbSho2yxgRDgmDhw00ax+AwSqxSWa30HuOZROgObrxHmJuba39Sa2Vl5c8//5yRkeG+c40G/qH+dd51pftLdQqdiTS0ylV3hTARDBaj5+qN1UYAAIqiqAUtyCsgnSNJEiW97j7s6Cl6jXTUDdlBgwMvx+O97w/uqZiqlrL2Ag6SfImUKwUAYH2wiNTx81xpUPpl+4EJgEKnAAAmLZ3EUDIqituvScoulVXTqnHkhx7PbyO3yepl/XsvQ5NrEmFYWBgGg1Gr1SkpKRgMpra2FgDw6quvMhiMgICAuLi4pUuXrlmzxiXnGs3GrRwXpg3TlGhQyvCobEkJptDkNABA089Nyn8phceFTSlNC+Yu8HRcrmdhWeBSQshN6Do6z+/+5DhiIBHf1J4XqQ1UdgwbAMAL4NHUjiPGV25c4WK5ftPax0v92H6SKEnDoQalQQkA4FZwtWP6M3/bRDcZmnurmzGsuCYRlpWVoZ34+/sDAK5cuSKRSLKzs9va2j777DMEgVVsBopIIZqSTdMM08AwuUUSHB3sZ/Azq83WWuuuSbuIrxOTZyV7Oii3IHFIeO2ImgoLDREWm8XH4hMQFNDREhwdzNfyURSVKqU+Zp+E5AQAQGhYqNAidJynfQsoAhWg0920iUsmBiABH+z+oLWgFTEiieP7UBq4C7wPnqgcUevC3Zuc6HS6r68vTIEuFDozVEfRBfkFeTqQPmFxWVbEemv/rVxS7qapm/o3QWZYYAgZbAO7934Q9JCqG6uxGCyJfr/asMBfwEJZYok4Nye3kdJIIpIAABQaxYAY7hTfX6imNWpjVbGhGaEPHA4BvNm8t1ve1h3R7aPt43v1sujCKa6Iy9B1u1B4OIKzvYcbBAjWChDqsPlu0UxpjmqMUkwd4U/sCwsJ01v0Fq0FR4V/U5ArSaolNALNH3Sah4UBGqbm0r5LLITFDrj/9UvOk9derR0XM87+8mbWTQaBEeTj+KWZHE/Gs/Dn2s7F4GL6F5IoUIRaULPNjEcGdRTkxI0TjS2NyzKWufzI8I92+EFowyYLAgD03vpGXeOMiTM8HYh78Si8i/iLhmJD+LhwT8cCjSjKBiWO5vhBHf5kOON7BlaHJaQQOhr9p/gTfifozDoKniJVSRk3GYpw519AcQG4ZaD/6YTEJJEx5Oqm6jDhYJTO//eFf89PmM/D8wLPBIahYcXRxUlBSa49xXD6SIWGo7iZcWA+wGKG3Mo/l2tjtrWUDJuHMZ28eLJJ3eTpKKDe2SQ2kg/JoRFhIT4v+pATyEy/+yvofSJ86Fj6mWtn9l/bL/lKglLQiQsmuikqKV4qqe5l+rdEJelaW8qKWr+9+e3mg5tttj49kVSmlmVmZaq2q6q+q2qhtljYlltHbvUz6O7BK0LIvfg8Pp/Xn/sQww4xkIi7hwMA2JQ2hIEAV673dbGrf1xNvpt8Pvt8y6yW9cnrPR0O1C2JXJKoTfSe5GTFHsYLQ8t0vOmuCdAQLhISMYloOOq/1I2rWvVe+rbGtp77vLfzvXhDPF/If/zZ9orTFpvlhW9eeLPtTS+rV2tJK30WnZjUy6Sb/Iv5PBKvjldHkBAiXozwRX29vvHKr8xPCnHlRSG8IoQg1wiLCfPWeaMmVP6tXHV1SDx07PqJ6zlHchwaJdcloiJRy6KWDEYG7TRNohqByzpHjNunb8uoMjK3r0WuI2ZEJJISeYt4bs2CAADABjZZT5d0GpPmb7q/LQtcllKfIr4rtjeeLjj9geID/0n++vX657HPq8+orQprDwcBAHDucdRj1AueXhCwLiCIE4Tn4imTKPGseJe9EQAATIQQ5CohfiFWYBXvEZeaStsut4Fe/sDdTlwkFuYKfe/43rl7fyahWqO2nrXmjMuJGhvFWcuZipt6+c/LHgwS6llIRQg+/SEmpBD5RO/XvUljHIdSXc5L6EVR9VR6u6y2DCCAu5J7N+Cu9mz7asXWK61KgZI0kRTCClm3ZN336Pc1u2v0pm4f3KZsVLLN7MSpiRgMJoobZW8kjiMiLBdnLjg0CkEu00RpCq8Pr5xTaTprqj9an/pIKgDAWG2UFknlFHnUlKjBmWX3cdbH5BbynOI5NWNqiAiReJh46cwlH71P7thcXAXOl+a7fM5yAACGgAGLwMQDEzUyjRfXaxACgx5K4c1CG8YWlxLn6UCcEPgLdFk91f1vqmyykq2BIDBufpz532a1RK3yUqUp0wSPtVd0mxM6J+j5oObvm42fGn+m/fzOi+94ERx/CWvO1ZTSSx8nuf1ZfvCKEIJchhhKrParnp88nzefx73LbdO1ARTU/1pfdqeMfJV87ZNrxwqP9e/IJmtfi+qdKj2VcTljhXiFOlA98ZGJyQuT8QI8k8k0xZumFUybrJ2cvOp+TQP/SP8cVk7lwcr+RQW5leKWQiIcogPXHCHH3+Yv090vtGYz2HTndOB/Na/MDWY9Sw8A8GX7nuGeafu57d7ue3qqniK4fx0ZwY2Y8NaEoHlBa/VrpVul5soHZ9aggFXLwiUNxtUavCKEIJdJXtieY2LGxuSeza04WBESFqK0Kie8NYEIiLhfcOhh9FbLrYTpD1dz/OSxk/x8/l3q3cTlibHC2B56oijadKQpjB3GW8vjI+1zlKJWt48pWcZabDIbgUnovItgmoDzXw5qRjH4ITy9Z1Tiy/jkeUP0EbgYIsaIGGtratmhbHmh/JOcT9Yo19AB3YK30CfTAQAUBQUX1Z5f0h5NO3rq6OyG2aRZTsZsSYkkdgz76y+/fubYM6KXRB3tDUUNLWjLnPFzBuHtwCtCCHIL1lxWRFWE9rK2PqqehCNhcJigp4PUE9X0HHrj8ca+H8dqtEbciiDEEsZbx1ee6eXS7cTZE9ON0wOfDMQgTrIazhdHiCc4NE6MnHgPuVeZAy8Kh5ZmSTPOhksYO3Sf06IgKVrqW+R/ylUnVC9rXqYmUL8I/kKTpbFpbQAAnp7nHdQ+2TWWH/viUy8GvxksTBA6PRSdSI9dEIu2oTb1/Qk49Vn1VT5VZNxgfBWAiRCC3CIkKqSeWk830qfNm9bRGDc17lTaKfQWatP0vogKtaGoCS3/rfwe8V7s4lhlkpLR4ryulU1tqz1cW/ZxWfz1ePUkNeL1EH/XCAZpCmnS53U7YQHyiLIbZVW0KhwydAftzHSzrkGnv6c/mHjQ901f33m+/3j8HxfxF4t/KdYZdN5Wb//gh5i5Oj9ifg6S03Czwf7SarL6yHyiMqLcE7sjmAghyF18lvhI0iQ08gOLvZ6b8twJ7AnJod7v/Ui2SxSfKPC1eF2GDgAQEhsSYAiwP9qsM2WTsuWrltKiUnGEmP06O2ryQ392pGSk0DV0k3yoP9trVCFUEWxhfVpy7ik4Pi66NroB1/DqnFftLWQcOenJJFILSXxK3IRrwuEfIovjEJwyRKkqUElrpKX/KlV8oighlsQG93QjwIWG7tcNCBruQgJDQgJDHBqJWCIyFcGew1oaLThBt3+A2hatWWHeELVBbVYfTDwIAODyuTKMrLKiMiT0/jHNNvOdPXeUPOXs1bNJuH5Omo/gR/xI+zH9P+nhr4QP5ToAo8TRC0dZt1iBukD/1CH9nGeuL5dWQNNN0XWuGxUhiNgftX9GwYzb9NsPe8AJkyfQd9ENPxtK/UrHzB0zhTvFpfH2BF4RQtBgW5m88kvCl7KfZai22+dK3j139y797t7H9h5dcbRj0UUDraG+uL5zt89+/yzIFJT5TGa/s6Dd3OfmKgyK8z+cz2/Mb9Y2D+RQ0EBUyipjs2JpPJrycaUP28fT4fREFCgCRCAc53jbb8niJXmEPA3voZ9THSuIvUC+cFp4OvPpzAB+wGBW9IZXhBA02AhYwjPPPHPsh2NTd0wVrRGRmE5yGK2aZpjq+OxTvY+eUXv/NuH5e+cXlS9iTWdhCQMt5epD80GfRS0/WK7vuf6u7d03TW/aYm1TFg/eV3LILvtAdgIrIe6pobh20AGWg2VuZGJwjmMIeAQf/WI0Gd+fSS4L1i+gE+muiO7hwCtCCPKAaF70gvUL7uHvSbdJs85nOWwtKirCWrETUx0rJnMjuNw2rv1nTatG+IeQEEigpbrmKY8CH4Foo2gWa9bP6M9B0UFBd4NqG2tdcmSoj/Lr8ifLJgc+EujpQPoKQ3I+ku5L9+WQOf04IJPERDAeyEouuCLU6/WnT58uKiqi0+mLFi3y8/Pr2JSTk3P27FkfH5+VK1dSKD3V44Gg0YbvxV/w8oLcC7mCbAE6BcVg73+m1FyroQgoEZgIh12io6Jbj7a2nGoBIcDwm6GYVbx45WIXhoR4IfQ1dNSGshBWjjxH+6uWt5E3OPPXIQBAZVYllokN8A3ovSvkUi7Ivc8///xXX32l0+ny8/Ojo6OvXbtmb9+7d+8jjzwCADh06FBGRobV6unaixA09IzLGCfFSu9evtu5kSFlMKOZXTvTiLQjcUfqb9RjfsXc9L+ZuS7THSHZ1yAmPZUUYgiRfCw5s/XM6bunrSj8+3U7cgtZ7w/XsXiAC64It23bxmS2/9ESicRt27alpqaiKPrBBx9s27bt8ccft1gs0dHRx48fX7BgwcBPB0EjTE1kTfzNeJDR/lKhVQSaA3kJPKedNy7cqJ+rb6lveTTwUbdGRSARAt8KVJYpzZfMjEOMzec2P7n6SSHN+YLoDoYcAyGagDDgPZf+oGlp/IBR8cyyocYFv68dWRAAgMfjCQQCAKC+vl4sFs+bNw8AgMPhZs2ade7cuYGfC4JGntSMVKvJqvpNZbhpAADk386XEWQEkmMJmA5kPDkgcDBGzzAIhhXBil4bzV/Bf8L4RMnXJaWNpT3vUnOppiivaBBiG3n0Fr2v1dc32NfTgYxGrpw1WlxcvHv37vPnzwMAGhsbaTQalUq1b/L29i4sLOxuR5lM9vXXXx84cMD+ks/nb9y40WlPo9FoT7TQ6GQ0GgEAWOyIet69D9lnPXt9RmVGcmmyUW2UV8pJHJL9nQ4VvoC7nqv6SVW4p1C0QdRtuRMUMM3MspoytwY/Mj4ExEVi+S152pNpHS33au7xMDyUgA6t//qhx2g0YrFYDKavK15xOFyvnxh9SoRZWVkLFy7s2p6TkxMR0X4/XyKRZGZm/utf/0pMTAQAIAhis90vi2Cz2XoIBYvF0ul0Fotlf8nhcBDE+aUqgiDdbYJGA+R/PB2Ii7219C2ZTlZTXCPMEXIQDnMSc8i9RwIIeSqE/jV995nda+aucdpFK9cSAAGvxLs1+JHxCyDPl3s3e3d+I421jRgSRoAIPBjVsGD/Beh7IuxLzz4lwgkTJlRXV3dt9/Jqf3xUY2Pj9OnT169f/+KLL9pbBAKBVqtVqVR0Ot3eQSDo9j+YxWI9/fTT48eP7zUSPB6Pxw/eKktoqLH/AoywK0IAQCg3NBSEAn8gviOOM8YxE5hY/NB7j3iATcdOy552uvC0xd+y6KlFDtubG5tRgLJ0LLf+kY6MDwFOK4dv4xvMBhqlffWLrllnoptGwFtzN/svQN8TYV/06YuV/YqtK/vXmZaWlpkzZz799NOvvfZaxy5CoTAuLu7QoUMAAKPRePLkyblz57owbggakYQLhUaGEUsdelkQAACAYIrAf7J/0pik2JpYo9VxBE/RqCinlFNtVKtxoFNMS+pL9JYRMn9S1iAr+6xMV37/MbYWvYVj4jQijRVlFR2NOBkOL4BZ0DNccI9w/fr1VVVVFy5cuHDhAgAgOjr6yy+/BAC8//77q1evzs/Pz83NDQsLmzFjxsDPBUEjGz2STotwzQJ5t8AA8iQyGZDFReJrudemjH+g9IxBarCxbHWGOlOlKSgqaCDnMf3HdAF/IXVDKpvMHljEnldyrsRisND205DZCGkcCQBQebuyHlePo+K0NVrwvxoyDC2D68/1ZKCjmAsS4d/+9rcXXnih4yWD0V4CauHChVlZWRcuXJgyZUpmZqZrr2QhaKQaFn8pSoFSfksOHrybgW3D4gJwSpUSrUYHkghLi0oJKCEcE375q8vj1o3zZTzERMrDZw/PmjKrf/W93IRfx6+eUf23W39778J7vuN8AQDqYnUjt1FEEVmaLPY+GpPGz+onChT1eCTIXVyQCOPj47vbFBkZGRkZOfBTQBA0pPiN98MdxFlsls4zSKlaKtYHK2uTmRvMAzm4/Kpc5i2b9+Q8zA5Mw78bdE/owgPD+7Jjm7YtNSf1iuzKrOWzBhKAC0nEEp1NN3X8VL8wP9m3MlYFixpCZbQwyBPIdAzdcr09Ee47tC8TycQxYPFnzxj2k68gCBp8okiRN/DOKc7p3Mi2sEW+IoqQQlD2vryhSdPkfIMVCJuFjPEMhISEvBJCEBD0e/Vdn8Lo1J3cOwpEEVkWqVO335CzoR5+pF/DlYZy73I8go/kRt5g3ag+V627pDNYDbGxsf4h/jwjD7WiDVsappVOI4wf9mtChi+YCCEIengY0Mxubsxr7GjQa/U4FOcr8BUFibj6Xu511Svqb2y90aS8nwuvV19vqW8xlZhkB2XVoDo1JtV+lvhn4xGA5F7M7eFo4lLx+d/PAwAMxYYGvwYxTVz+Y/mV/Vf+8f0/mP9ifnHti4G80YEwqoyCZoFPevvTlMbOGstuYSuyFFtEW0LZoRwBh4/yrx+6XqYvU61RsWcM+7uhwxdMhBAE9Qc5juxbf//uXX1dfTO2GYvBhgaGYlCMvFHew753r9+dBCbdOnnL/lJr0jL2MMw/mKsOVOVV5p0KPNX5WXTSBCnlercl+1EUrTxSGSuObWpu8pH78OP5okdFNboaqoT6guKFaqRaeF5459adAb/dvrGC5m3N8sr29170n6Jr9GtpUe2r5lNDU4/Tjh+MPLjz6Z0YDAYgQEaQBd4LxM/Ex/t0e4MJGgRwSBqCoP6ITImsP1/f2NIo4AsAAC0NLQaiAQCAR/DltHKv617pj6R3ty+2FFtELwquDAYoABiQey2XhWPxXudJpVKCgbCR90BhqUmzJ93Nvyu+II7McDLh4PCtw8mG5HJWufVXq5/Nzz/WH0GQmLdi7FvNEnPc+TjanzRDsIHE6PbZxRWKiqzarJVjVna+5Zl9J1t7TMtZwEkak9THfxNZvcysMBt/MX7q9WmyV/LYtrFTX5raefbTcy8/17k/nos3mA1pKWldjgQNKnhFCEFQf2Bx2ApqRcXV9pVw+EK8ntG+8g8NQ/EVjkviUBTd8tuWfx/8N2pDg1XB/ov9NajmXvY9AIDtjq3Vv5WAJcT7xGcEZnhTvTvviEfwrRNbqVnUvOI8h2OabeaqM1XmAHPAkoAIdUQNtcah6AzeFx+xKuIW9VbBiYKub8FmtKmz1Af/fTBrRxbrNOvcV+d0Be03F/UWPTgGRBSR9yHva2eu9fHfpKqs6h75Hm8e7zXMa2PUY4wzjTyG8+LpdqHzQ/2X+/fx4JD7wCtCCIL6SRepE90TARu48t0VhpYxbtU4e3t8arw132o2mfGE9nRosppO7Ty1rHWZ1Wa9SL3IwXDG+o/NicpJzUq1JliDlEHAsUzNA2ZMmVEkK7L91yZeKxaRRTVtNXqzPpIbebbs7BLLEtEsEc4bd0pwihhAdLo7bSKNc4Zjv/rsTH1a3XC3gUPmzIyeCfDgYvnFtqNtxCAiloY9vP9wAjYhYmNEYW6h8LSwLaGNwWX0+g+iqdOYOCZyEpmcROaD3p8jgfUZopUTRht4RQhBUD9FJ0fzdDzZP2UsOUu0TuTNar+S8+H41OHqCnLbL8K+OvnVrX/dCm0Lpa+m1wTUxN6IrePVAQDmzJ9zDblW93WdFCsN9A/s+Vwxj8awvFinDpwyWU1Xd16t+qEKAFB9pdpMN+O8cQCA2WtmT5051em+k5InKTHK6weu39l858TPJ0xWk71ddU/1nd93E1+eSHuERptPm7Vh1inCqcoDldevXk+vSmcvYQMEjEkZc4d3p+7nur78g+DleC9fr770hIYUmAghCOqnIG7QR6EfnZxzMvrtaA6b03mTUqTU3tICAE4Unngk9xH/WP/I1yNpAtr4leOzCFmURAoAgEFkJD+XXG+pr/Wr7cvpREtECxUL397/9mTj5GhT9LmccxOaJjCnOXmCsQMMBiOPkvuKfRV0xdjaseu/Xi/VSY0NRpVZ9eLcF7GY9ssyIpYYtjiMKCGKzonk6XJeWPuo5oSVE4w6Y9nnZRdPXOz5RBw9JyAUPl9++MH0cYGOW6Wmpn755Zd9KbqtVqtptCFcgApyM51ORyQSR17R7ZGntqEW/ABup9y25FvG+o4NfTK0Y5PBYiDh7s9bEcvEHAqHR+npXlqHmp01hGYCcTJRLBPz7vGsOGvkW30q2YGiqEqnYlAZ5lKz7IBse/j2x6yP3W24u/LVlQ49v9/3PZPGfGz+Y50bb9ffbr7SHFMW07q0NS6ivSpajiRnW9Y2q9z664u/YjAYaZvU/JVZ8DcBBhkGtYGGL61WS6FQXFuACd4jhCDI9fyF/lWzquJPx2OwGN+lD9RI65wFAQCR3IcoPuW72Ff1p4o1iZViTaksrmyJbYkEfdodg8EwqAwAAD4cT0mnPH3laTPGzEh3cttvzXInD5mKF8WD5SBnV47snMyeCEtbSsv/U/4F5guLzXK98npqSGpJcQkFTxEiwr6/HWiIgEOjEAS5RVBKEDGFSF9AxxBc9uUdy8XiHsUBDMDhcPT19InzJ/bjIIwpDHmwnIASpqdPf6gdw+eEx8pjZWqZzWDT/KBJpaey17KbOE2SCxIAgKxG1jFvFhpe4BUhBEHu4j3Lu/dO/eXD9On3vskrkuukdQ9bm5sj4tST6ot3F49Vj23CNsWtj8MiWM50jtdvXlqj1igx4kLgJ+qwNJyuCPV6/ddff+3pKCBPOnTokFgs9nQUkMeoVKpvv/124MfBYDD+/P4s4KNNpMW1xWUHZEeuicQiWACAf7i/Eqcs2lw01TB1bPLYgccG9Wz//v1VVVWuPeZwSoRSqXTHjh2ejgLypKNHj+blOa6qhkaPurq6H374wYMBBKUGCd8WLluxLJgV3NGoSFcoOUr2ejZZNIQe/zRS/fHHHwUFTsojDAS8kIcgCHoIXecrzpo0C0zySCyQawynK0IIgiAIcjmYCCEIgqBRbUgsqBcKhVgslkDo5bmUVqu1oaHBz89vcKKChiCpVEqhUKhUqqcDgf5/e/cX0lT7BwD8kW2+78w159ZZ+1PpdF6YA0X82/yDm4GaEjYhlArFi4Su6q6rQqIuCvqDUUntppBKLCnGZjFZC9RYg7QuJCFLt7OhQjZbc2fb87t4fu9eX996y/fdOs19P1fP+e6B84Xz5Xx3zs7Oww6GYbxer1Kp/P5UsEl5vV6BQJCW9s2VudZpb2/v7e395zm/RCP0er2fP3/+kZmrq6u//fb19+qCZMAwDIfDWbfCAEgqcBJIcsFgkMfj/fibZWQyGZ//nYeYfolGCAAAALAFvlkDAABIatAIAQAAJDVohAAAAJIaNEIAAABJLWHeLPPly5cbN268f/++vLy8ra0ttotRgV8HwzBTU1OTk5Pp6ekGw59rwmGMBwYGHA6HSqXq7u7+/ff/L+UzNzdnNBp9Pt+BAwfKy8tZyhrEksPhePLkydLSUn5+fkdHR/QZ0Y8fP/b399M0rdfrGxsbo/Ptdvvw8LBIJOrq6pLJZCxlDWLG7XYPDw/PzMykpaXpdLra2troRxaLxWKxbN++vbu7OzMzkwS/VRg/LmGuCPft22c2m9Vq9alTp06fPs12OiBebt68aTAYrly5su4onzx58uzZs2q1+tGjR62trSS4sLBQWlq6uLgok8kaGhqePn3KRsogljweT2tr69LS0o4dO27dulVbW8swDEIoFArV1NSQb0I9PT3Xrl0j8x8/frx//36lUjk/P19WVra8vMxq+iAGHA7H1NTUzp07uVxuW1tbX18fiRuNxq6uruzs7MnJSa1WGwwGEUKhUKi6uvrly5frCmNjcCIYGxsTi8WBQABj7HQ6hULhysoK20mBuAiHwxjje/fuFRQURIPLy8vp6emvX7/GGPv9fqFQ6HQ6Mcbnzp1rbGwkcy5evKjT6dhIGcRSKBQKBoNkvLKywufzJyYmMMYPHjzIy8sj5WEymXbt2hUKhTDGlZWV169fJ/Pr6uouX77MUuIgLq5evVpZWYkxjkQiarV6aGiIjDUazcDAAMZ4aGhobWFkZWWR8YYkxhWhzb8NGfUAAAQwSURBVGarrq4md0iKiopSU1NfvXrFdlIgLr76Z3mn07l169bdu3cjhPh8vlartdlsCKFnz57V19eTOXv37rXb7Rj+F5vgOBwOj8cj43A4HAqF0tPTEUI2m02n05Hy0Ol0c3Nzs7OzwWBwbGxMr9eT+fX19aQwwObAMMzExIRGo0EI0TT99u1bcqxTUlL0ej051usK48OHD7OzsxvdUWI0Qo/Hs23btugmRVFut5vFfMBPtq4ApFIpKQCapqNxiqKCweDi4iI7KYI4OH78eENDQ35+PvprDaSmpopEIpqmPR4PxpiiKBKXSqU0TbOWLoidmZmZnJycjIyM6enpCxcuIIRomubz+QKBgEyIngS+Whgb3V1iNEIulxsOh6ObDMN898WkYDP5ewGQ2wNcLjcUCpEgGUBhbBq9vb3Pnz/v7+8nm189CZBrx2gNwJlh08jOznY4HOPj4yKRqKenByHE4/HIzXAyYe1J4L93h8RohAqFwuVykXE4HPZ4PHK5nN2UwM8kl8tpmo5EImTT5XKRhwMVCkX03sD8/PyWLVuEQiFrWYLYOX/+/O3bt0dHR6NXe2tPAj6fz+fzyeVyiqK4XG40Hi0MkOg4HI5IJNJoNGfOnLl79y7GWC6XMwyzsLBAJqw9Cfy9MDa6u8RohE1NTXa73ev1IoRGRkaEQmFRURHbSYGfp6SkhMfjWa1WhJDb7R4fH29qakIINTc3Dw0Nke+D9+/fb25uZjlREAuXLl3q6+sbGRlZ29Wam5vNZrPP50MIDQ4OFhYWKpVKDofT1NQ0ODiIEGIY5uHDhy0tLazlDWLE7/dHxw6HQ6lUpqSkSCSSiooKcqz9fr/JZCLHel1hFBUVKRSKDe8yls/3xNOxY8dyc3M7Ozspirpz5w7b6YB4cTqdxcXFKpWKz+cXFxcfPXqUxI1GI0VRnZ2dOTk5J06cIEG/319aWqrVag8ePEhRFHmsFCS0d+/epaSkZGVlFf9hZGSEfGQwGAoKCo4cOSKRSMxmMwk6nU6JRNLe3l5RUVFVVbW6uspe7iA2Ojo6qqqqDh06pNPpMjMzTSYTiVutVrFYfPjw4cLCwpaWlkgkQuIGg0Gj0ZDCsFgs/2KPibT6xNjY2OzsbElJSW5uLtu5gHhZWVmZnp6ObgoEgry8PDKenp52Op0qlaqsrCw6IRgMWq3WT58+6fX66B9sQeIKBAJv3rxZG1GpVCKRCCGEMbbZbB6PZ8+ePWvXJV1YWBgdHc3IyKirq+NyE+YlIeBbAoHAixcvXC6XWCwuKytb+3uHy+Wy2+1SqbSmpib6hPm3CuPHJVIjBAAAAGIuMX4jBAAAAOIEGiEAAICkBo0QAABAUoNGCAAAIKlBIwQAAJDUoBECAABIatAIAQAAJDVohAAAAJIaNEIAAABJDRohAACApAaNEAAAQFL7H/Qlw+CayuEQAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1709,99 +1709,99 @@ }, { "cell_type": "code", - "execution_count": 353, + "execution_count": 80, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXgUVaL38VPdIenOQhbTDSSsYQsgYFgEAwgCkQhXFOSCw6LyeAHZHB1Br864IuPA6IxXGJwrjiiCKBgUkT0DBGWAIWHTAcQQlpAACUkgeyfprvePGvvyhpB0Ot2pVPX384dP5aRSdfo8MT9O1VkkWZYFAAC+yqB2BQAAUBNBCADwaQQhAMCnEYQAAJ9GEAIAfBpBCADwaQQhAMCnEYQAAJ9GEAIAfBpBCADwafoPwlOnTq1cuVLtWuhWZWWl2lXwXTS+imh8FXm88fUfhCdPntyxY4fatdCt8vJytavgu2h8FdH4KvJ44+s/CAEAqAVBCADwaQQhAMCnEYQAAJ+m+SAsKir64IMP8vPz1a4IAECTNB+EL7300u9+97vs7Gy1KwIA0CRtB+HevXubNWvWuXNntSsCANAqDQdhaWnpokWL3njjDbUrAgDQMA0H4W9/+9tnnnkmODjYg9fccM5RWuXB6wEAmrp6BGF+fv65c+du991z585l/CI3N9dZ7nA4Dh06tH///oqKCtfvZbPZMjIySktLby50OBz//Oc/v//+e+VSa9euff311/v163fixIlJkyalp6e7fv3bWXrc8WOB3PDrAAC0ws+Vk44dOzZ+/PiLFy9KknS7Rd66d+/eokULo9EohJgwYcKSJUuEEKWlpSNHjiwtLQ0KCsrPz09JSbFarXXebujQoQcPHqyqqvr6668ffPBBpbCsrCwhIaGoqCgkJCQ3NzclJSUnJ0f51qBBg/73f/+3U6dOrnyW2lnNIpeFkwDNKikpmTlzZiMsBGq325U/d2hMY8eOnTp1qscv61IQRkdHf/nll0KIAQMG1HLaP/7xj6ioqJtLPvroI0mS0tLSjEbjpEmT3nnnHSUgc3Nz09PT77nnHuU0WZa//fZbZ+a9+eabPXv2vPvuu2++1Mcff1xVVZWWlubn5zd58uS333777bffVr41fPjw0NBQlz5uXSwmKadMFkLyyNUANLL8/PwdO3a8//77alcEnrd3797du3erFoQWi8Visfzwww+1n3bhwoXi4uIOHTo0a9ZMKUlKSpoyZYry76bHHnvs6aefVoLw3Llz48eP//zzz4cOHSrL8uzZs8+cOZOYmKj84JAhQ269uHIpPz8/5VJPPfWUMwgXLVpUS60yMjK++eab8PBwZ8knn3wyfPjwGk8OMxov3ZCKi3lP6KqSkhJJ4t8N6qDxb1VSUmI2m//zP/9T7YrA84qLi/fs2VNcXFyv3/zAwECDoY6XgC4FoSv8/f1nzpxZWlpaWlq6atWqxMREIURmZma7du2UE9q1a3fp0iVZliVJuvvuu5OSksaPH7927dqNGzf+61//2rZtmzM+a1TtUllZWQ6Ho86PJ4SIiYlJTEz85JNPnCVhYWG3a8To5o6rZXJwsMnFTw1Zlj07Xgmuo/FvFRQUxD8OdMzPzy84ONjjv/keC8ILFy6EhYUJIf76179Onjw5MzMzKCjIZrM5483f37+qqqqqqkopiY+PX79+/ciRI3v37r13796goKDar19eXn7zpex2e2VlZUBAgCt18/f3v7lHWAuLSfxY4MqJAACd8Nj0CSUFhRCzZs2y2WynTp0SQrRs2TIvL08pv3btWmRkpDPMZFn+7LPP+vTpc+nSpdTU1DqvX+1SERERLqZgvVjNyjtCAICv8Pw8wqysrLKyMovFIoQYOHBgSkqKUr5v376BAwcqx7Isz5s37+TJk8nJyUlJSY8++uju3btrv+ztLuVZVrPIYdQoAPgSlx6NlpaWLlu27MqVKw6HY8mSJSEhIXPmzBFCJCYmjhgxYuHChcnJyVu3bu3Tp09JScl77703YcIE5X3e3LlzBwwYEBsb27x58yVLlnz99dfKBbdt23bq1Knt27cHBgbGx8d/+eWXs2fPTktLU/qLa9euvXTpUkFBQVJS0smTJx977LFWrVrNnTu3f//+3bp1Cw8Pf+utt5RRrB5nMYncMm9cGADQRLkUhA6Ho6CgICAgYOHChQUFBXa7XSl/9NFHO3bsKITo2rXr999/v2PHjqCgoBdeeGHKlCnKCbGxsbt37165cmVlZeXGjRuHDh2qlI8ePTohIcH5mHTQoEHOFBRCFBUVFRQUPPnkk0KIgoKCqqoqIUSXLl327NmzcuVKm822YcOG2w37bCCrScop59EoAPgQl4IwODj4D3/4w63lTzzxhHLQpk2b1157rcaf7du3b9++fW8trzZG9OYvn3rqqRov1adPH29PDzL7iWYGUVgpmtc2ghUA6lBYWPj73/9eOQ4KCho1alS1udHVHDlypHXr1sqSI5cuXbrnnnsyMzPre9M9e/Zs3rzZ+eWoUaNGjRpV34vcavPmzXv27HF+GRwcrLNFnjW81qiXWE2MlwHQUMXFxUuWLGnZsmVMTEx5efnIkSO/+uqrWs5fuHDhvn37lGOHw3H9+nU3bnr48OEdO3a0/4VzDGMD7du3b//+/c7Ltm3b1iOXbTo8Nn1CN5RV1jo1V7seALTv8ccfV+ZuFRcXf/PNN+PGjVPKN2/enJqaGhUVNXXq1KCgoMOHD2dlZSUnJ+fn58fFxbVo0UIIceXKlY8//liW5WnTprVu3Vr5wXPnzm3atKm4uPiBBx6o8WFb+/btn376aeeX3333XXBwcHZ29v79++fNmxcVFbVr164DBw5ERERMnTrVmZSnT5/+9ttvKysrx44d26NHj1sv261bt5svK4QoLCz86quvEhISPvnkE0mSHnvsMefKYmfPnv3mm29KS0tHjx4dFxenlJw+fbpNmzZJSUkjR44cMmRIcnJySkpK165d+/Xrd+HChVGjRn311Ve9e/eOiYlRLrJp06YePXp4ZO3MOtEjrM5CjxCAR2VlZR08eLBXr17Kl48//viyZcvatGlz4sSJ+Pj4GjckqKysfOKJJ8xm88WLFwcNGmSz2YQQ+/fvHzZsWGlpaURExKRJk5zDD2/mcDhsvxBCfPbZZxMnTly/fn2LFi3sdvtzzz33+uuvt2zZ8sKFC/379y8qKhJCbNmyZfTo0UKIwMDA0aNHOzumN5NlueoXDodDCJGTkzNnzpzp06cHBQWdPXt2yJAhyhKvKSkpI0aMsNlsYWFhjzzyyNatW4UQqampc+bMefbZZ++44w5Jkj744IOZM2dGR0f/8MMPY8eOXbFihRDi2LFjb731lnK7a9euTZ06NTAwsOGN7wp6hNVZzSKHgaOAXuy7Ii86am+EGyW2NjzXs3rXIiYmRpKkgoKC+Pj4GTNmCCEOHDjw3XffnT592t/fXwgxevTopKSkX/3qV9HR0SNHjpwwYYIQ4uLFizab7d13342NjRVCdOrU6ciRI/fcc8/zzz+/ZMmSRx99VAgRGxv7/PPPP/zww9XuuGvXroiICOX4X//6lxCic+fOytJaZ86c+fTTT8+dO6csYHL16tVPPvlk3rx5zz777MqVK0eMGCGEaNGixVtvvXXvvfdWu+yaNWu++OIL5fi+++7btm2bEKK0tPT999+PiYmRZbl9+/YnTpzo27fvggUL/vSnP40fP14I0bFjxzfeeENJ2ZKSks2bNyvZNmnSpHXr1il3uXbt2rVr14QQs2bN6tGjxzvvvNO8eXNlebJqi1d7D0FYncXEBhSAfvSOkF7o1RjbRHQIqaEwIyMjPDy8rKxs/vz5U6dO/frrr48cOVJcXDxmzBjlhDNnzvz000+3/qDZbFZSUAgRHR2dm5sry/LRo0eXLVv2t7/9TQhhs9lq/MFRo0Zt2bLl5hLnIJ2jR49WVFQ4s/PcuXOhoaGFhYU///zzokWLlBGRRUVFzo19bjZt2rSPP/64WmFoaKjyJFOSpKioqNzc3KqqquPHj//pT39SBjaWlZU5K9mjRw8lBQsLC7Ozs/v166eU9+vXb/v27UKIqKioYcOGrV279qmnnvrwww//8pe/1NCg3kEQVmcxSZklPBoFdCLUX4yMVnn1UbPZPG3atPvvv1+WZbPZ3LNnz/Xr1zu/azLVsLjxzXs8SZKkrNJsMpn++Mc/duvWrV53V7qeSjU6dOhw860DAgIMBoPRaPzggw+UVVCEEK6s4Xy7ShqNxoCAgHfffVeZWaeUO++lHAQGBvr5+RUWFjpz0XmR2bNnL1y4MDY2tqqqyktz5GrEO8LqeDQKwLMcDsemTZs6deokSdKwYcOOHj2anZ0dHh4eHh4eGBiovFoLCwvLz8+v/TqJiYlr164NCwtTflaZY+06ZUrGqVOnlB8PCQmx2Wwmk+m+++5bu3Zt+C/qtYl6NZIkjRo1as2aNc5K3ro3pJ+f38iRI9977z0hxPXr11evXu38VkJCQmlp6TPPPDNz5kzX87jhCMLqrGbm1APwjD59+nTs2DEiImLfvn3KX/yYmJgVK1YkJCQkJiYmJiZ27tz55MmTQojp06e//PLLcXFxysiRGv35z38+depUz549x40bFxcXt2DBgnpVxmKxrF69etKkSQkJCWPGjOnUqdOBAweEECtXrty+fXtcXNy4cePuvPPOGmeNr1+/PuomtWx9vGzZsqNHj/bq1WvcuHG9e/d+6aWXbj3n/fffT05Obteu3eDBgwcPHuzsE0uS9NRTT50+fXr69On1+mgNJMmyzv/oJyUlrVu3zvUl2Y7mydNT7MfG89DYJUVFRSEhNb0bgffR+LfKzMwcNGjQxYsX1a6IcDgcN27cUI4DAwOrbRJQVlZ2+vRpg8HQuXNn59hIWZavX79uMpkCAgIKCwudcxuKiopMJpNz1ZGLFy9mZ2e3bt3aOafCqbS0tLKy8uaNyktLSw0Gw81PXysqKk6fPl1VVdWlSxfnZkayLJ8/f/7q1avt27dv2bJltcuWlJSUlJTcXGK1Wh0ORy2VvHDhwuXLl9u0aRMdHa3ctKKiotreScXFxcHBwfPmzQsNDV28eLFSuHjx4h9++OHzzz+/tUlXrVr13XffffTRRx7/zefPfXVWk6BHCKCBDAZDLbu/mc1mZYLdzSRJcv7IzXPhq/3Rb9u27e2mtN863+DWEn9/f+dEjptv3aFDhw4dOtR42aCgoFt3yjMYDLVUsl27ds4dZJWbOl9VCiH27du3c+fOrl27njhxYsOGDYcPHxZCXL58edOmTX/+85937txZYzW8h0ej1VnM0rVyQRICgJd07969devWp06dateu3dGjR5VcLywsvHDhgrI9XyPXhx5hdf4GEeQnCmwiwvPbHQIARGRk5K1rSnft2tU5ob6R0SOsgdUs5fJ0FAB8A0FYA4uJGRQA4CsIwhpYzSw3CgC+giCsAausAYDvYLBMDaxmkUMQAhpkNBqvXr3qXMfSe5Q1z7x9F9wsLy9v5MiR3rgyQVgDi0n6+QaPRgHtiYqKOnz4cC3rnnhKaWlpo20SBCcv7QlMENbAahL7r6pdCQBuuXW2uDewrI+e8I6wBhazlMtgGQDwDQRhDawm3hECgK8gCGvAhHoA8B0EYQ0iTaLAJuxEIQD4AIKwBkZJhPqLfJva9QAAeB9BWDOLicVlAMAnEIQ1Y049APgIgrBmFhMzKADAJxCENaNHCAA+giCsmcUk6BECgC8gCGtmNUn0CAHAFxCENbOY2YkJAHwCQVgzK9MnAMA3EIQ1s9IjBADfQBDWjAn1AOAjCMKa3WESRZWi0qF2PQAAXkYQ1kwSIiJAXOPpKADoHUF4W1azlMNmTACgdwThbVlMIrdM7UoAALyMILwteoQA4AsIwtuymkQOPUIA0DuC8LYsJimXHiEA6B1BeFussgYAvoAgvC0ejQKALyAIb8tq5tEoAOgfQXhbFnqEAOADCMLbsppZbhQA9I8gvK0wf2FziHK72vUAAHgTQVibSGZQAIDeEYS1YZU1ANA9grA2VpPIYSohAOgaQVgbxssAgO4RhLWxmFhcBgB0jiCsjYU59QCgdwRhbVhlDQB0jyCsjdUs6BECgL4RhLWxmCR6hACgbwRhbaxmpk8AgM4RhLWxmpg+AQA6RxDWJriZEEKUVKldDwCA1xCEdYg0Sbl0CgFAvwjCOrDKGgDoG0FYB6uZqYQAoGcEYR0s7MQEALpGENaBHiEA6BtBWAd6hACgbwRhHaxmNqAAAD0jCOtgYU49AOgaQVgHVlkDAH0jCOtgNYlcBssAgH4RhHWwmKQcBssAgH4RhHUw+4lmBlFYqXY9AADeQRDWjT0oAEDHCMK6MaceAHSMIKwbc+oBQMcIwrrRIwQAHSMI62Y1sbgMAOgWQVg3i5lHowCgWwRh3SwmHo0CgG4RhHWzmplTDwC6RRDWjVXWAEDHCMK6WUyCHiEA6BVBWDerWbpWLkhCANAlgrBuzQwiyE8U2NSuBwDACwhCl1jNLDcKAPpEELrEwpx6ANApgtAl9AgBQK8IQpewyhoA6BVB6BKLWeQQhACgRwShSywmKZdHowCgRwShS6wmeoQAoE8EoUusZnqEAKBPBKFLLPQIAUCnCEKXMH0CAPSKIHRJpElcrxB2ohAAdIcgdIlREqH+Io+nowCgOwShqywmKZfNmABAdwhCV1mZUw8AekQQusrKnHoA0COC0FWssgYAuqT5ILx69eqSJUuuXbvm7RtZTIIeIQDoj+aD8Lnnnlu+fPmVK1e8fSOrSaJHCAD6o+0gXL9+fffu3du2bdsI97Ka2YkJAHRIw0GYl5e3cuXKhQsXNs7tLCYWlwEAHdJwEP7mN79ZvHhxs2bNGud2VrPIKWucWwEAGo+fi+dVVFT88MMP169fHzFixO3O+ec//3ns2LGePXvec889zsKioqKtW7dWVlYmJiZGRka6eLuMjIyMjIy77rrr5h8pLi7esmVLRUVFYmKixWL54Ycf5syZI4T46aefJk2atGnTpk6dOrl4fTcwoR4AdMmlHuHBgwdDQkIefPDBxMTE253z1ltvTZgw4cSJE1OmTHnllVeUwry8vLi4uLVr127fvr1Hjx5nz5515Xbt27fv37//f/zHfxw4cMBZWFBQEBcXt2bNmp07d/bo0SM9Pf3IkSOpqampqam9evX64osvvJqCQog7TKKoUlQ6vHoTAEBjcykIe/ToceXKlR07dtzuhBs3bixevHjr1q3Lly/ftWvX22+/rcxn+OCDD7p06fLNN9+sWbPmkUceefvtt5Xz09PTk5KSnD9us9nee+89h+PfIbNv3768vLxqQ2A++OCDmJiYzZs3f/rpp5MmTVq6dKnzW1OnTrVYLLXUv7KysuAXRUVFrnzkW0lCRASIa4yXAQB9cenRaEhIiBDi0qVLtzth79690dHRd955pxCiY8eOsbGxycnJjz766JYtW5544gnlnHHjxj355JPKsSzLzz77bFlZ2dSpUysqKiZOnGgymebMmWMwGIQQNY4C3bJly5QpU5yXmjZtmvNbs2fPrqXyGRkZ27Zti4mJcZZ88sknw4cPd+WDVxMZ4H8+vyTEwQPS/1NSUiJJktq18FE0vopofBXVq/EDAwOVZKmFq+8Ia5ednR0dHe38Mjo6OisrSwiRlZXlLI+Ojr58+bLD4TAYDJ07d965c2dCQoLdbt+wYUPz5s0//fRTo9Ho4i2io6OvXr1qt9tr/xFFTEzM2LFjv/zyS/c/3i9aBlaVSIHBwfz2/x9ZloODg9WuhY+i8VVE46vI443vmSC02+0357PBYLDb7UIIh8PhLDcajbIsy/K/u1OxsbHffvttnz594uPjN23aVGek3Xoph8PhShB6kMUs5ZTLQhCEAKAfnpk+0apVq5ycHOeXV69ejYqKqlZ+5coVq9XqjC6bzfa73/1u7Nix58+f37BhQ523aNmy5c2XioyMbLSJE05WEzMoAEBvGhSEBQUFJSUlQojBgwenp6dnZmYKIXJzc48fP37vvfcKIYYPH759+3bl5B07djjfzCnvBQMDAzds2PD3v//9+eefX7NmTe33GjFiRI2XakzMoAAA/XHp0WhRUdGCBQvy8/MdDsesWbPCwsKWLFkihBg/fnxCQsJLL73UokWLGTNmPPjgg1OnTv3iiy+mTJmiDHiZM2dOXFzc008/3bx58xUrVuzdu1e5YEpKSmho6KpVq4xGY5cuXXbt2jV79uxJkyYpnbw//vGP6enpOTk5f/nLX7799tsXX3yxffv2s2fPvuuuu+bNmxceHr5s2bLdu3d7q0luz2oWqV5f3BsA0KhcCkI/P7++ffsKIRISEoQQQUFBSvl///d/K49AhRD/8z//8+WXXx4/fvy5556bOHGiUti6desjR46sW7euoqLi0KFDXbt2VcoTEhKUSym6du16c7B17do1NDRUuaMQIjAwUAgRFRWlXMpmsx08eDA2NrYBn9pNFh6NAoDuSM7RK3qVlJS0bt06j4wa3X9VXnjI/o+xnhlhpA9FRUXK7Bo0PhpfRTS+ijze+Bpea7TxWUxsQAEAekMQ1oPVzAYUAKA3BGE9hPkLm0OU29WuBwDAcwjC+olkBgUA6AtBWD/MqQcAnSEI64fxMgCgMwRh/TBeBgB0hiCsH6uZHiEA6ApBWD8sNwoAOkMQ1g+rrAGAzhCE9WM1C94RAoCeEIT1YzFJvCMEAD0hCOvHahY5BCEA6AhBWD9WE9MnAEBXCML6CW4mhBAlVWrXAwDgIQRhvVnoFAKAjhCE9cYqawCgJwRhvVnNTCUEAP0gCOvNamZxGQDQD4Kw3lhcBgD0hCCsN5YbBQA9IQjrjXeEAKAnBGG90SMEAD0hCOuNVdYAQE8IwnqzMlgGAHSEIKw35dEoz0YBQB8Iwnoz+wl/gyisULseAABPIAjdwXgZANANgtAdzKAAAN0gCN3BKmsAoBsEoTtYZQ0AdIMgdIfVxFRCANAJgtAdFh6NAoBeEITusJhELo9GAUAXCEJ3WM1SDj1CANAFgtAdrLIGALpBELrDYhK8IwQAfSAI3WE1S9fKhYMoBADtIwjd0cwggvzEdZYbBQDtIwjdZDVLOWV0CQFA8whCN1nNIpc59QCgfQShmywmeoQAoAcEoZtYZQ0A9IEgdJOFR6MAoAsEoZssJimXR6MAoH0EoZt4NAoA+kAQuonpEwCgDwShmywm3hECgB4QhG6iRwgA+kAQuinSJAoqhJ0oBACNIwjdZJREmL/I4+koAGgcQeg+q0liMyYA0DqC0H0WMzMoAEDzCEL3WVluFAC0jyB0H6usAYAOEITus5gEq6wBgNYRhO6zmiTeEQKA1hGE7rOaRU6Z2pUAADQMQeg+C9MnAED7CEL30SMEAB0gCN1nNUs59AgBQOMIQvdFBIjiSlHpULseAIAGIAjdJwlxR4C4xsBRANAygrBBLDwdBQCNIwgbxGpivAwAaBtB2CAWMzMoAEDbCMIGoUcIAFpHEDYIc+oBQOsIwgZhTj0AaB1B2CAWEzsxAYC2EYQNYjWzNy8AaBtB2CBWk2AnJgDQNIKwQSxmib15AUDTCMIGCfMXNocot6tdDwCAuwjChopkBgUAaBlB2FDMqQcATSMIG4oZFACgaQRhQzGDAgA0jSBsKKuZGRQAoGEEYUNZTMygAAANIwgbineEAKBpBGFDWc2Cd4QAoF0EYUNZTRLvCAFAuwjChrKYeTQKABpGEDaU1cT0CQDQMIKwoYKbCSFESZXa9QAAuIUg9AALnUIA0CyC0AOYQQEA2kUQeoDVzLrbAKBVBKEHWM1SDjsxAYA2EYQeYDGJXHqEAKBNBKEHWNibFwA0iyD0AN4RAoB2EYQeYDXxjhAAtIog9ABWWQMA7SIIPcBq4tEoAGgVQegBVrOUWy7zbBQAtIgg9ACTUfgbRGGF2vUAANQfQegZzKAAAI3ScBBeunRpxowZ999//xNPPHHq1Cl1K8MMCgDQKD+1K+A+f3//mTNnduzY8fvvvx87duzPP/+sYmV+WWVNUrEOAAA3aDgIrVar1WoVQgwZMqS8XOXpC6yyBgAapeFHo0KIH3/8cfjw4b169VqxYoW6NbGaRA5TCQFAg7QdhHfeeee2bdtWrVq1YMECdTuFFjODZQBAk1x9NPr111/n5OQox5GRkePHj7/1nIyMjM8++0yW5V/96ledOnVSCmVZTkpKSktL69at2+TJk/386r6j3W4/ffr0sWPHAgMDx40b5yyXZXnjxo2pqaldu3adOnWqcqmAgICRI0f6+/tfuXKlffv2Ln4cj7OaxOFctW4OAHCfq0G4ZMmS8PDwNm3aCCHatGlzaxCmp6f3799/xowZRqOxX79+Bw8ejI2NFUI8//zz27dvnz59+l//+tcdO3asXbu2znstW7Zs6dKlERERZrP55iB88cUXN2/e/OSTT3744Yfbt29//PHHMzMzo6Ki9u/fHxQU1K5dO1c/tBdYzFJuuUPFCgAA3CS7ZuDAgVu2bKnlhPnz58+YMcN5PGvWLFmW8/LyzGbzmTNnZFnOz893HjscjgULFmRlZTl/fNWqVTt27FCOKyoqZFlevXp1v379nCcUFBQEBgaeOnVKluXr168HBgbu3bt3+fLlr7zyyurVq0tLS29XsS+++GLEiBGpvzh27JjNZnPxU7vu6DVHr6RKj1+26SssLFS7Cr6LxlcRja8ijzd+PUaN/v3vf09PT+/du/fQoUNv/e7u3bvfeOMN5XjUqFHPPvusEOLgwYPR0dGdO3cWQoSHh99999179+7t3LmzJEmtW7ceNmzYnj17oqOjV61a9dprr+3evVv58WbNmt16/UOHDrVo0ULpZYaGhg4cOPDUqVNz586ts9qZmZlpaWkzZsxwlvz+978fPHiw6x/cFUEOkVPmX1xc7NnLNn0lJSWSxKQRddD4KqLxVVSvxg8MDDQY6hgN42oQdurUqays7Oeff166dOngwYPXrVtXrR6XL19WJjMIIVq2bJmdnV2tUAjRokULpVwI8etf/1qW5eHDh//Xf/3X8uXLd+/e3bFjx1oqUMulate+ffsRI0Z8+eWXrhGqPecAAA/6SURBVH1QN7UPFHm2ysCgYIOP/a8hy3JwcLDatfBRNL6KaHwVebzxXQ3CTz/9VDl4+eWXu3btunfv3vvuu+/mE4xGo8Px75dkVVVVSq/Oz8/PWSiEsNvtNw+WeeaZZw4dOvT888+npKTUnoJ1Xkp1zQwiyE9crxARAWpXBQBQH/WePmG1Wrt3737rMi5RUVHOLtrly5dbtWolhGjVqtXN/bbs7OyoqCjnlx9//PHBgwdfeumlmTNn1tm9q/1STYHVLOWUMYMCADTGpSCsqqpy9saysrJ+/PFH5V1dYWHhoUOHlPIxY8Zs3LhROd64ceOYMWOEEIMGDSosLExNTRVCZGZmHj16dNSoUco5H3/88WuvvZacnLx48eJnn332vvvuy8rKqqUO8fHxpaWlyu2ysrLS0tISExPd+MDeYzUzpx4AtMelp4vnzp0bNWrUoEGDJEnatm3bxIkT7733XiFEWlraAw88oMxknz9//oABAx555BGj0XjgwIGDBw8KIYKCgl599dWHH374oYce2rFjx/z585VunCzLBw4c2L17d0xMjBBi1qxZNpstLS0tOjpaCHHkyJEXXnjh8uXLmZmZCQkJAwYMePPNN81m8+uvvz5+/PiHH354586dc+bMad26tffaxQ0Wk5RbxnKjAKAxkuzChrIOh+Po0aMnT56UJKl37949e/ZUym/cuHHixIkhQ4Y4v9y+fbvD4XjggQfCwsKcP3706NEjR45069YtPj7elTrl5+cfOXLE+WVkZORdd92lHB87diwtLS02NnbQoEEufsKkpKR169Z5e7CMEOKp7+2975Bmd9P2Yj31VVRUFBISonYtfBSNryIaX0Ueb3yXglDTGi0IX0mzGyXp1T4EIRoJja8iGl9FHm983/qr7VXszQsAWkQQeozFJHIZLAMAWkMQegzTJwBAiwhCj7Ga6RECgPYQhB5jMdEjBADtIQg9JtIkCiqEnSgEAE0hCD3GKIkwf5HH01EA0BSC0JOsJimHGRQAoCkEoSdZGC8DAFpDEHqSlfEyAKA1BKEnWc0ip0ztSgAA6oMg9CRWWQMAzSEIPYlV1gBAcwhCT+LRKABoDkHoSVYzj0YBQGMIQk+ymOgRAoDGEISeZDUzoR4ANIYg9KSIAFFcKSodatcDAOAygtCTJCHuCBC8JgQADSEIPcxilphBAQAaQhB6mJXxMgCgKQShh1nNLDcKAFpCEHoYi8sAgLYQhB7GcqMAoC0EoYexyhoAaAtB6GFW9uYFAE0hCD3Mwt68AKApBKGHWU0ihx4hAGgHQehhVrOUS48QALSDIPSwUH9hc4iyKrXrAQBwDUHoeZEm6ZqNTiEAaANB6HmssgYAGkIQeh5TCQFAQwhCz2NxGQDQEILQ86xmZlAAgGYQhJ5nMTGDAgA0gyD0PFZZAwANIQg9z2ISrLIGAFpBEHqe1STxjhAAtIIg9DwejQKAhhCEnscGFACgIQSh5wU3E0KIEpYbBQAtIAi9gk4hAGgFQegVrLIGAFpBEHqFxcR4GQDQBoLQK6xmKYflRgFACwhCr7CaRC6PRgFACwhCr7CY2YACALSBIPQKC3vzAoBGEIReYTXxjhAAtIEg9ApWWQMArSAIvYJHowCgFQShV1jNUk6ZzLNRAGj6CEKvMBlFgFEUVqhdDwBAXQhCb1E6hWrXAgBQB4LQW1hlDQA0gSD0FlZZAwBNIAi9hVXWAEATCEJvsZhEDo9GAaDJIwi9xWqWzhfxaBQAmjqC0FsmdJA2X3QcyiELAaBJIwi9pXWQ9P4g4+Q99sJKtasCALg9gtCLxrU3JERLM76zq10RAMBtEYTe9e49xtPX5TXpDrUrAgCoGUHoXSaj+Ow+428O2s/c4GUhADRFBKHX9QiXXo4zTtljr6BbCABND0HYGOb1MEQFSa+m8bIQAJocgrAxSEL8bYhxTbqcnMUDUgBoWgjCRhJpEmuGGR9PsV9l3TUAaEoIwsYztJU0tZM0fV8VvUIAaDoIwka1uJ+xwCZWnGTYDAA0FQRho/IziDXDjK8fsR/Pp1sIAE0CQdjYOjaX/jjAOHm3vbRK7aoAAAhCVTze2RAXKS04xGwKAFAfQaiOvw4yJmfLX1/gZSEAqIwgVEdwM7F2mHHW9/aLxbwsBAA1EYSq6W+Rnu5hnLbXbicKAUA9BKGaXuxt8DOIJcd5QAoAqiEI1WSQxOqhxvf+ZT/ARvYAoBKCUGXRQdLf7vWbusd+o0LtqgCATyII1TemjXR/azayBwB1EIRNwp8HGn+6Ia/+mZeFANDYCMImQdnIfsEh+09sZA8AjYsgbCp6hEuv9GEjewBobARhEzK3u6F1kPRyKi8LAaDxEIRNiCTEh0OMn51lI3sAaDwEYdOibGT/WEoVG9kDQOMgCJucoa2kxzob2MgeABoHQdgUvdnXWGATf2EjewDwPoKwKfIziLX3Gd9gI3sA8D6CsImKCZHeGchG9gDgdQRh0zWtk6FPpPQcG9kDgDcRhE3a+4OMu7Pl9Rm8LAQAbyEIm7TgZmLtfcb5B9jIHgC8xU/tCqAO/SKlZ+40Ttxtn93N0DZYahsk2gRL/vwDBgA8hCDUgBd6GfwksTtbvlDsuFgsskvlOwKkdsGiXYjUNki0DZbaBUvtgkXbYCnUX+26AoDWEIQaYJDEwl7/Xx+wwCYyiuSMIjm7RGSWyCmX5Ywi+WyhXG4XUYFSTHMREyLFhEitAv/9ZbtgySipVX0AaNIIQk0KDxB9A6S+kdXDrcAmLpbIF4rk88XiYrGcdk1cLHFcLJbzbaJNkNQ2WOk+CrNRCmomany+GuYvpFsi0yiJ5s1qCNIAoxAVhkCbV95fhgd446qadLv2L66QqmyNXx0IQeOrqrRSCvHoBQlCXQkPEOEBUu+I6n80y+3iYrF8sVhcLJEvFssFFXJmiaisaSzq9Qoh35JrdlkU1nS2zS6KbH5Go1cmeBTwV+YXdlkUVtbwrw1Z9pekysavDwSNryqj8D/xiGgV6LELEoQ+wWQUXUKlLqFCCA8/IS0qKgsJ8ew/zuCqoqIiGl8tNL6KioqKQgI9OSCC0YcAAJ9GEAIAfJq2g/DYsWMpKSmlpaVqVwQAoFVaDUKHwzF+/PiJEycuWrSoS5cup0+fVrtGvqi4uHjFihVq18JHybL89ttvq10L3/Xuu+9WVjJYRh0rV67Mz8/34AW1GoRbt249fvz40aNHk5OTp0yZ8sorr6hdI190+fLllStXql0LH2Wz2ZYuXap2LXzXsmXLCgoK1K6Fj/r000/PnTvnwQtqddToxo0bx48fHxQUJIR47LHH4uLiqqqq/Py0+nEAAGrRanJkZmb26dNHOW7Xrl1lZeXVq1ejo6NvPbO8vDwrK2v9+vXKl0ajcdiwYeHh4Y1XV/1yOBzO/6KR0fiqczgctL9aXG98g6HuB59aDcLy8vJmzZopx/7+/kKIsrKyGs/My8vLzMz8/PPPnSUWi8UZomiI8vJyWZYZrKQKGl9dsiyXlZXR/qpwOBzl5eUuNn5gYGCdWajVIGzZsmVeXp5yfO3aNSFEq1atajxTluUbN24cP37cWTJ9+vRGqKEvqKqqunLlSu/evdWuiC+SZbmqqorGV8v169eHDx/uSm8DHpednT158mSlC1SnyZMnL1q0qPZztBqEAwcO3LVr10svvSSESElJ6dmzp/K+8Fbz589PTEx0dh/hWTabLSCAVUHVQeOriMZXUb0a/3Z9pJtJ8q0rS2pBXl5et27dZs6c2aNHj4ULF7711lvTpk1Tu1IAAO3RahAKIdLT05cvX15QUPDQQw+NHz9e7eoAADRJw0EIAEDD8aYXAODTCEIAgE/T6qhRqKu8vHz16tXOL+Pi4vr3769ifXzBxYsXU1NTr1279vDDD1utVmf5jz/++NlnnxkMhmnTpnXt2lXFGupYfn5+amrq+fPnBw4c2KtXL6UwKytry5YtznMSEhI6dOigUgX17NSpU9u2bcvKyurQocO0adNCQ0OVcpvN9uGHH549e7Zv376TJ0+WJPc3W6VHCHeUlJTMmjUr4xcsuuhtFRUVPXv2XLZs2dy5c8+fP+8sP3HiRHx8vNlsNhqNAwYM+Pnnn9Wro5499NBDv/3tb1977bVdu3Y5C0+ePPnqq686/y8oKSlRsYY6lpiYmJGR0bZt2507d8bFxV2/fl0pnzBhwldffdW5c+elS5e+8MILDbkFg2Xgjry8PIvFwvpSjUmWZUmSmjdvnpycfPfddyuF06dPj4iIeOedd4QQs2fP9vPzW7ZsmarV1CeHw2EwGMaMGTN8+PDnnntOKdy1a9eLL76Ympqqbt10r7y83GQyCSEcDkeXLl3efPPNRx999MSJE4MGDbp8+XJwcPCZM2fi4uKysrLCwsLcuwU9Qrhv2bJly5cvP3HihNoV8Qk1PvnZt2/f/fffrxwnJCSkpKQ0bqV8xe1WkMnPz3/nnXdWrlyZmZnZyFXyHUoKKmw2W3BwsBBi37598fHxynGXLl2sVmtD/kVCEMIdBoPh/vvvv3LlyokTJwYPHsyuhGq5fPmyxWJRjq1W6+XLl9Wtj08xm839+/cvKChITk7u0aPH3r171a6Rzv3hD3+44447Ro0aJf7/33whhNVqzc7OdvvKDJaBO8LDw7dv364cP/TQQxMnTpw5cybbYDU+Pz+/qqoq5biqqsrF1RfhEYMHDx48eLByvGjRohdffPHAgQPqVknHNmzYsHz58j179ijrZTZr1sxutzu/W1lZ2ZBffnqEaKhBgwaVlpZevXpV7Yr4oujo6KysLOU4KysrKipK3fr4rPj4+IyMDLVroVsbNmz49a9/nZyc7BwXHRUV5fzNl2U5Ozu7Ib/8BCHcUV5e7jzevHlzRESEKyvbwuMefPDBDRs2KMcbNmx48MEH1a2PT6n2f8Gdd96pYmV07Kuvvpo7d+63337bvXt3Z+Ho0aMPHz6svJr97rvvZFkeOHCg27dg1Cjc8e67765atapXr15Xr149dOjQRx999Mgjj6hdKZ0bN25cZmbmsWPHOnfuHBQUtHnz5latWmVnZ8fHx/fq1auqqio9Pf0f//hHZGSk2jXVoddff33z5s3p6ekhISEtWrRYtGjRAw88MH369LNnz7Zr1+7MmTPKnEJ2xfI4u90eGBh4xx13ODt88+bNe+KJJ4QQL7zwwoYNG4YNG7Z169bFixc/+eSTbt+FIIQ7bDZbWlrahQsXwsLC+vfvzx/fRvDjjz/abDbnlz179lReihQVFSUnJxuNxpEjRwYGBqpXQT07f/68cwNUIUSHDh0iIiKKiooOHTqUm5vbokWLgQMH0vjeIMvykSNHbi6Jjo5u2bKlcnz48OH09PS4uLjY2NiG3IUgBAD4NN4RAgB8GkEIAPBpBCEAwKcRhAAAn0YQAgB8GkEIAPBpBCEAwKcRhAAAn0YQAgB8GkEIAPBpBCEAwKf9P7jziccAShgqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd3wU1cL/8TO7KbsppMAuJBAggVAEApEiJiCgRJqiKCIX9V6KUgQb9oLPFbHAlQteuICCUhQLiFS5lEggCIggSNEgEEKAJJBQQnrZ8vtjfnefPBCSTbLJZGY/779mJ5MzJ+cV+OacOeeMZLfbBQAA7kqndAUAAFASQQgAcGsEIQDArRGEAAC3RhACANwaQQgAcGsEIQDArRGEAAC3RhACANwaQQgAcGvaD8KkpKTFixcrXQvNKi0tVboK7ovGVxCNryCXN772g/CPP/7YunWr0rXQrKKiIqWr4L5ofAXR+ApyeeNrPwgBAKgAQQgAcGsEIQDArRGEAAC3RhACANwaQQgAcGsEIQDArRGEAAC3RhD+H6tTbAUWpSsBAKhDBOH/MeuI7fg1u9K1AADUHQ+lK1BTVqs1NTW1WbNmXl5eNS/NbBRZbJwEqFZ+fv748ePrYCNQq9Wq1+tr+y64wdChQx9//HGXF6v6IPz444/feuutX375pWPHjjUvzWSQMgvtQkg1LwpA3bt69erWrVsXLlyodEXgejt37tyxYwdBeKOUlJSff/45OjraVQWajSKz0FWFAVCAj4/PI488onQt4Hp5eXm7d++ujZJV/IzQZrM988wzs2fPdmGZJoOUVcQzQgBwIyoOwgULFgwcODAsLMyFZZoMPCMEAPdSF0FYUlLiqtdHlS3qww8/PHLkyIQJE5KTk9955520tLSal282ys8IAQDuwqkgTE5OHjVqVJs2bcxm862uCQkJCf6vKVOmyCftdvtzzz1nMpmaNGkyatSo4uJiZ243derUO+64o2HDhlu2bHGctNvtL7zwglzUyJEji4qKNm3aNHHixPHjxzdu3PiRRx4JDg52pvCKmY0ikx4hALgTZ3uEvXv3njZt2rVr1251QXZ29p49e5KTk5OTk2fOnCmfXLNmzQ8//JCSknLx4sWzZ8/++9//ls+XlpZmZGSU/fZz5845jps3bz59+nR/f/+yc6DXrl27YcOG5OTkixcvXrhwYd68eV26dOnatWvXrl3btGnTpUsXo9Ho5M9SAZNBZDFZBgDciVOzRlu1ajVp0qRjx45VfFlAQEBQUFDZM8uXL3/yySflvtozzzzz4YcfTp06VQiRkJAwadKkhISE5s2bCyGWLFny0UcfHTt2zNPTUwjx/PPPCyFuWBe4YsWKsWPHNmrUSAjx7LPPTp8+/eWXX5a/tHr16gpqdeHChd27d999993yR71e/9Zbb3Xt2rXci30sIrPIOy8vr+KfFA75+fmSxGoTZdD4N8vPz7fbebqhWRaLJS8vr0q/+T4+PjpdJV0+Vy6f6Ny5s9VqjYmJmTNnTmRkpBAiOTn5ySeflL/avn375ORk+fjee+994403+vTps2PHjoSEhBkzZuzYsUNOwVs5ffr0X//6V0dRZ86ccbJWJpOpbdu2r7/+uuNMVFSUj49PuRf7COGps1o8fRpUVBf8L6vVeqvGRG2j8W9mNBrryR8HOTk577//vnzs6+s7YMCAHj16VHD9oUOHmjVrJj9+unDhwp133nn+/Pmq3jQhIWHjxo2OjwMGDBgwYEBVC7nZxo0bExISHB/9/PymT59e82KrQa/X+/j4VOk3v9IUFC4Mwi1btvTo0SMvL+/NN9+87777jh8/7unpmZ2d7evrK1/g5+eXn59fWloqB964ceNKSkpiYmIMBkNCQkJ4eHjF5V+/fr1sUYWFhUVFRQaDodKKeXt7m83muLg4J38Qs8F2uVgK9K4X/5bqP51O58zvGWoDjX+z+tMgeXl5M2fOnDNnjo+PT2pqav/+/ZcvXz5s2LBbXf/yyy9PmjRp+PDhQgibzZadnV2Nmx44cGDr1q0TJkyQPwYGBlav8jdITEzcs2fPY489Jn9U8M8vSZJ0/+XCYl0WhH369BFCGI3G+fPnN2jQICkpKSoqymw2X79+Xb4gOzs7MDCwbLfP09PTbrfrdDpndioymUxli/L393cmBatB3mWtdYPaKBuAe/nb3/4mPzDKy8vbsGGDIwg3btx48ODB0NDQxx9/3NfX98CBA2lpafHx8VevXo2Ojm7cuLEQ4uLFi8uWLbPb7U888USzZs3kb0xJSVm/fn1eXt6gQYPKfcTTsmXLZ5991vFx9+7dfn5+6enpe/bsmTJlSmho6Pbt2/ft2xccHPz44487kvLEiRObNm0qLS0dOnRohw4dbi62ffv2ZYsVQuTk5KxduzYuLm758uWSJP31r38NDQ2Vv5ScnLxhw4aCgoLBgwfLG54kJyefOHEiLCxszZo1/fv37927d3x8/K5du9q2bdutW7fU1NQBAwasXbu2c+fOERERciHr16/v0KFD69atq9/6TnP9X0+lpaU2m00OvNtuu+3XX3+Vzx86dKhs+37++efvvffe3r17X3/99T59+qSkpFRcbIcOHcoW5ZIN1cr1313WAMA10tLSfv7556ioKPnj3/72t3nz5oWFhR09ejQmJqakpOTmbyktLR09erTRaDx37lxsbKw85X7Pnj19+/YtKCgIDg5+9NFH161bd/M32my24v8SQnz11VcjRoxYtWpV48aNrVbriy+++M477zRp0iQ1NbV79+65ublCiB9++GHw4MFCCB8fn8GDBycmJt5crN1ut/yXzWYTQmRmZj799NNjxozx9fVNTk7u3bu3PL1x165d99xzT3FxcWBg4MMPP7x582YhxMGDB59++ukXXnihYcOGkiR9+umn48ePb9q06bFjx4YOHbpgwQIhxG+//fbBBx/It7t8+fLjjz9eZ11Pp3qEJSUliYmJKSkpdrs9Pj7e29u7d+/eQoipU6d27dr1scceO3To0OnTp7t06VJQUPDOO+9ERUW1adNGCDFhwoThw4ffd999DRo0mDVr1t///ne5wG3bts2YMSMhIaFly5YREREWi2XQoEGOyTIHDx7Mzs4uKCg4cuSI0Wjs0aNHgwYNJkyY8OCDDw4dOjQwMHDmzJlvvvlmLbUIu6wBWpJ40f7uYWsd3GhgM92LnW7sWkREREiSdO3atZiYmKeeekoIsW/fvt27d584cUKeDzh48OA1a9b85S9/adq0af/+/eWh0XPnzhUXF8+dO7ddu3ZCiNatWx86dOjOO+985ZVXZs6cOXLkSCFEu3btXnnllQcffPCGO27fvt2xluz3338XQkRGRi5fvlwIcfLkyS+++CIlJUV+zHTp0qXly5dPmTLlhRdeWLx48T333COEaNy48QcffHDXXXfdUOyXX3757bffysf9+vX7z3/+I4QoKChYuHBhRESE3W5v2bLl0aNHu3bt+tJLL/3zn/986KGHhBCtWrWaPn26nLL5+fkbN26Us+3RRx/9+uuv5btcvnz58uXLQogJEyZ06NBh9uzZDRo0WLp06cCBAx1dzNrmVBAWFBTIKyL69es3c+bMRo0ayUHo4eEhj2rq9fply5YlJyf7+PjExMQsXLhQPt+nT5+ZM2dOmTKltLR0/Pjxjs1S+/btu3v37qZNm8ofJ06cOHDgQMeo6cqVK48fP96+fftdu3bt2rVLHmvt1avXRx999Mwzz5SUlIwdO9Yxccbl2FwG0JLOwdKrUXXxmohw/3JOnjlzJigoqLCw8Jlnnnn88cfXrVt36NChvLy8IUOGyBecPHnyzz//vPkbjUajnIJCiKZNm2ZlZdnt9sOHD8+bN++zzz4TQhQXF5f7jQMGDPjhhx/KnnFM0jl8+HBJSYkjO1NSUgICAnJyck6dOvXuu+9++OGHQojc3NzMzMybi33iiSeWLVt2w8mAgAB5JFOSpNDQ0KysLIvFcuTIkX/+85/yvueFhYWOSnbo0EFOwZycnPT09G7dusnnu3XrJi8ZDw0N7du378qVKydOnLhkyRLHcrs64FQQBgYGbt++/ebzs2bNkg86d+4s939vNnbs2LFjx95w0svLy5GCspYtWzqO58yZU25Ro0ePHj16tDMVrgmTQTqfz9AooBEBXqJ/U4XnvhmNxieeeOLee++12+1Go7FTp06rVq1yfLXc6Q5lZ05IkmS32yVJMhgM//jHP9q3b1+luzuWohmNxvDw8LK39vb2lmdpfPrppyaTST7p/DyUmyup1+u9vb3nzp3bqlUrx3nHveQDHx8fDw+PnJwcRy46Cpk0adLLL7/crl07i8XiWPNWB+rLDKv6g6FRAK5ls9nWr1/funVrSZL69u17+PDh9PT0oKCgoKAgHx8f+dFaYGDg1atXKy5n4MCBK1euDAwMlL/XYrFUqRrykoykpCT52/39/YuLiw0GQ79+/VauXBn0X+U+s3SSJEkDBgz48ssvHZW8+d2QHh4e/fv3/9e//iWEyM7OXrFiheNLcXFxBQUFzz///Pjx4+tyAjBBeCOzUcrkBRQAXOH2229v1apVcHBwYmKi/D9+RETEggUL4uLiBg4cOHDgwMjIyD/++EMIMWbMmGnTpkVHR8szR8o1Z86cpKSkTp06DRs2LDo6+qWXXqpSZUwm04oVKx599NG4uLghQ4a0bt163759QojFixdv2bIlOjp62LBhHTt2lMdIb7Bq1arQMip49fG8efMOHz4cFRU1bNiwzp07v/HGGzdfs3Dhwvj4+BYtWvTq1atXr16OPrEkSRMnTjxx4sSYMWOq9KPVkKT5XRjWrFnz9ddff/fdd05ef/iKfcwu628PqftNjXUmNzfX37+8ZyOofTT+zc6fPx8bG1t2y0al2Gw2x4ovHx8fx8CgrLCw8MSJEzqdLjIy0jE30m63Z2dnGwwGb2/vnJwcx9qG3Nxcg8HgmEVx7ty59PT0Zs2aOdZUOBQUFJSWlgYEBJQ9o9Ppyo6+lpSUnDhxwmKxtGnTxs/Pz3Hrs2fPXrp0qWXLlk2aNLmh2Pz8/Pz8/LJnzGazzWaroJKpqakZGRlhYWHyU7CSkpKSkhLH7WR5eXl+fn5TpkwJCAh477335JPvvffesWPHvvnmm5ubdOnSpbt37/78889d/pvPf/c3MhsEPUIANaTT6W7YcrIso9F48xvFJUlyfEvZtfA3/KffvHlzeXPKm9283uDmM15eXo6FHGVvHR4efquNTXx9fR37mTjodLoKKtmiRYsWLVqUvWnZXTMTExO3bdvWtm3bo0ePrl69+sCBA0KIjIyM9evXz5kzZ9u2beVWo/YwNHojk1G6XCRIQgCoJbfddluzZs2SkpJatGhx+PBhOddzcnJSU1O/+uqr22+/vY7rQ4/wRl464eshrhWLYO/KLwYAVFWjRo0mTpx4w8m2bds6FtTXMXqE5TAbpSxGRwHAPRCE5TAZWEEBAO6CICyH2ch2owDgLgjCcrDLGgC4DybLlMNsFJkEIaBCer3+0qVLjn0sa4+851lt3wVlXblypX///rVRMkFYDpNBOnWdoVFAfUJDQw8cOFDBvieuUlBQoOD7ad3WrRZQ1hBBWA6zQey5pHQlAFTLzavFawPb+mgJzwjLYTJKWUyWAQD3QBCWw2zgGSEAuAuCsBwsqAcA90EQlqORQVwrFlaiEADcAEFYDr0kArzE1WKl6wEAqH0EYflMBjaXAQC3QBCWjzX1AOAmCMLymQysoAAAt0AQlo8eIQC4CYKwfCaDoEcIAO6AICyf2SDRIwQAd0AQls9k5E1MAOAWCMLymVk+AQDugSAsn5keIQC4B4KwfCyoBwA3QRCWr6FB5JaKUpvS9QAA1DKCsHySEMHe4jKjowCgdQThLZmNUiYvYwIArSMIb8lkEFmFSlcCAFDLCMJbokcIAO6AILwls0Fk0iMEAK0jCG/JZJCy6BECgNYRhLfELmsA4A4IwltiaBQA3AFBeEtmI0OjAKB9BOEtmegRAoAbIAhvyWxku1EA0D6C8JYCvUSxTRRZla4HAKA2EYQVacQKCgDQOoKwIuyyBgCaRxBWxGwQmSwlBABNIwgrwnwZANA8grAiJgObywCAxhGEFTGxph4AtI4grAi7rAGA5hGEFTEbBT1CANA2grAiJoNEjxAAtI0grIjZyPIJANA4grAiZgPLJwBA4wjCivh5CiFEvkXpegAAag1BWIlGBimLTiEAaBdBWAl2WQMAbSMIK2E2spQQALSMIKyEiTcxAYCmEYSVoEcIANpGEFaCHiEAaBtBWAmzkRdQAICWEYSVMLGmHgA0jSCsBLusAYC2EYSVMBtEFpNlAEC7CMJKmAxSJpNlAEC7CMJKGD2Ep07klCpdDwBA7SAIK8c7KABAwwjCyrGmHgA0jCCsHGvqAUDDCMLK0SMEAA0jCCtnNrC5DABoFkFYOZORoVEA0CyCsHImA0OjAKBZBGHlzEbW1AOAZhGElWOXNQDQMIKwciaDoEcIAFpFEFbObJQuFwmSEAA0iSCsnKdO+HqIa8VK1wMAUAsIQqeYjWw3CgDaRBA6xcSaegDQKILQKfQIAUCrCEKnsMsaAGgVQegUk1FkEoQAoEUEoVNMBimLoVEA0CKC0ClmAz1CANAmgtApZiM9QgDQJoLQKSZ6hACgUQShU1g+AQBaRRA6pZFBZJcIK1EIAJpDEDpFL4kAL3GF0VEA0ByC0Fkmg5TFy5gAQHMIQmeZWVMPAFpEEDrLzJp6ANAigtBZ7LIGAJpEEDrLZBD0CAFAewhCZ5kNEj1CANAegtBZZiNvYgIADSIInWUysLkMAGiQ6oMwOzv7008/vXr1am3fyGwUmYW1fRMAQF1TfRC++uqrb7/9dnp6em3fiAX1AKBJ6g7CH3/8MSgoqFWrVnVwr4YGkVsqSm11cCsAQN1RcRDm5+e///7706ZNq5vbSUIEe4vLzJcBAG1RcRC+/PLLr732mq+vb53d0WyUMhkdBQBtqUIQXrhw4dChQxVckJycvHHjxlOnTpU9WVpaunPnzm3bthUWVmGqSW5u7uHDh69fv35zUVu3bi0oKBBCxMfHz5o1Ky4u7vfff3/qqadSUlKcL796zAaRxXwZANAWD2cu+vXXX4cMGZKdnW21WktLS8u95pNPPnn77bf79OmTmJj4+uuvP/fcc0KI3Nzcvn37enl5+fv7T5w48aeffgoNDa30dt27dz969KjVal27du39998vn8zLy+vXr59erw8ICJCLOnnypPyl2NjYTz75JDw83KmfuAZM/79HKNX2jQAAdcapHmF4ePjOnTv3799/qwvy8/Nfe+219evXr1q1atu2bW+99Zbcmfvss8/8/Pz27Nmzbdu22NjY2bNny9dnZGQkJCQ4vt1ms33zzTeOj4sWLcrOzo6IiCh7i6VLlxoMhr17927durVPnz7/+Mc/HF964IEHgoODnft5a8RsYAUFAGiNUz3C4ODg4ODgY8eO3eqCnTt3BgUF9ezZUwgRFRXVsmXLbdu2PfLII+vWrfvLX/6i0+mEEKNGjZo8ebKchRkZGaNGjVq+fPm9995rs9nGjBmTmZn58MMPe3p6CiG6du168y3Wrl07cuRIR1FPPfXU3Llz5S+98sorFVQ+OTl5w4YNQUFBjjPLly/v16+fMz/4DRpIHmk5IjfXUo3v1aq8vDylq+C+aHwF0fgKqlLj+/j46PX6iq9xKggrdeHChebNmzs+Nm/e/MKFC0KI8+fPh4WFOU6mpaXZ7XZJkm6//fYffvhhyJAhn3zyyffff3/x4sV169bJKVjBLcoWlZ6ebrVaK/3xhBCtWrUaNGjQsmXL5I86nS4gIKBaP6UIC7QdvGz39zdW79u1yt/fX+kquC8aX0E0voJc2/iuCcKSkhIPj/8tysvLq7i4WD7viDdPT0+LxWK1WuUrb7/99u+///6uu+7q1q1bQkKCwWCo9BZli7JarU4GoXx92R5htZkYGgUAzXHN8okmTZpcvnzZ8TEzMzMkJEQIERIS4jiflZVlMpkceWmz2RYtWhQTE3P27NnExMQq3SIrK6thw4ZeXl4uqbzzzEa2GwUArXFNEN5xxx0nTpzIysoSQuTk5Bw+fDgmJkYIERsbu2PHDvmahISE2NhY+dhms40dO/bSpUtbt27dvHnz6NGjN23aVPEtblVUXTIZeAEFAGiNU0OjeXl5M2bMyMrKstlsr732WoMGDd544w0hRL9+/eLi4t54443mzZuPGDFi+PDhTz755IoVKwYPHhwZGSmEmDx5cteuXcPDwxs0aPDRRx9t3rxZLnDr1q2ZmZnr1q0zGAzR0dHr16+fOHHigAED5MHPRYsWnT179vLly8uXL9+zZ8/kyZPDwsImT558++23R0REBAUFzZw5c+PGjbXWJrdEjxAAtMepHqFOpwsKCmrTps37778fFBQUGBgon58wYcLdd98tHy9ZsuSRRx756aef7rvvvpUrV8onW7duvXfv3qtXr54+fXrLli1yN1EIMWjQoE2bNjmeC3bv3v3AgQOOR4D+/v5BQUGvvvpq9+7dg4KC5NHUiIiIvXv3Xr9+/dSpU5s3b+7du7eLWqAKAr1EsU0UWev+zgCA2iLZ7Rrv4qxZs+brr7/+7rvvXFJas68t+4bqw3xZU///5ebmMndOKTS+gmh8Bbm88VW816giWFMPABpDEFYN82UAQGMIwqphvgwAaAxBWDVmIz1CANAUgrBqTAYpi1cSAoCGEIRVwy5rAKAxBGHVmI2CZ4QAoCUEYdWYDBLPCAFASwjCqjEbRSZBCAAaQhBWjdnA8gkA0BSCsGr8PIUQIp931AOAVhCEVWaiUwgAGkIQVhm7rAGAlhCEVWY2spQQALSDIKwys5HNZQBAOwjCKmNzGQDQEoKwythuFAC0hCCsMp4RAoCWEIRVRo8QALSEIKwydlkDAC0hCKvMzGQZANAQgrDK5KFRxkYBQBsIwiozeggvncgpUboeAABXIAirg/kyAKAZBGF1sIICADSDIKwOdlkDAM0gCKuDXdYAQDMIwuowG1hKCAAaQRBWh4mhUQDQCoKwOkwGkcXQKABoAkFYHWajlEmPEAA0gSCsDnZZAwDNIAirw2QQPCMEAG0gCKvDbJQuFwkbUQgA6kcQVoenTvh6iGy2GwUA9SMIq8lslDIL6RICgOoRhNVkNoos1tQDgPoRhNVkMtAjBAAtIAiriV3WAEAbCMJqMjE0CgCaQBBWk8kgZTE0CgDqRxBWE0OjAKANBGE1sXwCALSBIKwmk4FnhACgBQRhNdEjBABtIAirqZFBXCsRVqIQAFSOIKwmvSQCvcQVRkcBQOUIwuozGyRexgQAakcQVp/JyAoKAFA9grD6zGw3CgDqRxBWH7usAYAGEITVZzIIdlkDALUjCKvPbJB4RggAakcQVp/ZKDILla4EAKBmCMLqM7F8AgDUjyCsPnqEAKABBGH1mY1SJj1CAFA5grD6gr1FXqkotSldDwBADRCE1ScJ0dBbXGbiKACoGUFYIyZGRwFA5QjCGjEbmC8DAOpGENaIycgKCgBQN4KwRugRAoDaEYQ1wpp6AFA7grBGWFMPAGpHENaIycCbmABA3QjCGjEbeTcvAKgbQVgjZoPgTUwAoGoEYY2YjBLv5gUAVSMIayTQSxTbRJFV6XoAAKqLIKypRqygAAA1IwhrijX1AKBqBGFNsYICAFSNIKwpVlAAgKoRhDVlNrKCAgBUjCCsKZOBFRQAoGIEYU3xjBAAVI0grCmzUfCMEADUiyCsKbNB4hkhAKgXQVhTJiNDowCgYgRhTZkNLJ8AABUjCGvKz1MIIfItStcDAFAtBKELmOgUAoBqEYQuwAoKAFAvgtAFzEb23QYAtSIIXcBslDJ5ExMAqBNB6AImg8iiRwgA6kQQuoCJd/MCgGoRhC7AM0IAUC+C0AXMBp4RAoBaEYQuwC5rAKBeBKELmA0MjQKAWhGELmA2SllFdsZGAUCNCEIXMOiFl07klChdDwBA1RGErsEKCgBQKYLQNVhBAQAqRRC6BrusAYBKqTgIU1NTR40a1bt375EjRx45ckTZyrDLGgColIfSFag+X1/fadOmtWjRYt++fcOGDTtz5oyClTEbRCZLCQFAhVQchI0aNWrUqJEQIioqymazKVsZk1FKzWNoFADUR8VDo0KI3377rVu3bh07dpw/f76yNWFNPQColLqDsEuXLr/88sv333//wgsvFBYqGUQmI8snAECVnB0aXbduXWZmpnzcqFGjhx566OZrkpKSVq5cabPZHnvssQ4dOsgnbTbbF198ceTIkcjIyHHjxnl5eVV6r5KSkqNHjx47diwwMHDYsGGO8zabbeXKlYcPH27duvW4ceO8vb2FEDqdLjY21tvbOzMzs0WLFk7+OC5HjxAAVMrZIJw5c2ZYWFhERIQQoqionGkhf/75Z8+ePZ9//nlvb++YmJi9e/fKWfj888//9NNPTz311KpVq3788cfvvvuu0nstXLhw3rx5DRo00Ov1ZYPwxRdf3Llz5/jx47/77rvt27ePHTv2zJkzISEhe/bsCQoKat68uZM/S20wGwU9QgBQI8nu3B6Zd95557Rp0wYPHnyrC55++mkhxIIFC4QQU6dOzcnJWbJkyeXLl8PCwv7444/w8PCcnJyQkJBff/21Xbt2drv92Weffemllxx9uEWLFoWFhQ0ZMkQIYbfbJUn64osv/vWvfx04cEC+4OrVq82aNTt27FirVq3y8vKaNGmyefPm5OTkrKysiIiIoUOH3qqv+e2333766aezZs1ynGnfvr2Pj49TzeO0UpvwXVZaNMZTJ7m24PouNzfX399f6Vq4KRpfQTS+glze+FWYNbp58+akpKTbbrtt4MCBknTj//e7du1677335OO4uLhnn31WCLF///6wsLDw8HAhRIMGDXr06JGYmNiuXTtJkrp06dK3b98dO3aEh4cvXrx45syZO3bskL/95sKFEL/88ktISEirVq2EEH5+fj179vz9998nTZpUabXT0tIOHTr05JNPyh/1ev0HH3zQs2dP539wJ/novS9czQvycq9+YV5entJVcF80voJofGcANQEAABBaSURBVAVVqfF9fHz0en3F1zgbhB07dvTy8rp06dK///3vTp06rVu37oa4ysjIMJlM8rHZbM7IyBBCXLx40XFSCNG4ceP09HT5eNy4cRaLpX///qNHj162bNmuXbsqHtusoKiKtWjR4p577nFmSLaGGvtYCvS+zf3drEsoBH8XK4jGVxCNryBleoSLFy+WD1577bXIyMj4+Pi4uLiyF3h6elosFvnYYrHIA5Wenp5Wq9VxTWlpadkBzAkTJuzcufPtt99OTEys9AlfxUXVB2ajyCwS7ZSuBgCgSqq8fCI4OLhdu3YpKSk3nG/atGlaWpp8nJaWFhoaKoQICQlxnCx7XrZo0aIDBw7MmDFj9OjRqampFd+34qLqA5NByip0r3FRANAAp4KwtLTU0ds7e/bs0aNH5Rmh2dnZu3btks/ff//9q1evlo9Xr159//33CyF69epVUFCwd+9eIURKSsqRI0cGDhwoX7NkyZJZs2Zt3779zTfffOONN/r27XtzuJYVExNTUlLy008/CSFSU1MPHz48aNCgavzAtYdd1gBAjZwaGj179mzfvn179uyp1+u3b98+ZsyY2NhYIYScRvJqismTJ8fExAwePNjDw+P48eNz5swRQhiNxhkzZjz00ENDhgz58ccfX3755SZNmshlHjt2bOfOnfKI6Lhx46xWa1JSkjytZv/+/ZMnT75y5UpmZma3bt169eo1d+5cg8Hw/vvvDx8+fMiQITt27Jg6dWp96xHyJiYAUCOnlk/Y7fYTJ04kJSXZ7faoqKjIyEj5fG5u7p9//tmtWzf5Y35+fnx8vN1u79+/v5+fn+Pb//jjjyNHjrRp06Zr167O1CknJ+fUqVOOjwEBAa1bt5aPk5KSfvvtt8jISMdNK7VmzZqvv/66DibLzPvd9ud1+/yYSqYnaQyTyBVE4yuIxleQyxvf2XWE6lVnQfhNsm1tqv3buwlC1BEaX0E0voJc3vjq3mu0XjEbpUwmywCA2hCELmM2iiwmywCA2hCELmMy0CMEAPUhCF2mkUFcKxFWohAAVIUgdBm9JAK9xBVGRwFAVQhCVzIbpExexgQAqkIQupKJ+TIAoDYEoSuZmS8DAGpDELoSu6wBgOoQhK5kMkhZPCMEAFUhCF3JZOAZIQCoDEHoSgyNAoDqEISuZDYyNAoAKkMQupLJQI8QAFSGIHQls5EF9QCgMgShKwV7i7xSUWpTuh4AAKcRhK4kCdHQW/CYEABUhCB0MZNRYgUFAKgIQehiZubLAICqEIQuZjay3SgAqAlB6GJsLgMA6kIQuhjbjQKAuhCELsYuawCgLgShi5l5Ny8AqApB6GIm3s0LAKpCELqY2SAy6RECgHoQhC5mNkpZ9AgBQD0IQhcL8BLFNlFoUboeAADnEISu18ggXS6mUwgA6kAQuh67rAGAihCErsdSQgBQEYLQ9dhcBgBUhCB0PbORFRQAoBoEoeuZDKygAADVIAhdj13WAEBFCELXMxkEu6wBgFoQhK5nNkg8IwQAtSAIXY+hUQBQEYLQ9XgBBQCoCEHoen6eQgiRz3ajAKAGBGGtoFMIAGpBENYKdlkDALUgCGuFycB8GQBQB4KwVpiNUibbjQKAGhCEtcJsEFkMjQKAGhCEtcJk5AUUAKAOBGGtMPFuXgBQCYKwVpgNPCMEAHUgCGsFu6wBgFoQhLWCoVEAUAuCsFaYjVJmoZ2xUQCo/wjCWmHQC2+9yClRuh4AgMoQhLVF7hQqXQsAQCUIwtrCLmsAoAoEYW1hlzUAUAWCsLawyxoAqAJBWFtMBpHJ0CgA1HsEYW0xG6XUPIZGAaC+Iwhry/BwaUOqbX8mWQgA9RpBWFua+UoLY/WjEqw5pUpXBQBwawRhLRrWUte/qTRlj1XpigAAbokgrF0f36n/7ar9y9M2pSsCACgfQVi7DHrxVT/91J+tJ6/zsBAA6iOCsNZ1DJLe7KJ/LMFaSrcQAOofgrAuPNtRF+Ij/f0QDwsBoN4hCOuCJMRnd+mXn7L/mM4AKQDULwRhHTEZxNK79KN3Wa8UK10VAEAZBGHdiWsqPRoh/W2nhV4hANQfBGGd+qC7/nKx+CSJaTMAUF8QhHXKUye+7Kt/+1fr0at0CwGgXiAI61rrBtKHPfSjEqyFFqWrAgAgCBUxto0uKlh69QCrKQBAeQShMhbG6jeds29I5WEhACiMIFRGgJf4oq9+wk/W9AIeFgKAkghCxcQ2lia21z+WYLURhQCgHIJQSdOidZIQs48xQAoAiiEIlaSTxIq++tnHrLzIHgCUQhAqrJmv9O8Y/WM7rbm8yB4AlEAQKu/hcF3fEOnZfaymAAAFEIT1wsd36n/OtH+VzMNCAKhrBGG94OshVt2tn/qzNSWXh4UAUKcIwvqiU7D0SpR+5A5eZA8AdYogrEde6KQzG8W7h3lYCAB1hyCsRyQhPuvt8dmf9oQMBkgBoI4QhPWL2Sg+v0v/t528yB4A6ghBWO8MaCY9HC6N380AKQDUBYKwPvqwuz4l1774BNNmAKDWEYT1kbdefHu3ftqv1qRsHhYCQO0iCOupyADp3a76ET9aixgiBYDaRBDWX0+103UIkl7nRfYAUJsIwnptUS/9ulT7pnMMkAJAbSEI67VAL7Gij378T5aMAqWrAgAaRRDWd72bSE+21Y1KsKxJsf2SZb9YqHSFAEBbPJSuACr3drR++mHrV8n2c3m2c/n2nBIR5ic19xXN/aTmfqKFn9TcTwrzFc39JINe6boCgNoQhCrgoRPTu/5vxBVbRVqBPT1fZBTaz+QI+f1N6fniXL7dUyci/KUQHxHqI0X4SxENRIhRCvUVLf0knaTgTwAA9RdBqD7eehHhL0X4CyH+T7jZhbhYIM7l2c/l28/nidQ8+75McS7Pdj7fnm8RLfyk5r4izE9q7icFeQnv8vqOfp7Cs7zBcn9PyaO8HA3wEkWFOp9i18/lMeiF0V1/N3VCBHg59WdLXolkYSs+hdD4CioolfxdWqC7/mejRZIQIT4ixEe6Q9z432iBRZzNs5/PE+fy7Ofz7adyRHF5izLySkW5L4HKKbVZywu76yWi1OKh17t+gUeRVRRaXF6qOtiEuF7i1N8WdruXJJXWdn1QLhpfQXrhdfRhEeLjsgIJQrfg4yFuC5RuCxTipoysodzcQn9/1/5xBmfl5ubS+Eqh8RWUm5vr7+PlwgKZNQoAcGsEIQDAral4aLSgoGDDhg1XrlwZOHBgq1atlK4OAECV1NojLCoq6tWr19KlS0+ePNmtW7fdu3crXSN3lJeXt2DBAqVr4absdvtHH32kdC3c19y5c0tLmSyjjMWLF1+9etWFBao1CFevXm232zdv3vzxxx9PmzZt+vTpStfIHWVkZCxevFjpWrip4uLiWbNmKV0L9zVv3rxr164pXQs39cUXX6SkpLiwQLUG4ZYtW+677z69Xi+EeOCBB3788ceSkhKlKwUAUB+1PiNMT0+PjY2Vj0NDQ+12e0ZGRosWLW6+Mjs7+88//3z//fcdZ0aMGFHulagqi8Vit9sZIFJEaWkpja8gufFpf0XY7XaLxeJk43t4eEhSJcvG1BqEdrv9hp/Nbi9/DbLVai0pKSk7iFFcXGyzlbduHFUkNyONqQgaX3F2u532V4rNZnNh46s1CENCQi5duiQfX7p0SZKkJk2alHtlYWFhenr6999/7zhT9hg1YbFYLl68eNtttyldEXck/1FM4yslOzu7d+/eOp1any6pWnp6+ogRI7y8nFpTP2rUqHfffbfia6RbdaTquc8+++zTTz/9+eefJUlasGDBt99+u2vXrnKvtNlsp06d8vT0rOMauoni4mJvb2+la+GmaHwF0fgKqlLjh4SEGI3Giq9RaxDm5+d369atY8eO7du3nz9//rfffhsXF6d0pQAA6qPWIBRCXL9+/Ztvvrl27dqQIUM6deqkdHUAAKqk4iAEAKDmeNILAHBrBCEAwK2pdfkElFVUVLRixQrHx+jo6O7duytYH3dw7ty5gwcPXr58+cEHHzSbzY7zx48f/+qrr3Q63RNPPNG2bVsFa6hhV69ePXjw4NmzZ3v27BkVFSWfTEtL++GHHxzXxMXFhYeHK1RBLUtKSvrPf/6TlpYWHh7+xBNPBAQEyOeLi4uXLFmSnJzctWvXUaNGVbpqvgL0CFEd+fn5EyZMOPNfbLpY20pKSjp16jRv3rzJkyefPXvWcf7o0aMxMTFGo1Gv199xxx2nTp1Sro5a9sADD7z55pt///vft2/f7jj5xx9//M///I/jX0F+fr6CNdSwgQMHnjlzpnnz5tu2bYuOjs7OzpbPDx8+fO3atZGRkbNmzXr11Vdrcgsmy6A6rly5YjKZ2FajLsm7KTVo0CA+Pr5Hjx7yyTFjxgQHB8+ePVsIMWnSJA8Pj3nz5ilaTW2y2Ww6nW7IkCF33333iy++KJ/cvn3766+/fvDgQWXrpnlFRUUGg0EIYbPZ2rRpM2PGjJEjRx49ejQ2NjYjI8PPz+/kyZPR0dFpaWmBgYHVuwU9QlTfvHnz5s+ff/ToUaUr4hbKHflJTEy899575eO4uLhbbSuBGrrVDjJXr16dPXv24sWLz58/X8dVch9yCsqKi4v9/PyEEImJiTExMfJxmzZtzGZzTf4iIQhRHTqd7t5777148eLRo0d79erFWwmVkpGRYTKZ5GOz2ZyRkaFsfdyK0Wjs3r37tWvX4uPjO3TosHPnTqVrpHEffvhhw4YNBwwYIP7vb74Qwmw2p6enV7tkJsugOoKCgrZs2SIfP/DAAyNGjBg/fryHB79Odc3Dw8NiscjHFovFyd0X4RK9evXq1auXfPzuu+++/vrr+/btU7ZKGrZ69er58+cnJCTI+2V6enparVbHV0tLS2vyy0+PEDUVGxtbUFDg2AMddalp06ZpaWnycVpaWmhoqLL1cVsxMTFnzpxRuhaatXr16ueeey4+Pt4xLzo0NNTxm2+329PT02vyy08QojqKioocxxs3bgwODg4JCVGwPm7r/vvvX716tXy8evXq+++/X9n6uJUb/hV07NhRwcpo2Nq1aydPnrxp06ay71oZPHjwgQMH5Eezu3fvttvtPXv2rPYtmDWK6pg7d+7SpUujoqIuXbq0f//+zz///OGHH1a6Uho3bNiw8+fP//bbb5GRkb6+vhs3bgwJCUlPT4+JiYmKirJYLKdPn967d2+jRo2UrqkGvfPOOxs3bjx9+rS/v3/jxo3ffffdQYMGjRkzJjk5uUWLFidPnpTXFHbu3FnpmmqN1Wr18fFp2LCho8M3ZcqU0aNHCyFeffXV1atX9+3bd/Pmze+99964ceOqfReCENVRXFz866+/pqamBgYGdu/enf9868Dx48eLi4sdHzt16iQ/FMnNzY2Pj9fr9f379/fx8VGuglp29uzZK1euOD6Gh4cHBwfn5ubu378/KyurcePGPXv2pPFrg91uP3ToUNkzTZs2dbx99sCBA6dPn46Ojm7Xrl1N7kIQAgDcGs8IAQBujSAEALg1ghAA4NYIQgCAWyMIAQBujSAEALg1ghAA4NYIQgCAWyMIAQBujSAEALg1ghAA4Nb+H5fp2NNrxs6XAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1821,15 +1821,15 @@ }, { "cell_type": "code", - "execution_count": 358, + "execution_count": 81, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Approximate value of κ: 0.7544329252629847\n", - "Approximate value of ω: -0.17910301973526344\n" + "Approximate value of κ: 0.754338657989883\n", + "Approximate value of ω: -0.1816489286662659\n" ] } ], @@ -1850,180 +1850,180 @@ }, { "cell_type": "code", - "execution_count": 360, + "execution_count": 82, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd0BTV9sA8JNJSCDI3kuWTBVQFIsVLWKttVpFfFUUv1q0rVrrXnW0ttW6qqKv1SLWDS5sAaGtu+JARAVBEAQB2Ziwssf3x+2bl5eRBEhyA3l+f5Gbk3OfJCRP7r3nnIcglUoRAAAAoKuIeAcAAAAA4AkSIQBAvRoaGsRisUq6qqurU0k/ALQFiRCAbuNyuWFhYUeOHME3jGfPnoWHh4f9x759+/CNp1MsFmvhwoVFRUVtNxYVFU2YMCEsLGzixInKdyWVSmNiYh48eKDqGIGuI+MdAOj/bt269d1332FXo48dO2Zvb9+ugUAgmD17NpvNRghNnz594cKFOETZB/n5+Z09e1YikSCELly4wOfz8Y6oE/Hx8TY2Nh4eHm03urq6nj179s2bN6tXr1a+KwKBMHny5NjYWH9/fwqFoupIge6CI0KgdqNHj8YOnsLCwi5cuNCxwbVr10xNTZ2dnVetWvXJJ59oPMBuI5PJs2bNGjp0KN6BIBMTEzMzMzMzMzqdjncsnSgpKUlLS4uOju54l7GxsYmJSXc7nD59elNTU0pKigqCA+A/IBECtSMQCNhXXmRk5PXr11ksVrsGFy9ejIiIoFAoRkZGZHIfOEtBoVDmz58/bNgwvAPRdufOnXNwcPD391dVh4aGhmFhYadPnxaJRKrqEwBIhEBzrK2tg4KCrly50nZjZmZma2vru+++i1dUQE3YbPadO3fGjx+v2m7Hjx/PZrPv3bun2m6BLusDv75BfxIREbFu3bqZM2fSaDRsy4ULF6ZOndrpgSCfz8/Kynr06FF+fn5NTY1UKrW1tR0/fvyECROoVGq7xk1NTbNnz+bxeAihMWPGbNiwASGUl5d35syZnJwcAwODiIiIKVOmtHtUUVHR+fPnCwsL6+rqLC0tQ0NDIyIiqqqqPv30U4QQg8E4f/687HJUVlbW+vXrsWtyCKFJkyZ9+eWXnT7NioqKmJgYoVAYHR09c+bM8+fPp6en19TUmJmZ+fn5zZ0718LCopfPVzMqKyvPnTtXVFRUVlZmYGDg5eU1ffp0Ly+vPXv2XL16FSE0c+bMrs5m3759WygUhoSEKLmvw4cPX7x4EfubQqHExcVZW1t3bObu7m5lZfXnn38q3zMA8kEiBBrl4eHh7Oycnp7+0UcfIYRKSkry8/M3bdrUaeOMjIxbt255e3uPHj3a1NRUIpGUlZUlJSXdv3//22+/JZFIbRszmczTp08LBILU1NTy8nKxWBwXF3fz5s3IyMiYmJjXr18fPnyYRCJ9+OGHsockJCScOnVqypQp4eHhpqamJSUl6enpt2/f/uKLL+h0elxcHI1GazsoIyAgQMnBKXZ2dmfPnt2/fz+Hw9m2bZuHh8eKFStMTEzYbHZycvLChQsPHjxoY2PTm+erAZcvXz527Nh7770XFRVla2tbW1ubk5Ozdu3aefPmIYSmTZs2ffp0Y2Pjrh6enZ1tbGzcaTLr1PTp0zMzMy0sLJYsWcJgMIyMjLpq6e3t/eDBA6lUSiAQuvukAOgIEiHQtBkzZsTGxn744YdEIvHixYvvv/8+g8HotGVoaGhoaGjbLY6OjsHBwdHR0fn5+T4+Pu3aM5lMhJCBgUFjY+OaNWsGDBjw888/GxoaIoQcHByCgoLarqP08OHDhISE2NhYR0dHWedjxoxJSEjYtWsXgUAwMzPrGJJsfAedTpc/StPIyIhGo6Wmpu7Zs8fZ2RnbaGNj4+XltXPnzmPHjm3cuLGXz1etsrKyjh8/vmvXLtmATwcHh8DAwIkTJ65evVokEoWHh3f6Esnk5eW5u7srubuSkpKvv/46JCRkwYIFClO+m5vbtWvXysrKZO8dAL0B1wiBpg0fPpxKpd69e5fFYt28eXPq1KndejiJRLK2tq6pqZHT5unTpyNHjty4cSOWBTFUKlVPT09288CBA4sXL+74TRoZGdnxWK3HJk+eLMuCMuPGjcvPz1eyB2Werzr89NNPn3/+ebtpDwghS0vLdevWKZzYLhaLWSzWgAEDlNlXRkbGypUr582bt3DhQmUOfLFuGxoalOkcAIXgiBBoGoFAiIiISExMLCoqGjFihJWVVVctxWLxrVu3/vzzz8rKyrq6Oj09PXNzcy8vr9raWvm7CAkJmTZtmpwG9fX19fX1XV1kCg0NLSgoUOa5KNTptT0DAwOhUNhxe4+fr8rV19fX1dW1OzyVGTRokIODg/weWltbpVKpMpM6zp07d+zYsQ0bNig/YArrtqmpScn2AMgHiRDgYNy4cfHx8RcuXNi9e3dXbVpbW1esWCGVSsePH+/m5oadk2xubq6srMzOzpbfv8JLR+Xl5VZWVl1Nylb4La8OvXm+Koe9PnJG6Cg8J4md7uZwOPKbCYXCu3fvTp069eeff3ZxcbGzs1MmPC6XixAyMDBQpjEACkEiBDigUCjLly+vqKgYNGhQV2327t3r4uKyfPnydufKPD0909PTexmAvb19dXW1UCjsNBdWVFT0sv8eUOvz7S7s9REIBF3lwvLycvm5kEQiMZnMxsZG+Tsik8m7d++mUqlMJnP58uU//vijk5OTwvCwbk1NTRW2BEAZcI0Q4CMoKEjO2UuxWJyZmTlnzpxOrxhhcyR6A1uN5c6dO53ee+PGjV72313qfr7dZWZmZm5ufvPmzU7vLSwsLC0tVdiJp6fnq1ev5LchEAhYrp09e3ZERMTKlSvbrUraqeLiYn19fVwO3EG/BIkQaCMCgUAkEjteG2tqavrmm29UcgFv6dKlsbGxr1+/brc9MTGxvLy89/13iwaeb3ctW7bs4MGDhYWF7bbX1tZu27ZN/nhRjK+vb21trfL1IiIiIubOnbt69eoXL17Ib/n8+XNfX1/NzycB/RWcGgVqhw0gRAixWCwqlWpoaNhu+jx2r0gkam5u5vP5enp6RCJx1qxZ33333bx583x8fPT09GprazMzM9PS0mbMmNHS0tLS0oINSpRdDhSLxdjoCQ6Hw+fz2y7kRqVSO87QGDZsWGRk5JIlS6ZOnerv74/NI7x69Wp9ff2qVas2b97crr1UKsWWBcfweDwej9d2L0ZGRkQisW1jPp/P5XIbGxvbTokTCASNjY0SiaRt/D14vt2KpwcCAgKio6NXrFgRHh4eFBRka2tbU1Pz7Nmzixcvzpo1q7KyUmEPoaGhcXFxd+/e7biOAUKoqampbfyYyZMnczic1atXb968eeDAgW2fr0xZWVlFRcXs2bN7/NQAaIcAFeqBuh08eDApKUl2Mzw8fOXKlbKb6enpu3btkt10d3c/ePAg9ndGRsalS5dev37N4XAsLCyGDx/+8ccfW1parl69Ghs/smzZsg8++ABrvG/fvuTk5E4D0NPTO3nyZKdTv7GVZQoKCurq6qysrMaOHRsREVFZWbls2bK2MSOErl69umfPHjlPMyoqau7cudjfly9fPnToEPY3kUjctm2bbGHSTZs2yZYHaxt/d59vt+LpsYqKioSEhJcvX5aXlzMYDG9v72nTpvn4+OzZs8fMzExh/+vXr2ez2bKXQqaoqGjx4sVisZhCoaSmpsq2379/f9OmTbIvpXavDyYuLi4lJeXcuXN4rbYD+h9IhAC0V1JS8tVXX7VLhKAtJRPh8+fPly1btm/fPi8vL5Xsl8fjRUVFffTRR3PmzFFJhwAguEYIQEcVFRXm5uZ4R9EfeHt7BwcHnzx5UlUd/vbbb2QyOSIiQlUdAoAgEQLQjkQiuXTpUnBwMN6B9BOLFi3Kzc0tLi7ufVdSqTQxMXHRokVtVwgCoPc0MViGx+MNGjQIloHQWkQi8ejRo91d6qzfaGpqEovFCCGRSFRaWnrmzBkikQhn3jrF4/Gwyex8Ph8bm8NkMuWP3rS2tj5w4IDyS2/LQSAQtm3bJmfuKQA9o4lrhGw228nJqaSkRN07Aj2zZs0aX1/fJUuW4B0IDkpKSj777DMsEZLJZEdHx9GjR0dGRsLQ/E7FxMS0+yDLKcMEQF+hoekTBAJBTrkWgC9ZaUAd5OzsnJaWhncUfcaRI0fwDgEA1YNrhAAAAHQaJEIAAAA6DRIhAAAAnQaJEAAAgE5TfSJks9l3795VebcAAACAOqh+1Oj9+/f379/fdv3ATh158mt5k+J1e1VookvYSNtATe6xtLTUxMSEyWSqqf+4uDgKhdL79SRlxGKxQCDQ19dXSW95eXmyhbVOnjz5xx9/bNmyxcXFpdPGlZWV+vr6MLRYhpv/qPneVYv/+xrvQABCCLW0tEAdYC2hjvdC9YlQyYmJVgzLBl77tefVyorRftEsDoezffv2vLw8Nzc39J9SODNmzPDz81PJHm/fvj1ixAj1JcLBgwe3K+PQe6qaV4otZi2r4RAVFSUSieS0Z7FYcXFxX38N3/v/IRZJBXy8gwD/gDWZtYc63gvcyjAF2w03o2u0wLTzgPYFtel0+jfffLNx48Zt27ZhW1paWrZv385kMpUpk427wECNHuB2y6lTp+TU3e3I29v78OHD5eXl9vb26osKAAA6gnqE/8PAwCA6OvrGjRvz58/HtnC53OPHj5eVlSGE9PT05s6dO3DgQFn7t2/fHjp06M2bN4aGhjQabfDgweHh4QYGBhwOZ8eOHaWlpY8ePZJVwouJiXF2dpY9trKy8tdff21tbRWJRHQ6fdasWa6urthdQqFwx44dJSUlixYtGjhw4JEjR9hstp6e3tq1a+l0OkLozp07qampHA7Hz8+v47oecmLutOfy8vK2gclRVlYWHx/P4/EoFIqtrW1UVNS8efOCg4OXLVvWtm5cSUlJXV2dr69vp51kZGRs3brVx8cnJibGw8NDtn3q1KmJiYkrVqxQJpJOSaTSh1VZd8rvv3xbIpKIDKkMXwuvMKd3HY0guQIAugSJsD2xWCwrZyoSiTZv3jxz5szPPvsMIcRisXbv3h0VFSX7+t67d29kZKSPjw9CiMPhrFq1KiAgwMDAgE6nb9269cSJEyNGjHB3d++4l8rKyr17965cudLS0hIhVF9fv3fv3ujoaOwkLYVC2bhx45UrV4qLi5OSkhYvXmxtbV1QUMDhcLBEGBISEhISUlxcfPPmzXY9y4+5054//fRT+ect28a8Zs0aKysrhNDTp0/37dvn6+v71VdftWt58+bNkSNHdtqJRCK5f//+okWLOi5tGhwcvHv37mXLlvVsebOs6qd7Mw8TCUQfc88xjqMoRHKriPOKVbr0z3W+Ft5fBn5qTldcVB0AoINg+sT/YLFY8fHx48aNw24mJyeHhYX5+/tjN42NjVevXt22poxUKsUyE0KITqevXbtWyTN7v/7666pVq7AsiBAyMzNbs2bN8ePH2zXLzs7euHEjtmCxh4eHmZnir3KFMXfsWV9fX5lV1k6cOLFixQosCyKEBg8ePHjw4E5blpSU2NnZddwuEol27tzp5eXV6QLfNBqNyWRWVVUpjKQdiVRy8HHctoy9Yx3fWTQ0+h27ICcje1tDa3djlwkDxy0P+kKfrPdJ6pcZbx52t2cAgC6AI0JUV1e3ceNGhBCBQCCTyQsWLJB9iefm5rY73GEymVQqVSAQYNWxly5deuTIER6PR6PR3Nzcxo0bp+TRTElJyf79+9tt7FiqZvr06d0dw6kw5h733NjY2C69DR8+/NGjRx1blpaW2tradtweGxtLIpHalqdvx9bWtqysrNMk2hWhWPj1nR9YvMYvAv6PTu7kGVGI5FDHEFfjgTvuH5jv968pbhOV7xwAoAsgESJzc3PZYJl2pFJp20tfGCKRiBUrQAhZWFhgSbSpqSk/P3/z5s0rV65U5nqbpaXl1q1bZedgVUhhzCqEVeTpiE6n8/mdjHicOnUqj8fbv39/x7OpGD6f360VwEUS8cbb3/PEgjk+M0gEeS+mPdM2ZvDcYzmnEUKQCwEAbcGpUXl8fHzu3bvXdktLSwuXy8WOpdhstux4iMlkBgUFzZ8//8aNG7LGBEKXVa7c3d3v37+v+Zh7w9XVtV3MXc0WdXBwqKio6Ljd0dFx4sSJpqamJ06c6PSBFRUVSg7bwex8cKBZ0BoxaLL8LIgx1h8w329W/LNzf1c8UH4XAIB+DxKhPJMmTUpPT3/69Cl2k81m79ixQ1aytaqq6ujRo/X19dhNLpd7/fr1tlVDnZycHj58KMuFOTk52dnZ2N+RkZFJSUnPnj2TNc7MzPz3v/+t7ph7Y9asWRcuXEhLS2tqaqqpqYmLi5NIJJ22dHV1lVN+cu7cuQ0NDSkpKe22NzQ06OnpKT+n/nz+b7l1L2Z4fkRUIgtiTGjGc7yn77i3v7SxXMmHAAD6PZ0+NcrhcHbu3FlQUICd3gwLC3v33XfbNqBQKFu3bo2Pjz9//jxCiEwmz5s3TzbJwcrKatq0abJcyOfzp0yZEhwcLHv4O++8U1hY+Pnnn5ubm5PJZHNz84iICOwuKpW6devWkydPXrhwAduRtbW17N68vLwzZ85UV1fTaLQrV64ghAIDA6dMmYLdW1VVdfDgQYRQa2trQ0MDlnLeeeedCRMmKIy5056VfLn09fV/+OGH1NTUgwcPMpnMgIAAf3//7du3d2w5YcKEL774YsGCBRQKBdty+vTpmzdvjh49Grvp4OBw4MCBe/fuLV++3MTEBNuYlpb20UcfKRlMXn3hiecJi4bOp5Koilu3YWtoPX7g2K9v/3D0/b00sl63HgsA6JdUX6H+6tWrBw4caHvSjM1mOzs7s1ists3e8lgvWRqsWS9FQTb+mttdn7J06VI3N7clS5aIxWI+ny8bB6uQQCDYvn37pk2bOt516NAhNze3sLAwJbsSiUSLFi3at2+fbNqlHDwRb17KkvecRnubDVLYuFMXXvxma2i9YvjnPXu4BnBz7zf9nWy5qPOr10DDmpubDQ0N8Y4CIKSe9wK3I0ITmnGQNSws2W/NmDFj9+7dyifCe/fujRs3TpksiBA69Dje3tC2x1kQITTJLTz20dExDqMCrDqfAQIA0B1wjRD0hEAg+P7777ds2ZKbm7t///6O5xXMzMy2bt2qfIdBQUGRkZHKtMyte3Gr/N5El3HdCLcDGklvstuEH+8f4IsFvekHANAP6PQ1QnW7e/ducnJyVwuhyaGwVgPuqFTq+vXrFbbpVofKNBNLxTsfHJjo8h6N3I1ZFp1yN3F9UpN7Iifh0yFRvewKANCn6XQibFd9AhMZGTlkyBCV9D9q1KhRo0Z1uhCafAprNeisy4UpemQ9X3NPlfQ2wWVc7KNfPnANszGwUkmHAIC+SKcTYcfqE62trdu3bzcyMurWbDagGU2C5hM5Cf/np4KpIBgm1XCU3fADWXE/vLtBVX0CAPocnU6EHTEYjHnz5t24cUOWCOXUiEAIXb9+/ebNmxKJpKmpacCAAYsXL7awsFBtSF3VatBBvz4752PuacFQ5drZo+yCfso8/Kz2uZ+Ftwq7BQD0IZAI26uqqpItwiK/RgRCyNHRcd26dVj70tLSQ4cObdmyRYXByKnVoGuqW2vTS24sDVyo2m7JRPJ7zu8efBz/84Rdqu0ZANBXKJUIs7KyUlJSKBSKQCCYNGlSQEBA73csKMkTNzb0vh/lUZ08SQPkHUywWKyMjIzr16/LhjtiNSJkB3lYjYgdO3Z899132Ja2g1mcnJxUe2EPq9UwePBgbKa8jjv29HSQTaABVdk5jsrzM/f5u+xBxpuHwbbDVd45AED7KU6EEokkJydn3bp1FApFLBbv3Llz4MCByq+D1ZWWjBRRdVkvO+kWgzFT6QFjO26vq6tbt24dQqikpCQoKOiHH36QjWBUWCOitrY2LS2toqJCKpXa29u3WzSglxTWatAdZU1v7lVmfjVMLfPfiQTCOKfRR56cGmk7jIDar1cOAOj3FCdCIpEYHR2N/U0ikQIDA0tKSnqfCE1mr+plD6oiqz7B5XL37t2bnZ0dFBSE3SW/RkRBQUF8fPy//vWvadOmIYRqa2sfP36swsAU1mrQHcefnQ22Ga6+FdEGmbndLL97p/z+aPvO6wkDAPqx7k2ol0gkmZmZbdeV7k/09fVXrVqVmJhYXV2NbZFfI+LSpUsbNmwYPHgwg8FgMBjOzs56eqr8plZYq0FHVDRXZlY/DrJVdk3UHiAgQqjDqGPPzkiRilccBABoP2UToVgsjo2NXbFixZQpU5Rfi7LPoVAoS5culVWBkF8jgkwml5f/U8Sgqalp165dlZWVKg+pq1oNuuNEbmKQdaC6F8j2MHUTiUX33nRSZxgA0L8pO2qURCJ98sknOTk5t27dcnBwkLMmZG1tbXZ2Nna2EP3vmVVt07b6xMcff+zv748QcnR0tLKy2rp16/r16+XXiIiJidm/f//Ro0exI8Lo6Oja2tpNmzYtW7bMxMREfo0I+ZSp1aBaAoGAw+Fgi26ro/8eq+M2/F1+f/GQBRoIbIRVwPFnZ4YYa8U8CgGfLxaLORwO3oEAhBDicrkkEgnvKABC3X8vaDSawhLo3a4+UVRUlJGRMXfu3K4aXLp06dtvv127dq1si6+v76hRo1Q7kASo0NKlS11cXBYvXtzd6hMacODx0bc89ninUA3sSyqV7s86smHkV77mXhrYnXy85w+a76aYx3yDdyAAIag+oU26+14QiUQCQcEguG7PI7S2tmaz2XIa6OvrW1tbt11AWX57oA2IRCL2I4tEImnPL98mQfOfpbeWBH6q8AedqoTYjziTf/lHK1/N7E4O7NOrPe+FjtOqz4WOU8d7ofj7JS8v78WLF9jfEonk1KlToaGa+HkOwJWCq56m7kyq5n6JD7H0zW8oeA316wHQJYqPCB0dHS9cuHDp0iUymSwSicaOHevri//vZdDvCSWiS4XJc32Vqs2kKmQiOcg64Fz+5TUjlmpyvwAAHClOhNjymxoIBYC2rpfetmCYWzJUvHarQkG2/j89/HnR0GgjPaaGdw0AwAUU5gVaKuFF0kjbYZrfL4PC8DYfdKXwquZ3DQDABSRCoI2e1T5vFXDcTAbisveRtoGXX6aKJGJc9g4A0DBIhEAbJb74Lcg2AK+VPy0ZFmb6JrfK7uKydwCAhmmoDBOPx9uxY4dm9gW6KysrS1ZYShvUcuqza56tClqMYwzDrQMS86+McxqNYwwAAM3QRCJkMplr1qzpakK9RCKRSCRkMlRGxE1ISIhWTYlJepk6xNKHSqLiGIOXmXvqq78K3xa7m7gobg0A6Ms0kX6IRKKccrVCoVAsFtNoNA1EArSfUCxMfvnHgsFz8A2DQCAE2Qy9UPD7+pHL8I0EAKBucI0QaJdb5RnWBpZmdFO8A0GBVkP+Lr/fJGjGOxAAgHpBIgTa5WLB74FWQ/GOAiGE6BT6IFO3q8V/4R0IAEC9IBECLVLMLq1uqfUyc8c7kH8Mt/FPenkVihQC0L9BIgRa5HJBSoD1EIVLxWuMA9OOiEhZVU/xDgQAoEaQCIG24Ai511/fCbQegncg/yPQevClwmS8owAAqBEkQqAt/iq95WLsrMlaE8oYYuH7pCa3nvsW70AAAOoCiRBoi8uFKcOstOtwECGkR6b6WXgnv/wD70AAAOoCiRBohfyGwmZBy0BjZ7wD6USg9ZDfi/+QSCV4BwIAUAtIhEArJBWmBloPIWrNMJm2bAysDCj0h1WP8Q4EAKAWkAgB/lqFnDvl9/0tte68qEyA1eDLhal4RwEAUAtIhAB/f7y64WYy0IBKxzuQLvlZeOXW5tdzGvAOBACgepAIAf6uvEwL0L5hMm1RSVQ/S+/koj/xDgQAoHqQCAHO8hsKW4StLsZOeAeiQKDVYBgyA0C/BIkQ4OxK4dVA68F41eBVnjUMmQGgn4JECPDUKuTcLr/nbzkY70CUEmA1+ErhVbyjAACoGCRCgKdrpbfdjAcaUBl4B6IUPwuvZ7V5sMoMAP2MUoV5i4qK4uPjGQwGkUiMioqytbVVd1hARyS9TH3XfhTeUSiLSqL6WnilFP0xz3cm3rEAAFRG8RFhU1NTXFzc5s2b169fv2TJkl9++UUkEmkgMtDvFTQUNfGbXbRyNZmuBFoP+b3oD4kUCjMB0H8oToS1tbVLliyhUqkIIQaDMWTIkOLiYvUHBvq/pJepAVaDtXM1ma7YGFjpU2iPqrLxDgQAoDKKE6Grq6uNjY3sZnl5uYGBgTpDAjqhVci5VZbhb9U3hsm0FWg1+PJLWGUGgP6je4NlcnJyKBQKXCMEvfdX6S0344GG1L73o2qwhc+zmucwZAaAfkOpwTKYly9fXr16dcWKFfKblZeX3717d+jQobItX3/9dVhYWFfthUKhWCwWCoXKRwLURCwWCwQCsVisgX1dyk9+x3YEl8vVwL5UzsvE/VJe8r/cp6pvF0IuVyQSNTc3q28XQHktLS14hwD+0d33gk6nk0gk+W2UTYSFhYWJiYmrV69W2KOdnZ2fn99PP/2E3SQQCN7e3np6el21xxIhjUZTMhKgPmKxmM/n0+lqX/PzRcPLVjHH09Kjb10glAmyDzybd3mBf5T64ufq6wvJZEND7SpTrMvgvdAeKn8vlEqEBQUFZ8+eXbduHTZkRj4CgWBoaBgQENDr2EC/dbkwRWuLLinDxsCKQdF/WJU1wiYQ71gAAL2l+Brhixcvzp8/v3btWuyorra2try8XP2BgX6rRdCq5UWXlBFoNeRSAQyZAaA/UHxEeOrUKTqdfuDAAexmfX39+++/b29vr+bAQL+V9uq6h4mLNhddUoafhXd6yfVaTr0F3QzvWAAAvaI4EW7btk0DcQDdcaXo6gTnULyj6C0qiTLEwuf3orRP/ObgHQsAoFdgrVGgUU9rnwvFQqcBjngHogLDrP2TX/4hkmhikC0AQH0gEQKNulyYEmg9VPuLLinDgmFmQjf5u+I+3oEAAHoFEiHQHBaPnVmZ7W/lh3cgKjPcaujFgt/xjgIA0CuQCIHm/P4y3WkHWWQAACAASURBVMfck0bqclJpn+NlPqis8U1pI4yjBqAPg0QINEQsFV95eXW4jT/egagSiUAMtB56qSAZ70AAAD0HiRBoyN/lD4xoRtYGlngHomLDbIZcK73dKuTgHQgAoIcgEQINOV/w23DroYrb9TVMqqGriXPaq+t4BwIA6CFIhEATXrFflzdVept74h2IWoywCbhQ8JsUQbVeAPokSIRAE86/uBJkM5RE6J//b45GDiREelj5GO9AAAA90T+/mIBWaeI33y67N6w/nheVGWEbmPjiCt5RAAB6AhIhULsrhVe9zDwYFAbegajRYAuvl29fvYZ5FAD0QZAIgXoJJaJLL1NG2g3DOxD1IhHJw6yHwkEhAH0RJEKgXjde3zHTN7ViWOAdiNoF2QTefH23kd+EdyAAgO6BRAjU60zepVH9/XAQY0Cle1sMulyYgncgAIDugUQI1Cir+ilfzHczccE7EA0Jthl+qSBFIBbgHQgAoBsgEQI1OvX8wijboP5Ra0IZFgwze6bN1eJreAcCAOgGSIRAXV6yXpWyX/tZeuMdiEa9Yxd0Nv+yRCrBOxAAgLIgEQJ1OZl7fqTtMDKBhHcgGuVo5KBPpt0qy8A7EACAsiARArUob3rzuPppP6s1oaQQ+5EnchNgxTUA+gpIhEAtTj0/P9I2kEqi4h0IDjxMXQRi0f03WXgHAgBQCiRCoHrVrbV/VzwcYasTsyY6IiDCaIcR8Tmn8Q4EAKAUSIRA9U7kJAy3HqpPpuEdCG68zTyb+C0Pq2AZbgD6AGUToUgkysnJUWsooH+oaa29VZ4xyi4I70DwRCQQxjiM+uXpKbwDAQAopjgRtra27t69e/fu3XFxcRoICPR18c/OBlkH0Cn6eAeCMx9zr2ZBy/3KR3gHAgBQQHEiZDAYX3zxxZo1a2xtbTUQEOjTKpor/654+I69Th8OYogEwljHkCNPTsLwUQC0nFKnRmk03b3YA7rllycnR9kOo+nw1cG2vMw8RBIRzCkEQMvBYBmgMoVvi7Nrcvt9xSXlERDhPad3f35yQiQR4x0LAKBLZJX3WFZWlpaWRiD8s7wkkUg8ffr0Bx980FV7oVAoFouFQqHKIwHdJRaLBQKBWNzDb+39mUdG2QwXC8RcxFVtYH2XLc2KTqJdfP7bRKf3uvVAIZcrEomam5vVFBjolpaWFrxDAP/o7ntBp9NJJAXrW6k+ETo4OEyYMCE1NVXJ9lgihLOv2kAsFvP5fDqd3oPH3nvzqI73dqb3x0QCnGb4HxNd3zuRmzhpUDiD0o0XlquvLySTDQ0N1RcY6BZ4L7SHyt8L+M4CKiCSiGMfx4U7j4Us2JG1gZW7scuJnAS8AwEAdA6+toAKXCpMNqDSB5m64h2IlnrP+d2U4j8rmivxDgQA0AnFp0Y5HM7hw4fFYnFubu7OnTsRQhEREU5OTmoPDfQRLB77ZE7igiFReAeivQypBiH2I/Y/OvJj6Ba8YwEAtKc4EdLp9OXLl2sgFNBHxWbF+Vv5mdNN8Q5Eq420G34oK+5O+f0Q+xF4xwIA+B9wahT0yuPqZ49rckId38E7EG1HJpA+dB2/79HPXBEP71gAAP8DEiHoOb5Y8OOD2Emu43Wz3FJ3OQ9wcjJy/Dn7BN6BAAD+ByRC0HNxT09ZGZh7mrrhHUifMcFl7I2yv3Pq8vEOBADwX5AIQQ/l1r1If3V9kst4vAPpS+hk/Uku47/P2MsT8fGOBQDwD0iEoCe4It63Gbs/dJtA784kcYAQ8jb3sDa0OvgYarkAoC0gEYKe2Pvw345Gdl5mHngH0idNch2f8eZhxpuHeAcCAEAIEiHogfRX15/W5U0c2L3FM4EMjaQXMeij7ff213Lq8Y4FAACJEHRTCft1bFZcpOcUGCnaGw5Mu2Db4V/f/kEoEeEdCwC6DhIh6IZmQcv6W9+97/KeFcMC71j6vBCHEVQiZe/Df+MdCAC6DhIhUJZIIt50Z7urycAhlj54x9IfEBDhY48Ps2tyLrz4He9YANBpkAiBsnY9iOWJeBOcx+IdSP+hR6bO8ZlxMjcx400m3rEAoLsgEQKl/PLk1POGgkjPqbKSy0AljGlGs32m/3DvJ5hlDwBeIBECxc7kXfzz9a25PjNggIw62BnaRHhM3nDru4KGIrxjAUAXQSIECpzJu5hUmDrf718MCgPvWPotV5OBU9zfX3VjS35DId6xAKBzIBGCLkmR9MiTE1depv3f4NlMqiHe4fRzg0zdp7h/sObG1uyaHLxjAUC3QCIEnROKhdvu7rlb8eDTwXMgC2rGIFPXGV5TN93Znv7qBt6xAKBDFBfmBTqogcvacHsbhUid7zebSqLgHY4OGWjk+InfnKNPTrSSXYKlUrzDAUAnwBEhaO9R1ZMFqV/aM+1mek2FLKh5FgyzRf7zX7Ff57Ne1sEabACoHyRC8F88Ee/g07jv7+2dPujDUId3CAhmSuCDTtEPdQzRI1E/Sf3yj5KbeIcDQD8HiRD84075/XkpiytbahYHLHAe4IR3OLqOiAgmNOMon8hfc84uv7apvOkN3hEB0G/BNUKA8uoLDmXHN3DfTnZ7355ho0fWwzsi8A9bQ+tF/v93/83Dz9JXj3MaPc9nhom+Md5BAdDfQCLUXVIkfVz97PTzCyWN5WMcgv/l+bFUKhUKhXjHBf4HiUAcZTdiqKXfzbK7Ub9//p7zmEjPj2wMrPCOC4D+Q6lEyOPxjhw5wuFwpFLpJ598YmEBlQf6NhaP/Ufpzd9epkmkkmCbYVM8PiATSAghKQxT1FZ0Cn2iS1iI/ch7bzJjri73NHP70HXCSJtACoxmAqDXlEqEP//88+TJk52dnZuamn788cdt27apOyygDm+aq+5XZt0qu1vEKvEyc5/oEuZs5IB3UKAbDKkG451DQx1DcmrzTuQm7Li3P8g2YLT9yECrIQZUWPcHgB5SnAi5XG5ra6uzszNCiMlk+vj45Obm+vhAIZ4+QCgWvmp8XdBQ9LQu72lNrlAsdDdx8TX3njZoMoUIZ8X7KgqR7G/l52/l1yxoyasvSMy/8sO9fQ5M28Hm3t7mgzxMXa0NLGHELwDKU/xtWFVV5erqKrvp6elZVlamwkRYXV3d3Nzs5eWlqg51E5vfyOKyazh1Na11VS01ZU0Vr5sqalvrLOjm1oZWdobWc7wjLBhm8jtpbm5uaGgYOHCgZmIGcgiEAsThym9jSDUIsgkIsgkQScVvmt6UNpZfKkyuaK7mCjn2TFt7pq0D09aaYWlpYGFKMzanm9LINM0E38/weLwnT56EhITgHQhAIpHo0aNHoaGhqu1WcSJks9nGxv8dqGZqapqbmyunvVgsbmxszMrKkm3x8PAwMDDoqn3CxYT86sLVq1crF3Cf1CJoVaaZWCLmiP773ccX8QUSIUKILxIIJAKhWMQV8fhiPlfEa+G3cEW8VmFrs7C1md/SLGhhUOiGeoYD9JhMqqERjeloZD/Meqgp3RS7+KekR48eZWdnr1y5srtPEKjc69dljMo3So4QJRNIjkYOjv850c0T8Wo59XWt9WWNb3Jq81n8xhZ+C5vfJEESJtWQSTUwoDAYVDqdQtcn0+gUOoVINtQzQAjRyfokIqntHxhDapef37aIBCKdot/NJ9oHPHv2bO/evfHe8XgHAlBpaemK9ctz7z1TbbeqPz9WXV39/PnzBQsWYDeJROKWLVvGjBnTZXtJfYVTw48ZB1QeifaQc/1G2maEColA0v/nN7tUipAeiUohkiVSqR6ZQiZQSAQijazHIOib6BsxDAfqkan6JH0GRd+QwjCgGJKIKpgSyuTSSfVSR5pt77sCvcQW6Uv5PX8vPAxcOm7kiwXNgpZWUStHyG0VcXkinkAi4Ih4UrGkkl1NJBC5Iq5EKiUQEFfME0skBIQQIiCEWoT//SVH7LogpUQq4QgVHMX2Ra2traR3Dfr3d1Rfwefz9YOMmpublX8InU4nkRQcDyhOhEZGRkVF/y2T9vbt2wEDBshpb2trGxwcnJqaqmSUNsiC/7z1wKJ9SrYH6mOkx6RKKLamNngHAlAxldEiJcB7oQ0yMjKW710edx++o/CXn58/dcNUw59UXAZA8WGEtbV1cXFx2zgcHGCoIQAAgH5C8REhnU7X19d//fq1o6NjS0tLTk7OjBkz5LSvq6vLzc1duHChkhHk5OQ0NTUp3x6oT2FhYUVFBbwX2oBe/9pNxIL3QhvU1NSUlpbCe6EN2Gx2TU1Nt96LkJCQOXPmyG9DUGYONZfLPXr0KJ/Pl0gk8+bNs7KSt6pFTU3Nv//9bxsbZU/pNDY28vl8mKSvDVpbW5uamqytrfEOBCAej1dXV2dvb493IAAJhcI3b944OTnhHQhAEomktLS0WyPbhw0bNnToUPltlEqEAAAAQH8F1ScAAADoNEiEAAAAdBokQgAAADpN7QtO9qxyBdS7UIeevaqbNm2i0+nY32ZmZrKlEkAviUSi/Px8X19f5R8Cnws16cF7AZ8LdSgqKoqPj2cwGEQiMSoqytZWqQUlVPC5kKrZTz/99OrVK6lU2tjYuGHDBrU+CsjXs1f1hx9+UGdQuqilpWXXrl3bt2//8ssvu/VA+FyoXI/fC/hcqFxjY+PatWv5fL5UKm1padmyZYtQKFTmgb3/XKj31GinlSvU9CggH7yq2oPBYHzxxRdr1qxR8gcvBt5BdejZewHUoba2dsmSJVQqFSHEYDCGDBnSdi2Xrqjkc6HeRNhp5Qo1PQrI1+NXVSwWX79+PTY29sSJE3V1dWoLULfQaN0uBAGfCzXpwXuB4HOhBq6urm0noJeXl8up1iCjks+FehNhx8oVLBZLTY8C8vX4VR0yZAiNRps/f35oaOiBAwfgvcALfC60Cnwu1ConJ4dCoShzmK6SzwWMGgUKfPDBB8HBwQwGw97efv78+SkpKXhHBAD+4HOhPi9fvrx69aomxx+pNxEaGRm1Tc4KK1f05lFAPpW8qg4ODlVVVSqNCygLPhdaCz4XKlRYWJiQkLBs2TKFtZMwKvlcqDcR9qxyBdS7UAeVvKqVlZUwZB8v8LnQWvC5UJWCgoIzZ86sWrUKGzKjDJV8LtSbCGWVKxBCWOUKHx+ftg0yMzM//vjjhISEbj0K9EDP3ouMjAxZaUmRSHTq1Knx48drLGadBZ8L7QGfC4158eLF+fPn165dq6enhxCqra0tLy9v20B9nwu1T6hfuHChrHLF4sWLCV2Xt+79o4B8PXhVR44cmZKSsnXrVhqNJhQKP/zwQ6hN0XscDufw4cNisTg3N3fnzp0IoYiICGWKG8DnQuV69l7A50IdTp06RafTDxw4gN2sr69///33lSnA0vvPBVSfAAAAoNNg1CgAAACdBokQAACAToNECAAAQKdBIgQAAKDTIBECAADQaZAIAQAA6DRIhAAAAHSa2ifUAwCUkZCQ8PvvvwuFwnYLZwAA1A2OCAHQCpGRkadOnaJQKHgHAoDOgUQIAABAp0EiBAAAoNMgEQKgjR48eDBlypSJEydGRUXl5ubiHQ4A/RkMlgFAGzEYDDMzs1WrVnl4eOAdCwD9HCRCALTOrVu3EhISvvvuO0tLS7xjAaD/g0QIgBaRSqXnz5+/du3a7t27GQwG3uEAoBPgGiEAWoTFYmG1th8/fox3LADoCjgiBECLDBgwYOXKlSwWa82aNSQSKTg4GO+IAOj/4IgQAC1CJBIRQsbGxtu3bz9+/HhGRgbeEQHQ/0EiBEAbmZiYfP/998eOHXvw4AHesQDQz0EiBEArJCYmzps3TygUyrYUFxc3NjZu3rw5Ojr62bNnOMYGQP9GkEqleMcAAAAA4AaOCAEAAOg0SIQAAAB0GiRCAAAAOg0SIQAAAJ0GiRAAAIBOg0QIAABAp0EiBAAAoNMgEQIAANBpkAgBAOrV0NAgFotV0lVdXZ1K+gGgLUiEAHQbl8sNCws7cuQIvmE8e/YsPDw87D/27duHbzydYrFYCxcuLCoq6n1XUqk0JiYGFl8FKgdlmIDa3bp167vvvsMW8zt27Ji9vX27BgKBYPbs2Ww2GyE0ffr0hQsX4hBlH+Tn53f27FmJRIIQunDhAp/PxzuiTsTHx9vY2Hh4ePS+KwKBMHny5NjYWH9/fwqF0vsOAcDAESFQu9GjR2MHT2FhYRcuXOjY4Nq1a6amps7OzqtWrfrkk080HmC3kcnkWbNmDR06FO9AkImJiZmZmZmZGZ1OxzuWTpSUlKSlpUVHR6uqw+nTpzc1NaWkpKiqQwAQJEKgAQQCwcTEBCEUGRl5/fp1FovVrsHFixcjIiIoFIqRkRGZ3AfOUlAolPnz5w8bNgzvQLTduXPnHBwc/P39VdWhoaFhWFjY6dOnRSKRqvoEABIh0Bxra+ugoKArV6603ZiZmdna2vruu+/iFRVQEzabfefOnfHjx6u22/Hjx7PZ7Hv37qm2W6DL+sCvb9CfRERErFu3bubMmTQaDdty4cKFqVOndnogyOfzs7KyHj16lJ+fX1NTI5VKbW1tx48fP2HCBCqV2q5xU1PT7NmzeTweQmjMmDEbNmxACOXl5Z05cyYnJ8fAwCAiImLKlCntHlVUVHT+/PnCwsK6ujpLS8vQ0NCIiIiqqqpPP/0UIcRgMM6fPy+7HJWVlbV+/XrsmhxCaNKkSV9++WWnT7OioiImJkYoFEZHR8+cOfP8+fPp6ek1NTVmZmZ+fn5z5861sLDo5fPVjMrKynPnzhUVFZWVlRkYGHh5eU2fPt3Ly2vPnj1Xr15FCM2cObOrs9m3b98WCoUhISHttrNYrDlz5ggEAoQQhUI5fvx421dDIBDMmDGjtbUVIUQikQ4cOODm5tb24e7u7lZWVn/++WfHngHoGUiEQKM8PDycnZ3T09M/+ugjhFBJSUl+fv6mTZs6bZyRkXHr1i1vb+/Ro0ebmppKJJKysrKkpKT79+9/++23JBKpbWMmk3n69GmBQJCamlpeXi4Wi+Pi4m7evBkZGRkTE/P69evDhw+TSKQPP/xQ9pCEhIRTp05NmTIlPDzc1NS0pKQkPT399u3bX3zxBZ1Oj4uLo9FobQdlBAQEKDk4xc7O7uzZs/v37+dwONu2bfPw8FixYoWJiQmbzU5OTl64cOHBgwdtbGx683w14PLly8eOHXvvvfeioqJsbW1ra2tzcnLWrl07b948hNC0adOmT59ubGzc1cOzs7ONjY2tra3bbTc2Nj579uxnn322YsUKFxcXIyOjtvdSqdRTp06VlJSsXr365MmTZmZmHXv29vZ+8OCBVColEAiqeKJA10EiBJo2Y8aM2NjYDz/8kEgkXrx48f3332cwGJ22DA0NDQ0NbbvF0dExODg4Ojo6Pz/fx8enXXsmk4kQMjAwaGxsXLNmzYABA37++WdDQ0OEkIODQ1BQUNsy1A8fPkxISIiNjXV0dJR1PmbMmISEhF27dhEIhE6/grGLnQghOp0uf5SmkZERjUZLTU3ds2ePs7MzttHGxsbLy2vnzp3Hjh3buHFjL5+vWmVlZR0/fnzXrl2yAZ8ODg6BgYETJ05cvXq1SCQKDw/v9CWSycvLc3d37/QuJpPp7e1dVVUlu3xYVVUllUqxHwcGBgZ1dXVubm5d9e/m5nbt2rWysjLZewdAb8A1QqBpw4cPp1Kpd+/eZbFYN2/enDp1arceTiKRrK2ta2pq5LR5+vTpyJEjN27ciGVBDJVK1dPTk908cODA4sWLO36TRkZGdjxW67HJkyfLsqDMuHHj8vPzlexBmeerDj/99NPnn3/ecdqDpaXlunXrFE5sF4vFLBZrwIABXTXw8vJ6/vw59rdUKl2+fPnixYtlQ2Dy8vK8vb27eizWbUNDgzJPBACF4IgQaBqBQIiIiEhMTCwqKhoxYoSVlVVXLcVi8a1bt/7888/Kysq6ujo9PT1zc3MvL6/a2lr5uwgJCZk2bZqcBvX19fX19V1dZAoNDS0oKFDmuSjU6bU9AwMDoVDYcXuPn6/K1dfX19XVtTs8lRk0aJCDg4P8HlpbW6VSqZxJHT4+PpcvX8b+zsnJ4fP5xsbGDx8+DA4ORgjl5+fPnDmzq8di3TY1NSl8IgAoAxIhwMG4cePi4+MvXLiwe/furtq0trauWLFCKpWOHz/ezc0NOyfZ3NxcWVmZnZ0tv3+Fl47Ky8utrKy6mpSt8FteHXrzfFUOe33kjNBReE4SO93N4XC6auDs7Pz27VsWi2VsbHzjxo2QkBBra+tr164FBwcLBILi4mIvL6+uHsvlchFCBgYGip8JAEqARAhwQKFQli9fXlFRMWjQoK7a7N2718XFZfny5e0GiXh6eqanp/cyAHt7++rqaqFQ2GkurKio6GX/PaDW59td2OsjEAi6yoXl5eXycyGJRGIymY2NjXIaeHp6Pn/+fOTIkbdv3960aZONjc2pU6daW1tLS0vNzMxMTU27eizWrZwGAHQLXCME+AgKCpJz9lIsFmdmZs6ZM6fToZLYHInewFZjuXPnTqf33rhxo5f9d5e6n293mZmZmZub37x5s9N7CwsLS0tLFXbi6en56tUrOQ28vb2fP3+elZVFoVB8fX3Nzc0HDRp0586d/Px8ORcIEULFxcX6+vq4HLiDfgkSIdBGBAKBSCR2vDbW1NT0zTffqOQC3tKlS2NjY1+/ft1ue2JiYnl5ee/77xYNPN/uWrZs2cGDBwsLC9ttr62t3bZtm/zxohhfX9/a2lo5w2qwRHjjxo2xY8cSiUSE0HvvvXft2rW8vDw550URQs+fP/f19dX8fBLQX8GpUaB22ABChBCLxaJSqYaGhu2mz2P3ikSi5uZmPp+vp6dHJBJnzZr13XffzZs3z8fHR09Pr7a2NjMzMy0tbcaMGS0tLS0tLdigRNnlQLFYjI2e4HA4fD6/7UJuVCq14wyNYcOGRUZGLlmyZOrUqf7+/tg8wqtXr9bX169atWrz5s3t2kulUmxZcAyPx+PxeG33YmRkhH2byxrz+Xwul9vY2Nh2qpxAIGhsbJRIJG3j78Hz7VY8PRAQEBAdHb1ixYrw8PCgoCBbW9uamppnz55dvHhx1qxZlZWVCnsIDQ2Ni4u7e/dux3UMMJ6enkVFRaWlpXv27MG2hISExMbGUiiUWbNmddVtWVlZRUXF7Nmze/a8AOiI0HZmFQDqcPDgwaSkJNnN8PDwlStXym6mp6fv2rVLdtPd3f3gwYPY3xkZGZcuXXr9+jWHw7GwsBg+fPjHH39saWm5evVqbPzIsmXLPvjgA6zxvn37kpOTOw1AT0/v5MmTnU79xlaWKSgoqKurs7KyGjt2bERERGVl5bJly9rGjBC6evWq7Pu6U1FRUXPnzsX+vnz58qFDh7C/iUTitm3bZAuTbtq0SbY8WNv4u/t8uxVPj1VUVCQkJLx8+bK8vJzBYHh7e0+bNs3Hx2fPnj1mZmYK+1+/fj2bzZa9FB1h6+/Ex8fLtnz77bcPHz5MSkrq6oAvLi4uJSXl3LlzeK22A/ofSIQAtFdSUvLVV1+1S4SgLSUT4fPnz5ctW7Zv3z75pzqVx+PxoqKiPvroozlz5qikQwAQXCMEoKOKigpzc3O8o+gPvL29g4ODT548qaoOf/vtNzKZHBERoaoOAUCQCAFoRyKRXLp0CZvWDXpv0aJFubm5xcXFve9KKpUmJiYuWrSo7QpBAPSeJgbL8Hi8QYMGwTIQfcXHH3/8yy+/4B2F5jQ1NYnFYoSQSCQqLS09c+YMkUiEM2+d4vF42GR2Pp+Pjc1hMpnyR29aW1sfOHCg49LbPUAgELZt2yZn7ikAPaOJa4RsNtvJyamkpETdOwK99/fff+/du/f69et4B6IhJSUln332GZYIyWSyo6Pj6NGjIyMjYWh+p2JiYtp9kOWUYQKgr9DQ9AkCgSCnXAvQHrq2bJWzs3NaWhreUfQZR44cwTsEAFQPrhECAADQaZAIAQAA6DRIhAAAAHQaJEIAAAA6TanBMps2bZIV2DQzM1uwYIGcxmw2+/nz56NGjVJBdAAAAICaKZUI6XT62rVrlezx/v37+/fvT01Nld/syJNfy5sUr9urQhNdwkbaBmpyj6WlpSYmJkwmU039x8XFUSiU3q8nqQw+n08ikdotli2fwhoCbVVWVurr6/fXocUtLS26NhxXVfivnrPSz1h99h3egfRJPB6PTCZ362Orm1T/Aik5MdGKYdnAYytupzpWjPaLZnE4nO3bt+fl5bm5uaH/lMKZMWOGn5+fSvZ4+/btESNGqC8RDh48WGP/4lKptFtTTrHFrDvWcOgKi8WKi4v7+uuvexSdtoMVfXtOIkYCTZdj7DfgH09JSn2NisXi69ev5+XlMZnM999/XyXLMAbbDTeja7TAtPOA9gW16XT6N998s3Hjxm3btmFbWlpatm/fzmQynZycNBlbzwQGavQAt1tOnTolp+5uR97e3ocPHy4vL7e3t1dfVAAA0JFSiXDIkCE0Gm3+/Plv3749cODAV1991V9PYRkYGERHR9+4cWP+/PnYFi6Xe/z48bKyMoSQnp7e3LlzBw4cKGv/9u3bQ4cOvXnzxtDQkEajDR48ODw83MDAgMPh7Nixo7S09NGjR7JKeDExMc7OzrLHVlZW/vrrr62trSKRiE6nz5o1y9XVFbtLKBTu2LGjpKRk0aJFAwcOPHLkCJvN1tPTW7t2LXax9s6dO6mpqRwOx8/Pr+O6HnJiVtizfGVlZfHx8Twej0Kh2NraRkVFzZs3Lzg4eNmyZbI6eQihkpKSuro6X19f7OarV6/Wrl3r4uKyYsUKWUHXw4cP//XXXzNmzJgxYwa2ZerUqYmJiStWrFD8PgElSKSSuxUPb5dnlLDLJVKxGd1kmJV/+MBQpp4h3qEBoF2USoSyEmgMBmP+/PkpKSlyVmJsaGjIzc2VDaghEomRkZG9D1RjxGKxrJypSCTavHnzzJkzP/vsM4QQi8XagVA5hAAAIABJREFUvXt3VFSUh4cH1mDv3r2RkZE+Pj4IIQ6Hs2rVqoCAAAMDAzqdvnXr1hMnTowYMcLd3b3jXiorK/fu3bty5UpLS0uEUH19/d69e6Ojo7GTtBQKZePGjVeuXCkuLk5KSlq8eLG1tXVBQQGHw8HSVUhISEhISHFx8c2bN9v1LD9mhT0jhCQSCY/X/mQUj8erq6uLjY1dvnw5FnNOTs6ePXu8vLw+++wzPp/ftvFff/01bNgwWSc2NjZjx47FfiJwuVypVEokEqOjo4uLiydPnixr5u/vv3v37kWLFvW/5c2wnw6a3GN2bc7+7F+oJLKPqecYu2AikcjmNWa8eRifezbC9cMZgz4iEfrGiywUCDr9hwTK4PF4YrFYx68RUqlUhRWqu/0COTg4XLhwQU4DGo3GZDIDAgJkW/rQ4SOLxYqPj1+8eDF2Mzk5OSwszN/fH7tpbGy8evXqH3/8UXYqVSqVyvIHNqTIxsZGmR39+uuvq1atsrCwwG6amZmtWbNmx44d3333P4MCsrOzt2zZoq+vjxCSZV/5FMassGcCgdAxFZFIpISEhK+++kr2BIcMGVJdXZ2VldWx8evXr0NDQ9tud3d3f/XqlZ2dXVJS0r1793bs2CEQCPT09Nq2YTAYhoaGdXV1tra2yjzTPoREImksu0uRND7n7NWSax8MHO9h4iLbbmdo42Pu2chv/L34jwfVWd+8s9aYNkAzIfWGmEhECPW/30aaQfoPvAPBU9uTVV3pdiKsrKyUfX13isFgODg4YIcjGDZbo4Niuquurm7jxo0IIQKBQCaTFyxYYGdnh92Vm5v71VdftW3MZDKpVKpAIMCqYy9duvTIkSM8Ho9Go7m5uY0bN07J/7mSkpL9+/e329ixVM306dOxXKU8hTEr7JlAIHQ8fBGLxS0tLe0unY4cOTI7O7tj47KyMgcHh7bbPT09k5OTx40b9+TJEzqdzuVyq6urXV1d2z3Wzs6usrKyT1yg7RYKhaKZI0KJVPLDvZ+KWKVfBPwfg8Lo2MCUbDrPb+b10r+XXl+/773vLTuMINM2EjKZSCRq+Hi63xCJRBQKRcePCJWh+AXKyMhgs9kTJ05ECIlEolOnTkVHR6s9Lg0yNzdvd7QkI5VKO/6aIBKJWLEChJCFhQWWRJuamvLz8zdv3rxy5cq2FwK7YmlpuXXrVoUH7D2gMGYVwirydESn09udLLW2tq6qquJwOEQicdy4cffv3xeJRNh54Lb4fD6NRlN5nLpj98NDpY3l83xnUkldZg4CIoxzCqFT9Jb9teFQ+E5jmpEmIwRACyn+Ih45cqREItm6deuOHTu2b98+ceJElZQW6xN8fHzu3bvXdktLSwuXy8WOpdhs9qNHj7DtTCYzKCho/vz5N27ckDUmELqscuXu7n7//n3Nx9wbLi4u7WLuaraog4NDRUVFu41SqTQzM3P48OHDhw/PzMwsLi7umAgrKiqU+RkBOnUm7+LT2uezvafLyYIyI22He5p5rLv5rVAs1EBsAGgzxYmQQCBMmjRp8+bNa9as2bhx4+DBgzUQlpaYNGlSenr606dPsZtsNnvHjh2ygUJVVVVHjx6tr6/HbnK53OvXr7etGurk5PTw4UNZLszJycnOzsb+joyMTEpKevbsmaxxZmbmv//9b3XH3BuRkZEXLlxIS0tramqqqamJi4uTSCSdtnR1de1YftLGxiYpKWnkyJF0Ol0ikbx586bdOfaGhgY9Pb0+dEVZqzyufpaQlzTHO4JKoipujRBCaJxTCJVE3fcIKisBXafT5445HM7OnTsLCgqw05thYWHvvvtu2wYUCmXr1q3x8fHnz59HCJHJ5Hnz5skmOVhZWU2bNk2WC/l8/pQpU4KDg2UPf+eddwoLCz///HNzc3MymWxubh4REYHdRaVSt27devLkSWzkEYVCsba2lt2bl5d35syZ6upqGo125coVhFBgYOCUKVOwe6uqqg4ePIgQam1tbWhowFLOO++8M2HCBIUxy+9ZPn19/R9++CE1NfXgwYPYeCh/f//t27d3bDlhwoQvvvhiwYIFbS/tuLu7P3nyBJs+ERAQcOfOnXaPSktL++ijj5SJBLTTyG/alrFn2qAPuzU1goAIU90/OPg47nb5vdH2I9UXHgBaTvUV6q9evXrgwIG2J83YbLazszOLxWrb7C2P9ZKlwZr1UhRk46+53fVZN27c+PbbbztWqOfxeCQSqd2YBYFAsH379k2bNnXs59ChQ25ubmFhYUruVyQSLVq0aN++fbJpl/1Jc3OzoaEaZ+9turMdSdEEl3E9eGx505szeRePfxCrnRcL+UXPWCm/Wn25G+9A+iQulwuDZZSB2wtkQjMOsoaTYP3WjBkzdu/erXwivHfv3rhx4/plFlS3O+X3XzQULQ5ov66CkuyZtkMsfPZlHt4Sska1gQHQV0AZJtATAoHg+++/37JlS25u7v79+zueVzAzM9u6davyHQYFBfWthRe0BE/E2/fo58nuE8jEnv+oHes0Orf+xaOqJyoMDIA+BA6Z1eju3bvJycldLYTWp1Gp1PXr1yts060OexeRjjqRm2hvaDfQqP06ut1CIZInuozfk3n4xKSDZKJOT74GukmnE2G76hOYyMjIIUOGqKT/UaNGjRo1qtOF0ADoverW2isvry4J/LT3XQ0ydX1YmXW5MCVi0OTe9wZA36LTibBj9YnW1tbt27cbGRnBbDag/Y5knwi2HcakqmYYzoSB4449O/X+wHEGVLhSC3SLTifCjhgMxrx5827cuCFLhHJqRCCErl+/fvPmTYlE0tTUNGDAgMWLF8tff04ZStZqADquiFWSVf30q+GLVNWhBcNskJn7mbyLMUM0UeoZAO0BibC9qqoq2SIs8mtEIIQcHR3XrVuHtS8tLT106NCWLVt6GcDAgQPHjx8/ceJEMzMzrBwukUhctGhRSUkJZEEgc/TJyRCHkcpPn1dGqMM7sVm/RAz6SDunUgCgJrglQkFJnrixQZN7pDp5kgaYyWnAYrEyMjKuX78uG+6osEaEi8t/V/d3cnISiUQqCdXNza2wsNDGxuby5ct3797dvXs3VqtBJZ2DfqCgoeglq3iSq7KzU5RkpMccbOFzJu/CF/79amwXAPLhlghbMlJE1WWa3KPBmKn0gLEdt9fV1a1btw4hVFJSEhQU9MMPP8hGMCqsEVFbW5uWllZRUSGVSu3t7dstGtBj7u7uycnJY8aMycrK0tfXb2pqqq6ublsQGOi4uKdnQuxHknoxZaIro+1HHnh0dLb39AF6cFAIdAV+E+pnr8Jr1+3Iqk9wudy9e/dmZ2cHBQVhd8mvEVFQUBAfH/+vf/1r2rRpCKHa2trHjx+rJCQlazUA3VTEelXAevmhm4oPBzFMPUM/S+/E/CtwpRDoDphQ/1/6+vqrVq1KTEysrq7GtsivEXHp0qUNGzYMHjyYwWAwGAxnZ2cVnr1UplYD0E2ncs+Psh2ujsNBzDt2I668vNoq5KipfwC0TTcS4atXr2JiYpKTk9UXDe4oFMrSpUtlVSDk14ggk8nl5eXY301NTbt27aqsrFRVJAprNQDdVNlS/aj62TBrNS6ca0wz8jBxTSrsvMYWAP1PN35UXrp06fPPP+9YZ67valt94uOPP/b390cIOTo6WllZbd26df369fJrRMTExOzfv//o0aPYEWF0dHRtbe2mTZuWLVtmYmIiv0aEQgprNQDdlJCfNMx6iB5ZvQvxjLIfcSonYYbnFIrajjsB0B7KVp/IzMxks9l2dnbFxcWTJk2S01LJ6hNAO3Wr+gRQkqqqTzQJmv+VFLN0WIwh1aD3vcn3a865qe4fTBjYyfgyTYLqE70B1SeUpNSpUbFYfP369ffee0/d0QAA5LhSmOZp5qGBLIgQGmk37FzeZQ3sCADcKZUI09LSJkyYQCAQ1B0NAKArIok4qTBlpN0wzezOzXggT8x7UpOjmd0BgCPFh8xcLvfly5cffPCBkj2WlZX99ddfxsb/1BokEom7du3qeYBA48RicXNzc7uNcGq0N1paWnrfye0395hU5gCiIZfL7X1vyvA39zuTe9GF7qSZ3XVKxOF0+g8JlAGnRhFCdDqdRFJQU0XxC/T333+/efNm586dCKHGxsbm5uZRo0bJ8lxHDg4O7777bmJiomyLRCJZvny50mEDnJFIpI4XtCgUCiTC3uj9NcLk138E2w+Trf+nAcPt/Hc+OMghci0ZuI1Y5tPp/M7+IYEyyGQyJEJlKH6BwsLCZHXG8/Pzi4uL5WRBDIVCaduGzWb3JkQAQBHrVU1rnZephyZ3SiVRh1r6JRVeXTh0nib3C4CGwYR6APqAiwXJw6yGav46fZDN0JTiP4RioYb3C4AmdSMRpqennz59+s8//4SJEABoUoug9VZZRoD1UM3v2lTfxNrQ+kbZ35rfNQAa041zx+Hh4eHh4T3bDY/H27FjR88eCzSp7ZLiQEuklVxzN3U1oNJx2fswqyEXC5LHO4fisncANEATF1GZTOaaNWu04ThSIBDIKkuATpmYmMTExOAdBfgfSYWp77uoZYltZXiauqcU/VHMLnUZ4IRXDAColSYSIZFI7H25WpVQ1QIfAGjM09rnIonY2ej/27vT8KauOw3gV3fRatl4ky0L7wbb4N1gwIGwtJ2WlNCGJEw6EKBjJpAJmU6bNEszmSZ90mYhUJqkJSThMaFkiBO2sjqEBMwOjhMHG6+yjRfAC3iXJcu60nxw6pAFS5Z1da6k9/fJElfS+5znXP53OfecKFIBJBJJVnj6vprDj+X8J6kMAILCYBkAUdtXc2RaOIG7g7eaps349Mopk8VENgaAQFAIAcSr19x34dpnGeEpZGMEyPxjJkQeb8SQGfBOKIQA4vVR/fHk4ElK1n0P0d9OVnjG3loszATeCYUQQLz21x7J0maQTkFRFJUUlNBhuNHQ3Ug6CIDroRACiFTFjWozb44JiCQdhKIoSiKRZIan79cXkg4C4HoohAAitb+2MDMsXUKJZdWX7PD0Yw0nMcsMeB8UQgAxMlpMp5rPZ4WnkQ7ytUB5QIQ6/FTLedJBAFwMhRBAjD5tPBUbGOMnVZEO8g1ZYWm4OgreB4UQQIwO6AuzwkR0OjhsSshkfWdDq6GddBAAV0IhBBCdxp7m6/0diUHxpIN8G0OzaZqph+uOkQ4C4EoohACic6ju48ywFPcvuuSI7PD0Q3XHrDYb6SAALuPQXKMlJSWHDh3iOM5sNi9atCg7O1voWAA+y2LlC+s/XZ3xIOkg30/rF6Zk5SWtpdNJLAsFIAT7hdBqtZaVlT399NMcx/E8v379+ri4OLuL1AOAc85dLQ5RBocogkgHua2s8LSD+qMohOA17F8apWl61apVHMdRFMUwzLRp0xoaGoQPBuCjDuiPZoalkk4xmjTN1OLrX/Sa+0gHAXCNsd0jtFqtxcXFSUlJAqUB8HE3jV2XOypTQ5NJBxmNgpUnBiccrT9BOgiAazi6HiHP85s3b66rq3vooYeUytFWyrZYLJ2dnceOfTWuTCKR5OTkYBVAAEcUNnwyNTRJyoh9+ejMsLRD+qP3Jd1NOgiACzhaCBmGycvLKysrKyoqioqKUqlu+5xvW1ubXq//05/+NPLOr3/963nz5o0zqEv09/eTjuCpTCYTwzDDV8hhrBzveAdqPvpJ9A+MRqOgecYvQhbWNdhb2lIWHxAj6A9ZBgZ4nu/rw2VYZxiNRo7jWNYdC7CLllKpZBhm9G3G0EAKhSInJycoKGj37t0rVqy43WY6nS4nJ+fwYZGu2IJzU+dwHIdCOB6OdLyyjkobZZusEd3jg98rOzzt+PWzGROFvZ05qFQOMgx2W+ewLItC6IgxP0eo1Wq7u7uFiALg4w7pj2aFp5NO4ajs8LRPrhSZeTPpIADjZb8QVlRUVFVVDf9ttVp37Ngxf/58gVMB+ByjxXSy+ZzIx4veaoJ8QoRf+OmWC6SDAIyX/VPm6OjoXbt27dmzh2VZi8WyYMGC1FSP2VcBPMXxxtPx4ptle3SZ4WkHaj9aED2HdBCAcbFfCFUq1cqVK90QBcCX7dcfma71sDmbpoYkHtIfbTO0h6k0pLMAOA9zjQKQJ9pZtkfH0my6ZuohzMENHg6FEIC84Vm2aYnn7Y9Z2gzMwQ2ezvN2PAAvM2S1FNZ/mu0540VvpVVpVJzis9YvSAcBcB4KIQBhZ1ouaFQhwSKeZXt0mWGp+2uxbD14MBRCAML21xZ60OOD35WuSfm89VKXqYd0EAAnoRACkNRmaK/urEsJ8eCJ7OWsbEpIUmHDJ6SDADgJhRCApIN1RzM0U1nasyfBmqZN319baKMwZAY8EgohADG8jT+o/3hahMevcBvlP1FCUV+2lZMOAuAMFEIAYs5d/SxQFhCmDCUdxAWywzP31R4hnQLAGSiEAMTsrTnk0cNkbpUZlnLhWkn3IIbMgOdBIQQg43p/W9VNfapmCukgriFn5VNDkg9jlhnwQCiEAGQc0BdmhqVxHj5M5lbTIzL21RzBLDPgcRzaCfV6fX5+vkqlomn6wQcf1Ol0QscC8G5DVstB/cer05eTDuJKkWqdjJF+1vpFjjaLdBaAMbBfCHt7e7du3fr8889LpVKDwfDqq68+88wzWPIYYDxONp0NV2lClMGkg7jYdG3m7uqDKITgWexfGm1vb3/00UelUilFUSqVKiMjo66uTvhgAN5sV/X+6d5YLdI0U8s7qtoM7aSDAIyB/UKYkJAQEREx8rK5udnPz0/ISABeTt9V32bomBIymXQQ15MyXJYmdV8NnqMATzK2wTJlZWUcx+EeIcB47Ko6MF2bJZFISAcRRI4u61Dd0UHeTDoIgKPGcKuvtrb2yJEjjz322Oib3bx5s6qq6vHHHx95Z+nSpWlpaU4GdCmTycRxHOkUHslkMjEMw/M86SAe6daO12vuO9l87pHMPLPZO0uFmvGL8As/UnvsJzELxv9tQ2az1Wo1mUzj/yofZDKZeJ738SEdUqmUpu2c8jnaQDU1NR988METTzzBMMzoW8pkMqlUGhT01ZoyEokkMDDQ7qfcg2EYkSTxOMw/kQ7ikW5tusNXPk0OnqyWevP9hRxt9l79oZ/G/2j8X8XTNEVR6HjOwW5LUZQjl14cKoTV1dU7d+58+umnh4fMjM7Pzy8uLu53v/udI9/sZhzH4YzQOTzPMwyD1nPOSMezWPn9+iPLUu737oP0xJCEo1eOX+6syghLHedXWVmWpml0POdYLBaO47y7s7mE/XuEVVVVH3744VNPPSWTySiKam9vb25uFj4YgBc60XQ6WBmoVWlIBxGWhJLM0k3fWbGXdBAAh9g/UtixY4dSqXz99deHX964cWPhwoWRkZECBwPwQjsr9twxcSbpFO6QEZZ67EpRc+/VSH+MrQOxs18IX3jhBTfkAPB6pW1l/WbD5KB40kHcgaPZ6dqsgsp9j894hHQWADsw1yiAm7xXsSt3Yg7tpU9NfNcsXfbxxtNdJqxHAWKHQgjgDvXdjTU367PGPXjEg6g4Vapmyu7qA6SDANiBQgjgDu9d/nDWxGmMF6014YjZkTP+UXNkYMhIOgjAaFAIAQTXOtB+/trnOdps0kHcLUgemBAUu6/mMOkgAKNBIQQQ3Ac1/5gZkSVnZaSDEHBn5KwPqvZhxjUQMxRCAGG1GTrOXL84S5dDOggZYSrNRP+JB/SFpIMA3BYKIYCw/l7+QZYmTckpSAchZl5U7nuXd5txUghihUIIIKA2Q8fxptMzwn3u7uCtIvzCdWrtP2pxUggihUIIIKBtZTtztFlK1ndPB4fNj57z3uUPTRYsIgFihEIIIJTm3qunmi/MifSJOdVGp1VpYgKiPqzcTzoIwPdAIQQQypbS7bMjc+SsnHQQUVgQc2dB1b7ewT7SQQC+DYUQQBAVN2rKOyp9drDod4UoglI1U94te590EIBvQyEEcD0bZXut5K0fxM7lfGwqmdHNj5rzUcPxa/2tpIMAfIOjhdBisZSVlQkaBcBrHG883T/Yn6nxoZlFHeEnVd4xMeeNkq2kgwB8g/1CaDAYNmzYsGHDhq1b0X0B7DNZBv/2ef5d8T/ynYUmHHfHxBk1N/UlrV+SDgLwNfuFUKVSPfLII08++aROhwU2AezbXl4Q6R8RMyGKdBAxYml2YfwPNxa/OWS1kM4C8BWHLo3K5Rj2BuCQpt6W/bUf/ThuAekg4pUcMjlAqn6/ci/pIABfwWAZAJexUbZXzr8xP2q2v1RNOouo/TThXwoq9l7tu046CABFUZTrh7Q1NTWdOHEiNjZ25J2XX3554cKFLv8hJ/T395OO4KlMJhPDMBzHkQ4iaoevHOsx9abHTjEav7EC37degpyS5kZM/+OZP790x/9IqNHupFoGBnie7+vD04fOMBqNHMexrE8PXVYqlQzDjL6N6xsoKipqxowZIyNraJqOjIy0m8Nt1GocqjuD4zgUwtG1Gtp3VO3KS1+uVCq/+68Kha/PsvYtc6PveKt0+6etp38+6a5RNhtUKgcZBrutc1iWRSF0hCANpFAo4uLihPhmAHGy2mwvnP3z7KiZGlUI6SyeQSKRLElc9E7p36eFZ0xUR5COAz4N9wgBXGBn5W7jkPEO3QzSQTxJqDJ4QfSc50+vt1h50lnAp9k/IxwYGHjzzTd5ni8vL1+/fj1FUffff39MTIzg0QA8xOUbVQUV+x7O+iUeHByrHF2Wvrt+S+m2R7LySGcB32W/ECqVyt/85jduiALgiboHe35/6uWfTb4rQOZPOovnkVCSexIX/a1ka1roVCzTAaTg0iiA8yxW/tmTL6VqpiYHTyKdxVMpWcUDU5asv/B6Y08z6Szgo1AIAZy3qfhN3mr5QfSdpIN4tonqiB/HLnjyxB+wSBMQgUII4KT/q9j9Rdul+5N+jluD45cZnpYcPOnJE38Y5M2ks4DPQSEEcMbhuo93Ve1/MOVfZayUdBYv8cPYeQpW/r8nX8IgUnAzFEKAMTvWULSl9O+rUn/hL8OD3i4zPHCmf6j/D2fW8zbUQnAfFEKAsSms/+T1kndWpT0QogwmncXbMBL6geR7OgZu/P7Uy1ieAtwGhRBgDN6v2LuldPu/py8LU4aSzuKdGJr9xdT7egb7fvvp7w1DA6TjgE9AIQRwiMXKv3rhr/trCx/KWBGKc0EhsRLmgeR7lJzi4Y9+e9PYRToOeD8UQgD7bgzcfPTjp670NP1Hxgo8OO8GEolkUcKPMzQpGy/+rc+MRWNAWCiEAHacbD6Xd+S/I/0n/mLqvRgj6k4zddMWxNzZ0n/tL59twWMVIBwUQoDbumHsfPbki38teeffptw7Lyp39JXzQAjhqlCtKuxKT/Oqg+s+b71EOg54J6xTBfA9TBbTh1X7Cyr35WizHslezdLYU4ihJfT9ST+rvFn7x3Mbk4MT12auxLJN4FrYvQG+wTA0sF9f+H7F3tiAqLVZq4LkgaQTAUVRVHLwpITA2LMtF9YW/jZ34vRlU+6NDogkHQq8hEOF0GQyvfXWWwMDAzabLS8vT6PRCB0LwP30XQ0H9B8du1I0OSh+ZeoD4Sr0c3HhaHZu1B0zIrLPXS1e9/FTk4Li7pl01yxdDkszpKOBZ3OoEG7ZsmXx4sWxsbG9vb2vvPLKCy+8IHQsAPewUba6robTzRc+aTrVbx7ICktdl70a40LFTM7K50fPuTNy1qWOynfLCl4+//qcyJlzo3Izw9JkDIYygTPsF0Kj0WgwGGJjYymK8vf3T0lJKS8vT0lJET4bgCCG+KH67saKm9Wl7eWlbeUyRpYYFH9X3I+iAnQYDuMpGJrNDEvNDEvtNnWXd1S98+V7Lb2vJAYlZISnTA1JSgqahNnvwHH2C+H169cTEhJGXiYnJzc1NXliIRwcHPziiy/uvBMr5jijvr5erVZHRnrYXRmjxdQxcKNj4GaboaOl/3pTT3NjT0uroU2jDNWptVH+E9dkrJggnyB0jOrq6vT0dAkWqRi7oSGLyWQaZYMJ8gmzI2fOjpw5aDE39DQ19jSfaSlu6b2q5JQx/pGRAboof53WL0yjDA1WBE6QB/jUsU5tbW1oaKhWqyUdROzsF8Lu7u7AwK/HCwQHB5eXl4+yPc/zPT09JSUlI+8kJib6+fndbnuTxdTY2+JY2nEpLy9fv379uynvuuG3vM+G7Zt0Ot2yZctc+7UWq8VkGXRkM6Pl6/8NB4aMw5My95sNNspmHDIN8UN9Q/1Gi8k4ZOoz9/ebDb3mvj5zn4SiA+UB/jJ1gEw9QTZBp47IDEsNVYWyErfeVdq4ceNrr702YYLgFdf7tLQ0+7e2qRzYUsZKk4ITkoK/OmrvMvV0DHS0G26UtH7ZY+rtHuztNfcZzANqmZ9aqvLj1GqZUsEq/DiVklNyNKuW+VEUpeKUtISmKMqPU40cuLA0q2DljqT1kzqS1H1eyd8wZcqUe++9l3QQVwqQ+bv8/r3rR422trZevnx59erVwy9pmn7uuefmzZt3u+2/7LicX7HT5TG+a2BggJvv/8rZ193wW97namxnh7T/qqtbj6VZOSu73b9abbZ/bsbIGTlFUTbKRlGUgpUzEtpmsylZBSWRSGkpxzBhshCpQipnZUpWqZIq/ViVWuonkptGAw29EYwmVI7pScfMwPvZzNZouW6sH4yW66jvHHjwNr7PbOgf6u8fMgxYTCZ+0GQxGi2DvMVyzdhKS+gBy4DNRkkklMFitNlsw6ePvNVi5L86XJNQ1Chn9v1mw1hzCqp9cl8fd6nu7DXSQVwpKShhbeoqx7dXKpUMY+fA134hDAgI0Ov1Iy87OztHP7DV6XS5ubmHDx92MOVs9czZcTMd3Hg8zp8//1+v/tfWi39xw295n0cffTQmJuaxXz5GOohHsg7w4RPCwoPDSQfxPC1ydY+V0gXjwUFnrF69Ojs7++HN4PPsAAAGF0lEQVRFD5MOInb2Z5bRarV1dXUjLysrK6OiooSMBAAA4D72zwiVSqVCoWhsbIyOju7v7y8rK1u6dOko23d0dJSXl69Zs8Z1IV2jvb29sbFRhME8wpkzZ9RqdU1NDekgHqmvr++JJ55QKBSkg3geWefVDL4Pu61zzpw5U1NTU1paSjoISXPmzFm+fPno20hs/7wNMwqj0fj2228PDg5ardaVK1eGh492haetrW3z5s0REaK7lDE0NHT16tWYmBjSQTxSe3u7TCYLCAggHcQj6fX6+Ph4jBp1gtlsvn79enR0NOkgHqmtrU2pVKrVPv0kyfTp0zMzM0ffxqFCCAAA4K2w+gQAAPg0FEIAAPBpKIQAAODTvHYZJudWzDCbzVu3bu3p6aFpevHixUlJSULnFKHxLDZy4sSJc+fO0TSdnJy8ePFi4UKKlnOtV1JScujQIY7jzGbzokWLsrOzhc4pEs41F9bDodDTXMvmpTZt2lRfX2+z2Xp6ep555hkHP/Xuu++WlpbabDae559//vmuri4BI4qVc01ns9m2bdtWUFBgtVoFi+YBnGg9nufz8/PNZrPNZrNYLC+++GJnZ6ewKUXDuc7mdBf1JuhpLuSdl0a/d8UMRz547dq19PR0iqJoml65cmVhYaGwQcXH6aYrLy9nWXbp0qW+/JCAc61H0/SqVas4jqMoimGYadOmNTQ0CJ5VBJxrLqe7qDdBT3Mt7yyE37tixli/xN/fv7a21qW5PIDTTXfy5MklS5YIlsszjL/jWa3W4uJiH7km71xzuWTv9nToaa7lnfcIx7pixojQ0NDKysrk5OTBwcH8/PzhQyef4nTTURTV1NR08OBBs9kcHBycl5dnd6Jb7zOe1uN5fvPmzXV1dQ899JBSqRQmoLg411zjaWSvgZ7mWh5cCPfs2XPrJKgURfn5+a1Zs4amnT/NXb58+dtvv33w4EGWZe++++6jR4+OO6YYCdF0nZ2dRUVFv/rVr1iWPXv27N69e++7775xJxUjIVqPoiiGYfLy8srKyoqKiqKiolQqcS3oA14DPe27PLgQjnIhbqwrZoyQyWTr1q0b/rurq8tbD5eEaDqDwbBs2TKWZSmKys3Nfemll8afU5yEaL1hCoUiJycnKCho9+7dK1asGFdKT+Bcc42zkb0Deppreec9QpesmLF79+65c+e6NJcHcLrp4uPjjUbjyEvfHDLjko6n1Wq7u7tdmkuknGsurIdDoae5mncWwpEVMyiKGl4xIyUl5dYNiouLlyxZUlBQ8L0ft9ls27ZtCwwMjIuLc0dcMXG66RYuXLh9+/bhv8+cOZOYmOiewKLiXOtVVFRUVVUN/221Wnfs2DF//ny3ZSbIueay+ylfgJ7mWh58aXR0a9asGVkxY926dQ6eoBQUFDQ3N/M8P2fOnNzcXKFDipNzTafT6ebOnbtx40ae54ODg1euXCl0TnFyovWio6N37dq1Z88elmUtFsuCBQtSU1PdEFUMnOtszn3Ky6CnuRBWnwAAAJ/mnZdGAQAAHIRCCAAAPg2FEAAAfBoKIQAA+DQUQgAA8GkohAAA4NNQCAEAwKehEAIAgE9DIQQAAJ+GQggAAD4NhRAAAHya1066DeBBqqqqnn32WZ7nQ0JC3njjDalUOvx+SUnJpk2bOjo6Jk+e/Nprr5ENCeCtMOk2gCh8/vnnFy9eXLt27bfet1qtK1as2LFjB5FUAL4Al0YBRCExMbG6unr479LS0ueee85qtVIU1dTUFB0dTTQagJdDIQQQBZVKZTKZhoaGKIoqLCysra29dOkSRVHV1dVJSUmk0wF4MxRCALFISEior68fGhoqKytbu3ZtUVERhUIIIDwUQgCxSE5OrqysLCkpycjImDVrVmlpKc/zKIQAQkMhBBCL4UJYVFQ0d+5clmVTU1MvXrxoNpvVajXpaADeDIUQQCyio6Pr6urKy8uzsrIoipo3b15+fn5CQgLpXABeDs8RAogFTdNBQUEajYZlWYqi0tPTu7q6cF0UQGh4jhAAAHwaLo0CAIBPQyEEAACfhkIIAAA+DYUQAAB8GgohAAD4NBRCAADwaf8P0L9zqrN8I9gAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeUAT19YA8MlKSCDsS9hRAWURBARFcUfUWitVxGpR/Nqircuz7lqr0mrVulBFrdUituKGuLWIUOteEUVcAEEQDAKCbCZECNnz/THv5eWxJAGSTCDn91cyuXPnTEJymJk79+CkUikCAAAA6Cs81gEAAAAAWIJECADQrMbGRrFYrJau6uvr1dIPAPIgEQLQZa2trWFhYUeOHME2jLy8vPDw8LD/2LdvH7bxdIjFYi1cuLC0tFR+YWlp6aRJk8LCwqZMmaJ6V1KpNDY29sGDB+qOEeg7ItYBgL7v9u3b27ZtQ69GHzt2zNHRsU0DgUAwd+5cNpuNIMjMmTMXLlyIQZS90ODBg0+fPi2RSBAESU1N5fP5WEfUgaSkJDs7Ow8PD/mFAwYMOH369Js3b9asWaN6Vzgcbtq0aQcOHPD39yeRSOqOFOgvOCIEGjdq1Cj04CksLCw1NbV9g+vXr1tYWLi6uq5evfqzzz7TeoBdRiQS58yZM2TIEKwDQczNzS0tLS0tLalUKtaxdIDJZGZkZMTExLR/yczMzNzcvKsdzpw5k8PhXLlyRQ3BAfAfkAiBxuFwOPQnLyoq6saNGywWq02D8+fPR0ZGkkgkExMTIrEXnKUgkUgLFiwYOnQo1oHoujNnzjg5Ofn7+6urQ2Nj47CwsJMnT4pEInX1CQAkQqA9DAYjODj48uXL8gtzcnJaWlpGjx6NVVRAQ9hs9t27dydOnKjebidOnMhms+/fv6/eboE+6wX/fYO+JDIycv369bNnz6ZQKOiS1NTUiIiIDg8E+Xx+bm7uo0ePioqKamtrpVKpvb39xIkTJ02aRCaT2zTmcDhz587l8XgIgowZM+abb75BEKSwsPDUqVP5+flGRkaRkZHTp09vs1Zpaem5c+dKSkrq6+ttbGzGjh0bGRlZU1PzxRdfIAhCo9HOnTsnuxyVm5u7YcMG9JocgiBTp07917/+1eFuVlVVxcbGCoXCmJiY2bNnnzt3LjMzs7a21tLScvDgwfPmzbO2tu7h/mpHdXX1mTNnSktLKyoqjIyMPD09Z86c6enpuXfv3qtXryIIMnv27M7OZt+5c0coFIaGhqq4rcOHD58/fx59TCKREhMTGQxG+2bu7u62trbXrl1TvWcAFINECLTKw8PD1dU1MzPzo48+QhCEyWQWFRVt2rSpw8ZZWVm3b9/28vIaNWqUhYWFRCKpqKi4dOlSdnb2999/TyAQ5BvT6fSTJ08KBIL09PTKykqxWJyYmHjr1q2oqKjY2NjXr18fPnyYQCB8+OGHslXOnj2bnJw8ffr08PBwCwsLJpOZmZl5586dxYsXU6nUxMRECoUiPygjICBAxcEpDg4Op0+f3r9/P5fL3bp1q4eHx8qVK83Nzdlsdlpa2sKFCw8ePGhnZ9eT/dWCixcvHjt2bMKECdHR0fb29nV1dfn5+evWrZs/fz6CIDNmzJg5c6aZmVlnqz958sTMzKzDZNahmTNn5uTkWFtbL126lEajmZiYdNbSy8vrwYMHUqkUh8N1dacAaA8SIdC2WbNmHThw4MMPP8Tj8efPn588eTKNRuuw5dixY8eOHSu/xNnZOSQkJCYmpqioyNvbu017Op2OIIiRkVFTU9PatWtNTU1/+eUXY2NjBEGcnJyCg4Pl51F6+PDh2bNnDxw44OzsLOt8zJgxZ8+e3b17Nw6Hs7S0bB+SbHwHlUpVPErTxMSEQqGkp6fv3bvX1dUVXWhnZ+fp6blr165jx45t3Lixh/urUbm5ucePH9+9e7dswKeTk1NgYOCUKVPWrFkjEonCw8M7fItkCgsL3d3dVdwck8n89ttvQ0NDP//8c6Up383N7fr16xUVFbLPDoCegGuEQNuCgoLIZPK9e/dYLNatW7ciIiK6tDqBQGAwGLW1tQraPHv2bPjw4Rs3bkSzIIpMJhsYGMieJiQkLFmypP0vaVRUVPtjtW6bNm2aLAvKjB8/vqioSMUeVNlfTfjpp5+++uqrNrc9IAhiY2Ozfv16pTe2i8ViFotlamqqyraysrJWrVo1f/78hQsXqnLgi3bb2NioSucAKAVHhEDbcDhcZGRkSkpKaWnpsGHDbG1tO2spFotv37597dq16urq+vp6AwMDKysrT0/Puro6xZsIDQ2dMWOGggYNDQ0NDQ2dXWQaO3ZscXGxKvuiVIfX9oyMjIRCYfvl3d5ftWtoaKivr29zeCozcOBAJycnxT20tLRIpVJVbuo4c+bMsWPHvvnmG9UHTKHdcjgcFdsDoBgkQoCB8ePHJyUlpaam7tmzp7M2LS0tK1eulEqlEydOdHNzQ89Jvn//vrq6+smTJ4r7V3rpqLKy0tbWtrObspX+ymtCT/ZX7dD3R8EIHaXnJNHT3VwuV3EzoVB47969iIiIX375pX///g4ODqqE19raiiCIkZGRKo0BUAoSIcAAiURasWJFVVXVwIEDO2sTHx/fv3//FStWtDlXNmjQoMzMzB4G4Ojo+PbtW6FQ2GEurKqq6mH/3aDR/e0q9P0RCASd5cLKykrFuZBAINDp9KamJsUbIhKJe/bsIZPJdDp9xYoVP/74o4uLi9Lw0G4tLCyUtgRAFXCNEGAjODhYwdlLsVick5Pz6aefdnjFCL1HoifQ2Vju3r3b4as3b97sYf9dpen97SpLS0srK6tbt251+GpJSUl5ebnSTgYNGvTq1SvFbXA4HJpr586dGxkZuWrVqjazknaorKzM0NAQkwN30CdBIgS6CIfD4fH49tfGOBzOd999p5YLeMuWLTtw4MDr16/bLE9JSamsrOx5/12ihf3tquXLlx88eLCkpKTN8rq6uq1btyoeL4ry8fGpq6tTvV5EZGTkvHnz1qxZ8+LFC8Utnz9/7uPjo/37SUBfBadGgcahAwgRBGGxWGQy2djYuM3t8+irIpHo/fv3fD7fwMAAj8fPmTNn27Zt8+fP9/b2NjAwqKury8nJycjImDVrVnNzc3NzMzooUXY5UCwWo6MnuFwun8+Xn8iNTCa3v0Nj6NChUVFRS5cujYiI8Pf3R+8jvHr1akNDw+rVqzdv3tymvVQqRacFR/F4PB6PJ78VExMTPB4v35jP57e2tjY1NcnfEicQCJqamiQSiXz83djfLsXTDQEBATExMStXrgwPDw8ODra3t6+trc3Lyzt//vycOXOqq6uV9jB27NjExMR79+61n8cAQRAOhyMfP2ratGlcLnfNmjWbN2/u16+f/P7KVFRUVFVVzZ07t9u7BkAbOKhQDzTt4MGDly5dkj0NDw9ftWqV7GlmZubu3btlT93d3Q8ePIg+zsrKunDhwuvXr7lcrrW1dVBQ0Mcff2xjY7NmzRp0/Mjy5cs/+OADtPG+ffvS0tI6DMDAwODEiRMd3vqNzixTXFxcX19va2s7bty4yMjI6urq5cuXy8eMIMjVq1f37t2rYDejo6PnzZuHPr548eKhQ4fQx3g8fuvWrbKJSTdt2iSbHkw+/q7ub5fi6baqqqqzZ8++fPmysrKSRqN5eXnNmDHD29t77969lpaWSvvfsGEDm82WvRUypaWlS5YsEYvFJBIpPT1dtjw7O3vTpk2yH6U27w8qMTHxypUrZ86cwWq2HdD3QCIEoC0mk/n111+3SYRAnoqJ8Pnz58uXL9+3b5+np6datsvj8aKjoz/66KNPP/1ULR0CgMA1QgDaq6qqsrKywjqKvsDLyyskJOTEiRPq6vCPP/4gEomRkZHq6hAABBIhAG1IJJILFy6EhIRgHUgfsWjRooKCgrKysp53JZVKU1JSFi1aJD9DEAA9p43BMjweb+DAgTANhM7C4/FHjx7t6lRnfQaHwxGLxQiCiESi8vLyU6dO4fF4OPPWIR6Ph97Mzufz0bE5dDpd8ehNBoORkJCg+tTbCuBwuK1btyq49xSA7tHGNUI2m+3i4sJkMjW9IdA9a9eu9fHxWbp0KdaBYIDJZH755ZdoIiQSic7OzqNGjYqKioKh+R2KjY1t80VWUIYJgN5CS7dP4HA4BeVaALZkpQH1kKura0ZGBtZR9BpHjhzBOgQA1A+uEQIAANBrkAgBAADoNUiEAAAA9BokQgAAAHpN/YmQzWbfu3dP7d0CAAAAmqD+UaPZ2dn79++Xnz+wQ0ee/lbJUT5vrxpN6R823D5Qm1ssLy83Nzen0+ka6j8xMZFEIvV8PkkZsVgsEAgMDQ3V0lthYaFsYq0TJ0789ddfW7Zs6d+/f4eNq6urDQ0NYWixTGvRo/f3r1r/37dYBwIQBEGam5uhDrCO0MRnof5EqOKNibY0m0Ze27nnNcqW1nbSLC6Xu2PHjsLCQjc3N+Q/pXBmzZo1ePBgtWzxzp07w4YN01wi9PX1bVPGoefUdV8pOpm1rIZDdHS0SCRS0J7FYiUmJn77Lfzu/4dYJBXwsQ4C/BvMyaw7NPFZYFaGKcQhyJKq1QLTrqZtC2pTqdTvvvtu48aNW7duRZc0Nzfv2LGDTqerUiYbc4GBWj3A7ZLk5GQFdXfb8/LyOnz4cGVlpaOjo+aiAgCA9qAe4f8wMjKKiYm5efPmggUL0CWtra3Hjx+vqKhAEMTAwGDevHn9+vWTtX/37t2hQ4fevHljbGxMoVB8fX3Dw8ONjIy4XO7OnTvLy8sfPXokq4QXGxvr6uoqW7e6uvq3335raWkRiURUKnXOnDkDBgxAXxIKhTt37mQymYsWLerXr9+RI0fYbLaBgcG6deuoVCqCIHfv3k1PT+dyuYMHD24/r4eCmDvsubKyUj4wBSoqKpKSkng8HolEsre3j46Onj9/fkhIyPLly+XrxjGZzPr6eh8fnw47ycrKiouL8/b2jo2N9fDwkC2PiIhISUlZuXKlKpF0SCKVZFfn3q28X8Z6LZKIjMk0XxvvCS6jnej23e4TANDnQSJsSywWy8qZikSizZs3z549+8svv0QQhMVi7dmzJzo6WvbzHR8fHxUV5e3tjSAIl8tdvXp1QECAkZERlUqNi4v7/fffhw0b5u7u3n4r1dXV8fHxq1atsrGxQRCkoaEhPj4+JiYGPUlLIpE2btx4+fLlsrKyS5cuLVmyhMFgFBcXc7lcNBGGhoaGhoaWlZXdunWrTc+KY+6w5y+++ELxeUv5mNeuXWtra4sgyLNnz/bt2+fj4/P111+3aXnr1q3hw4d32IlEIsnOzl60aFH7qU1DQkL27NmzfPny7k1v9rD68U+PfiHhST7Wg8Y6jyTiCS1CLrPp9ZK/1g6x8Vka+IWloXk3ugUA9Hlw+8T/YLFYSUlJ48ePR5+mpaWFhYX5+/ujT83MzNasWSNfU0YqlaKZCUEQKpW6bt06Fc/s/fbbb6tXr0azIIIglpaWa9euPX78eJtmT5482bhxIzphsYeHh6WlpdKelcbcvmdDQ0NVZln7/fffV65ciWZBBEF8fX19fX07bMlkMh0cHNovF4lEu3bt8vT07HCCbwqFQqfTa2pqlEbStluJOD7nlx+zEya6jl04ZH6IfZCziYO9McPdvH+467gVQV8R8MT/u7Isu/pRV3sGAOgDOCJE6uvrN27ciCAIDocjEomff/657Ee8oKCgzeEOnU4nk8kCgQCtjr1s2bIjR47weDwKheLm5jZ+/HgVj2aYTOb+/fvbLGxfqmbmzJldHcOpNOZu99zU1NQmvQUFBT161EF2KS8vt7fv4GzkgQMHCASCfHn6Nuzt7SsqKjpMop3hifjf3N7WKmr9KvAzCqGD6jxkAmmCyyh3837bs/Z97jf3wwGTVO8cAKAPIBEiVlZWssEybUilUvlLXyg8Ho8WK0AQxNraGk2iHA6nqKho8+bNq1atUuV6m42NTVxcnOwcrBopjVmN0Io87VGpVD6/gxGPERERPB5v//797c+movh8fpdmABeKhetufUfAE+Z6Rbbfa3lOdIcvhkQnPjuFILgPB4SrvgkAQJ8Hp0YV8fb2vn//vvyS5ubm1tZW9FiKzWbLjofodHpwcPCCBQtu3rwpa4zDdVrlyt3dPTs7W/sx98SAAQPaxNzZ3aJOTk5VVVXtlzs7O0+ZMsXCwuL333/vcMWqqioVh+0gCCJFpNvux0ukko/dpyrOgihzitn/Df7k16fJWW9yVNwEAEAfQCJUZOrUqZmZmc+ePUOfstnsnTt3ykq21tTUHD16tKGhAX3a2tp648YN+aqhLi4uDx8+lOXC/Pz8J0+eoI+joqIuXbqUl5cna5yTk/Pzzz9rOuaemDNnTmpqakZGBofDqa2tTUxMlEgkHbYcMGCAgvKT8+bNa2xsvHLlSpvljY2NBgYGqt9Tn1yQymRXzBw4TZUsiLIwNJ/jNWPH/Z8qOB3kaQCAftLrU6NcLnfXrl3FxcXo6c2wsLDRo0fLNyCRSHFxcUlJSefOnUMQhEgkzp8/X3aTg62t7YwZM2S5kM/nT58+PSQkRLb6yJEjS0pKvvrqKysrKyKRaGVlFRkZib5EJpPj4uJOnDiRmpqKbojBYMheLSwsPHXq1Nu3bykUyuXLlxEECQwMnD59OvpqTU3NwYMHEQRpaWlpbGxEU87IkSMnTZqkNOYOe1bx7TI0NNy+fXt6evrBgwfpdHpAQIC/v/+OHTvat5w0adLixYs///xzEomELjl58uStW7dGjRqFPnVyckpISLh///6KFSvMzf89mDMjI+Ojjz5SMZhndc9TX/zxZcACIr5rf8OOdPsJLmM23tl+dHK8AYGsfAUAQF+n/gr1V69eTUhIkD9pxmazXV1dWSyWfLN3PNZLlhZr1kuRYDt/7W2uV1m2bJmbm9vSpUvFYjGfz5eNg1VKIBDs2LFj06ZN7V86dOiQm5tbWFiYil2JRKJFixbt27dPdtulAi1C7vy0JVPdJrqbdTxhm1LnXlx2ojt+PXRh91bXgtaCbM4/aTaLOr56DbTs/fv3xsbGWEcBEEQznwVmR4TmFLNgBkws2WfNmjVrz549qifC+/fvjx8/XpUsiCDIvkdH3M37dTsLIgjy4YDwhEdHxziFDLHp+K5/AID+gGuEoDsEAsEPP/ywZcuWgoKC/fv3tz+vYGlpGRcXp3qHwcHBUVFRqrTMffvsUc3Tia5juxBuOxQi5UO3yTuy9/PFgp70AwDoA/T6GqGm3bt3Ly0trbOJ0BRQWqsBc2QyecOGDUrbdKlDVZoJxcLdDw5+6DaR3OPLewMtBjyry09+nvLZYDWMJAIA9F56nQjbVJ9ARUVF+fn5qaX/ESNGjBgxosOJ0BRTWqtBb515ccnC0NzD3E15UxVM7j/hwKNfJ/ebYGdkq5YOAQC9kV4nwvbVJ1paWnbs2GFiYqL63WxAaxpbWWcLL345ZIG6OqSTjUMcgg/kJv4w+ht19QkA6HX0OhG2R6PR5s+ff/PmTVkiVFAjAkGQGzdu3Lp1SyKRcDgcU1PTJUuWWFtbqzekzmo16KFfn50IsPU1MzRVY58jHYLic37Jq3s+2NpLjd0CAHoRSIRt1dTUyCZhUVwjAkEQZ2fn9evXo+3Ly8sPHTq0ZcsWNQajoFaDvnndVPlPVfbXQ79Ub7dEPHGCy6hDT44dDt+j3p4BAL2FSokwNzf3ypUrJBJJIBBMnTo1ICCg5xsWMAvFTY0970d1ZJdBBFNF1RtYLFZWVtaNGzdkwx3RGhGygzy0RsTOnTu3bduGLpEfzOLi4qLeC3torQZfX1/0Tnk9d+TZiZGOwynELsxEqiJfa+97lQ+y3jwMsQ9Se+cAAN2nPBFKJJL8/Pz169eTSCSxWLxr165+/fqpPg9WZ5qzrojeVvSwky4xGhNBDRjXfnl9ff369esRBGEymcHBwdu3b5eNYFRaI6Kuri4jI6OqqkoqlTo6OraZNKCHlNZq0B8vWa8K6otWBH2lic7xONw4l9AjT5OH2w/FIarO1gYA6DOUJ0I8Hh8TE4M+JhAIgYGBTCaz54nQfO7qHvagLrLqE62trfHx8U+ePAkODkZfUlwjori4OCkp6ZNPPpkxYwaCIHV1dY8fP1ZjYEprNeiPY89OhjoOJ3VxNjXVDbJ0v12Zdbcye5Rjx/WEAQB9WNduqJdIJDk5OfLzSvclhoaGq1evTklJefv2LbpEcY2ICxcufPPNN76+vjQajUajubq6Ghh0UA+v25TWatATpaxXhY0lQYwhmtsEDsGNdRpxLO+UFFHzjIMAAN2naiIUi8UHDhxYuXLl9OnTVZ+LstchkUjLli2TVYFQXCOCSCRWVlaijzkczu7du6urq9UeUme1GvTH8fyzIxyCuzq5dld5WLiJxKL7b6CKPQB6R9UfFwKB8Nlnn+Xn59++fdvJyUnBnJBVVVVZWVn+/v+e4RqPx+vsVS756hMff/wxGrOzs7OtrW1cXNyGDRsU14iIjY3dv3//0aNH0SPCmJiYurq6TZs2LV++3NzcXHGNCMVUqdWgXnw+v7m5GZ10u7PiSpioaq55Wpu31O8LHo+n6W0F2wYcf3ZqsMkgTW9IFUIeTyQSNTc3Yx0IQBAEaWlpUb3aF9Corn4WVCpVaQn0LlefKC0tzcrKmjdvXmcN0tLStm/fLj/GhMFgeHl5qXcgCVCjblef0ILt938SSyTjXEK1sC2pVPpTzi8bR6zw1YF7CqH6hE6B6hO6QyeqTzAYDDabraABgUAwMTGRv8VCcXsAOtPQ+u6fygdfB6v53sHO4HC4UMfgk89TdSERAgC0Rvk1wsLCwhcvXqCPJRJJcnLy2LE9mvgfABWdf/Gnr403lWiotS362fi8aHxZ3lSptS0CADCn/IjQ2dk5NTX1woULRCJRJBKNGzfOxwdKuAGNaxXx/izNXOQfo82NEvHEIIb/2aKLa4ct0+Z2AQAYUp4I0ek3tRAKAPLSy/7ub+piTtF29eZh9gHxDw8vHDLf1MBEy5sGAGACCvMCXSSRSlOL/xhmP1T7m6aSqN5Wgy6VXNX+pgEAmIBECHTRg+pcEp7kbOKAydaHOQReLkkXSqAkJAB6ARIh0EUpLy4F26lhbvfusaFaWVItb1X8g1UAAABt0lIZJh6Pt3PnTu1sC3RVbm6urLCULqjgVJWxyiM8pmIYwzC7gHMvLoe5jMEwBgCAdmgjEdLp9LVr13Z2Q71EIpFIJEQiVEbETGhoqE7dEpP6Im0ow4+II2AYw0ALt/RX1140vhxooUP/IgAANEEb6QePxysoVysUCsViMYWi/jpzoDfiCluvl99eOvQLbMPA4XBDbf3PF//5TcgKbCMBAGgaXCMEuuUv5s3+Zq50MvbTWQUy/O5VPeTw32MdCABAsyARAt1yviQtyM4f6ygQBEGoJENPS48rr65hHQgAQLMgEQIdklf3XCgWupo6YR3Ivw21G3KxOF3SxYnpAQC9CyRCoEMulqQHMobgEF2pd+NobG9AID+qeYJ1IAAADYJECHQFi9f0oDrX33Yw1oH8j0CG38US/a2KDIA+gEQIdEX6q2telgMpBAOsA/kfvtZeefWF9dwGrAMBAGgKJEKgEyRS6eWSjKF2Q7AOpC0ygexr7fVn6V9YBwIA0BRIhEAn5L59akAgORjbYR1IBwIZQ9JK/xJLxVgHAgDQCEiEQCdcLLnib+uLdRQds6VZmxgYZ7/JxToQAIBGQCIE2GtsZT2tLfCz1t2CzwG2MGQGgD4LEiHA3pXSv3ysBhkQyVgH0ikfa8+ixpe1LfVYBwIAUD9IhABjEqn0z7K/Ahk6N0xGHglP9LP2SiuDITMA9EGQCAHGHr19QiEY2BszsA5EiUCG35XSazBkBoC+BxIhwNilkvQAho4Ok5FnA0NmAOijIBECLL1rZT2rfe5r5Y11ICoJsPW79BKGzADQ10AiBFi6Uva3t24Pk5HnY+1Z2FACQ2YA6GNUKsxbWlqalJREo9HweHx0dLS9vb2mwwL6QCKV/lmaGTlwGtaBqIqEJ/pae6eV/fXZ4LlYxwIAUBvlR4QcDicxMXHz5s0bNmxYunTpr7/+KhKJtBAZ6PPQ2WR0f5iMvKEMvyul1yRSCdaBAADURnkirKurW7p0KZlMRhCERqP5+fmVlZVpPjDQ9116ma6zs8l0xoZmTScbZ1c/wjoQAIDaKE+EAwYMsLP77wyQlZWVRkZGmgwJ6IXGVtaTt/m6PJtMZwIYvpdK0rGOAgCgNl0bLJOfn08ikeAaIei59NJrPlaevWWYjDwfK8/nDcUwZAaAPkOlwTKoly9fXr16deXKlYqbvX79+u+//zYzM5MtOXz48AcffNBZe6FQKBaL4bqjLhCLxXw+XyLR+AUwiVR6+eXV6QOm8Hg8TW9LE7zMB14oSoseGKm5TQh5PJFI1NzcrLlNANW1tLTgcDisowAI0vXPgkql4vFKDvlUTYQlJSUpKSlr1qwhEAiKWzo7O48ePTolJUW2xMTEREEcaCKkUCgqRgI0RywWk0gkKpWq6Q09rH5sSDLsZ+Gi6Q1pyHDHwN8LUmID5hFwSr4O3dZKoQiIRLgMoSOkUil8FjpCE5+FSomwuLj49OnT69evR4fMKEUikeSPCAFo4+LLK4G9YTaZztjQrM0MTLKqckIdh2EdCwCgp5RfI3zx4sW5c+fWrVtnYGCAIEhdXV1lZaXmAwN9VgO3Ma+20Ne6d8wm05kABhRmAqCPUH5EmJycTKVSExIS0KcNDQ2TJ092dHTUcGCgz/qzLHOwjReZ0PuGycjzsRp0tezv6ua3dka2WMcCAOgR5Ylw69atWogD6AmxVPzny78+9dbgMBPtIOKJ/jaD/yjJWOQfg3UsAIAegblGgVZlVT00MaDb0qyxDkQNguz901/9LRQLsQ4EANAjkAiBVp0vSRtqp9M1eFVnTjGzM7K9VXkP60AAAD0CiRBoTyXnTRmr3MdyINaBqE0gw+/8iz+xjgIA0COQCIH2XCy5EmDrS8B3YRoHHTfIwr2O21DKeoV1IACA7oNECLSEJ+JlMm8GMfyxDkSdcDjcUIb/+dm4y7sAACAASURBVOI0rAMBAHQfJEKgJX8xb7mauphSTLAORM0CGb63K7I4gvdYBwIA6CZIhEBLzhX/EcToI8Nk5NFItEGWHlfKrmEdCACgmyARAm14/DZPJBb1N3PBOhCNCLbzP/8iDar1AtBLQSIE2nCu+HKwXQAO6Zvz9zsY2xmRafeqHmIdCACgOyARAo2raa7Nryvys+l9NXhVN8wuIOXFJayjAAB0ByRCoHHnXlwOsPUjE0hYB6JBXlaDqjjVcB8FAL0RJEKgWS1Cbibz5jD7AKwD0SwCDh9sH3C2CA4KAeh9IBECzUor+8vNvL+JAR3rQDRuKMM/qyqnofUd1oEAALoGEiHQILFUfK7ojxH2QVgHog2GRIqvjfcFmHENgN4GEiHQoFuv75kY0O2NGVgHoiUhDkP/KM1sFfGwDgQA0AWQCIEGJT8/N9JRLw4HUeYUs/5mLmmlf2EdCACgCyARAk15WPOYL+a7mw/AOhCtGukw7GzRRZFEjHUgAABVQSIEmvJ7QcoIh2F99Sb6ztgbM8woZtfKb2EdCABAVZAIgUY8b3hR0/zW19oL60AwMMpxePLzVIlUinUgAACVQCIEGvFb/tmRjsPwOH38A+tv5kLCEe9UZmEdCABAJfr4OwU0reRdWcm7skAbX6wDwcwop5Dj+aelCBwUAtALQCIE6peUdyrUMbgvVaLvKg+L/mKJ5J/KbKwDAQAop2oiFIlE+fn5Gg0F9A0vWa8KG0sC+1Yl+q7CIbixziMS807CQSEAuk95ImxpadmzZ8+ePXsSExO1EBDo7Y4+PTHKIYSkx4eDKA8LN4lUersCrhQCoOuUJ0IajbZ48eK1a9fa29trISDQqxU2FL9kMYPs/LAOBHs4BDfOOfTXZ8lQsBcAHafSqVEKhaLpOEDfcOhJ0jjnkfp8dVCeu3l/AwI5k3kT60AAAIpoZLCMUChkyZFI4D9ivfCw+nE9t9HfZjDWgeiQCS5jEp+dFIgFWAcCAOiU+v9zf/369e3bt/v16ydbcvjw4Q8++KCz9kKhUCwWi0QitUcCukosFvP5/O794yKRShIeHR1tN5zP56s9sN7LxsDSytDyVP6FmQOmdmlFIY8nEomam5s1FBjokpaWFhxOv+ZI0lld/SyoVCoer+SQT/2J0NnZecKECenp6Sq2RxMhnH3VBWKxmEQiUanUbqybVvoXiUj2s/NRe1S93aT+4359eiJi0JQuFWVspVAERKKRkZHmAgOqk0ql8FnoCE18FnAfIVCDVhEvMe/k5H7jsQ5EF1lRLQZbe/76LBnrQAAAHYNECNTgt7wz/U1d9KfuYFeNdQm9VfHPK/ZrrAMBAHRA+alRLpd7+PBhsVhcUFCwa9cuBEEiIyNdXFw0HhroJSo5b9LKri0N/BzrQHQXlWg4znnU3oc/J0zcrm/lOADQfcoTIZVKXbFihRZCAb3U7oeHRjuFGJPhCooiQQz/x2/zrjFvT3Qdg3UsAID/AadGQY/8XX67gds43D4Q60B0HQ6H+9At/NDjRI7gPdaxAAD+ByRC0H0c/vsDub9+5D5ZP8stdZWDsZ2X5cADuTBVIQC6BX6/QPf9lPOLt5WXg7Ed1oH0GmGuYx7VPH1Y8xjrQAAA/wWJEHTT3cr7BQ1FE1xGYR1Ib0ImkKe7T/kxO6FZ0IJ1LACAf4NECLrjXStr98NDH3tMJRNIWMfSywwwc3U37x+f8zPWgQAA/g0SIegyiVS6NSs+wNbPie6AdSy90kTXcQUNxdeYt7AOBACAIJAIQTecLjrP4rHHOY/EOpDeikwgzRr40f5HRys5b7COBQAAiRB00dPa/LOFl2YN+ghGivYEw8hmvMuojXe280QwRzkAGIPfMtAFddyGuH92zRw4rUvzR4MOBdn5W1Etdtz/SYpIsY4FAL0GiRCoqlXEW3vzuxCHoQPMXLGOpY+Y5jaJ2VTxe/5ZrAMBQK9BIgQqEUvFm+/usKJajHAYhnUsfQcRT5zjNfPSywwYOAMAhiARAuWkiHTn/f0cfss0t0lYx9LXGJON5vnM2p97FO6yBwArkAiBElJE+lPOkZesV7M9I2CAjCbYUK3meM78/t6eZ3XPsY4FAH0Ev2tAETQLPq3Ni/aJgnvnNcfZxCFqUMTGOz88rc3HOhYA9A4kQtApsVS8PeunvLqC+YM/oRAMsA6nj+tn6hzlGfHt3R33qh5iHQsA+gUSIehYi5C75kZc5fs3830gC2pJPxPned5RP2YnXCy5gnUsAOgR5YV5gR6q4LzZcHurI90+wuMDuC6oTfbGjFi/eSeep/DEjDFSCdbhAKAX4DcOtPV3+e3FmWuCGP4fDgiHLKh9ZoamC/1iarkNhe9K3ryvwTocAPo++JkD/8XmN217+NOvz5JjBn8SyPDDOhz9ZUAkj3IcRiNSF2WsuvQyHaaeAUCjIBECBEEQiVSaVvrXgvRliFT6pf//MYxssI5I3+EQnCnF5DPfTy8Wpy/+a20ZuxzriADos+AaIUAeVj/++UkSgiDR3rMsyeYkPPxV6AprmuUXfvNy3z79+u+Nw+0D/2/wXBuaFdZBAdDXwE+e/pJIJXcrs08+P/de0DLOJdTT0kMqkQqFQqzjAv8Dj8MNZQzxsfa8W3H//9KXjXIcPntQhLOJI9ZxAdB3qJQIeTzekSNHuFyuVCr97LPPrK2tNR0W0Kia5tqMV9fTyv6mk2khDkGDLDzwOByCIHAtSmdRCAZhrmNGOARnv3m09Np6F1PHaQMmjXQYRiHCnS0A9JRKifCXX36ZNm2aq6srh8P58ccft27dqumwgNpJESmTXXG/Ouf263s1LbU+Vl5zPCMYRrZYxwW6gEoyHOcSOso5pKih5Hzxld0PDg21GzLKcdhQxhBTAxOsowOgt1KeCFtbW1taWlxdXREEodPp3t7eBQUF3t7emo8N9FSriFfKYhY3lj6rK8irLyThiW7m/Uc6DOtn5gL3RfReRBzBx2qQj9UgrpBb2FDyx8vMPQ8O2RpZ+1p7e1sN9DAf4GBsjx7iAwBUoTwR1tTUDBgwQPZ00KBBFRUVakyEb9++ff/+vaenp7o61EMSqYTNa2rkseq5DW+b66uba15zKl83VbF5TbZGNvbGDAdjxnD7QFOKqeJ+3r9/39jY2K9fP+2EDRQQCAUIt1VxGyqJGsjwC2T4SaSSN+9rXjdVppVe++X9bxx+s6OxnYOJnTPdgWFka021tDQ0t6Ra0EhU7QTfx/B4vKdPn4aGhmIdCEBEItGjR4/Gjh2r3m6VJ0I2m21mZiZ7amFhUVBQoKC9WCxuamrKzc2VLfHw8DAyMuqs/dnzZ4velqxZs0a1gHulZkGLKs0EYiFfzJc9bRW2iqRi2QOBWMAT8blCHl/EaxFym4VcrrClWdDCETS3CLnGZCNjsrGpgTGdQjc1MPEwdwt1DLGgmOG6cmTw6NGjJ0+erFq1qqs7CNTu9esKWvUbM+UNEQRB8Di8I93ekW6PPuWLBPWtDfXcxjfv3z5vKOHwORx+cxO/SSgR0clGxgZGNJKRMZlqSKTQSDRDoiGZQKKRaXgczoBggE6tLnuAMiLRVPlDwuPwVJJhN3ZWx+Xl5cXHxyd5JWEdCEDKy8tXblhRcD9Pvd2qf9To27dvnz9//vnnn6NP8Xj8li1bxowZ02l7SUOVS+OPWQlqj0R3GJFpnb0klUplA1TIBCIZb4D8Z9AKhUgh4vBSqZRCpOBxeBKeSCaQTIl0MtmcSqIaEg2oRCqVZGhEphmTjHCIGk6F0VuphAapM8W+512BHmKLDKX87n8W7kau7RcKJcJmQct7YQtXxOWKWnkiPk/M4wn5YrG4jlOHIAhfIhCJRTgcji8WCCUiHIIgCA5BkBYRV/Z3quCkq0Qq4QqVHMX2Ri0tLYTRRn37N6q34PP5hsEm79+/V30VKpVKIBAUt1GeCE1MTEpLS2VP3717Z2qq6Aybvb19SEhIenq6ilHaIdb85y0Ji/ap2B5ojokBnSwh2VvYYR0IQMrItGYpDj4LXZCVlbUifkViNvxGYa+oqCjimwjjn4zV263yERMMBqOsrEw+DicnJ/UGAQAAAGBF+REhlUo1NDR8/fq1s7Nzc3Nzfn7+rFmzFLSvr68vKChYuHChihHk5+dzOBzV2wPNKSkpqaqqgs9CF1AbXruJWPBZ6ILa2try8nL4LHQBm82ura3t0mcRGhr66aefKm6Dk7tE1anW1tajR4/y+XyJRDJ//nxbW0U3n9XW1v788892dqqe0mlqauLz+XCTvi5oaWnhcDgMBgPrQADC4/Hq6+sdHWEGGewJhcI3b964uLhgHQhAJBJJeXl5l0a2Dx06dMiQIYrbqJQIAQAAgL4K7qoGAACg1yARAgAA0GuQCAEAAOg1jZdh6l7lCqh3oQnde1c3bdpEpf57ai5LS0vZVAmgh0QiUVFRkY+Pj+qrwPdCQ7rxWcD3QhNKS0uTkpJoNBoej4+Ojra3V2lCCTV8L6Qa9tNPP7169UoqlTY1NX3zzTcaXQso1r13dfv27ZoMSh81Nzfv3r17x44d//rXv7q0Inwv1K7bnwV8L9Suqalp3bp1fD5fKpU2Nzdv2bJFKBSqsmLPvxeaPTXaYeUKDa0FFIN3VXfQaLTFixevXbtWxX94UfAJakL3PgugCXV1dUuXLiWTyQiC0Gg0Pz8/+blcOqOW74VmE2GHlSs0tBZQrNvvqlgsvnHjxoEDB37//ff6+nqNBahfKBRKV1eB74WGdOOzQOB7oQEDBgyQvwG9srJSQbUGGbV8LzSbCNtXrmCxWBpaCyjW7XfVz8+PQqEsWLBg7NixCQkJ8FlgBb4XOgW+FxqVn59PIpFUOUxXy/cCRo0CJT744IOQkBAajebo6LhgwYIrV65gHREA2IPvhea8fPny6tWr2hx/pNlEaGJiIp+clVau6MlaQDG1vKtOTk41NTVqjQuoCr4XOgu+F2pUUlJy9uzZ5cuXK62dhFLL90KzibB7lSug3oUmqOVdra6uhiH7WIHvhc6C74W6FBcXnzp1avXq1eiQGVWo5Xuh2UQoq1yBIAhaucLb21u+QU5Ozscff3z27NkurQW6oXufRVZWlqy0pEgkSk5OnjhxotZi1lvwvdAd8L3QmhcvXpw7d27dunUGBgYIgtTV1VVWVso30Nz3QuM31C9cuFBWuWLJkiW4zstb93wtoFg33tXhw4dfuXIlLi6OQqEIhcIPP/wQalP0HJfLPXz4sFgsLigo2LVrF4IgkZGRqhQ3gO+F2nXvs4DvhSYkJydTqdSEhAT0aUNDw+TJk1UpwNLz7wVUnwAAAKDXYNQoAAAAvQaJEAAAgF6DRAgAAECvQSIEAACg1yARAgAA0GuQCAEAAOg1SIQAAAD0msZvqAcAqOLs2bN//vmnUChsM3EGAEDT4IgQAJ0QFRWVnJxMIpGwDgQAvQOJEAAAgF6DRAgAAECvQSIEQBc9ePBg+vTpU6ZMiY6OLigowDocAPoyGCwDgC6i0WiWlparV6/28PDAOhYA+jhIhADonNu3b589e3bbtm02NjZYxwJA3weJEAAdIpVKz507d/369T179tBoNKzDAUAvwDVCAHQIi8VCa20/fvwY61gA0BdwRAiADjE1NV21ahWLxVq7di2BQAgJCcE6IgD6PjgiBECH4PF4BEHMzMx27Nhx/PjxrKwsrCMCoO+DRAiALjI3N//hhx+OHTv24MEDrGMBoI+DRAiATkhJSZk/f75QKJQtKSsra2pq2rx5c0xMTF5eHoaxAdC34aRSKdYxAAAAAJiBI0IAAAB6DRIhAAAAvQaJEAAAgF6DRAgAAECvQSIEAACg1yARAgAA0GuQCAEAAOg1SIQAAAD0GiRCAIBmNTY2isVitXRVX1+vln4AkAeJEIAua21tDQsLO3LkCLZh5OXlhYeHh/3Hvn37sI2nQywWa+HChaWlpT3vSiqVxsbGwuSrQO2gDBPQuNu3b2/btg2dzO/YsWOOjo5tGggEgrlz57LZbARBZs6cuXDhQgyi7IUGDx58+vRpiUSCIEhqaiqfz8c6og4kJSXZ2dl5eHj0vCscDjdt2rQDBw74+/uTSKSedwgACo4IgcaNGjUKPXgKCwtLTU1t3+D69esWFhaurq6rV6/+7LPPtB5glxGJxDlz5gwZMgTrQBBzc3NLS0tLS0sqlYp1LB1gMpkZGRkxMTHq6nDmzJkcDufKlSvq6hAABBIh0AIcDmdubo4gSFRU1I0bN1gsVpsG58+fj4yMJJFIJiYmRGIvOEtBIpEWLFgwdOhQrAPRdWfOnHFycvL391dXh8bGxmFhYSdPnhSJROrqEwBIhEB7GAxGcHDw5cuX5Rfm5OS0tLSMHj0aq6iAhrDZ7Lt3706cOFG93U6cOJHNZt+/f1+93QJ91gv++wZ9SWRk5Pr162fPnk2hUNAlqampERERHR4I8vn83NzcR48eFRUV1dbWSqVSe3v7iRMnTpo0iUwmt2nM4XDmzp3L4/EQBBkzZsw333yDIEhhYeGpU6fy8/ONjIwiIyOnT5/eZq3S0tJz586VlJTU19fb2NiMHTs2MjKypqbmiy++QBCERqOdO3dOdjkqNzd3w4YN6DU5BEGmTp36r3/9q8PdrKqqio2NFQqFMTExs2fPPnfuXGZmZm1traWl5eDBg+fNm2dtbd3D/dWO6urqM2fOlJaWVlRUGBkZeXp6zpw509PTc+/evVevXkUQZPbs2Z2dzb5z545QKAwNDW2znMViffrppwKBAEEQEol0/Phx+XdDIBDMmjWrpaUFQRACgZCQkODm5ia/uru7u62t7bVr19r3DED3QCIEWuXh4eHq6pqZmfnRRx8hCMJkMouKijZt2tRh46ysrNu3b3t5eY0aNcrCwkIikVRUVFy6dCk7O/v7778nEAjyjel0+smTJwUCQXp6emVlpVgsTkxMvHXrVlRUVGxs7OvXrw8fPkwgED788EPZKmfPnk1OTp4+fXp4eLiFhQWTyczMzLxz587ixYupVGpiYiKFQpEflBEQEKDi4BQHB4fTp0/v37+fy+Vu3brVw8Nj5cqV5ubmbDY7LS1t4cKFBw8etLOz68n+asHFixePHTs2YcKE6Ohoe3v7urq6/Pz8devWzZ8/H0GQGTNmzJw508zMrLPVnzx5YmZmxmAw2iw3MzM7ffr0l19+uXLlyv79+5uYmMi/SiaTk5OTmUzmmjVrTpw4YWlp2b5nLy+vBw8eSKVSHA6njh0F+g4SIdC2WbNmHThw4MMPP8Tj8efPn588eTKNRuuw5dixY8eOHSu/xNnZOSQkJCYmpqioyNvbu017Op2OIIiRkVFTU9PatWtNTU1/+eUXY2NjBEGcnJyCg4Ply1A/fPjw7NmzBw4ccHZ2lnU+ZsyYs2fP7t69G4fDdfgTjF7sRBCESqUqHqVpYmJCoVDS09P37t3r6uqKLrSzs/P09Ny1a9exY8c2btzYw/3VqNzc3OPHj+/evVs24NPJySkwMHDKlClr1qwRiUTh4eEdvkUyhYWF7u7uHb5Ep9O9vLxqampklw9ramqkUin6z4GRkVF9fb2bm1tn/bu5uV2/fr2iokL22QHQE3CNEGhbUFAQmUy+d+8ei8W6detWREREl1YnEAgMBqO2tlZBm2fPng0fPnzjxo1oFkSRyWQDAwPZ04SEhCVLlrT/JY2Kimp/rNZt06ZNk2VBmfHjxxcVFanYgyr7qwk//fTTV1991f62Bxsbm/Xr1yu9sV0sFrNYLFNT084aeHp6Pn/+HH0slUpXrFixZMkS2RCYwsJCLy+vztZFu21sbFRlRwBQCo4IgbbhcLjIyMiUlJTS0tJhw4bZ2tp21lIsFt++ffvatWvV1dX19fUGBgZWVlaenp51dXWKNxEaGjpjxgwFDRoaGhoaGjq7yDR27Nji4mJV9kWpDq/tGRkZCYXC9su7vb9q19DQUF9f3+bwVGbgwIFOTk6Ke2hpaZFKpQpu6vD29r548SL6OD8/n8/nm5mZPXz4MCQkBEGQoqKi2bNnd7Yu2i2Hw1G6IwCoAhIhwMD48eOTkpJSU1P37NnTWZuWlpaVK1dKpdKJEye6ubmh5yTfv39fXV395MkTxf0rvXRUWVlpa2vb2U3ZSn/lNaEn+6t26PujYISO0nOS6OluLpfbWQNXV9d3796xWCwzM7ObN2+GhoYyGIzr16+HhIQIBIKysjJPT8/O1m1tbUUQxMjISPmeAKACSIQAAyQSacWKFVVVVQMHDuysTXx8fP/+/VesWNFmkMigQYMyMzN7GICjo+Pbt2+FQmGHubCqqqqH/XeDRve3q9D3RyAQdJYLKysrFedCAoFAp9ObmpoUNBg0aNDz58+HDx9+586dTZs22dnZJScnt7S0lJeXW1paWlhYdLYu2q2CBgB0CVwjBNgIDg5WcPZSLBbn5OR8+umnHQ6VRO+R6Al0Npa7d+92+OrNmzd72H9XaXp/u8rS0tLKyurWrVsdvlpSUlJeXq60k0GDBr169UpBAy8vr+fPn+fm5pJIJB8fHysrq4EDB969e7eoqEjBBUIEQcrKygwNDTE5cAd9EiRCoItwOBwej29/bYzD4Xz33XdquYC3bNmyAwcOvH79us3ylJSUysrKnvffJVrY365avnz5wYMHS0pK2iyvq6vbunWr4vGiKB8fn7q6OgXDatBEePPmzXHjxuHxeARBJkyYcP369cLCQgXnRREEef78uY+Pj/bvJwF9FZwaBRqHDiBEEITFYpHJZGNj4za3z6OvikSi9+/f8/l8AwMDPB4/Z86cbdu2zZ8/39vb28DAoK6uLicnJyMjY9asWc3Nzc3NzeigRNnlQLFYjI6e4HK5fD5ffiI3Mpnc/g6NoUOHRkVFLV26NCIiwt/fH72P8OrVqw0NDatXr968eXOb9lKpFJ0WHMXj8Xg8nvxWTExM0F9zWWM+n9/a2trU1CR/q5xAIGhqapJIJPLxd2N/uxRPNwQEBMTExKxcuTI8PDw4ONje3r62tjYvL+/8+fNz5syprq5W2sPYsWMTExPv3bvXfh4D1KBBg0pLS8vLy/fu3YsuCQ0NPXDgAIlEmjNnTmfdVlRUVFVVzZ07t3v7BUB7OPk7qwDQhIMHD166dEn2NDw8fNWqVbKnmZmZu3fvlj11d3c/ePAg+jgrK+vChQuvX7/mcrnW1tZBQUEff/yxjY3NmjVr0PEjy5cv/+CDD9DG+/btS0tL6zAAAwODEydOdHjrNzqzTHFxcX19va2t7bhx4yIjI6urq5cvXy4fM4IgV69elf1edyg6OnrevHno44sXLx46dAh9jMfjt27dKpuYdNOmTbLpweTj7+r+dimebquqqjp79uzLly8rKytpNJqXl9eMGTO8vb337t1raWmptP8NGzaw2WzZW9EeOv9OUlKSbMn333//8OHDS5cudXbAl5iYeOXKlTNnzmA12w7oeyARAtAWk8n8+uuv2yRCIE/FRPj8+fPly5fv27dP8alO1fF4vOjo6I8++ujTTz9VS4cAIHCNEID2qqqqrKyssI6iL/Dy8goJCTlx4oS6Ovzjjz+IRGJkZKS6OgQAgUQIQBsSieTChQvobd2g5xYtWlRQUFBWVtbzrqRSaUpKyqJFi+RnCAKg57QxWIbH4w0cOBCmgegtPv74419//RXrKLSHw+GIxWIEQUQiUXl5+alTp/B4PJx56xCPx0NvZufz+ejYHDqdrnj0JoPBSEhIaD/1djfgcLitW7cquPcUgO7RxjVCNpvt4uLCZDI1vSHQc//88098fPyNGzewDkRLmEzml19+iSZCIpHo7Ow8atSoqKgoGJrfodjY2DZfZAVlmADoLbR0+wQOh1NQrgXoDn2btsrV1TUjIwPrKHqNI0eOYB0CAOoH1wgBAADoNUiEAAAA9BokQgAAAHoNEiEAAAC9pv5EyGaz7927p/ZuAQAAAE1QadTopk2bZJWmLS0tP//8cwWNs7Oz9+/fn56errjPI09/q+Qon7dXjab0DxtuH6jNLZaXl5ubm9PpdA31n5iYSCKRej6fpCr4fD6BQGgzWbZiSmsIyKuurjY0NOyrQ4ubm5v1bTiuuvBfPWdlnrL9chvWgfRKPB6PSCR26Wurn1R6g6hU6rp161TsUcUbE21pNo08tvJ26mNLaztpFpfL3bFjR2FhoZubG/KfUjizZs0aPHiwWrZ4586dYcOGaS4R+vr6au1PXCqVdumWU3Qy6/Y1HDrDYrESExO//fbbbkWn62BG3+6TiBGBtssx9hnwh6cizP5TCHEIsqRqtcC0q2nbgtpUKvW7777buHHj1q1b0SXNzc07duyg0+kuLi7ajK17AgO1eoDbJcnJyQrq7rbn5eV1+PDhyspKR0dHzUUFAADtqZQIxWLxjRs3CgsL6XT65MmT+/B8xEZGRjExMTdv3lywYAG6pLW19fjx4xUVFQiCGBgYzJs3r1+/frL27969O3To0Js3b4yNjSkUiq+vb3h4uJGREZfL3blzZ3l5+aNHj2SV8GJjY11dXWXrVldX//bbby0tLSKRiEqlzpkzZ8CAAehLQqFw586dTCZz0aJF/fr1O3LkCJvNNjAwWLduHXqO+u7du+np6Vwud/Dgwe3n9VAQs9KeFauoqEhKSuLxeCQSyd7ePjo6ev78+SEhIcuXL5fVyUMQhMlk1tfX+/j4oE9fvXq1bt26/v37r1y5UlbQ9fDhw3///fesWbNmzZqFLomIiEhJSVm5cqXyzwkoI0WkuTXPblb88/IdUyQRmlJMAhi+4a7jLA3NsQ4NAJ2jUiL08/OjUCgLFix49+5dQkLC119/reBaTnNz86tXr3744Qf0KR6PDwsLU0+wWiEWi2XlTEUi0ebNm2fPnv3ll18iCMJisfbs2RMdHe3h4YE2iI+Pj4qK8vb2RhCEy+WuXr06ICDAyMiISqXGxcX9/vvvw4YNmp1m4gAAIABJREFUc3d3b7+V6urq+Pj4VatW2djYIAjS0NAQHx8fExODnqQlkUgbN268fPlyWVnZpUuXlixZwmAwiouLuVwumq5CQ0NDQ0PLyspu3brVpmfFMSvtGUEQqVQqFArbdCsUCt+8eZOQkCCLOS8vLz4+3svLa8mSJSKRSL7xjRs3goKCZJ04OjpOmDBh0qRJJiYmAoFAKpXi8fjPPvvs1atXERERsmZDhw7ds2fP4sWL+970ZkKhsP1bqjklrLI9j37mi3g+Vl6jHIYT8PhmQXPe2+cnn5+f4jo+xvsTA0KvqeQnEokkEok2372+BH3f9PwEKZFIlP83veM2qnQkqwVKo9EWLFhw5coVBVMSCwQCgUDw7t072ZKmpiZVtqILWCxWUlLSkiVL0KdpaWlhYWH+/v7oUzMzszVr1vz444+yU6lSqVSWP9ArqXZ2dqps6Lffflu9erW1tTX61NLScu3atTt37ty27X8GBTx58mTLli2GhoYIgsiyr2JKY1bas1QqRefelCcWi0+dOrV06VJLS0v0VS8vr6qqqsePH7dvzGQyR48eLb+8X79+xcXF1tbWly9fzs7O3r59u0AgIJPJ8m1IJJKxsfGbN2/s7e1V2dNeRCwWt3+XNORSaUZy0bkw59GDrTxxyH++/1QbN9P+oxyGZ5bf+PLaqu9D1tvSrLUTTw9JJBIEQbT27vUx6L/1StNA30YgENSTCOU5OTmlpqYqaGBubj5w4ED5muNstlYHxXRVfX39xo0bEQTB4XBEIvHzzz93cHBAXyooKPj666/lG9PpdDKZjP6IIwiybNmyI0eO8Hg8CoXi5uY2fvx4FY9mmEzm/v372yxsX6pm5syZaK5SndKYlfaMx+MpFEr75S0tLf3795dfMmLEiGfPnrVvXFFR4eLiIr/cy8sLzdB5eXk0Gk0gELx9+3bAgAFt1nVwcKitrW2zlT5AKBR2+Jaq3ZEnv92s+OdL/wVmFJP2r5LJ5NleM7LfPPr69rd7x3/vauKkhZB6CEcmd/YHCZSSSqUkEglGjSrV5TeourpadhzTN1hZWbU5WpKRSqXt/5XA4/Gy/0+tra3RJMrhcIqKijZv3rxq1Sr5C4GdsbGxiYuLk52DVSOlMasRWpGnPSqVyufz5ZcwGIyamhoul4vH48ePH5+dnS0SidDzwPL4fD785HXbb/lnblfe/8w3mkpS9M/TMPtAKslwxfVvD07caWdkq7XwANBZyn+Is7KyZDcFikSi5OTkiRMnajgqXeHt7X3//n35Jc3Nza2treixFJvNfvToEbqcTqcHBwcvWLDg5s2bssY4XKdVrtzd3bOzs7Ufc0/079+/Tcyd3S3q5ORUVVXVZqFUKs3JyQkKCgoKCsrJySkrK2ufCKuqqlT5NwK09zfz9h+lGfN9ZivOgqjB1l6jHIevuRnXIuRqITYAdJzyRDh8+HCJRBIXF7dz584dO3ZMmTJFLTU2e4WpU6dmZmY+e/YMfcpms3fu3Cm7PlpTU3P06NGGhgb0aWtr640bN+Srhrq4uDx8+FCWC/Pz8588eYI+joqKunTpUl5enqxxTk7Ozz//rOmYeyIqKio1NTUjI4PD4dTW1iYmJqLXb9obMGBA+/KTdnZ2ly5dGj58OJVKlUgkb968aXNqobGx0cDAoK/eU69RTPbrfblH5npFGpFpKq4SbBfgSLfbmhUvRfR6JAUAiCqnRnE43NSpU6dOnaqFaLSMy+Xu2rWruLgYPb0ZFhY2evRo+QYkEikuLi4pKencuXMIghCJxPnz58tucrC1tZ0xY4YsF/L5/OnTp4eEhMhWHzlyZElJyVdffWVlZUUkEq2srCIjI9GXyGRyXFzciRMn0AuuJBKJwWDIXi0sLDx16tTbt28pFMrly5cRBAkMDJw+fTr6ak1NzcGDBxEEaWlpaWxsRFPOyJEjJ02apDRmxT0rZmhouH379vT09IMHD9Lp9ICAAH9//x07drRvOWnSpMWLF3/++eckEkm20N3d/enTp+jtEwEBAXfv3m2zVkZGxkcffaRKJEAeXyzYfHfnpH7jujr+ZXL/sKNPf7/88up0tykaig2AXkH9FeqvXr2akJAgf9KMzWa7urqyWCz5Zu94rJcsLdaslyLBdv7a21yvdfPmze+//759hXoej0cgEOQTG4IgAoFgx44dmzZtat/PoUOH3NzcVL9zRiQSLVq0aN++fbLbLvuS9+/fGxsba6jzg48TS96VRQ2K6Ma6DdzGo09P/DJ5j85eLOSX5rGu/Gb7rz1YB9Irtba2wmAZVWD2BplTzIIZcBKsz5o1a9aePXtUT4T3798fP358n8yCGvWi8WXmq5vLAr/o3uqWVItRzsN3ZO/fN2Hbf++1AEDPQBkm0B0CgeCHH37YsmVLQUHB/v37259XsLS0jIuLU73D4ODgqKgotcbY90mkkh8fJIT3G0clKZ8VqDMhdkGsVvY15i31xQVALwOHzBp07969tLS0ziZC69XIZPKGDRuUtulShz2LSB/9WZqJQ3B+Nt496QSHw011m/jz46SRDsNUGXEKQN+j14mwTfUJVFRUlJ+fn1r6HzFixIgRIzqcCA2AHmoRco/lnZrnHdXzU5qOxvb9zFySn5+L9dNGSS8AdI1eJ8L21SdaWlp27NhhYmICd7MBHXey4Jy7eX+GkY1aegtzGZOQezTCfYoV1VItHQLQi+h1ImyPRqPNnz//5s2bskSooEYEgiA3bty4deuWRCLhcDimpqZLlizp+bQ7KtZqAPqssZV1uTRjSYCiEtldQjcwDmIMOZZ3au2wZerqE4DeAhJhWzU1NbJJWBTXiEAQxNnZef369Wj78vLyQ4cObdmypYcB9OvXb+LEiVOmTLG0tETL4eLx+EWLFjGZTMiCAPVb/pkAG18TA3XWfA51HL734eG5XtUOxipNHA9An4FZIhQwC8VNjdrcItllEMFU0WkfFouVlZV148YN2XBHpTUi5KeHdnFxaVONqNvc3NxKSkrs7OwuXrx47969PXv2CAQCAwMDtXQOert6bsP113eWD12o3m4pRMpw+4CkvNPfjoCSkEC/YJYIm7OuiN5WaHOLRmMiqAHj2i+vr69fv349giBMJjM4OHj79u2yEYxKa0TU1dVlZGRUVVVJpVJHR8c2kwZ0m7u7e1pa2pgxY3Jzcw0NDTkcztu3b+ULAgN9lvw8NdDWj0ZS/z2Xw+2D9j78+c37GntjfZlGEQAEyxvq567GatNtyKpPtLa2xsfHP3nyJDg4GH1JcY2I4uLipKSkTz75ZMaMGQiC1NXVPX78WC0hqVirAeihd62sv5m3/zV0kSY6pxANhtn7nyhIWTf8X5roHwDdBDfU/5ehoeHq1atTUlLevn2LLlFcI+LChQvffPONr68vjUaj0Wiurq5qPHupSq0GoIdSii772ngbkbt/B71iw+yH3q3Mruc2aKh/AHRQFxLhq1evYmNj09LSNBcN5kgk0rJly2RVIBTXiCASiZWVlehjDoeze/fu6upqdUWitFYD0EMtQm5a2V8jHYI0twkq0XCIrW/Ki8ua2wQAuqYLp0YvXLjw1Vdfta8z13vJV5/4+OOP/f39EQRxdna2tbWNi4vbsGGD4hoRsbGx+/fvP3r0KHpEGBMTU1dXt2nTpuXLl5ubmyuuEaGU0loNQA9dfnnV3ay/KcVUo1sZ4TD0QO6vMT6f0HowcxsAvYiq1SdycnLYbLaDg0NZWZnikkwqVp8AuqlL1SeAitRSfUIkEUdd+uwTrxlaqBSR+uKPoXZDPhn0saY3pBRUn+gJqD6hIpVOjYrF4hs3bkyYMEHT0QAAOnO74p4ZxVQ79ZKG2w9NfZEmloq1sC0AMKdSIszIyJg0aRIOB1VaAMDMmaKLw+2Hamdb9sYMUwPju5WdjhQDoC9Rfsjc2tr68uXLDz74QMUeKysr7927h15vQ61cCffn9iYSiaS5ubnNQjg12hMtLS09/D+ymFXWyGW50Bx5PJ66olLM38r3VMGFQHNf7WyuM6LWVrFY3P4PEqgCTo0iCEKlUju7BU5G+Rv0zz//vHnzZteuXQiCNDU1vX//fsSIEWZmndbUtbe39/Hx2bdvn2yJnR3M2NSb4PF4IyOjNguJRCIkwm6TSqXt39IuSXt6bZh9gGzyPy3wY3hfr7xdI6xzM8NyJge+oSGPQOjhu6e30O+snidCVSh/g8LCwmR1xouKisrKyhRkQQRB8Hg8nU4PCAiQLWGz2T2MEgB9xuKxH1Q/WhW8WJsbxeFwQxlDUl/8sX74cm1uFwDtgxvqAdB1f77M9LHypBApWt5uIMPvbmX2ewGclgR9XBcSYWZm5smTJ69duwY3QgCgNRKp5I/SjCC7IdrfNI1EG2jhlv7qb+1vGgBt6sK54/Dw8PDw8O5thsfj7dy5s3vrAm2Sn1Ic6IL7bx4Zk40YWrlror1AxpBLJemzBn6EQ2DQOOiztHERlU6nr127VheOIwUCgayyBOiQubl5bGws1lGA/7pQciXA1g+rrbuYOOKkuMdv8wJsMR4+CoDmaCMR4vH4nperVQu1TPABgNbUttS9aHw5zU2lafk0ZKjdkEsvr0IiBH0YDJYBQHf9WfqXn403CY/l8HdfG+/cmv9v796jorgPPYDPzs7ssrvs8n4syxvkJchDIIao+Gh7Y6qmMYltoxHvMY32Jml6kiap1+aceONtciT1Ws2paawlSb21NIqJouIjjRgxBMQQQXmDPBQFldcu+5zd+wct8Rpll2WX3+zu9/MXi8Py9Xdm+e7M7Px+tQO6IYIZAJwKRQjAU5yFO9J2MieUwMdk7uQlFM8MTDqGj8yA+0IRAvBU5dUaP7FPsCyQdBAqW5lxuPW4hbJpgn4Al4MiBOCpT5uPZfHjylyEQiWgqG9u1JMOAuAUKEIAPro5euvSzcbUoGTSQf5pdmj6odbjpFMAOAWKEICPjradSgtOEQn5Mrlrekha5dXzmGUG3BKKEIB3LJSltO0kr+5YkDKShID4k1dOkw4C4HgoQgDeqb1Rz9KsSq4kHeT/yQqZVdpygnQKAMdDEQLwzqGWsszQNNIp7hbrGz1kGG4ZaCcdBMDBUIQA/DJiUFdeO58Rkko6yN1ogSAzZNZhHBSC20ERAvDLqSvlif7xUmb61uC13ezQ9M+ulOs5A+kgAI5k09RNNTU1R44cYVnWYDAsXbr0zkV3AcCxSttOzA/PI53i3nzEinBF2NnuysXR80lnAXAY60VoNpvr6uo2btzIsizHcYWFhbGxsRMvUg8A9mkbvDKgHYzziyEd5L4yQtIOtx5HEYI7sX5qlKbptWvXsixLUZRQKMzOzu7o6HB+MABPdKTtRGZIGi3g7+J/qYGJrQMdNzR9pIMAOMzkrhGazebq6uqkpCQnpQHwZEaz6WR7eWboLNJBJiKkmVnBKVi2HtyJrcu7cBy3a9eutra2Z599ViqVTrClxWIZHR1tb//2M9bh4eFYDhfAqnM9VSHeQf5efL/ukBWaXtzwSUHqT/l85ApgO1uLUCgUrlu3rq6urry8PDIyUiaT3W/Lnp6e6urqxYsXjz2kabqwsPD73/++A8JOmVqNCaLspNPphELh2BlymCwbd7yDjUdS/ZO0Wq2z80yRn9CHpZiKjsqMIKff42EaHeU4bmRkxNm/yC1ptVqWZRmG5HqWxEmlUqFQOPE2kxggiUSSm5vr7+9/4MCBNWvW3G+ziIiI/Pz8o0eP2v7M0wkr1NuHZVkU4VRY3fH6R2+2DLY/lryU7DK8NsoKS//HtbPzYh909i/SS6V6oRAvW/swDIMitMWk7yNUKpWDg4POiALgycra/pEWnOISLUhRVEZwauW182qDhnQQAAewXoSXL19ubGwc+9psNu/du3fhwoVOTgXgWSyUpbSdX7NsT0zKShL9409dKScdBMABrL/9jIqK2r9/f0lJCcMwJpNp0aJFaWm8mwURwKV903eJEdB8m2V7Ylkhsw63Hf9RwiOkgwBMlfUilMlkBQUF0xAFwGOVtp7IDHGZw8ExsX4xB1uOtQ50xPP49n8AW2CuUQDCNMbRcz1VGSEzSQeZHFogyApJK209SToIwFShCAEIO3WlfIZ/rJSd6PZcfpodOuuzK+UGzMENLg5FCEDYodayLFc7LzrG18s3TB76RXcl6SAAU4IiBCCpdaD9tnaIz7NsTywrNP3T1mOkUwBMCYoQgKRDLcdnh8xy3bnKkgMTOgY7r6mvkw4CYD8UIQAxOpP+s84zs5UueV50DCMQZgSnlbYeJx0EwH4oQgBiTndVRCsifMQK0kGmJFuZcbTtlMnMkQ4CYCcUIQAxnzQf4fmiS7YIkgYGSPy/vFpFOgiAnVCEAGR0DHb2avqTAmaQDuIAWaHpB1t4Os8+gFUoQgAyPmkpmx2aTgvc4TWYFpTcfKutV32DdBAAe7jDixDA5ehM+lNXTme7zizbE2NoJiNk1uHWMtJBAOyBIgQg4B+dX0QrIn29fEgHcZgcZcaRtlNGs4l0EIBJs2nxs9bW1qKiIplMRtP0008/rVKpnB0LwL2VNJfODX+AdApHCpIGBEsDv+j+clHUPNJZACbHehEODw/v2bNn8+bNIpFIo9G88847mzZtwpLHAHZrvNUyqBuK94sjHcTBcpSZB5oOowjB5Vg/NdrX1/fCCy+IRCKKomQyWUZGRltbm/ODAbitkqbS7NBM151N5n5SAhOvjlxvH+wkHQRgcqwXYXx8fFhY2PjD7u5ub29vZ0YCcGdD+uGzPV9lKzNIB3E8WkBnKzMONB0mHQRgcib3YZm6ujqWZXGNEMBuh1uOpwQmSVkJ6SBOkavM+rzzrNqgIR0EYBImcamvpaXl2LFjL7/88sSbDQ4ONjU1vfLKK2MPaZp+6qmnkpKS7M/oOHq9fuwcL0yWXq8XCoVms5l0EJc0vuNxFu5g85EnEx81Go2kQzmFWCBK8Is71HTs8YRlDnlCo9FoNpv1er1Dns3T6PV6s9nMcR49+51IJBJYuwxh6xFhc3NzcXHxL3/5S6FQaOUZaZphGN9/USgUNI2bNAAoiqIqrlb5iBRKWQjpIE6Uo8z8pPWY2YL3TOAybDoibGpq2rdv38aNG205nFIoFHFxcZs2bZpyNsczGAxisZh0CpdksViEQiHLsqSDuKTxHa+k9cic8Gz3HsYYvyiZSHq+/5t5EXMc8HQsS9M0Xrb2MZvNLMviQ/5WWT9Wa2xs/Pjjj3/961+P7Yt9fX3d3d3ODwbgbpputd7Q9M8M5MVlAqeaE5b9t4YS0ikAbGX9ncLevXulUunOnTvHHt68eXPJkiURERFODgbgbvZdPjBHlW31coUbmBmUVNbxedPt1kT/eNJZAKyzXoRbtmyZhhwA7u2Gpq/6eu3Luc+RDjIdaAH9oCp73+WSN+a+SjoLgHX4GAvAdChu+CRbmeHFeMq1rpzQzOre2uuaPtJBAKxDEQI43YhRfbzj8wdVOaSDTB8xI8pRZuy7fJB0EADrUIQATlfafiIlIFEhkpMOMq0eVOWc6jg9qB8iHQTAChQhgHPpTLrDHcfnOuReApciF3mnBad83HiIdBAAK1CEAM71ScuxaEVkkDSAdBAC5oXP+bT5mMY4SjoIwERQhABOpOcMxZcP5ilzSQchw0/imxgQj4NC4DkUIYATHWopU8nDgqWBpIMQkx/50IHGwzgoBD5DEQI4i86k/+ul/Quj5pIOQlKgxD8BB4XAbyhCAGcpaSqNVIQrvd15im1bLIjM2994aMSgJh0E4N5QhABOoTGO/q2hZGHUPNJByAuQ+M8MTPzrpQOkgwDcG4oQwCn+evlAgn98sMxzrw7eaWHUvEOtZTdHb5EOAnAPKEIAx7upvf1p87HF0fNJB+ELhVieo8zcc/F/SQcBuAcUIYDjvV/70ezQDB+xgnQQHpkfmXe256v2wU7SQQDuZmsRmkymuro6p0YBcA8tA+1fXT2fH5lHOgi/eAnFCyPn/v78+6SDANzN+jJMGo3mvffeM5lMvb2927dvn4ZMAK7LQlm2Vb23KHq+5yw0YbvcsKzq619/0V3pmMXrARzE+hGhTCZ77rnnXnvtNZVKNQ2BAFzayY7TaqN6dmgG6SB8RAvoH8b9YGfNbp1JTzoLwLdsOjXq5eXl7BwAbkBt0Oy6ULQs/t9oD1iG3j6xvlFhcuVH9cWkgwB8Cx+WAXCYP1z4c1JgQrg8jHQQXlsSu/hwa1kHPjUDvGH9GuFkdXV1lZeXx8TEjH+nsLDw4YcfdvgvsoNGoxHgrbpddDqdUChkWZZ0EP6qu3n5XE/V+lkFOp3urn/S6XTY8caxFLNA9dB/V2zbNv9NWmDlvbhJq+U4Tq3GrDT20Gq1LMsyjOP/zrsQqVRK01Z2M8cPUERERG5u7p49e+78Dk/+gFosFm9vb9IpXBLDMCjCCWhNuu217z+auMRH5vPdf7VYLLi+cKc5kTmNg62lXSefmvn4xFvqJRKdUIiXrX3GXrMeXoS2cPwACQQCiUQSGxvr8GcG4K2d53dH+oQn+s8gHcQ1CCjBYwmP/OHCB3NU2bG+UaTjgKfDNUKAqTrb81VV74Ulsd8jHcSV+Hr5Phy3aPPZrQbOQDoLeDrrR4Sjo6Pvvfcex3H19fWFhYUURT355JPR0dFOjwbgCvpGb26t3Llq5hO4cXCyskJmtQ607zi/+1cPPEc6C3g060UolUpfeumlaYgC4HKMZtPrZ377UMQDEQrcZWuPR+Mf2fX1n090fP6DmIWks4DnwqlRAPv9T9UuES2aG/4A6SCuSsyIfpKyYuf5P7UOtJPOAp4LRQhgp/2Nh7/uq1uRuExA4dYI+4XKgpfO+MGvT2+5pR0gnQU8FIoQwB4VPVV/qf/76pkrxYyIdBaXlxaUkhU667XTm7Wmu2/BBJgGKEKASfum79Lblb9fnfqkn9c97hoEOyyIfCjAy2/j6TeNnJF0FvA4KEKAybl0s/H1M7/9cfJjKrmSdBa3snzGEjNl+c2Zt4xmE+ks4FlQhACT8E3fpY2n31yRtAy3gTucQCB4MunRUZN2U/kWPW4uhGmEIgSw1Rfdlb8589snk36U4BdHOot7EgroHyf/yMhxL332+ogB84vCNEERAthk3+WSd6r+sCb1x3F+0aSzuDNaQD+etCzAy2992a96Rq6RjgMeAZOxAlgxatRurdzRNti5IbPAR6wgHcf90QLBw3GLq3u//o/jr7wetiyCdB5weyhCgIlcvtn0XxXvRCnCf5bxNEPj9TJ9cpSZod7B+7/8+0o15WvSeTFYvgOcBadGAe5Na9LtPL974+k3F0fPfzThEbTg9IuQqx5L/KGBMxaUPl/Ve4F0HHBbeG0D3M1sMR9r++xPF/fG+ca8kP0zKSslnchziWjWW+K3JH7R1sp3Z/jH/jxzbaQinHQocDcoQoBvGc2mz66c+ai+WMJKfpqyIlweRjoRUBRFJfjFvZj9s3PXzj934tUHwrJXzXwixieSdChwHzYVoU6ne//990dHRy0Wy7p164KDg50dC2Ca3dD0HWk7dbilLEgWuCT2e/hoKN8IaWZe+Jyc0MyvrtW8ePI/Y/2iHpvxw7zwXBanrGHKbNqH/vjHPy5fvjwmJmZ4eHjr1q1btmxxdiyA6XFNff1s91enuys6h3rSg2eumfWTEGkQ6VBwX16MOD8y76GIB+r7G/5y6e9bv9o5N/yB/Mi8rJB0rAcJdrNehFqtVqPRxMTEUBSlUChSU1Pr6+tTU1Odnw3A8cwWc9fw1YZbzRf7LtVcv6gz6RL943OUGT9JWcEIhKTTgU0YgTAjODUjOHVIP1zf31h0cd9/Db8zwy82M3RWamBSUsAMhVhOOiO4EutF2NvbGx8fP/4wOTm5q6vLFYtQr9d//fXX8+fPJx3EJbW3t8vl8ogIV7qnS88ZbmsHbmpv9ar7rql7O4d6uoZ7uoev+YgVEXKVSh7605THgmVB07CIUlNTU3p6ukCA1ZomzWg06XT3XZLCR6x4KDz3ofBcA2e4MtR1Zbin8tr5rqEeCSuN9gmPVIRHKlRK75BgaWCAxN/Py3c6k/NBS0tLUFCQUolJca2wXoSDg4N+fn7jDwMCAurr6yfYnuO4oaGhmpqa8e8kJiZ6e3vfb3udSdc53GNb2impr68vLCz8MPXDafhd7ud3H21XqVSrVq1y4HMaOZOe01vdzGKxqI2a8YcGzjA2EaXWpDOZTUbOqDXpNEatjtNpDdoRg1pt1AwbRkb0apOF8xErfERyHy8fX7HCX+KXFDgjWBI0/Qsnbdu2bceOHb6+HveHeOp6eroV12/IrG0mEooS/OMT/P/5ln1AN9Q/erNvtP/C9W8GdcNDhuEh/YjaoJGLvBVib29W7i2SyliJjJVJWKmIZrxFMoFAIGOltICmKEou+vbvFUuzNp509RZZjTndthb9LiUl5fHHHycdxJF8xIpQmYM/p+L468zXr1+/dOnSM888M/aQpuk33nhjwYIF99v+m/5LRZf3OTzGd42OjrILFVvP7ZyG3+V+rsbc7heprzp09FghIxbe+0+MxWKx/OtrgUAgY6T//DZFiYSsiGYtFouYEQkFDEMLxUKRP+sjEgdJFF5SRjL2B04hkkt4cwv2aMdwmDA4yAtXHydNw3lbDOYoL9WkfirKS0V9510HZ+HUBvWIUaM2arQmvdak1XE6rUlv5rjeoRu0gNaatGaLRSCg1MZRiqLGThWYzEbdv2YAF1DU/Q7rLZRFYxid7P/O2foSRkbYi23n3GqmuiT/+A1pa23fXiqVCoVWrnpYL0IfH5/W1tbxh7dv3574ja1KpcrLyzt69KiNKefK58yNnWPjxlNRWVn5i3d+safq99Pwu9zPCy+8EB0d/fK/v0w6iEsyj3KhviGhAaGkg7ieHi/5kJlSBeA+Fns888wzs2fP/vnSn5MOwnfWZ5Y+B4BCAAAGCElEQVRRKpVtbW3jDxsaGiIjcQcPAAC4CetHhFKpVCKRdHZ2RkVFqdXqurq6lStXTrB9f39/fX39+vXrHRfSMfr6+jo7O3kYzCVUVFTI5fLm5mbSQVzSyMjIq6++KpFISAdxPeLbVzO4Ebxs7VNRUdHc3FxbW0s6CEnz5s1bvXr1xNsI7rgWc19arXb37t16vd5sNhcUFISGTnSG58aNG7t27QoL492pDKPRePXq1ejoaNJBXFJfX59YLPbx8SEdxCW1trbGxcXhU6N2MBgMvb29UVFYBtkeN27ckEqlcrlH30ySk5OTmZk58TY2FSEAAIC7wuoTAADg0VCEAADg0VCEAADg0dx24nb7VswwGAx79uwZGhqiaXr58uVJSUnOzslDU1ls5PTp019++SVN08nJycuXL3deSN6yb/RqamqOHDnCsqzBYFi6dOns2bOdnZMn7BsurIdDYU9zLIub2r59e3t7u8ViGRoa2rRpk40/9eGHH9bW1losFo7jNm/ePDAw4MSIfGXf0Fkslg8++KC4uNhsNjstmguwY/Q4jisqKjIYDBaLxWQyvfXWW7dv33ZuSt6wb2ezexd1J9jTHMg9T43ec8UMW37w2rVr6enpFEXRNF1QUFBWVubcoPxj99DV19czDLNy5UpPvknAvtGjaXrt2rUsy1IUJRQKs7OzOzo6nJ6VB+wbLrt3UXeCPc2x3LMI77lixmSfRKFQtLS0ODSXC7B76M6cObNixQqn5XINU9/xzGZzdXW1h5yTt2+4HPLqdnXY0xzLPa8RTnbFjHFBQUENDQ3Jycl6vb6oqGjsrZNHsXvoKIrq6uoqLS01GAwBAQHr1q2zOtGt+5nK6HEct2vXrra2tmeffVYqlTonIL/YN1xTGWS3gT3NsVy4CEtKSu6cBJWiKG9v7/Xr19O0/Ye5q1ev3r17d2lpKcMwy5YtO3HixJRj8pEzhu727dvl5eUvvvgiwzDnzp07ePDgE088MeWkfOSM0aMoSigUrlu3rq6urry8PDIyUibj3Zo+4B6wp32XCxfhBCfiJrtixjixWPz888+PfT0wMOCub5ecMXQajWbVqlUMw1AUlZeX9/bbb089Jz85Y/TGSCSS3Nxcf3//AwcOrFmzZkopXYF9wzXFQXYP2NMcyz2vETpkxYwDBw7k5+c7NJcLsHvo4uLitFrt+EPP/MiMQ3Y8pVI5ODjo0Fw8Zd9wYT0cCnuao7lnEY6vmEFR1NiKGampqXduUF1dvWLFiuLi4nv+uMVi+eCDD/z8/GJjY6cjLp/YPXRLliz56KOPxr6uqKhITEycnsC8Yt/oXb58ubGxcexrs9m8d+/ehQsXTltmguwbLqs/5QmwpzmWC58andj69evHV8x4/vnnbTxAKS4u7u7u5jhu3rx5eXl5zg7JT/YNnUqlys/P37ZtG8dxAQEBBQUFzs7JT3aMXlRU1P79+0tKShiGMZlMixYtSktLm4aofGDfzmbfT7kZ7GkOhNUnAADAo7nnqVEAAAAboQgBAMCjoQgBAMCjoQgBAMCjoQgBAMCjoQgBAMCjoQgBAMCjoQgBAMCjoQgBAMCjoQgBAMCjoQgBAMCjue2k2wAupLGx8fXXX+c4LjAw8N133xWJRGPfr6mp2b59e39/f0JCwo4dO8iGBHBXmHQbgBcuXLhQVVW1YcOGu75vNpvXrFmzd+9eIqkAPAFOjQLwQmJiYlNT09jXtbW1b7zxhtlspiiqq6srKiqKaDQAN4ciBOAFmUym0+mMRiNFUWVlZS0tLRcvXqQoqqmpKSkpiXQ6AHeGIgTgi/j4+Pb2dqPRWFdXt2HDhvLycgpFCOB8KEIAvkhOTm5oaKipqcnIyHjwwQdra2s5jkMRAjgbihCAL8aKsLy8PD8/n2GYtLS0qqoqg8Egl8tJRwNwZyhCAL6Iiopqa2urr6/PysqiKGrBggVFRUXx8fGkcwG4OdxHCMAXNE37+/sHBwczDENRVHp6+sDAAM6LAjgb7iMEAACPhlOjAADg0VCEAADg0VCEAADg0VCEAADg0VCEAADg0VCEAADg0f4PcUvIhlIi+SIAAAAASUVORK5CYII=", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.5\n", "\n", - "\n", + "\n", "1.0\n", "\n", - "\n", + "\n", "1.5\n", "\n", - "\n", + "\n", "2.0\n", "\n", - "\n", + "\n", "k\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", "\n", - "\n", - "2\n", + "\n", + "2\n", "\n", - "\n", - "3\n", + "\n", + "3\n", "\n", - "\n", + "\n", "Marginal q(k)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(k)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real k\n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "−0.9\n", "\n", - "\n", + "\n", "−0.6\n", "\n", - "\n", + "\n", "−0.3\n", "\n", - "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.3\n", "\n", - "\n", + "\n", "w\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", "\n", - "\n", - "2\n", + "\n", + "2\n", "\n", - "\n", - "3\n", + "\n", + "3\n", "\n", - "\n", - "4\n", + "\n", + "4\n", "\n", - "\n", - "5\n", + "\n", + "5\n", "\n", - "\n", + "\n", "Marginal q(w)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(w)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real w\n", "\n", "\n" @@ -2032,170 +2032,170 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.5\n", "\n", - "\n", + "\n", "1.0\n", "\n", - "\n", + "\n", "1.5\n", "\n", - "\n", + "\n", "2.0\n", "\n", - "\n", + "\n", "k\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", "\n", - "\n", - "2\n", + "\n", + "2\n", "\n", - "\n", - "3\n", + "\n", + "3\n", "\n", - "\n", + "\n", "Marginal q(k)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(k)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real k\n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "−0.9\n", "\n", - "\n", + "\n", "−0.6\n", "\n", - "\n", + "\n", "−0.3\n", "\n", - "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.3\n", "\n", - "\n", + "\n", "w\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", - "1\n", + "\n", + "1\n", "\n", - "\n", - "2\n", + "\n", + "2\n", "\n", - "\n", - "3\n", + "\n", + "3\n", "\n", - "\n", - "4\n", + "\n", + "4\n", "\n", - "\n", - "5\n", + "\n", + "5\n", "\n", - "\n", + "\n", "Marginal q(w)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(w)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real w\n", "\n", "\n" @@ -2231,6 +2231,11 @@ "source": [ "As we can see, both the marginals $q(\\kappa)$ and $q(\\omega)$ are not quite off from the true values. Specifically, the means of $q(\\kappa)$ and $q(\\omega)$ are approximately $0.75$ and $-0.18$, respectively, which are quite close to their true values. " ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } ], "metadata": { From bbedd90ca5f3e6e91f8006722f8830807dfb22e9 Mon Sep 17 00:00:00 2001 From: HoangMHNguyen Date: Fri, 13 Dec 2024 11:43:57 +0100 Subject: [PATCH 4/4] make test pass --- .../Hierarchical Gaussian Filter.ipynb | 2582 +++++++++-------- 1 file changed, 1295 insertions(+), 1287 deletions(-) diff --git a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb index 25422e23d..8c8f49c1f 100644 --- a/examples/problem_specific/Hierarchical Gaussian Filter.ipynb +++ b/examples/problem_specific/Hierarchical Gaussian Filter.ipynb @@ -80,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -150,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -160,759 +160,759 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -949,7 +949,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -1001,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -1055,7 +1055,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -1067,7 +1067,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -1077,161 +1077,161 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1263,7 +1263,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -1273,101 +1273,101 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1397,7 +1397,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1458,7 +1458,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -1488,6 +1488,7 @@ " constraints = hgfconstraints_smoothing(),\n", " initialization = hgf_init_smoothing(),\n", " iterations = 20,\n", + " options = (limit_stack_depth = 100, ), \n", " returnvars = (x = KeepLast(), z = KeepLast(),ω=KeepLast(),κ=KeepLast(),),\n", " free_energy = true \n", " )\n", @@ -1503,7 +1504,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -1514,7 +1515,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -1524,161 +1525,161 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1709,7 +1710,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1719,89 +1720,89 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, "metadata": {}, @@ -1821,7 +1822,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1850,7 +1851,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1860,170 +1861,170 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.5\n", "\n", - "\n", + "\n", "1.0\n", "\n", - "\n", + "\n", "1.5\n", "\n", - "\n", + "\n", "2.0\n", "\n", - "\n", + "\n", "k\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", + "\n", "1\n", "\n", - "\n", + "\n", "2\n", "\n", - "\n", + "\n", "3\n", "\n", - "\n", + "\n", "Marginal q(k)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(k)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real k\n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "−0.9\n", "\n", - "\n", + "\n", "−0.6\n", "\n", - "\n", + "\n", "−0.3\n", "\n", - "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.3\n", "\n", - "\n", + "\n", "w\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", + "\n", "1\n", "\n", - "\n", + "\n", "2\n", "\n", - "\n", + "\n", "3\n", "\n", - "\n", + "\n", "4\n", "\n", - "\n", + "\n", "5\n", "\n", - "\n", + "\n", "Marginal q(w)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(w)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real w\n", "\n", "\n" @@ -2032,170 +2033,170 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.5\n", "\n", - "\n", + "\n", "1.0\n", "\n", - "\n", + "\n", "1.5\n", "\n", - "\n", + "\n", "2.0\n", "\n", - "\n", + "\n", "k\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", + "\n", "1\n", "\n", - "\n", + "\n", "2\n", "\n", - "\n", + "\n", "3\n", "\n", - "\n", + "\n", "Marginal q(k)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(k)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real k\n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "−0.9\n", "\n", - "\n", + "\n", "−0.6\n", "\n", - "\n", + "\n", "−0.3\n", "\n", - "\n", + "\n", "0.0\n", "\n", - "\n", + "\n", "0.3\n", "\n", - "\n", + "\n", "w\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "0\n", "\n", - "\n", + "\n", "1\n", "\n", - "\n", + "\n", "2\n", "\n", - "\n", + "\n", "3\n", "\n", - "\n", + "\n", "4\n", "\n", - "\n", + "\n", "5\n", "\n", - "\n", + "\n", "Marginal q(w)\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Posterior q(w)\n", "\n", - "\n", - "\n", + "\n", + "\n", "Real w\n", "\n", "\n" @@ -2203,6 +2204,13 @@ }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GKS: could not find font monospace.ttf\n" + ] } ], "source": [