forked from Leadlegend/Commonsense-based-Question-Generation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
632 lines (529 loc) · 20.2 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import json
import pickle
import time
from collections import defaultdict
from copy import deepcopy
import numpy as np
import torch
import torch.utils.data as data
from tqdm import tqdm
import nltk
import config
PAD_TOKEN = "<PAD>"
UNK_TOKEN = "UNKNOWN"
START_TOKEN = "<s>"
END_TOKEN = "EOS"
NAF = [0, 0, 0]
PAD_ID = 0
UNK_ID = 1
START_ID = 2
END_ID = 3
class SQuadDatasetWithTag(data.Dataset):
def __init__(self, src_file, trg_file, cs_file, max_length, word2idx, debug=False):
self.srcs = []
self.tags = []
self.css = []
self.masks = []
database = []
cs_index, max_num_cs = 0, 1
lines = open(src_file, "r").readlines()
with open(cs_file, "r") as f:
for lin in f.readlines():
data = json.loads(lin)
database.append(data)
if data["max_num"] > max_num_cs:
max_num_cs = data["max_num"]
sentence, tags, cs, csmask = [], [], [], []
self.entity2idx = {"O": 0, "B_ans": 1, "I_ans": 2}
for line in lines:
line = line.strip()
commonsense, mask = [], []
if len(line) == 0:
sentence.insert(0, START_TOKEN)
sentence.append(END_TOKEN)
self.srcs.append(sentence)
tags.insert(0, self.entity2idx["O"])
tags.append(self.entity2idx["O"])
self.tags.append(tags)
commonsense.append(NAF)
mask.append(1)
while len(commonsense) < max_num_cs:
commonsense.append(NAF)
mask.append(0)
cs.insert(0, commonsense)
cs.append(commonsense)
csmask.insert(0, mask)
csmask.append(mask)
self.css.append(cs)
self.masks.append(csmask)
assert (len(sentence) == len(tags) & len(tags) == len(cs))
sentence, tags, cs, csmask = [], [], [], []
cs_index += 1
else:
tokens = line.split("\t")
word, tag = tokens[0], tokens[1]
commonsense = database[cs_index][tokens[0]]
for i in range(len(commonsense)):
mask.append(1)
while len(commonsense) < max_num_cs:
commonsense.append(NAF)
mask.append(0)
sentence.append(word)
tags.append(self.entity2idx[tag])
cs.append(commonsense)
csmask.append(mask)
# commonsense [(h,r,t), (h,r,t), ... , (h,r,t)]
self.trgs = open(trg_file, "r").readlines()
assert len(self.srcs) == len(self.trgs), \
"the number of source sequence {}" " and target sequence {} must be the same" \
.format(len(self.srcs), len(self.trgs))
self.max_length = max_length
self.word2idx = word2idx
self.num_seqs = len(self.srcs)
if debug:
self.srcs = self.srcs[:100]
self.trgs = self.trgs[:100]
self.tags = self.tags[:100]
self.css = self.css[:100]
self.num_seqs = 100
def __getitem__(self, index):
src_seq = self.srcs[index]
trg_seq = self.trgs[index]
tag_seq = self.tags[index]
cs_seq = self.css[index]
mask_seq = self.masks[index]
tag_seq = torch.Tensor(tag_seq[:self.max_length])
cs_seq = torch.LongTensor(cs_seq[:self.max_length])
mask_seq = torch.BoolTensor(mask_seq[:self.max_length])
src_seq, ext_src_seq, oov_lst = self.context2ids(
src_seq, self.word2idx)
trg_seq, ext_trg_seq = self.question2ids(
trg_seq, self.word2idx, oov_lst)
return src_seq, ext_src_seq, trg_seq, ext_trg_seq, oov_lst, tag_seq, cs_seq, mask_seq
def __len__(self):
return self.num_seqs
def context2ids(self, tokens, word2idx):
ids = list()
extended_ids = list()
oov_lst = list()
# START and END token is already in tokens lst
for token in tokens:
if token in word2idx:
ids.append(word2idx[token])
extended_ids.append(word2idx[token])
else:
ids.append(word2idx[UNK_TOKEN])
if token not in oov_lst:
oov_lst.append(token)
extended_ids.append(len(word2idx) + oov_lst.index(token))
if len(ids) == self.max_length:
break
ids = torch.Tensor(ids)
extended_ids = torch.Tensor(extended_ids)
return ids, extended_ids, oov_lst
def question2ids(self, sequence, word2idx, oov_lst):
ids = list()
extended_ids = list()
ids.append(word2idx[START_TOKEN])
extended_ids.append(word2idx[START_TOKEN])
tokens = sequence.strip().split(" ")
for token in tokens:
if token in word2idx:
ids.append(word2idx[token])
extended_ids.append(word2idx[token])
else:
ids.append(word2idx[UNK_TOKEN])
if token in oov_lst:
extended_ids.append(len(word2idx) + oov_lst.index(token))
else:
extended_ids.append(word2idx[UNK_TOKEN])
ids.append(word2idx[END_TOKEN])
extended_ids.append(word2idx[END_TOKEN])
ids = torch.Tensor(ids)
extended_ids = torch.Tensor(extended_ids)
return ids, extended_ids
def collate_fn_tag(data):
def merge(sequences):
lengths = [len(sequence) for sequence in sequences]
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end] = seq[:end]
return padded_seqs
def cs_merge(sequences):
lengths = [sequence.size(0) for sequence in sequences]
max_num_cs = sequences[0].size(1)
padded_seqs = torch.zeros(len(sequences), max(lengths), max_num_cs, 3).long()
# print(padded_seqs.size())
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end, :, :] = seq[:end, :, :]
return padded_seqs
def mk_merge(sequences):
lengths = [sequence.size(0) for sequence in sequences]
max_num_cs = sequences[0].size(1)
padded_seqs = torch.zeros(len(sequences), max(lengths), max_num_cs).long()
# print(padded_seqs.size())
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end, :] = seq[:end, :]
return padded_seqs
data.sort(key=lambda x: len(x[0]), reverse=True)
src_seqs, ext_src_seqs, trg_seqs, ext_trg_seqs, oov_lst, tag_seqs, cs_seqs, mask_seq = zip(
*data)
src_seqs = merge(src_seqs)
ext_src_seqs = merge(ext_src_seqs)
trg_seqs = merge(trg_seqs)
ext_trg_seqs = merge(ext_trg_seqs)
tag_seqs = merge(tag_seqs)
cs_seqs = cs_merge(cs_seqs)
mask_seq = mk_merge(mask_seq)
assert (src_seqs.size(1) == tag_seqs.size(1) & tag_seqs.size(1) == cs_seqs.size(1)), \
"length of tokens and tags and commonsenses should be equal"
return src_seqs, ext_src_seqs, trg_seqs, ext_trg_seqs, tag_seqs, cs_seqs, mask_seq, oov_lst
def get_loader(src_file, trg_file, cs_file, word2idx,
batch_size, use_tag=True, debug=False, shuffle=False):
dataset = SQuadDatasetWithTag(src_file, trg_file, cs_file, config.max_len,
word2idx, debug)
dataloader = data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
collate_fn=collate_fn_tag)
return dataloader
def make_vocab(src_file, trg_file, output_file, max_vocab_size):
word2idx = dict()
word2idx[PAD_TOKEN] = 0
word2idx[UNK_TOKEN] = 1
word2idx[START_TOKEN] = 2
word2idx[END_TOKEN] = 3
counter = dict()
with open(src_file, "r", encoding="utf-8") as f:
for line in f:
tokens = line.split()
for token in tokens:
if token in counter:
counter[token] += 1
else:
counter[token] = 1
with open(trg_file, "r", encoding="utf-8") as f:
for line in f:
tokens = line.split()
for token in tokens:
if token in counter:
counter[token] += 1
else:
counter[token] = 1
sorted_vocab = sorted(counter.items(), key=lambda kv: kv[1], reverse=True)
for i, (word, _) in enumerate(sorted_vocab, start=4):
if i == max_vocab_size:
break
word2idx[word] = i
with open(output_file, "wb") as f:
pickle.dump(word2idx, f)
return word2idx
def make_vocab_from_squad(output_file, counter, max_vocab_size):
sorted_vocab = sorted(counter.items(), key=lambda kv: kv[1], reverse=True)
word2idx = dict()
word2idx[PAD_TOKEN] = 0
word2idx[UNK_TOKEN] = 1
word2idx[START_TOKEN] = 2
word2idx[END_TOKEN] = 3
for idx, (token, freq) in enumerate(sorted_vocab, start=4):
if len(word2idx) == max_vocab_size:
break
word2idx[token] = idx
with open(output_file, "wb") as f:
pickle.dump(word2idx, f)
return word2idx
def make_embedding(embedding_file, output_file, word2idx):
word2embedding = dict()
lines = open(embedding_file, "r", encoding="utf-8").readlines()
for line in tqdm(lines):
word_vec = line.split(" ")
word = word_vec[0]
vec = np.array(word_vec[1:], dtype=np.float32)
word2embedding[word] = vec
embedding = np.zeros((len(word2idx), 300), dtype=np.float32)
num_oov = 0
for word, idx in word2idx.items():
if word in word2embedding:
embedding[idx] = word2embedding[word]
else:
embedding[idx] = word2embedding[UNK_TOKEN]
num_oov += 1
print("num OOV : {}".format(num_oov))
with open(output_file, "wb") as f:
pickle.dump(embedding, f)
return embedding
def make_graph_vector(entity_output_file, relation_output_file, ent_vector, ent_file, rel_vector, rel_file, e2i_f,
r2i_f):
ent2idx = dict()
rel2idx = dict()
elines = open(ent_vector, "r").readlines()
earray = open(ent_file, "r").readlines()
rlines = open(rel_vector, "r").readlines()
rarray = open(rel_file, "r").readlines()
entity_vector = np.zeros((len(elines), config.graph_vector_size), dtype=np.float32)
relation_vector = np.zeros((len(rlines), config.graph_vector_size), dtype=np.float32)
for idx in tqdm(range(len(elines))):
line = elines[idx].split("\t")[0:-1]
# print(line, len(line))
vec = []
for a in line:
vec.append(float(a))
ent_vec = np.array(vec, dtype=np.float32)
ent = word_tokenize(earray[idx])[0]
entity_vector[idx] = ent_vec
ent2idx[ent] = idx
for idx in tqdm(range(len(rlines) - 1)):
line = rlines[idx].split("\t")[0:-1]
vec = []
for a in line:
vec.append(float(a))
rel_vec = np.array(vec, dtype=np.float32)
rel = word_tokenize(rarray[idx])[0]
relation_vector[idx] = rel_vec
rel2idx[rel] = idx
# print(relation_vector)
with open(e2i_f, "wb") as a:
pickle.dump(ent2idx, a)
with open(r2i_f, "wb") as b:
pickle.dump(rel2idx, b)
with open(entity_output_file, "wb") as f:
pickle.dump(entity_vector, f)
with open(relation_output_file, "wb") as g:
pickle.dump(relation_vector, g)
return entity_vector, relation_vector, ent2idx, rel2idx
def time_since(t):
""" Function for time. """
return time.time() - t
def progress_bar(completed, total, step=5):
""" Function returning a string progress bar. """
percent = int((completed / total) * 100)
bar = '[='
arrow_reached = False
for t in range(step, 101, step):
if arrow_reached:
bar += ' '
else:
if percent // t != 0:
bar += '='
else:
bar = bar[:-1]
bar += '>'
arrow_reached = True
if percent == 100:
bar = bar[:-1]
bar += '='
bar += ']'
return bar
def user_friendly_time(s):
""" Display a user friendly time from number of second. """
s = int(s)
if s < 60:
return "{}s".format(s)
m = s // 60
s = s % 60
if m < 60:
return "{}m {}s".format(m, s)
h = m // 60
m = m % 60
if h < 24:
return "{}h {}m {}s".format(h, m, s)
d = h // 24
h = h % 24
return "{}d {}h {}m {}s".format(d, h, m, s)
def eta(start, completed, total):
""" Function returning an ETA. """
# Computation
took = time_since(start)
time_per_step = took / completed
remaining_steps = total - completed
remaining_time = time_per_step * remaining_steps
return user_friendly_time(remaining_time)
def outputids2words(id_list, idx2word, article_oovs=None):
"""
:param id_list: list of indices
:param idx2word: dictionary mapping idx to word
:param article_oovs: list of oov words
:return: list of words
"""
words = []
for idx in id_list:
try:
word = idx2word[idx]
except KeyError:
if article_oovs is not None:
article_oov_idx = idx - len(idx2word)
try:
word = article_oovs[article_oov_idx]
except IndexError:
print("there's no such a word in extended vocab")
else:
word = idx2word[UNK_ID]
words.append(word)
return words
def convert_idx(text, tokens):
current = 0
spans = []
for token in tokens:
current = text.find(token, current)
if current < 0:
print("Token {} cannot be found".format(token))
raise Exception()
spans.append((current, current + len(token)))
current += len(token)
return spans
def word_tokenize(tokens):
return [token.replace("''", '"').replace("``", '"') for token in nltk.word_tokenize(tokens)]
def get_truncated_context(context, answer_text, answer_end, parser):
# get sentences up to the sentence that contains answer span
doc = parser(context)
sentences = doc.sentences # list of Sentence objects
sents_text = []
for sentence in sentences:
sent = []
for token in sentence.tokens:
sent.append(token.text)
sents_text.append(" ".join(sent))
sentences = sents_text
stop_idx = -1
for idx, sentence in enumerate(sentences):
if answer_text in sentence:
chars = " ".join(sentences[:idx + 1])
if len(chars) >= answer_end:
stop_idx = idx
break
if stop_idx == -1:
print(answer_text)
print(context)
truncated_sentences = sentences[:stop_idx + 1]
truncated_context = " ".join(truncated_sentences).lower()
return truncated_context
def tokenize(doc, parser):
words = []
sentences = parser(doc).sentences
for sent in sentences:
toks = sent.tokens
for token in toks:
words.append(token.text.lower())
return words
def search_commonsense(tokens, ent2idx, rel2idx, database):
max_com = 0
commonsense = []
for token in tokens:
idx_triples = []
if (token in ent2idx) & (token in database):
# print("Find some commonsense for", token)
graph_triples = database[token]
if len(graph_triples) > max_com:
max_com = len(graph_triples)
for triple in graph_triples:
head, relation, tail = triple.split(", ")
if (head in ent2idx) & (relation in rel2idx) & (tail in ent2idx):
idx_triple = [ent2idx[head], rel2idx[relation], ent2idx[tail]]
idx_triples.append(idx_triple)
else:
print(triple, "is not in ent2idx or rel2idx")
else:
print("cant find any commonsense for", token, "maybe not in ent2idx or database")
commonsense.append(idx_triples)
return commonsense, max_com
def process_file(file_name, ent2idx, rel2idx, database):
counter = defaultdict(lambda: 0)
examples = list()
total = 0
max_num_cs = 1
with open(file_name, "r") as f:
source = json.load(f)
articles = source["data"]
for article in tqdm(articles):
for para in article["paragraphs"]:
context = para["context"].replace(
"''", '" ').replace("``", '" ').lower()
context_tokens = word_tokenize(context)
cs, num_cs = search_commonsense(context_tokens, ent2idx, rel2idx, database)
if num_cs > max_num_cs:
max_num_cs = num_cs
spans = convert_idx(context, context_tokens)
for qa in para["qas"]:
total += 1
ques = qa["question"].replace(
"''", '" ').replace("``", '" ').lower()
ques_tokens = word_tokenize(ques)
for token in ques_tokens:
counter[token] += 1
y1s, y2s = [], []
answer_texts = []
for answer in qa["answers"]:
answer_text = answer["text"]
answer_start = answer["answer_start"]
answer_end = answer_start + len(answer_text)
answer_texts.append(answer_text)
answer_span = []
for token in context_tokens:
counter[token] += len(para["qas"])
for idx, span in enumerate(spans):
if not (answer_end <= span[0] or answer_start >= span[1]):
answer_span.append(idx)
y1, y2 = answer_span[0], answer_span[-1]
y1s.append(y1)
y2s.append(y2)
example = {"context_tokens": context_tokens, "ques_tokens": ques_tokens,
"y1s": y1s, "y2s": y2s, "answers": answer_texts, "commonsense": cs}
examples.append(example)
return examples, counter, max_num_cs
def make_conll_format(examples, src_file, trg_file, cs_file, max_num_cs):
src_fw = open(src_file, "w")
trg_fw = open(trg_file, "w")
src_cs = open(cs_file, "w")
for example in tqdm(examples):
c_tokens = example["context_tokens"]
if "\n" in c_tokens:
print(c_tokens)
print("new line")
copied_tokens = deepcopy(c_tokens)
q_tokens = example["ques_tokens"]
# always select the first candidate answer
start = example["y1s"][0]
end = example["y2s"][0]
commonsense = example['commonsense']
cs_base = dict()
cs_base['max_num'] = max_num_cs
for idx in range(start, end + 1):
token = copied_tokens[idx]
if idx == start:
tag = "B_ans"
copied_tokens[idx] = token + "\t" + tag
else:
tag = "I_ans"
copied_tokens[idx] = token + "\t" + tag
for idx in range(len(copied_tokens)):
if "\t" in copied_tokens[idx]:
src_fw.write(copied_tokens[idx] + "\n")
else:
src_fw.write(copied_tokens[idx] + "\t" + "O" + "\n")
cs_base[c_tokens[idx]] = commonsense[idx]
src_fw.write("\n")
question = " ".join(q_tokens)
trg_fw.write(question + "\n")
json.dump(cs_base, src_cs)
src_cs.write("\n")
src_fw.close()
trg_fw.close()
src_cs.close()
def split_dev(input_file, dev_file, test_file):
with open(input_file) as f:
input_file = json.load(f)
input_data = input_file["data"]
# split the original SQuAD dev set into new dev / test set
num_total = len(input_data)
num_dev = int(num_total * 0.5)
dev_data = input_data[:num_dev]
test_data = input_data[num_dev:]
dev_dict = {"data": dev_data}
test_dict = {"data": test_data}
with open(dev_file, "w") as f:
json.dump(dev_dict, f)
with open(test_file, "w") as f:
json.dump(test_dict, f)