-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmaml.py
255 lines (218 loc) · 10.5 KB
/
maml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
import numpy as np
from Models.meta_stgcn import *
from Models.meta_gwn import *
from utils import *
from copy import deepcopy
from tqdm import tqdm
import scipy.sparse as sp
def asym_adj(adj):
adj = adj.cpu().numpy()
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1)).flatten()
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat= sp.diags(d_inv)
return d_mat.dot(adj).astype(np.float32).todense()
class STMAML(nn.Module):
"""
MAML-based Few-shot learning architecture for STGNN
"""
def __init__(self, data_args, task_args, model_args, model='GRU'):
super(STMAML, self).__init__()
self.data_args = data_args
self.task_args = task_args
self.model_args = model_args
self.update_lr = model_args['update_lr']
self.meta_lr = model_args['meta_lr']
self.update_step = model_args['update_step']
self.update_step_test = model_args['update_step_test']
self.task_num = task_args['task_num']
self.model_name = model
self.loss_lambda = model_args['loss_lambda']
print("loss_lambda = ", self.loss_lambda)
if model == 'GRU':
# Meta-GRU
self.model = MetaSTNN(model_args, task_args)
print("MAML Model: GRU")
elif model == 'v_GRU':
self.model = GRUModel(model_args, task_args)
print("MAML Model: Vanilla GRU")
elif model == 'GAT':
# Meta-GAT
self.model = MetaSTGAT(model_args, task_args)
print("MAML Model: GAT")
elif model == 'GRUGAT':
# Meta-GAT+GRU
self.model = MetaGATGRU(model_args, task_args)
print("MAML Model: GRU + GAT")
elif model == 'STGCN':
# Meta-STGCN
self.model = MetaSTGNN(model_args, task_args)
print("MAML Model: STGCN")
elif model == 'v_STGCN':
self.model = STGCN(model_args, task_args)
print("MAML Model: vanilla STGCN")
elif model == 'TCN':
# Meta-TCN
self.model = MetaTCN(model_args, task_args)
print("MAML Model: MetaTCN")
elif model == 'r_GRU':
self.model = RandomGRU(model_args, task_args)
print("MAML Model: Random GRU")
elif model == 'TCNGAT':
self.model = MetaTCNGAT(model_args, task_args)
print("MAML Model: MetaTCNGAT")
elif model == 'GWN':
self.model = MetaGWN(model_args, task_args)
print("MAML Model: GraphWave Net")
else:
self.model = MetaSTNN(model_args, task_args)
print("MAML Model: GRU (default)")
# Meta-Graph WaveNet
# print(self.model)
print("model params: ", count_parameters(self.model))
self.meta_optim = optim.Adam(self.model.parameters(), lr=self.meta_lr, weight_decay=1e-2)
# self.meta_optim = torch.optim.SGD(self.model.parameters(), lr=self.update_lr, momentum=0.9)
self.loss_criterion = nn.MSELoss()
def graph_reconstruction_loss(self, meta_graph, adj_graph):
adj_graph = adj_graph.unsqueeze(0).float()
for i in range(meta_graph.shape[0]):
if i == 0:
matrix = adj_graph
else:
matrix = torch.cat((matrix, adj_graph), 0)
criteria = nn.MSELoss()
loss = criteria(meta_graph, matrix.float())
return loss
def calculate_loss(self, out, y, meta_graph, matrix, stage='target', graph_loss=True, loss_lambda=1):
if loss_lambda == 0:
loss = self.loss_criterion(out, y)
if graph_loss:
if stage == 'source' or stage == 'target_maml':
loss_predict = self.loss_criterion(out, y)
loss_reconsturct = self.graph_reconstruction_loss(meta_graph, matrix)
else:
loss_predict = self.loss_criterion(out, y)
loss_reconsturct = self.loss_criterion(meta_graph, matrix.float())
loss = loss_predict + loss_lambda * loss_reconsturct
else:
loss = self.loss_criterion(out, y)
return loss
def meta_train_revise(self, data_spt, matrix_spt, data_qry, matrix_qry):
model_loss = 0
model_y_loss, model_g_loss = 0, 0
init_model = deepcopy(self.model)
for i in range(self.task_num):
maml_model = deepcopy(init_model)
optimizer = optim.Adam(maml_model.parameters(), lr=self.update_lr, weight_decay=1e-2)
for k in range(self.update_step):
batch_size, node_num, seq_len, _ = data_spt[i].x.shape
hidden = torch.zeros(batch_size, node_num, self.model_args['hidden_dim']).cuda()
if self.model_name == 'GWN':
adj_mx = [matrix_spt[i], (matrix_spt[i]).t()]
out, meta_graph = maml_model(data_spt[i], adj_mx)
else:
out, meta_graph = maml_model(data_spt[i], matrix_spt[i])
if self.model_name in ['v_GRU', 'r_GRU', 'v_STGCN']:
loss = self.loss_criterion(out, data_spt[i].y)
else:
# loss = self.calculate_loss(out, data_spt[i].y, meta_graph, matrix_spt[i], 'source', graph_loss=False)
loss = self.calculate_loss(out, data_spt[i].y, meta_graph, matrix_spt[i], 'source', loss_lambda=self.loss_lambda)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_size, node_num, seq_len, _ = data_qry[i].x.shape
hidden = torch.zeros(batch_size, node_num, self.model_args['hidden_dim']).cuda()
self.model = deepcopy(maml_model)
if self.model_name == 'GWN':
adj_mx = [matrix_qry[i], (matrix_qry[i]).t()]
out, meta_graph = self.model(data_qry[i], adj_mx)
else:
out, meta_graph = self.model(data_qry[i], matrix_qry[i])
if self.model_name in ['v_GRU', 'r_GRU', 'v_STGCN']:
loss_q = self.loss_criterion(out, data_qry[i].y)
else:
# loss_q = self.calculate_loss(out, data_qry[i].y, meta_graph, matrix_qry[i], 'target_maml', graph_loss=False)
loss_q = self.calculate_loss(out, data_qry[i].y, meta_graph, matrix_qry[i], 'target_maml', loss_lambda=self.loss_lambda)
model_loss += loss_q
model_loss = model_loss / self.task_num
self.meta_optim.zero_grad()
model_loss.backward()
self.meta_optim.step()
return model_loss.detach().cpu().numpy()
def forward(self, data, matrix):
out, meta_graph = self.model(data, matrix)
return out, meta_graph
def finetuning(self, target_dataloader, test_dataloader, target_epochs):
"""
finetunning stage in MAML
"""
maml_model = deepcopy(self.model)
optimizer = optim.Adam(maml_model.parameters(), lr=self.meta_lr, weight_decay=1e-2)
min_MAE = 10000000
best_result = ''
best_meta_graph = -1
for epoch in tqdm(range(target_epochs)):
train_losses = []
start_time = time.time()
maml_model.train()
for step, (data, A_wave) in enumerate(target_dataloader):
data, A_wave = data.cuda(), A_wave.cuda()
data.node_num = data.node_num[0]
batch_size, node_num, seq_len, _ = data.x.shape
hidden = torch.zeros(batch_size, node_num, self.model_args['hidden_dim']).cuda()
if self.model_name == 'GWN':
adj_mx = [A_wave[0].float(), (A_wave[0].float()).t()]
out, meta_graph = maml_model(data, adj_mx)
else:
out, meta_graph = maml_model(data, A_wave[0].float())
if self.model_name in ['v_GRU', 'r_GRU', 'v_STGCN']:
loss = self.loss_criterion(out, data.y)
else:
# loss = self.calculate_loss(out, data.y, meta_graph, A_wave, 'test', graph_loss=False)
loss = self.calculate_loss(out, data.y, meta_graph, A_wave, 'test', loss_lambda=self.loss_lambda)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_losses.append(loss.detach().cpu().numpy())
avg_train_loss = sum(train_losses)/len(train_losses)
end_time = time.time()
if epoch % 10 == 0:
print("[Target Fine-tune] epoch #{}/{}: loss is {}, fine-tuning time is {}".format(epoch+1, target_epochs, avg_train_loss, end_time-start_time))
with torch.no_grad():
test_start = time.time()
maml_model.eval()
for step, (data, A_wave) in enumerate(test_dataloader):
data, A_wave = data.cuda(), A_wave.cuda()
data.node_num = data.node_num[0]
batch_size, node_num, seq_len, _ = data.x.shape
hidden = torch.zeros(batch_size, node_num, self.model_args['hidden_dim']).cuda()
if self.model_name == 'GWN':
adj_mx = [A_wave[0].float(), (A_wave[0].float()).t()]
out, meta_graph = maml_model(data, adj_mx)
else:
out, meta_graph = maml_model(data, A_wave[0].float())
if step == 0:
outputs = out
y_label = data.y
else:
outputs = torch.cat((outputs, out))
y_label = torch.cat((y_label, data.y))
outputs = outputs.permute(0, 2, 1).detach().cpu().numpy()
y_label = y_label.permute(0, 2, 1).detach().cpu().numpy()
result = metric_func(pred=outputs, y=y_label, times=self.task_args['pred_num'])
test_end = time.time()
result_print(result, info_name='Evaluate')
print("[Target Test] testing time is {}".format(test_end-test_start))
# if np.sum(result['MAE']) < min_MAE:
# best_result = result
# best_epoch = epoch
# min_MAE = np.sum(result['MAE'])
# best_meta_graph = meta_graph
# print("Best epoch is @{}".format(best_epoch))
# result_print(best_result, info_name='Best')
# np.save("result/best_meta_graph_shenzhen_0124.npy", best_meta_graph.detach().cpu().numpy())