-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathampo.py
690 lines (561 loc) · 25.5 KB
/
ampo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import math
from collections import OrderedDict
from numbers import Number
from itertools import count
import os
import time
import numpy as np
import tensorflow as tf
from tensorflow.python.training import training_util
from softlearning.algorithms.rl_algorithm import RLAlgorithm
from softlearning.replay_pools.simple_replay_pool import SimpleReplayPool
from models.constructor import construct_model, format_samples_for_training
from models.fake_env import FakeEnv
def td_target(reward, discount, next_value):
return reward + discount * next_value
class AMPO(RLAlgorithm):
def __init__(
self,
env_name,
training_environment,
evaluation_environment,
policy,
Qs,
pool,
static_fns,
log_file=None,
plotter=None,
tf_summaries=False,
tag=None,
lr=3e-4,
reward_scale=1.0,
target_entropy='auto',
discount=0.99,
tau=5e-3,
target_update_interval=1,
action_prior='uniform',
reparameterize=False,
store_extra_policy_info=False,
deterministic=False,
model_train_freq=250,
num_networks=7,
num_elites=5,
model_retain_epochs=20,
rollout_batch_size=100e3,
real_ratio=0.1,
rollout_schedule=[20, 100, 1, 1],
hidden_dim=200,
max_model_t=None,
n_adapt_per_epoch=2000,
epoch_stop_adapt=1000,
n_itr_critic=5,
adapt_batch_size=256,
**kwargs,
):
"""
Args:
env (`SoftlearningEnv`): Environment used for training.
policy: A policy function approximator.
initial_exploration_policy: ('Policy'): A policy that we use
for initial exploration which is not trained by the algorithm.
Qs: Q-function approximators. The min of these
approximators will be used. Usage of at least two Q-functions
improves performance by reducing overestimation bias.
pool (`PoolBase`): Replay pool to add gathered samples to.
plotter (`QFPolicyPlotter`): Plotter instance to be used for
visualizing Q-function during training.
lr (`float`): Learning rate used for the function approximators.
discount (`float`): Discount factor for Q-function updates.
tau (`float`): Soft value function target update weight.
target_update_interval ('int'): Frequency at which target network
updates occur in iterations.
reparameterize ('bool'): If True, we use a gradient estimator for
the policy derived using the reparameterization trick. We use
a likelihood ratio based estimator otherwise.
"""
super(AMPO, self).__init__(**kwargs)
obs_dim = np.prod(training_environment.observation_space.shape)
act_dim = np.prod(training_environment.action_space.shape)
self._model = construct_model(obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim,
num_networks=num_networks, num_elites=num_elites, adapt_batch_size=adapt_batch_size)
self._static_fns = static_fns
self._env_name = env_name
self._tag = tag
self.fake_env = FakeEnv(self._model, self._static_fns)
self._rollout_schedule = rollout_schedule
self._epoch_stop_adapt = epoch_stop_adapt
self._max_model_t = max_model_t
self._n_adapt_per_epoch = n_adapt_per_epoch
self._n_itr_critic = n_itr_critic
self._adapt_batch_size = adapt_batch_size
self._model_retain_epochs = model_retain_epochs
self._model_train_freq = model_train_freq
self._rollout_batch_size = int(rollout_batch_size)
self._deterministic = deterministic
self._real_ratio = real_ratio
self._training_environment = training_environment
self._evaluation_environment = evaluation_environment
self._policy = policy
self._Qs = Qs
self._Q_targets = tuple(tf.keras.models.clone_model(Q) for Q in Qs)
self._pool = pool
self._plotter = plotter
self._tf_summaries = tf_summaries
self._policy_lr = lr
self._Q_lr = lr
self._reward_scale = reward_scale
self._target_entropy = (
-np.prod(self._training_environment.action_space.shape)
if target_entropy == 'auto'
else target_entropy)
self._discount = discount
self._tau = tau
self._target_update_interval = target_update_interval
self._action_prior = action_prior
self._reparameterize = reparameterize
self._store_extra_policy_info = store_extra_policy_info
observation_shape = self._training_environment.active_observation_shape
action_shape = self._training_environment.action_space.shape
assert len(observation_shape) == 1, observation_shape
self._observation_shape = observation_shape
assert len(action_shape) == 1, action_shape
self._action_shape = action_shape
self.log_file = log_file
self._build()
def _build(self):
self._training_ops = {}
self._init_global_step()
self._init_placeholders()
self._init_actor_update()
self._init_critic_update()
def _train(self):
print('log file:', self.log_file)
training_environment = self._training_environment
evaluation_environment = self._evaluation_environment
policy = self._policy
pool = self._pool
model_metrics = {}
if not self._training_started:
self._init_training()
self._initial_exploration_hook(
training_environment, self._initial_exploration_policy, pool)
self.sampler.initialize(training_environment, policy, pool)
self._training_before_hook()
for self._epoch in range(self._epoch, self._n_epochs):
self._epoch_before_hook()
start_samples = self.sampler._total_samples
print("\033[0;31m%s%d\033[0m" % ('epoch: ', self._epoch))
print("\033[0;32m%s %d\033[0m" % ('tag: ', self._tag))
print('[ True Env Buffer Size ]', pool.size)
for i in count():
samples_now = self.sampler._total_samples
self._timestep = samples_now - start_samples
if samples_now >= start_samples + self._epoch_length and self.ready_to_train:
break
self._timestep_before_hook()
if self._timestep % self._model_train_freq == 0:
model_train_metrics = self._train_model(batch_size=256, max_epochs=None, holdout_ratio=0.2,
max_t=self._max_model_t)
model_metrics.update(model_train_metrics)
self._set_rollout_length()
self._reallocate_model_pool()
model_rollout_metrics = self._rollout_model(rollout_batch_size=self._rollout_batch_size,
deterministic=self._deterministic)
model_metrics.update(model_rollout_metrics)
# model adaptation here
if self._epoch <= self._epoch_stop_adapt:
print('[Adaptation] Begin adapt the model')
self._set_n_adapt()
self._adapt_model(batch_size=self._adapt_batch_size, max_steps=self._n_adapt, n_itr_critic=self._n_itr_critic)
print('Adaptation finished')
self._do_sampling(timestep=self._total_timestep)
if self.ready_to_train:
self._do_training_repeats(timestep=self._total_timestep)
self._timestep_after_hook()
training_paths = self.sampler.get_last_n_paths(
math.ceil(self._epoch_length / self.sampler._max_path_length))
evaluation_paths = self._evaluation_paths(
policy, evaluation_environment)
training_metrics = self._evaluate_rollouts(
training_paths, training_environment)
if evaluation_paths:
evaluation_metrics = self._evaluate_rollouts(
evaluation_paths, evaluation_environment)
else:
evaluation_metrics = {}
self._epoch_after_hook(training_paths)
sampler_diagnostics = self.sampler.get_diagnostics()
diagnostics = self.get_diagnostics(
iteration=self._total_timestep,
batch=self._evaluation_batch(),
training_paths=training_paths,
evaluation_paths=evaluation_paths)
diagnostics.update(OrderedDict((
*(
(f'evaluation/{key}', evaluation_metrics[key])
for key in sorted(evaluation_metrics.keys())
),
*(
(f'training/{key}', training_metrics[key])
for key in sorted(training_metrics.keys())
),
*(
(f'sampler/{key}', sampler_diagnostics[key])
for key in sorted(sampler_diagnostics.keys())
),
*(
(f'model/{key}', model_metrics[key])
for key in sorted(model_metrics.keys())
),
('epoch', self._epoch),
('timestep', self._timestep),
('timesteps_total', self._total_timestep),
('train-steps', self._num_train_steps),
)))
print(diagnostics)
f_log = open(self.log_file, 'a')
f_log.write('epoch: %d\n' % self._epoch)
# f_log.write('total time steps: %d\n' % self._total_timestep)
# f_log.write('model validation loss: %.8f\n' % model_metrics['val_loss'])
# f_log.write('model training loss: %.8f\n' % model_metrics['train_loss'])
f_log.write('evaluation return: %f\n' % evaluation_metrics['return-average'])
# f_log.write('current time: %s\n' % time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
f_log.close()
self.sampler.terminate()
self._training_after_hook()
def train(self, *args, **kwargs):
return self._train(*args, **kwargs)
def _set_n_adapt(self):
if str(type(self._n_adapt_per_epoch))[-13:-2] == 'ListWrapper':
min_epoch, max_epoch, min_adapt, max_adapt = self._n_adapt_per_epoch
if self._epoch <= min_epoch:
y = min_adapt
else:
dx = (self._epoch - min_epoch) / (max_epoch - min_epoch)
dx = min(dx, 1)
y = dx * (max_adapt - min_adapt) + min_adapt
self._n_adapt = int(y)
else:
self._n_adapt = self._n_adapt_per_epoch
def _set_rollout_length(self):
min_epoch, max_epoch, min_length, max_length = self._rollout_schedule
if self._epoch <= min_epoch:
y = min_length
else:
dx = (self._epoch - min_epoch) / (max_epoch - min_epoch)
dx = min(dx, 1)
y = dx * (max_length - min_length) + min_length
self._rollout_length = int(y)
print('[ Model Length ] Epoch: {} (min: {}, max: {}) | Length: {} (min: {} , max: {})'.format(
self._epoch, min_epoch, max_epoch, self._rollout_length, min_length, max_length
))
def _reallocate_model_pool(self):
obs_space = self._pool._observation_space
act_space = self._pool._action_space
rollouts_per_epoch = self._rollout_batch_size * self._epoch_length / self._model_train_freq
model_steps_per_epoch = int(self._rollout_length * rollouts_per_epoch)
new_pool_size = self._model_retain_epochs * model_steps_per_epoch
if not hasattr(self, '_model_pool'):
print('[ Allocate Model Pool ] Initializing new model pool with size {:.2e}'.format(
new_pool_size
))
self._model_pool = SimpleReplayPool(obs_space, act_space, new_pool_size)
elif self._model_pool._max_size != new_pool_size:
print('[ Reallocate Model Pool ] Updating model pool | {:.2e} --> {:.2e}'.format(
self._model_pool._max_size, new_pool_size
))
samples = self._model_pool.return_all_samples()
new_pool = SimpleReplayPool(obs_space, act_space, new_pool_size)
new_pool.add_samples(samples)
assert self._model_pool.size == new_pool.size
self._model_pool = new_pool
def _train_model(self, **kwargs):
env_samples = self._pool.return_all_samples()
train_inputs, train_outputs = format_samples_for_training(env_samples)
model_metrics = self._model.train(train_inputs, train_outputs, **kwargs)
return model_metrics
def _adapt_model(self, batch_size=256, max_steps=200, n_itr_critic=5):
source_samples = self._pool.return_all_samples()
target_samples = self._model_pool.return_all_samples()
source_inputs, source_outputs = format_samples_for_training(source_samples)
target_inputs, target_outputs = format_samples_for_training(target_samples)
self._model.adapt(source_inputs, target_inputs, batch_size, max_steps=max_steps, n_itr_critic=n_itr_critic)
def _rollout_model(self, rollout_batch_size, **kwargs):
print('[ Model Rollout ] Starting | Epoch: {} | Rollout length: {} | Batch size: {}'.format(
self._epoch, self._rollout_length, rollout_batch_size
))
batch = self.sampler.random_batch(rollout_batch_size)
obs = batch['observations']
steps_added = []
for i in range(self._rollout_length):
act = self._policy.actions_np(obs)
next_obs, rew, term, info = self.fake_env.step(obs, act, **kwargs)
steps_added.append(len(obs))
samples = {'observations': obs, 'actions': act, 'next_observations': next_obs, 'rewards': rew,
'terminals': term}
self._model_pool.add_samples(samples)
nonterm_mask = ~term.squeeze(-1)
if nonterm_mask.sum() == 0:
print(
'[ Model Rollout ] Breaking early: {} | {} / {}'.format(i, nonterm_mask.sum(), nonterm_mask.shape))
break
obs = next_obs[nonterm_mask]
mean_rollout_length = sum(steps_added) / rollout_batch_size
rollout_stats = {'mean_rollout_length': mean_rollout_length}
print('[ Model Rollout ] Added: {:.1e} | Model pool: {:.1e} (max {:.1e}) | Length: {} | Train rep: {}'.format(
sum(steps_added), self._model_pool.size, self._model_pool._max_size, mean_rollout_length,
self._n_train_repeat
))
return rollout_stats
def _training_batch(self, batch_size=None):
batch_size = batch_size or self.sampler._batch_size
env_batch_size = int(batch_size * self._real_ratio)
model_batch_size = batch_size - env_batch_size
## can sample from the env pool even if env_batch_size == 0
env_batch = self._pool.random_batch(env_batch_size)
if model_batch_size > 0:
model_batch = self._model_pool.random_batch(model_batch_size)
keys = env_batch.keys()
batch = {k: np.concatenate((env_batch[k], model_batch[k]), axis=0) for k in keys}
else:
## if real_ratio == 1.0, no model pool was ever allocated,
## so skip the model pool sampling
batch = env_batch
return batch
def _init_global_step(self):
self.global_step = training_util.get_or_create_global_step()
self._training_ops.update({
'increment_global_step': training_util._increment_global_step(1)
})
def _init_placeholders(self):
"""Create input placeholders for the SAC algorithm.
Creates `tf.placeholder`s for:
- observation
- next observation
- action
- reward
- terminals
"""
self._iteration_ph = tf.placeholder(
tf.int64, shape=None, name='iteration')
self._observations_ph = tf.placeholder(
tf.float32,
shape=(None, *self._observation_shape),
name='observation',
)
self._next_observations_ph = tf.placeholder(
tf.float32,
shape=(None, *self._observation_shape),
name='next_observation',
)
self._actions_ph = tf.placeholder(
tf.float32,
shape=(None, *self._action_shape),
name='actions',
)
self._rewards_ph = tf.placeholder(
tf.float32,
shape=(None, 1),
name='rewards',
)
self._terminals_ph = tf.placeholder(
tf.float32,
shape=(None, 1),
name='terminals',
)
if self._store_extra_policy_info:
self._log_pis_ph = tf.placeholder(
tf.float32,
shape=(None, 1),
name='log_pis',
)
self._raw_actions_ph = tf.placeholder(
tf.float32,
shape=(None, *self._action_shape),
name='raw_actions',
)
def _get_Q_target(self):
next_actions = self._policy.actions([self._next_observations_ph])
next_log_pis = self._policy.log_pis(
[self._next_observations_ph], next_actions)
next_Qs_values = tuple(
Q([self._next_observations_ph, next_actions])
for Q in self._Q_targets)
min_next_Q = tf.reduce_min(next_Qs_values, axis=0)
next_value = min_next_Q - self._alpha * next_log_pis
Q_target = td_target(
reward=self._reward_scale * self._rewards_ph,
discount=self._discount,
next_value=(1 - self._terminals_ph) * next_value)
return Q_target
def _init_critic_update(self):
"""Create minimization operation for critic Q-function.
Creates a `tf.optimizer.minimize` operation for updating
critic Q-function with gradient descent, and appends it to
`self._training_ops` attribute.
"""
Q_target = tf.stop_gradient(self._get_Q_target())
assert Q_target.shape.as_list() == [None, 1]
Q_values = self._Q_values = tuple(
Q([self._observations_ph, self._actions_ph])
for Q in self._Qs)
Q_losses = self._Q_losses = tuple(
tf.losses.mean_squared_error(
labels=Q_target, predictions=Q_value, weights=0.5)
for Q_value in Q_values)
self._Q_optimizers = tuple(
tf.train.AdamOptimizer(
learning_rate=self._Q_lr,
name='{}_{}_optimizer'.format(Q._name, i)
) for i, Q in enumerate(self._Qs))
Q_training_ops = tuple(
tf.contrib.layers.optimize_loss(
Q_loss,
self.global_step,
learning_rate=self._Q_lr,
optimizer=Q_optimizer,
variables=Q.trainable_variables,
increment_global_step=False,
summaries=((
"loss", "gradients", "gradient_norm", "global_gradient_norm"
) if self._tf_summaries else ()))
for i, (Q, Q_loss, Q_optimizer)
in enumerate(zip(self._Qs, Q_losses, self._Q_optimizers)))
self._training_ops.update({'Q': tf.group(Q_training_ops)})
def _init_actor_update(self):
"""Create minimization operations for policy and entropy.
Creates a `tf.optimizer.minimize` operations for updating
policy and entropy with gradient descent, and adds them to
`self._training_ops` attribute.
"""
actions = self._policy.actions([self._observations_ph])
log_pis = self._policy.log_pis([self._observations_ph], actions)
assert log_pis.shape.as_list() == [None, 1]
log_alpha = self._log_alpha = tf.get_variable(
'log_alpha',
dtype=tf.float32,
initializer=0.0)
alpha = tf.exp(log_alpha)
if isinstance(self._target_entropy, Number):
alpha_loss = -tf.reduce_mean(
log_alpha * tf.stop_gradient(log_pis + self._target_entropy))
self._alpha_optimizer = tf.train.AdamOptimizer(
self._policy_lr, name='alpha_optimizer')
self._alpha_train_op = self._alpha_optimizer.minimize(
loss=alpha_loss, var_list=[log_alpha])
self._training_ops.update({
'temperature_alpha': self._alpha_train_op
})
self._alpha = alpha
if self._action_prior == 'normal':
policy_prior = tf.contrib.distributions.MultivariateNormalDiag(
loc=tf.zeros(self._action_shape),
scale_diag=tf.ones(self._action_shape))
policy_prior_log_probs = policy_prior.log_prob(actions)
elif self._action_prior == 'uniform':
policy_prior_log_probs = 0.0
Q_log_targets = tuple(
Q([self._observations_ph, actions])
for Q in self._Qs)
min_Q_log_target = tf.reduce_min(Q_log_targets, axis=0)
if self._reparameterize:
policy_kl_losses = (
alpha * log_pis
- min_Q_log_target
- policy_prior_log_probs)
else:
raise NotImplementedError
assert policy_kl_losses.shape.as_list() == [None, 1]
policy_loss = tf.reduce_mean(policy_kl_losses)
self._policy_optimizer = tf.train.AdamOptimizer(
learning_rate=self._policy_lr,
name="policy_optimizer")
policy_train_op = tf.contrib.layers.optimize_loss(
policy_loss,
self.global_step,
learning_rate=self._policy_lr,
optimizer=self._policy_optimizer,
variables=self._policy.trainable_variables,
increment_global_step=False,
summaries=(
"loss", "gradients", "gradient_norm", "global_gradient_norm"
) if self._tf_summaries else ())
self._training_ops.update({'policy_train_op': policy_train_op})
def _init_training(self):
self._update_target(tau=1.0)
def _update_target(self, tau=None):
tau = tau or self._tau
for Q, Q_target in zip(self._Qs, self._Q_targets):
source_params = Q.get_weights()
target_params = Q_target.get_weights()
Q_target.set_weights([
tau * source + (1.0 - tau) * target
for source, target in zip(source_params, target_params)
])
def _do_training(self, iteration, batch):
"""Runs the operations for updating training and target ops."""
feed_dict = self._get_feed_dict(iteration, batch)
self._session.run(self._training_ops, feed_dict)
if iteration % self._target_update_interval == 0:
self._update_target()
def _get_feed_dict(self, iteration, batch):
"""Construct TensorFlow feed_dict from sample batch."""
feed_dict = {
self._observations_ph: batch['observations'],
self._actions_ph: batch['actions'],
self._next_observations_ph: batch['next_observations'],
self._rewards_ph: batch['rewards'],
self._terminals_ph: batch['terminals'],
}
if self._store_extra_policy_info:
feed_dict[self._log_pis_ph] = batch['log_pis']
feed_dict[self._raw_actions_ph] = batch['raw_actions']
if iteration is not None:
feed_dict[self._iteration_ph] = iteration
return feed_dict
def get_diagnostics(self,
iteration,
batch,
training_paths,
evaluation_paths):
"""Return diagnostic information as ordered dictionary.
Records mean and standard deviation of Q-function and state
value function, and TD-loss (mean squared Bellman error)
for the sample batch.
Also calls the `draw` method of the plotter, if plotter defined.
"""
feed_dict = self._get_feed_dict(iteration, batch)
(Q_values, Q_losses, alpha, global_step) = self._session.run(
(self._Q_values,
self._Q_losses,
self._alpha,
self.global_step),
feed_dict)
diagnostics = OrderedDict({
'Q-avg': np.mean(Q_values),
'Q-std': np.std(Q_values),
'Q_loss': np.mean(Q_losses),
'alpha': alpha,
})
policy_diagnostics = self._policy.get_diagnostics(
batch['observations'])
diagnostics.update({
f'policy/{key}': value
for key, value in policy_diagnostics.items()
})
if self._plotter:
self._plotter.draw()
return diagnostics
@property
def tf_saveables(self):
saveables = {
'_policy_optimizer': self._policy_optimizer,
**{
f'Q_optimizer_{i}': optimizer
for i, optimizer in enumerate(self._Q_optimizers)
},
'_log_alpha': self._log_alpha,
}
if hasattr(self, '_alpha_optimizer'):
saveables['_alpha_optimizer'] = self._alpha_optimizer
return saveables