-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminist_cnn.py
39 lines (29 loc) · 1.43 KB
/
minist_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#encoding:utf-8
import keras
from keras.datasets import mnist
from keras.models import Sequential,save_model
from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D
from keras.optimizers import SGD,Adadelta
(x_train,y_train),(x_test,y_test) = mnist.load_data() #加载数据
print(x_train.shape,x_test.shape)
x_train = x_train.reshape(60000,28,28,1).astype('float32') #二维数据
x_test = x_test.reshape(10000,28,28,1).astype('float32')
x_train /= 255 #训练数据归一化
x_test /= 255
y_train = keras.utils.to_categorical(y_train) #one-hot编码
y_test = keras.utils.to_categorical(y_test)
num_classes = y_test.shape[1]
model = Sequential() #创建序列模型
model.add(Conv2D(64,(3,3),activation='relu',input_shape=(28,28,1))) #第一层卷积层
model.add(MaxPooling2D(pool_size=(2,2))) #池化层
model.add(Conv2D(64,(3,3),activation='relu')) #第二层卷积层
model.add(MaxPooling2D(pool_size=(2,2))) #池化层
model.add(Flatten()) #铺平当前节点
model.add(Dense(128,activation='relu')) #全连接层
model.add(Dropout(0.5)) #随机失活
model.add(Dense(num_classes,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) #编译模型
model.fit(x_train,y_train,batch_size=128,epochs=10) #训练模型
score = model.evaluate(x_test,y_test,batch_size=128) #评价模型
print(score) #打印分类准确率
model.save('CNN_minist.h5')