-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_meta_classifier.py
181 lines (145 loc) · 5.14 KB
/
train_meta_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from functools import partial
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from sacred import Experiment
from torch.utils.data import ConcatDataset, DataLoader, WeightedRandomSampler
from cls_models import cls_models, load_cls_model
from config import Config
from datasets import datasets, load_data
from logging_utils import log_config
from logging_utils.lightning_sacred import SacredLogger
from options import print_options
from utils import (
TimeEstimator,
get_accelerator_device,
init_experiment,
register_exp_folder,
)
ex = Experiment("train_meta_classifier", ingredients=(cls_models, datasets))
init_experiment(ex)
sacred_logger = SacredLogger(ex)
def target_transformation(target, hint):
return [target, hint]
@cls_models.config
def cls_models_config_update(cfg):
cfg["meta_classifier"] = True
@ex.config
def config(dataset):
tags = [dataset["cfg"]["name"]] # noqa: F841
args = dict( # noqa: F841
epochs=100,
batch_size=256,
gpu=0,
save_folder=Config.root_save_folder,
num_workers=8,
ood_datasets=None,
)
opt = dict( # noqa: F841
lr=2e-4,
min_lr=1e-5,
weight_decay=2e-4,
)
@ex.command(unobserved=True)
def options(args, opt, dataset, cls_model):
used_options = set(["enable_progress_bar", "datasets", "cls_models"])
used_options = used_options.union(
set(
list(args.keys())
+ list(opt.keys())
+ list(dataset["cfg"].keys())
+ list(cls_model["cfg"].keys())
)
)
print_options(used_options)
@ex.automain
def main(args, opt, cls_model, dataset, _run, _log):
log_config(_run, _log)
exp_folder = register_exp_folder(args["save_folder"], _run)
########################################
# Set devices
########################################
accelerator, devices = get_accelerator_device(args["gpu"])
########################################
# Load datasets and models
########################################
indat, _ = load_data(target_transform=partial(target_transformation, hint=1))
invaldat, _ = load_data(
target_transform=partial(target_transformation, hint=1), mode="eval"
)
ood_datasets = []
ood_val_datasets = []
if args["ood_datasets"] is None:
raise ValueError("No OOD dataset specified")
else:
for d in args["ood_datasets"].split(","):
ood_cfg = dict(
name=d,
mode=dataset["cfg"]["mode"],
static=True,
image_channels=dataset["cfg"]["image_channels"],
target_transform=partial(target_transformation, hint=0),
)
if "image_size" in ood_cfg:
ood_cfg["image_size"] = dataset["cfg"]["image_size"]
ood_datasets.append(load_data(**ood_cfg)[0])
ood_cfg["mode"] = {"train": "eval", "eval": "train"}.get(
dataset["cfg"]["mode"], "eval"
)
ood_val_datasets.append(load_data(**ood_cfg)[0])
ooddat = ConcatDataset(ood_datasets)
ood_val_dat = ConcatDataset(ood_val_datasets)
traindat = ConcatDataset([indat, ooddat])
valdat = ConcatDataset([invaldat, ood_val_dat])
# sample weights for an equal amount of samples from all provided OOD datasets
ood_weights = []
for ood_dataset in ood_datasets:
ood_weights += [1.0 / (len(ood_dataset) * len(ood_datasets))] * len(ood_dataset)
# Initialize the sampler so that we have an equal amount of
# in-/out-of-distribution samples
sampler = WeightedRandomSampler(
[1.0 / len(indat)] * len(indat) + ood_weights, num_samples=len(indat) * 2
)
trainloader = DataLoader(
traindat,
batch_size=args["batch_size"],
shuffle=False,
sampler=sampler,
num_workers=args["num_workers"],
)
valloader = DataLoader(
valdat,
batch_size=args["batch_size"],
shuffle=False,
num_workers=args["num_workers"],
)
classifier = load_cls_model(opt=opt)
if classifier.method == "uqgan":
classifier.compute_rel_class_frequencies(
DataLoader(
indat,
batch_size=args["batch_size"],
shuffle=False,
num_workers=args["num_workers"],
)
)
time_estimator_callback = TimeEstimator(max_iterations=args["epochs"])
checkpoint_callback = ModelCheckpoint(
dirpath=exp_folder,
monitor="val_acc",
mode="max",
filename="classifier",
save_last=True,
)
trainer = Trainer(
default_root_dir=exp_folder,
logger=sacred_logger,
accelerator=accelerator,
devices=devices,
callbacks=[checkpoint_callback, time_estimator_callback],
max_epochs=args["epochs"],
enable_progress_bar=args.get("enable_progress_bar", False),
)
########################################
# Training
########################################
trainer.fit(classifier, train_dataloaders=trainloader, val_dataloaders=valloader)