-
Notifications
You must be signed in to change notification settings - Fork 19
/
deepchannel_train.py
290 lines (213 loc) · 8.44 KB
/
deepchannel_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 3 14:10:07 2019
@author: ncelik34
"""
# Importing the libraries
import os
import numpy
import time
import random
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from imblearn.over_sampling import SMOTE
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import roc_curve, auc, confusion_matrix
from sklearn.utils import shuffle
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Dropout, Flatten, Reshape, Activation, LSTM, BatchNormalization, TimeDistributed, Conv1D, MaxPooling1D
from tensorflow.keras.metrics import Precision, Recall
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras import optimizers
from tensorflow.keras import backend as K
from tensorflow.keras.utils import to_categorical
from tensorflow_addons.metrics import F1Score
def mcor(y_true, y_pred):
# Matthews correlation
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tp = K.sum(y_pos * y_pred_pos)
tn = K.sum(y_neg * y_pred_neg)
fp = K.sum(y_neg * y_pred_pos)
fn = K.sum(y_pos * y_pred_neg)
numerator = (tp * tn - fp * fn)
denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return numerator / (denominator + K.epsilon())
def make_roc(true, predicted):
# roc curve plotting for multiple
n_classesi = predicted.shape[1]
fpr = {}
tpr = {}
roc_auc = {}
for i in range(n_classesi):
fpr[i], tpr[i], _ = roc_curve(true[:, i], predicted[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
plt.figure(2)
plt.xlim(0, 1)
plt.ylim(0, 1)
colors = ['aqua', 'darkorange', 'cornflowerblue',
'red', 'black', 'yellow']
for i in range(n_classesi):
plt.plot(fpr[i], tpr[i], color=color[i], lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.title('Zooom in View: Some extension of ROC to multi-class')
plt.legend(loc="lower right")
plt.show()
def step_decay(epoch):
# Learning rate scheduler object
initial_lrate = 0.001
drop = 0.001
epochs_drop = 3.0
lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop))
return lrate
'''
############# SET UP RUN HERE ####################
'''
batch_size = 256
df = pd.read_csv('outfinaltest161.csv', header=None)
dataset = df.values.astype('float64')
timep = dataset[:, 0]
maxer = np.amax(dataset[:, 2])
maxeri = maxer.astype('int')
maxchannels = maxeri
idataset = dataset[:, 2].astype(int)
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# train and test set split and reshape:
train_size = int(len(dataset) * 0.80)
modder = math.floor(train_size/batch_size)
train_size = int(modder*batch_size)
test_size = int(len(dataset) - train_size)
modder = math.floor(test_size/batch_size)
test_size = int(modder*batch_size)
print(f'training set = {train_size}')
print(f'test set = {test_size}')
print(f'total length = {test_size + train_size}')
x_train = dataset[:, 1]
y_train = idataset[:]
x_train = x_train.reshape((len(x_train), 1))
y_train = y_train.reshape((len(y_train), 1))
sm = SMOTE(sampling_strategy='auto', random_state=42)
X_res, Y_res = sm.fit_sample(x_train, y_train)
yy_res = Y_res.reshape((len(Y_res), 1))
yy_res = to_categorical(yy_res, num_classes=maxchannels+1)
xx_res, yy_res = shuffle(X_res, yy_res)
trainy_size = int(len(xx_res) * 0.80)
modder = math.floor(trainy_size/batch_size)
trainy_size = int(modder*batch_size)
testy_size = int(len(xx_res) - trainy_size)
modder = math.floor(testy_size/batch_size)
testy_size = int(modder*batch_size)
print('training set= ', trainy_size)
print('test set =', testy_size)
print('total length', testy_size+trainy_size)
in_train, in_test = xx_res[0:trainy_size,
0], xx_res[trainy_size:trainy_size+testy_size, 0]
target_train, target_test = yy_res[0:trainy_size,
:], yy_res[trainy_size:trainy_size+testy_size, :]
in_train = in_train.reshape(len(in_train), 1, 1, 1)
in_test = in_test.reshape(len(in_test), 1, 1, 1)
# validation set!!
df_val = pd.read_csv('outfinaltest78.csv', header=None)
data_val = df_val.values.astype('float64')
idataset2 = data_val[:, 2].astype(int)
val_set = data_val[:, 1]
scaler = MinMaxScaler(feature_range=(0, 1))
val_set = scaler.fit_transform(val_set.reshape(-1,1))
val_set = val_set.reshape(len(val_set), 1, 1, 1)
val_target = data_val[:, 2]
val_target = to_categorical(val_target, num_classes=maxchannels+1)
# model starts..
newmodel = Sequential()
timestep = 1
input_dim = 1
newmodel.add(TimeDistributed(Conv1D(filters=64, kernel_size=1,
activation='relu'), input_shape=(None, timestep, input_dim)))
newmodel.add(TimeDistributed(MaxPooling1D(pool_size=1)))
newmodel.add(TimeDistributed(Flatten()))
newmodel.add(LSTM(256, activation='relu', return_sequences=True))
newmodel.add(BatchNormalization())
newmodel.add(Dropout(0.2))
newmodel.add(LSTM(256, activation='relu', return_sequences=True))
newmodel.add(BatchNormalization())
newmodel.add(Dropout(0.2))
newmodel.add(LSTM(256, activation='relu'))
newmodel.add(BatchNormalization())
newmodel.add(Dropout(0.2))
newmodel.add(Dense(maxchannels+1))
newmodel.add(Activation('softmax'))
newmodel.compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=0.001, momentum=0.9, nesterov=False), metrics=[
'accuracy', Precision(), Recall(), F1Score(num_classes=maxchannels+1, average='micro')])
lrate = LearningRateScheduler(step_decay)
epochers = 2
history = newmodel.fit(x=in_train, y=target_train, initial_epoch=0, epochs=epochers, batch_size=batch_size, callbacks=[
lrate], verbose=1, shuffle=False, validation_data=(in_test, target_test))
# prediction for test set
predict = newmodel.predict(in_test, batch_size=batch_size)
# prediction for val set
predict_val = newmodel.predict(val_set, batch_size=batch_size)
class_predict = np.argmax(predict, axis=-1)
class_predict_val = np.argmax(predict_val, axis=-1)
class_target = np.argmax(target_test, axis=-1)
class_target_val = np.argmax(val_target, axis=-1)
cm_test = confusion_matrix(class_target, class_predict)
cm_val = confusion_matrix(idataset2, class_predict_val)
rnd = 1
# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='lower right')
plt.savefig(str(rnd)+'acc.png')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.savefig(str(rnd)+'loss.png')
plt.show()
plotlen = test_size
lenny = 2000
plt.figure(figsize=(30, 6))
plt.subplot(2, 1, 1)
# temp=scaler.inverse_transform(dataset)
plt.plot(xx_res[trainy_size:trainy_size+lenny, 0],
color='blue', label="some raw data")
plt.title("The raw test")
plt.subplot(2, 1, 2)
plt.plot(class_target[:lenny], color='black', label="the actual idealisation", drawstyle='steps-mid')
line, = plt.plot(class_predict[:lenny], color='red',
label="predicted idealisation", drawstyle='steps-mid')
plt.setp(line, linestyle='--')
plt.xlabel('timepoint')
plt.ylabel('current')
# plt.savefig(str(rnd)+'data.png')
plt.legend()
plt.show()
# newmodel.save('nmn_oversampled_deepchanel6_5.h5')
make_roc(val_target, predicted_val)