-
Notifications
You must be signed in to change notification settings - Fork 7
/
Improvements_and_fixes_made_after_MA
1038 lines (838 loc) · 43 KB
/
Improvements_and_fixes_made_after_MA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
This is an Add-on for Blender. It creates Landscapes with simple simulations for water, erosion and forest-distribution.
Copyright (C) 2015 Roman Riesen
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
bl_info = {
"name": "Landscape",
"author": "Roman Riesen",
"version": (0, 0, 1),
"blender": (2, 74, 0),
"location": "View3D > Add > mesh",
"description": ("Adds a landscape mesh (Diamond-Square Algorithm) as well as tools for erosion and forrest. If you have an object selected you can apply material, seas and vertex groups for forrests."),
"warning": "",
"category": "Add mesh",}
import bpy
from bpy.props import *
from random import randint,uniform,seed
from math import ceil,degrees,atan
from bpy.props import *
def inFloatRange(value, limit1,limit2):
if value >= limit1 and value <= limit2:
return True
if value >= limit2 and value <= limit1:
return True
else: return False
def sumOf2DArray (array):
n =0
for x in range (len(array)):
n+= sum(array[x])
return n
def lenOf2DArray (array):
n =0
for x in range (len(array)):
n+= len(array[x])
return n
def in2DArray (value,array):
for i in range(len(array)):
if value in array[i]:
return True
return False
def getArrayValue (x,y,array):#data "wraping" around the edges. ##make Option for wrap/non wraping?
size = len(array)
x= x%size
y= y%size
return(array[x][y])
def setArrayValue (x,y,value,array): #data "wraping" around the edges
size= len(array)
x= x%size
y= y%size
array[x][y]=value
def numberOfMoorNeighbours (x,y,array):
neighbours = 0
for u in range (x-1,x+1):
for v in range (y-1,y+1):
if u == x and v == y:
continue
elif getArrayValue(x,y,array) == 1:
neighbours += 1
return neighbours
def myGaussianBlur (array,steps):
size = len(array)
for n in range(steps):
for x in range(size):
for y in range (size):
setArrayValue(x,y,
(getArrayValue(x-1,y-1,array) +2*getArrayValue(x-1,y,array) + getArrayValue(x-1,y+1,array)
+2*getArrayValue(x,y-1,array) +12*getArrayValue(x,y,array) + 2*getArrayValue(x,y+1,array)
+getArrayValue(x+1,y-1,array) +2*getArrayValue(x+1,y,array) + getArrayValue(x+1,y+1,array))/24,
array)
def blenderOutput(zCoords,name = "terrain", finalSize=10, position = None):
if position == None:
position = bpy.context.scene.cursor_location
size=len(zCoords)
#Verts
Verts=[]
for x in range(-1,size):# -1 so I have a perfect wrap and can use array modifier.
for y in range(-1,size):
Verts.append([x*(finalSize/size)+position[0],y*(finalSize/size)+position[1],float(zCoords[x][y])+position[2]])
#Edges are automatically made if Faces are defined.
Edges=[]
#Faces are defined by the indices of the vertices.
Faces=[]
## """
## if size = 2
## faces should be:
## 0143
## 1254
##
## 3476
## 4587
## """
for i in range (0,size*size+size-1):
Faces.append([i+size+1,i+size+2,i+1,i])
#delete the superfluous Faces.
for j in range (1,size*size):#Not very sophisticated. Still about 3 times faster than making a grid and applying z-values.
if(j%size==0):
x=Faces[j]
Faces.remove(x)
mesh = bpy.data.meshes.new(name+"_data") #Create mesh name
mesh.from_pydata(Verts, Edges, Faces) #Create mesh
mesh.update()
object = bpy.data.objects.new(name, mesh)
object.data = mesh
scene = bpy.context.scene
scene.objects.link(object)
object.select = True
scene.objects.active = object
bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN', center='MEDIAN')
object.location = position
return object
def createCyclesWaterMaterial():
#Set all scenes to cycle render engine
for scene in bpy.data.scenes:
scene.render.engine = 'CYCLES'
#create new Material called 'water material'
seaMaterial = bpy.data.materials.new('Water material')
seaMaterial.use_nodes =True
#shortcut to material nodes
nodes = seaMaterial.node_tree.nodes
#delete all existing nodes
for node in nodes:
nodes.remove(node)
#create a glossy shader
node_water = nodes.new(type='ShaderNodeBsdfGlossy')
node_water.inputs[0].default_value = (0.47,0.68,0.9,1)
node_water.inputs[1].default_value = 0.01
node_water.location = -400,0
#create output node
node_output = nodes.new(type='ShaderNodeOutputMaterial')
node_output.location = 0,0
#shortcut to links
link = links = seaMaterial.node_tree.links
#connect glossy shader with output node
output = node_water.outputs[0]
input = node_output.inputs[0]
link = links.new(output,input)
#set viewport color
seaMaterial.diffuse_color = (0.0,0.0,1.0)
#return the material
return seaMaterial
def createCyclesTerrainMaterial():
for scene in bpy.data.scenes:
scene.render.engine = 'CYCLES'
terrainMaterial = bpy.data.materials.new('Terrain material')
terrainMaterial.use_nodes =True
nodes = terrainMaterial.node_tree.nodes
for node in nodes:
nodes.remove(node)
node_snow = nodes.new(type='ShaderNodeBsdfDiffuse')
node_snow.inputs[0].default_value = (0.9,0.9,0.9,1)
node_snow.inputs[1].default_value = 5.0
node_snow.location = -750,1000
node_stone = nodes.new(type='ShaderNodeBsdfDiffuse')
node_stone.inputs[0].default_value = (0.35,0.35,0.35,1)
node_stone.location = -750,800
node_mixSnowAndStone = nodes.new(type='ShaderNodeMixShader')
node_mixSnowAndStone.location = -450,900
node_mixStone = nodes.new(type='ShaderNodeMixShader')
node_mixStone.location = -150,700
node_grass = nodes.new(type='ShaderNodeBsdfDiffuse')
node_grass.inputs[0].default_value = (0.1,0.5,0.1,1)
node_grass.inputs[1].default_value = 5.0
node_grass.location = -750,575
node_dirt = nodes.new(type='ShaderNodeBsdfDiffuse')
node_dirt.inputs[0].default_value = (0.35,0.25,0.1,1)
node_dirt.location = -750,375
node_mixGrassAndDirt = nodes.new(type='ShaderNodeMixShader')
node_mixGrassAndDirt.location = -450,475
node_snowAngleColorRamp = nodes.new(type='ShaderNodeValToRGB')
node_snowAngleColorRamp.location = -1350,850
node_snowAngleColorRamp.color_ramp.interpolation = 'CONSTANT'
node_snowAngleColorRamp.color_ramp.elements[1].position = 0.75
node_snowAngleColorRamp.color_ramp.elements[0].color = (1.0,1.0,1.0,1.0)
node_snowAngleColorRamp.color_ramp.elements[1].color = (0.0,0.0,0.0,1.0)
node_geometry = nodes.new(type='ShaderNodeNewGeometry') #Hat auch nur 30 Minuten gebraucht, um herauszufinden, dass es sowohl NewGeometry als auch Geometry gibt.
node_geometry.location = -1800,700
node_separateRGBSnow = nodes.new(type='ShaderNodeSeparateRGB')
node_separateRGBSnow.location = -1570,650
node_dirtAngleColorRamp = nodes.new(type='ShaderNodeValToRGB')
node_dirtAngleColorRamp.location = -1350,575
node_dirtAngleColorRamp.color_ramp.interpolation = 'EASE'
node_dirtAngleColorRamp.color_ramp.elements[0].position = 0.6
node_dirtAngleColorRamp.color_ramp.elements[1].position = 0.75
node_dirtAngleColorRamp.color_ramp.elements[0].color = (1.0,1.0,1.0,1.0)
node_dirtAngleColorRamp.color_ramp.elements[1].color = (0.0,0.0,0.0,1.0)
node_textureCoordinates= nodes.new(type='ShaderNodeTexCoord')
node_textureCoordinates.location = -1800,0
node_separateXYZ= nodes.new(type='ShaderNodeSeparateXYZ')
node_separateXYZ.location = -1600,0
node_snowHeightColorRamp = nodes.new(type='ShaderNodeValToRGB')
node_snowHeightColorRamp.location = -1200,200
node_snowHeightColorRamp.color_ramp.interpolation = 'EASE'
node_snowHeightColorRamp.color_ramp.elements[0].position = 0.6
node_snowHeightColorRamp.color_ramp.elements[1].position = 0.65
node_snowHeightColorRamp.color_ramp.elements[0].color = (1.0,1.0,1.0,1.0)
node_snowHeightColorRamp.color_ramp.elements[1].color = (0.0,0.0,0.0,1.0)
node_stoneHeightColorRamp = nodes.new(type='ShaderNodeValToRGB')
node_stoneHeightColorRamp.location = -1200,-100
node_stoneHeightColorRamp.color_ramp.interpolation = 'EASE'
node_stoneHeightColorRamp.color_ramp.elements[0].position = 0.4
node_stoneHeightColorRamp.color_ramp.elements[1].position = 0.5
node_stoneHeightColorRamp.color_ramp.elements[0].color = (1.0,1.0,1.0,1.0)
node_stoneHeightColorRamp.color_ramp.elements[1].color = (0.0,0.0,0.0,1.0)
node_mixFinal = nodes.new(type='ShaderNodeMixShader')
node_mixFinal.location = 100,475
node_pointinessColorRamp = nodes.new(type='ShaderNodeValToRGB')
node_pointinessColorRamp.location = -600,-275
node_pointinessColorRamp.color_ramp.interpolation = 'CONSTANT'
node_pointinessColorRamp.color_ramp.elements[1].position = 0.5
node_invertPointiness= nodes.new(type='ShaderNodeInvert')
node_invertPointiness.location = -800,-275
# create output node
node_output = nodes.new(type='ShaderNodeOutputMaterial')
node_output.location = 400,0
links = terrainMaterial.node_tree.links
output = node_stone.outputs[0]
input = node_mixSnowAndStone.inputs[2]
link = links.new(output,input)
output = node_snow.outputs[0]
input = node_mixSnowAndStone.inputs[1]
link = links.new(output,input)
output = node_dirt.outputs[0]
input = node_mixGrassAndDirt.inputs[2]
link = links.new(output,input)
output = node_grass.outputs[0]
input = node_mixGrassAndDirt.inputs[1]
link = links.new(output,input)
output = node_snowAngleColorRamp.inputs[0]
input = node_separateRGBSnow.outputs[2]
link = links.new(output,input)
output = node_dirtAngleColorRamp.inputs[0]
input = node_separateRGBSnow.outputs[2]
link = links.new(output,input)
output = node_separateRGBSnow.inputs[0]
input = node_geometry.outputs[1]
link = links.new(output,input)
output = node_mixSnowAndStone.inputs[0]
input = node_snowAngleColorRamp.outputs[0]
link = links.new(output,input)
output = node_mixGrassAndDirt.inputs[0]
input = node_dirtAngleColorRamp.outputs[0]
link = links.new(output,input)
output = node_separateXYZ.inputs[0]
input = node_textureCoordinates.outputs[0]
link = links.new(output,input)
output = node_snowHeightColorRamp.inputs[0]
input = node_separateXYZ.outputs[2]
link = links.new(output,input)
output = node_mixStone.inputs[1]
input = node_mixSnowAndStone.outputs[0]
link = links.new(output,input)
output = node_mixStone.inputs[2]
input = node_stone.outputs[0]
link = links.new(output,input)
output = node_mixStone.inputs[0]
input = node_snowHeightColorRamp.outputs[0]
link = links.new(output,input)
output = node_stoneHeightColorRamp.inputs[0]
input = node_separateXYZ.outputs[2]
link = links.new(output,input)
output = node_mixFinal.inputs[0]
input = node_stoneHeightColorRamp.outputs[0]
link = links.new(output,input)
output = node_mixFinal.inputs[1]
input = node_mixStone.outputs[0]
link = links.new(output,input)
output = node_mixFinal.inputs[2]
input = node_mixGrassAndDirt.outputs[0]
link = links.new(output,input)
output = node_mixFinal.outputs[0]
input = node_output.inputs[0]
link = links.new(output,input)
return terrainMaterial
class createAngleAndHeightMapOfTerrain():
def __init__ (self,obj = None,heightMap = None):
if obj == None :
obj = bpy.context.active_object
objD = obj.data
size = int(len([ v.index for v in obj.data.vertices])**0.5)-1
bpy.ops.object.mode_set(mode='EDIT')
#each point represents the angle to the next vertices in positive x and y direction.
self.angleMap=[x[:] for x in [[float(0)]*size]*size]
if heightMap == None:
self.heightMap=[x[:] for x in [[float(0)]*size]*size]
i= -1
for x in range(-1,size):
for y in range(-1,size):
self.heightMap[x][y]=objD.vertices[i].co[2]
i+=1
else: self.heightMap = heightMap
self.distanceBetweenVertices = obj.dimensions.x/size
for x in range (-1,size):
for y in range (-1,size):
t1=abs(self.calculateAngle(self.heightMap[x][y],getArrayValue(x+1,y,self.heightMap)))
t2=abs(self.calculateAngle(self.heightMap[x][y],getArrayValue(x,y+1,self.heightMap)))
t3=abs(self.calculateAngle(self.heightMap[x][y],getArrayValue(x-1,y,self.heightMap)))
t4=abs(self.calculateAngle(self.heightMap[x][y],getArrayValue(x,y-1,self.heightMap)))
self.angleMap[x][y]=max(t1,t2,t3,t4)#I want the higher angle
bpy.ops.object.mode_set(mode='OBJECT')
def calculateAngle(self,height0,height1):
deltaHeight=height1-height0
angle= degrees(atan(deltaHeight/self.distanceBetweenVertices)) #distance SHOULD never be 0, so no exception or if needed.
return angle
class createForest():
def __init__ (self, obj, heightMap,angleMap,obstacleMap ,useGameOfLife = False, forestLimits = [0.1,0.6], angle = 90, steps = 5, minHeight = 0.5, startPercent = 20.0):
self.size = len(heightMap)
self.steps = steps
self.minWeight = minHeight
self.useGameOfLife = useGameOfLife
self.angleMap = angleMap
self.terrainObject = obj
self.heightMap = heightMap
self.angle = angle
self.forestLimits = forestLimits
self.startPercent = startPercent
self.obstacleMap = obstacleMap
self.forestDistGroup = self.terrainObject.vertex_groups.new("Tree distrib.: " + str(self.forestLimits[0]) + " to " + str(self.forestLimits[1]))
self.forestHeightGroup = self.terrainObject.vertex_groups.new("Tree height: " + str(self.forestLimits[0]) + " to " + str(self.forestLimits[1]))
self.blenderSizeZ = self.terrainObject.dimensions.z
self.forestLimits = [((self.forestLimits[0]/ self.blenderSizeZ) - 0.5*self.blenderSizeZ),
((self.forestLimits[1] / self.blenderSizeZ) - 0.5*self.blenderSizeZ)]#-0.5*self.blenderSizeZ because half of the height of the mesh is below its origin, thus negative.
if obstacleMap == None:
self.obstacleMap = [x[:] for x in [[0]*self.size]*self.size]
self.createRandomForestMap()
self.tempForestMap = [x[:] for x in [[0]*self.size]*self.size]
if useGameOfLife :
for i in range (self.steps):
self.step()
else:
self.forestMap = [x[:] for x in [[1]*self.size]*self.size] # Forest everywhere.
self.createForestVertexGroups()
def step (self):
for x in range (self.size):
for y in range(self.size):
n= numberOfMoorNeighbours(x,y,self.forestMap)
if (n==0):
self.tempForestMap[x][y]=0
if (n==1):
self.tempForestMap[x][y]=0
if (n==2):
self.tempForestMap[x][y]=0
if (n==3):
self.tempForestMap[x][y]=0
if (n==4):
if self.Feld[a][b]==1:
self.tempForestMap[x][y]=0
else:
self.tempForestMap[x][y]=1
if (n==5):
self.tempForestMap[x][y]=1
if (n==6):
self.tempForestMap[x][y]=1
if (n==7):
self.tempForestMap[x][y]=1
if (n==8):
self.tempForestMap[x][y]=1
self.forestMap = self.tempForestMap
#Initiate the appropriate amount of living trees
def createRandomForestMap(self):
self.forestMap = [x[:] for x in [[0]*self.size]*self.size]
for x in range(-1,self.size):
for y in range(-1,self.size):
if randint(0,100) < self.startPercent:
self.forestMap[x][y] = 1
def createForestVertexGroups(self):
i = 0
deltaLimits = abs(self.forestLimits[1]- self.forestLimits[0])
for x in range (-1,self.size):
for y in range (-1,self.size):
if getArrayValue(x,y,self.forestMap) == 1 and getArrayValue(x,y,self.obstacleMap) == 0 and getArrayValue(x,y,self.angleMap) < self.angle and getArrayValue(x,y,self.heightMap) < self.forestLimits[1] and getArrayValue(x,y,self.heightMap) > self.forestLimits[0]:#inFloatRange(self.heightMap[x][y],self.forestLimits[0],self.forestLimits[1]):
self.forestDistGroup.add([i],1,'ADD')
deltaToHigherLimit = abs(self.forestLimits[1]-self.heightMap[x][y])
weight = self.minWeight+deltaToHigherLimit
self.forestHeightGroup.add([i],weight,'ADD')
i+=1
class diamondSquare():
def __init__(self,size=64,pseudoH=1.75,minLift=-20,maxLift=20,seedValue=19,gaussianBlurSteps=1,featureSize = 16):
"""self,size=64,pseudoH=1.75,minLift=-20,maxLift=20,seedValue=19,gaussianBlurSteps=1,startVerts=[]"""
self.size = size
self.stepsize = size
self.halfstepSize = self.stepsize//2
self.pseudoH = pseudoH
self.blurSteps = gaussianBlurSteps
self.minLift = minLift ## There was a version, where the user was able to set these values seperatly. I found there was no gain in it, so now the user can only set the maximal total height.
self.maxLift = maxLift
self.step = 0
self.featureSize = featureSize
seed(seedValue)
self.verts=[x[:] for x in [[float(0)]*self.size]*self.size] #[x[:] for x in ARRAY] is needed because else [[0]*size]*size] would create lists, which will stay always the same.)
self.initiateStartValues()
self.diamondSquareAlgorithm()
myGaussianBlur(self.verts,self.blurSteps)
def roughness(self):
r=uniform(self.minLift,self.maxLift)/(self.pseudoH**self.step)
return r
def initiateStartValues(self):
if self.featureSize > 0 and int(self.size/self.featureSize) > 0:
for x in range (0,self.size,int(self.size/self.featureSize )):
for y in range (0,self.size,int(self.size/self.featureSize )):
self.setVert(x,y,self.roughness())
def getVert (self,x,y):#data "wraping" around the edges
x=x%self.size
y=y%self.size
return(self.verts[x][y])
def setVert (self,x,y,value): #data "wraping" around the edges
x=x%self.size
y=y%self.size
self.verts[x][y]=value
def diamond (self,x,y):
v1 = self.getVert (x-self.halfstepSize,y)
v2 = self.getVert (x,y-self.halfstepSize)
v3 = self.getVert (x,y+self.halfstepSize)
v4 = self.getVert (x+self.halfstepSize,y)
self.setVert(x,y,(v1+v2+v3+v4)/4+self.roughness())
def square (self,x,y):
v1 = self.getVert (x-self.halfstepSize,y-self.halfstepSize)
v2 = self.getVert (x-self.halfstepSize,y+self.halfstepSize)
v3 = self.getVert (x+self.halfstepSize,y+self.halfstepSize)
v4 = self.getVert (x+self.halfstepSize,y-self.halfstepSize)
self.setVert(x,y,(v1+v2+v3+v4)/4+self.roughness())
def diamondSquareStep(self):
for y in range (self.halfstepSize,self.size+self.halfstepSize,self.stepsize):
for x in range (self.halfstepSize,self.size+self.halfstepSize,self.stepsize):
self.square(x,y)
for y in range (0,self.size,self.stepsize):
for x in range (0,self.size,self.stepsize):
self.diamond(x+self.halfstepSize,y)
self.diamond(x,y+self.halfstepSize)
def diamondSquareAlgorithm(self):
while (self.stepsize>1):
self.stepsize = self.stepsize//2
self.halfstepSize=self.halfstepSize//2
self.diamondSquareStep()
self.step+=1
class thermalErosion():
def __init__ (self,twoDimensionalHeightArray,erosionValue=0.1,steps=5,angle=50,inverseErosion=True):
"""twoDimensionalHeightArray,steps,angle (distance between cells always set at 1, not the distance they have in blender),inverseErosion (flats flat areas and maintains cliffs)"""
self.verts=twoDimensionalHeightArray
self.sizeX = len(self.verts)
self.sizeY = len(self.verts[0])
self.size = self.sizeX
self.angle = angle
self.erosionValue = erosionValue
self.steps = steps
self.inverseErosion = inverseErosion
for n in range (self.steps):
self.erosionStep()
def erosionStep (self):
for x in range (self.size):
for y in range (self.size):
for i in range (0,4):
if (i==0):
xOut,yOut=x,y-1
if (i==1):
xOut,yOut=x+1,y
if (i==2):
xOut,yOut=x,y+1
if (i==3):
xOut,yOut=x-1,y
t=self.calculateAngle(getArrayValue(x,y,self.verts),getArrayValue(xOut,yOut,self.verts)) #if t >= 0, the other field is higher than the field we are looking from.
if (t > self.angle) and (self.inverseErosion==False): #for the inversed Erosion model, t between the defined angle and zero, material should be moved.
setArrayValue(x,y, getArrayValue(x,y,self.verts)-self.erosionValue,self.verts)
setArrayValue(xOut,yOut,getArrayValue(x,y,self.verts) + self.erosionValue,self.verts)
if (t < self.angle) and (t>0) and (self.inverseErosion==True):#for the normal Erosion model material should only be moved, if the terrain is steeper than the angle.
setArrayValue(x,y, getArrayValue(x,y,self.verts) + self.erosionValue,self.verts)
setArrayValue(xOut,yOut,getArrayValue(x,y,self.verts) - self.erosionValue,self.verts)
def calculateAngle (self,height0,height1):
"""height 0: Origin height,height1 other height. Angle negative -> other is lower."""
return degrees(atan(height1-height0))
class createSeas:
# [left,top,right,bottom], 0 punkt oben links.
def __init__(self,terrainObject,twoDimensionalHeightArray,steps=10,rainAmount=1,evaporationAmount=1, smooth = 5):
"""twoDimensionalHeightArray,steps,rainAmount,dissolveAmount,evaporationAmount,solubility"""
self.terrainHeight = twoDimensionalHeightArray
self.size = len(twoDimensionalHeightArray)
self.waterMap = [x[:] for x in [[0]*self.size]*self.size]
self.waterFlowMap = [x[:] for x in [[0]*self.size]*self.size]
self.tempMap = [x[:] for x in [[0]*self.size]*self.size]
self.rainAmount = rainAmount
self.evaporationAmount= evaporationAmount
self.steps = steps
self.smooth = smooth
self.terrainObject = terrainObject
self.blenderSize = terrainObject.dimensions.x
self.rain()
for i in range(steps):
self.flow()
self.dissolve()
self.realWaterHeight = [x[:] for x in [[0]*self.size]*self.size]
for x in range(self.size):
for y in range(self.size):
self.realWaterHeight[x][y] = self.terrainHeight[x][y]+self.waterMap[x][y]
myGaussianBlur(self.realWaterHeight,self.smooth)
terrainObjectData = self.terrainObject.data
self.waterObject= blenderOutput(self.realWaterHeight,"water",self.blenderSize)
waterObjectData = self.waterObject.data
bpy.ops.object.mode_set(mode = 'EDIT')
bpy.ops.mesh.select_all(action='DESELECT')
bpy.ops.object.mode_set(mode = 'OBJECT')#Forces Blender to update the state of vertices.
self.seaMap = [x[:] for x in [[1]*self.size]*self.size]
i = 0
for x in range (-1,self.size):
for y in range (-1,self.size):
if waterObjectData.vertices[i].co[2] < terrainObjectData.vertices[i].co[2]:
waterObjectData.vertices[i].select = True
i+=1
#Delete All vertices, which are underneath the terrain vertices:
bpy.ops.object.mode_set(mode = 'EDIT')
bpy.ops.mesh.select_less()#So the sea borders do not float over the terrain. Needs to be done in edit mode.
bpy.ops.object.mode_set(mode = 'OBJECT')
bpy.ops.object.mode_set(mode = 'EDIT')#Forces update.
i = 0
for x in range (-1,self.size):
for y in range (-1,self.size):
if waterObjectData.vertices[i].co[2] < terrainObjectData.vertices[i].co[2] and waterObjectData.vertices[i].select == True:
self.seaMap[x][y] = 0
i+=1
bpy.ops.mesh.delete(type='VERT')
bpy.ops.object.mode_set(mode = 'OBJECT')
def rain(self):
for x in range (self.size):
for y in range (self.size):
self.waterMap[x][y]+=self.rainAmount
def flow (self):
#where should water flow?
for x in range (self.size):
for y in range (self.size):
terrain=self.terrainHeight
water = self.tempMap
startPoint=getArrayValue(x,y,water)+getArrayValue(x,y,terrain)
lowerNeighbours = [] #list of Lower Cells
#if the neighbour Cell is lower, it's poition is appended to the list.
if startPoint > getArrayValue(x-1,y,terrain)+getArrayValue(x-1,y,water): lowerNeighbours.append([x-1,y])
if startPoint > getArrayValue(x,y-1,terrain)+getArrayValue(x,y-1,water): lowerNeighbours.append([x,y-1])
if startPoint > getArrayValue(x+1,y,terrain)+getArrayValue(x+1,y,water): lowerNeighbours.append([x+1,y])
if startPoint > getArrayValue(x,y+1,terrain)+getArrayValue(x,y+1,water): lowerNeighbours.append([x,y+1])
#Now I can easily Acces the lower Cells ( "for i in range (numberOfLowerNeighbours): print (getArrayValue(lowerNeigbours[i][0],lowerNeigbours[i][1],terrain)" would print all the terrain heights, which are lower than the middle one.
numberOfLowerNeighbours = len(lowerNeighbours)
if numberOfLowerNeighbours == 0: #no more checks needed, since there will be no flow from this field.
continue
waterToEachCell = water[x][y]/(numberOfLowerNeighbours+1) #The water amount, which is distributed to each of the lower neighbours.
# +1 because the "active" cell itself has to be counted aswell, because I want to even out the water.
#so the amount "Water to each cell" remains at the active cell.
#First the cells get the water, which would be higher if all the water was added.
#This way the rest can be easily distributed in a second for-loop.
evenedOutCells = 0
for i in range (numberOfLowerNeighbours):
lowerWaterHeight = getArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],water)
lowerCellHeight = getArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],terrain)+getArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],water)
if lowerCellHeight+waterToEachCell > water[x][y]+terrain[x][y]:
waterDifference=startPoint-(lowerWaterHeight+lowerCellHeight)
movedWater=waterDifference/2
setArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],lowerWaterHeight+movedWater,water)
water[x][y]-=movedWater
self.waterFlowMap[x][y]=movedWater
evenedOutCells+=1 #one Neighbour more is now as high as the active cell.
try:
waterToEachCell = water[x][y]/(numberOfLowerNeighbours-evenedOutCells) #has to be recalculated, since there's now a different amount of lower Cells and a different amount of water on the active cell.
except:
pass
for i in range (numberOfLowerNeighbours):
lowerWaterHeight = getArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],water)
lowerCellHeight = getArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],terrain)+getArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],water)
if lowerCellHeight+waterToEachCell < water[x][y]+terrain[x][y]:
setArrayValue(lowerNeighbours[i][0],lowerNeighbours[i][1],lowerWaterHeight+waterToEachCell,water)
water[x][y]-=waterToEachCell
self.waterFlowMap[x][y] = waterToEachCell
def dissolve (self):
for x in range (self.size):
for y in range (self.size):
self.waterMap[x][y]-= self.evaporationAmount
# USER INTERFACE
modes = [('0', 'Terrain & Erosion', 'Create your basic terrain.'),
('1', 'Water', 'Add water (basic seas).'),
('2', 'Forest', 'Generate vertex group for the distribution and height of trees (or other objects).')]
class MESH_OT_primitive_landscape_add(bpy.types.Operator):
'''Add a Landscape'''
bl_idname = "mesh.primitive_landscape_add"
bl_label = "Add Landscape"
bl_options = {'REGISTER', 'UNDO'}
mode = EnumProperty(name = "Mode",description = "Mode", items = modes)
##UPDATES
update_Erosion = BoolProperty(name="Erosion",
description ="Should the erosion be updated?",
default=True)
update_Seas = BoolProperty(name="Seas",
description ="Should the watersimulation be updated?",
default=True)
update_Forest = BoolProperty(name="Forest",
description ="Should the forest-vertex-group creator be updated?",
default=True)
##DIAMOND SQUARE
seed = IntProperty(name="Seed",
description ="The Seed for the pseudo random number generator",
default=0)
subdivisions = IntProperty(name="Subdivisions",
description ="Number of vertices on one edge will be (2^n)+1. \n WARNING: Values above 8 might slow down everything and cause your os to think Blender crashed (it probably won't)",
default=6, min=2, max=10)
blenderSize = FloatProperty(name = "Size", description = "The size in x and y direction",
default = 5)
height = FloatProperty(name="Height",
description ="The maximal height of the Terrain",
default=1.0)
randomness = FloatProperty(name="Randomness",
default=1.75, min=0.5, max=5.0)
smoothAmount = IntProperty(name="Smoothness",
description="The amount of cycles of the smoothing function",
default=2, min=0)
featureSize = IntProperty(name="Amount of features",
description="The amount of the inital random values per edge",
default=4, min=0)
##EROSION
erosionAngle = FloatProperty(name="Angle",
description = "Critical angle for erosion",
default=4.0, min=0.0, max=180.0)
erosionAmount = FloatProperty(name="Amount",
description="How much material is transported per step and vertex",
default=0.001)
erosionIsInverted = BoolProperty(name = "Inverse erosion",
description = "Moves material, if angle is lower than"+str(erosionAngle),default = True)
erosionSteps = IntProperty(name="Steps",
description="How many steps of erosion",
default=0, min=0, max=256)
smoothnessAfterErosion = IntProperty(name = "Smoothness After Erosion",
description = "The amount of cycles of the smoothing function, after the erosion is applied", default = 0, min=0)
##FOREST
minTreeHeight = FloatProperty(name="Min. height of trees",
description="The lowest Weight of the \" Tree height\" vertex group (which \"simulates\" the decline in size of trees up to the tree limit).",
default=0.4, min=0, max=1)
forestAngle = FloatProperty (name = "Critical angle",
description = "Up to this angle trees should grow",
default = 50, min = 0, max = 90)
golSteps = IntProperty(name="steps",
description="How many steps of the game of life will be processed",
default=8, min=0, max=256)
useGameOfLife = BoolProperty(name = "Use game of life",
description = "Uses an altered version of the game of life to determine where trees grow.",default = True)
lowerForestLimit = FloatProperty (name = "Lower forest limit",
description = "The lower limit of the forest.",
default = 0.0, min= 0.0, max = 1.0)
higherForestLimit = FloatProperty (name = "Higher forest limit",
description = "The upper limit of the forest.",
default = 0.5, min= 0.0, max = 1.0)
startPercent = FloatProperty (name = "Percent",
description = "The Amount of forest coverage at the start.",
default = 22.0, min= 0.0, max = 100.0)
##SEAS
waterSteps = IntProperty(name="steps",
description="How many steps of the water simulation be processed",
default=8, min=0)
rainAmount = FloatProperty(name = "Amount of Rain",
description = "How much water will be added each Step (smoothing might have a bigger influence on the lake size)", default = 0.4)
evapAmount = FloatProperty(name = "Amount of evaporation",
description = "How much water will be removed each Step (smoothing might have a bigger influence on the lake size)", default = 0.4)
waterSmoothing = IntProperty(name="Smoothing",
description="How many steps the water will be smoothed processed",
default=8, min=0)
def draw (self,context):
layout = self.layout
layout.prop(self,'mode')
if self.mode == '0':
if self.selfCreatedTerrain:
layout.label("Grid size:")
box = layout.box()
split = box.split()
col = split.column()
col.prop(self,'subdivisions')
col = split.column()
verticesPerEdge = 2**self.subdivisions+1
col.label(": %s vertices per Edge" %verticesPerEdge)
col.label(": %s vertices total" %verticesPerEdge**2)
split = box.split()
col = split.column()
col.prop(self,'blenderSize')
split = box.split()
col = split.column()
col.prop(self,'height')
layout.label("Terrain:")
box = layout.box()
split = box.split()
col = split.column()
col.prop(self,'seed')
col.prop(self,'smoothAmount')
col = split.column()
col.prop(self,'randomness')
col.prop(self,'featureSize')
layout.label("Erosion:")
box = layout.box()
split = box.split()
col = split.column()
col.prop(self,'erosionSteps')
col.prop(self,'erosionAngle')
col=split.column()
col.prop(self,'erosionIsInverted')
col.prop(self,'erosionAmount')
split = box.split()
col = split.column()
col.prop(self,'smoothnessAfterErosion')
if self.mode == '1':
layout.label("Seas:")
box = layout.box()
split = box.split()
col = split.column()
col.prop(self,'rainAmount')
col.prop(self,'waterSteps')
col = split.column()
col.prop(self,'evapAmount')
col.prop(self,'waterSmoothing')
if self.mode == '2':
layout.label("Forest:")
box = layout.box()
split = box.split()
col = split.column()
col.prop(self,'lowerForestLimit')
col.prop(self,'minTreeHeight')
col.prop(self,'useGameOfLife')
col.prop(self,'startPercent')
col = split.column()
col.prop(self,'higherForestLimit')
col.prop(self,'forestAngle')
col.prop(self,'golSteps')
layout.label("Updates:")
box = layout.box()
split = box.split()
col = split.column()
col.prop(self,'update_Erosion')
col.prop(self,'update_Seas')
col.prop(self,'update_Forest')
@classmethod
def poll (cls,context):
if bpy.context.active_object != None:
return bpy.context.active_object.mode == 'OBJECT'
else: return True
def createTerrain (self):
self.terrainVerts=diamondSquare(2**self.subdivisions,self.randomness,self.height/-2,self.height/2,self.seed,self.smoothAmount,self.featureSize).verts
if self.update_Erosion:
erosion = thermalErosion(self.terrainVerts,self.erosionAmount,self.erosionSteps,self.erosionAngle,self.erosionIsInverted)
self.terrainVerts = erosion.verts
myGaussianBlur(self.terrainVerts,self.smoothnessAfterErosion)
self.terrainObject = blenderOutput(self.terrainVerts,"Terrain",self.blenderSize)
self.selfCreatedTerrain = True
angleAndHeightMap = createAngleAndHeightMapOfTerrain(self.terrainObject)
self.angleMap = angleAndHeightMap.angleMap
self.terrainVerts = angleAndHeightMap.heightMap
bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN', center='MEDIAN')
def adoptTerrain (self,obj):
self.terrainObject = obj
self.blenderSize = obj.dimensions.x #Assuming it is a square.
self.selfCreatedTerrain = False
angleAndHeightMap = createAngleAndHeightMapOfTerrain(self.terrainObject)
self.angleMap = angleAndHeightMap.angleMap
self.terrainVerts = angleAndHeightMap.heightMap
if self.update_Erosion:
erosion = thermalErosion(self.terrainVerts,self.erosionAmount,self.erosionSteps,self.erosionAngle,self.erosionIsInverted)
self.terrainVerts = erosion.verts
myGaussianBlur(self.terrainVerts,self.smoothnessAfterErosion)
name = obj.name
for object in bpy.context.scene.objects:
object.select = object.type == 'MESH' and object.name == name#Delete object with name name
bpy.ops.object.delete()
self.size = len(self.terrainVerts)
self.terrainObject = blenderOutput(self.terrainVerts,obj.name,self.blenderSize)
myGaussianBlur(self.terrainVerts,self.smoothnessAfterErosion)
bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN', center='MEDIAN')
def invoke(self, context,event):
self.subdivisions = 6 #Resets everytime the script launches. So no one has the experience of waiting a minute until the calculation has finished and they're ready to go.
self.size = 2**self.subdivisions+1
self.riverMap = [x[:] for x in [[int(0)]*self.size]*self.size]
self.seaMap = [x[:] for x in [[int(0)]*self.size]*self.size]
obj = bpy.context.active_object
if obj == None:
self.createTerrain()
elif obj.type == 'MESH' and obj.dimensions.z > 0 and obj.dimensions.y > 0:
self.adoptTerrain(obj)
else:
if obj.dimensions.z <= 0 or obj.dimensions.y <= 0: print("Could not create a landscape from this mesh.")
self.createTerrain()
if len(self.terrainObject.data.materials) < 1:
self.terrainMaterial = createCyclesTerrainMaterial()
self.terrainObject.data.materials.append(self.terrainMaterial)
bpy.context.space_data.viewport_shade = 'MATERIAL'
if self.update_Seas:
seas = createSeas(self.terrainObject,self.terrainVerts,self.waterSteps,self.rainAmount,self.evapAmount,self.waterSmoothing)
self.waterObject = seas.waterObject
self.seaMap = seas.seaMap
if len(self.waterObject.data.materials) < 1:
self.waterMaterial = createCyclesWaterMaterial()
self.waterObject.data.materials.append(self.waterMaterial)
if self.update_Forest:
self.forestLimits = [self.lowerForestLimit,self.higherForestLimit]
createForest(self.terrainObject, self.terrainVerts, self.angleMap,self.seaMap,self.useGameOfLife, self.forestLimits, self.forestAngle, self.golSteps, self.minTreeHeight, self.startPercent)
bpy.ops.object.mode_set(mode = 'OBJECT')
return {'FINISHED'} #Tells Blender that invoke is finished.
def execute(self,context):
self.size = 2**self.subdivisions+1
self.seaMap = [x[:] for x in [[int(0)]*self.size]*self.size]
obj = bpy.context.active_object
if obj == None:
self.createTerrain()
elif obj.type == 'MESH':
self.adoptTerrain(obj)