-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
313 lines (268 loc) · 13.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import numpy as np
import time
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 16})
from citylearn.citylearn import CityLearnEnv
from agents.brute_force_day_agent import BruteForceAgent
####################################################################################################
## ##
## VISUALIZATION TOOLS ##
## ##
####################################################################################################
def preprocess_obs_history(controller, scale=False):
obs_history = np.zeros((controller.num_buildings, len(controller.observation_history),
len(controller.observation_history[0][0])), dtype=float)
for t, observation in enumerate(controller.observation_history):
for i in range(controller.num_buildings):
obs_history[i, t, :] = np.array(observation[i])
if scale:
for j in range(len(controller.observation_history[0][0])):
max_val = np.max(obs_history[:, :, j])
min_val = np.min(obs_history[:, :, j])
obs_history[:, :, j] = (obs_history[:, :, j] - min_val) / (max_val - min_val)
return obs_history # dimensions = (num_buildings, simulation_period, observation_len)
def observation_map():
"""
observation[0] = 'month',
observation[1] = 'day_type',
observation[2] = 'hour',
observation[3] = 'outdoor_dry_bulb_temperature',
observation[4] = 'outdoor_dry_bulb_temperature_predicted_6h',
observation[5] = 'outdoor_dry_bulb_temperature_predicted_12h',
observation[6] = 'outdoor_dry_bulb_temperature_predicted_24h',
observation[7] = 'outdoor_relative_humidity',
observation[8] = 'outdoor_relative_humidity_predicted_6h',
observation[9] = 'outdoor_relative_humidity_predicted_12h',
observation[10] = 'outdoor_relative_humidity_predicted_24h',
observation[11] = 'diffuse_solar_irradiance',
observation[12] = 'diffuse_solar_irradiance_predicted_6h',
observation[13] = 'diffuse_solar_irradiance_predicted_12h',
observation[14] = 'diffuse_solar_irradiance_predicted_24h',
observation[15] = 'direct_solar_irradiance',
observation[16] = 'direct_solar_irradiance_predicted_6h',
observation[17] = 'direct_solar_irradiance_predicted_12h',
observation[18] = 'direct_solar_irradiance_predicted_24h',
observation[19] = 'carbon_intensity',
observation[20] = 'non_shiftable_load',
observation[21] = 'solar_generation',
observation[22] = 'electrical_storage_soc',
observation[23] = 'net_electricity_consumption',
observation[24] = 'electricity_pricing',
observation[25] = 'electricity_pricing_predicted_6h',
observation[26] = 'electricity_pricing_predicted_12h',
observation[27] = 'electricity_pricing_predicted_24h'
"""
obs_str_list = [
'month', 'day_type', 'hour', 'outdoor_dry_bulb_temperature',
'outdoor_dry_bulb_temperature_predicted_6h', 'outdoor_dry_bulb_temperature_predicted_12h',
'outdoor_dry_bulb_temperature_predicted_24h', 'outdoor_relative_humidity',
'outdoor_relative_humidity_predicted_6h', 'outdoor_relative_humidity_predicted_12h',
'outdoor_relative_humidity_predicted_24h', 'diffuse_solar_irradiance',
'diffuse_solar_irradiance_predicted_6h', 'diffuse_solar_irradiance_predicted_12h',
'diffuse_solar_irradiance_predicted_24h', 'direct_solar_irradiance',
'direct_solar_irradiance_predicted_6h', 'direct_solar_irradiance_predicted_12h',
'direct_solar_irradiance_predicted_24h', 'carbon_intensity', 'non_shiftable_load',
'solar_generation', 'electrical_storage_soc', 'net_electricity_consumption',
'electricity_pricing', 'electricity_pricing_predicted_6h', 'electricity_pricing_predicted_12h',
'electricity_pricing_predicted_24h'
]
obs_map = {item: i for i, item in enumerate(obs_str_list)}
return obs_map
def plot_interval_results(controller, sim_period=(0, 200), name=None, agent_ids=None,
obs_params=None, scale=False, plot_no_op_consumption=False):
"""
:param controller: The controller class
:param sim_period: The period (initial time, final time) to plot
:param name: The name of the plot for saving
:param agent_ids: The ids of buildings we would like to plot, if empty it plots the district's (sum of buildings)
:param obs_params: The parameters to plot, i.e. 'net_electricity_consumption', can be a single string or a
tuple of strings
:param scale: If True, normalize the y-axis of all plots
:param plot_no_op_consumption: If True, plot the no_op_consumption
:return: None
"""
if agent_ids is None:
agent_ids = []
if plot_no_op_consumption:
scale = False
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 18})
colors = list(matplotlib._color_data.TABLEAU_COLORS.keys())
obs_map = observation_map()
obs_data = preprocess_obs_history(controller, scale=scale)
sim_period = list(sim_period)
# verify plot length
time_step = obs_data.shape[1]
sim_period[1] = np.min([sim_period[1], 8760, time_step])
assert sim_period[1] > sim_period[0]
# compute the no op consumption per building
no_op_consumption = np.zeros((controller.num_buildings, time_step), dtype=float)
for i in range(controller.num_buildings):
no_op_consumption[i] = obs_data[i, :, obs_map["non_shiftable_load"]] - obs_data[i, :,
obs_map["solar_generation"]]
# plot
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(16, 9))
if len(agent_ids) == 0:
# plot the district values
if isinstance(obs_params, list) or isinstance(obs_params, tuple):
for param in obs_params:
ax[0].plot(range(sim_period[0], sim_period[1]),
np.sum(obs_data[:, sim_period[0]:sim_period[1], obs_map[param]], axis=0),
label="district " + param)
if plot_no_op_consumption:
ax[0].plot(range(sim_period[0], sim_period[1]),
np.sum(no_op_consumption[:, sim_period[0]:sim_period[1]], axis=0), "--",
label="district net_electricity_consumption (no battery)")
if scale:
ax[0].set_ylabel('a.u.')
else:
ax[0].set_ylabel('value')
else:
ax[0].plot(range(sim_period[0], sim_period[1]),
np.sum(obs_data[:, sim_period[0]:sim_period[1], obs_map[obs_params]], axis=0),
label="district " + obs_params)
if scale:
ax[0].set_ylabel('a.u.')
else:
ax[0].set_ylabel(obs_params)
else:
if isinstance(obs_params, list) or isinstance(obs_params, tuple):
for param in obs_params:
for i in agent_ids:
ax[0].plot(range(sim_period[0], sim_period[1]),
obs_data[i, sim_period[0]:sim_period[1], obs_map[param]],
label="building-" + str(i) + " " + param)
if plot_no_op_consumption:
for i in agent_ids:
ax[0].plot(range(sim_period[0], sim_period[1]),
no_op_consumption[i, sim_period[0]:sim_period[1]], "--",
label="building-" + str(i) + " net_electricity_consumption (no battery)")
if scale:
ax[0].set_ylabel('a.u.')
else:
ax[0].set_ylabel('value')
else:
for i in agent_ids:
ax[0].plot(range(sim_period[0], sim_period[1]),
obs_data[i, sim_period[0]:sim_period[1], obs_map[obs_params]],
label="building-" + str(i) + " " + obs_params)
if scale:
ax[0].set_ylabel('a.u.')
else:
ax[0].set_ylabel(obs_params)
ax[0].set_xlabel('time (hours)')
ax[0].legend()
ax[0].grid()
ax[1].plot(controller.scores_and_metrics["metric_eval_step"], controller.scores_and_metrics["price_cost"],
label="price cost")
ax[1].plot(controller.scores_and_metrics["metric_eval_step"], controller.scores_and_metrics["emission_cost"],
label="emission cost")
ax[1].plot(controller.scores_and_metrics["metric_eval_step"], controller.scores_and_metrics["grid_cost"],
label="grid cost")
ax[1].plot(controller.scores_and_metrics["metric_eval_step"], controller.scores_and_metrics["metric_value"],
label="metric value")
ax[1].plot(controller.scores_and_metrics["metric_eval_step"], controller.scores_and_metrics["avg_metric_value"],
label="avg metric value")
ax[1].set_xlabel("time [hour]")
ax[1].set_ylabel("score")
ax[1].legend()
ax[1].grid()
if name is not None:
name = 'figures/' + name + '_' + str(sim_period[0]) + '_' + str(sim_period[1]) + '.png'
plt.savefig(name)
plt.show()
####################################################################################################
## ##
## EVALUATION TOOLS ##
## ##
####################################################################################################
# Reformat the action space into a dictionary from a list
def action_space_to_dict(aspace):
""" Only for box space """
return {"high": aspace.high,
"low": aspace.low,
"shape": aspace.shape,
"dtype": str(aspace.dtype)
}
# Reset the environment and create the observation dictionary with all environment info
def env_reset(env):
observations = env.reset()
action_space = env.action_space
observation_space = env.observation_space
building_info = env.get_building_information()
building_info = list(building_info.values())
action_space_dicts = [action_space_to_dict(asp) for asp in action_space]
observation_space_dicts = [action_space_to_dict(osp) for osp in observation_space]
obs_dict = {"action_space": action_space_dicts,
"observation_space": observation_space_dicts,
"building_info": building_info,
"observation": observations}
return obs_dict
def rb_evaluate(CoordinatorClass, AgentClass, eval_constants, verbose=True):
print("Starting local evaluation")
start_time = time.process_time()
# Create a ne environment
env = CityLearnEnv(schema=eval_constants.schema_path)
# Reset the environment
obs_dict = env_reset(env)
observations = obs_dict["observation"]
# Add coordinator
rb_coordinator = CoordinatorClass(AgentClass, obs_dict, **eval_constants.rule_based_params)
# Init local variables
episodes_completed = 0
num_steps = 0
episode_metrics = []
# Define the agents' training time
evaluation_steps = 24 * eval_constants.evaluation_days
done = False
# Start the evaluation process
while True:
num_steps += 1
# Take an action
actions = rb_coordinator.compute_action(observations)
# Step the environment and collect the observation, reward (user written reward), done and info
observations_, rewards, done, info = env.step(actions)
# step the observation
observations = observations_
# collect rewards and compute scores and average scores
rb_coordinator.collect_scores(rewards)
if num_steps % eval_constants.compute_metric_interval == 0:
# evaluate the agents
metrics_t = env.evaluate()
# collect the metrics
rb_coordinator.collect_metrics(metrics_t)
# print scores and metrics
if verbose:
rb_coordinator.print_scores_and_metrics(episodes_completed, num_steps)
# evaluate the last episode and reset the environment
if done:
episodes_completed += 1
metrics_t = env.evaluate()
metrics = {"price_cost": metrics_t[0],
"emission_cost": metrics_t[1],
"grid_cost": metrics_t[2]}
if np.any(np.isnan(metrics_t)):
raise ValueError("Episode metrics are nan, please contant organizers")
episode_metrics.append(metrics)
print(f"Episode complete: {episodes_completed} | Latest episode metrics: {metrics}", )
# compute average scores
rb_coordinator.compute_avg_scores()
# Reset the environment
done = False
obs_dict = env_reset(env)
rb_coordinator.init_score()
rb_coordinator.reset_battery()
observations = obs_dict["observation"]
# terminate evaluation
if num_steps == evaluation_steps:
print(f"Evaluation process is terminated after {num_steps} steps.")
break
# print the episode mean evaluation score
if len(episode_metrics) > 0:
print("Average Price Cost:", np.mean([e['price_cost'] for e in episode_metrics]))
print("Average Emission Cost:", np.mean([e['emission_cost'] for e in episode_metrics]))
print("Average Grid Cost:", np.mean([e['grid_cost'] for e in episode_metrics]))
for e in episode_metrics:
print(f"Episode Utility: {np.mean(list(e.values()))}")
return env, rb_coordinator, episode_metrics, time.process_time() - start_time