-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
163 lines (144 loc) · 7.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse, os
import gym
from gym import wrappers
import numpy as np
import copy as cp
from utils import plot_learning_curve, make_env
import agents as Agents
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Deep Q learning algorithms implementation')
# Arguments
parser.add_argument('-train', type=bool, default=False,
choices=[True, False],
help='Choosing the mode of the agent, True for training or False for playing.')
parser.add_argument('-gamma', type=float, default=0.99,
help='Discount factor for the update rule')
parser.add_argument('-epsilon', type=float, default=1.0,
help='Initial epsilon value for the epsilon-greedy policy')
parser.add_argument('-lr', type=float, default=0.0001,
help='The learning rate')
parser.add_argument('-mem_size', type=int, default=20000,
help='The maximal memory size used for storing transitions (replay buffer)') # ~ 6 GB RAM
parser.add_argument('-bs', type=int, default=32,
help='Batch size for learning')
parser.add_argument('-eps_min', type=float, default=0.1,
help='Lower limit for epsilon')
parser.add_argument('-eps_dec', type=float, default=1e-5,
help='Value for epsilon linear decrement')
parser.add_argument('-replace', type=int, default=1000,
help='Number of learning steps for target network replacement')
parser.add_argument('-algo', type=str, default='DQNAgent',
choices=['DQNAgent',
'DDQNAgent',
'DuelingDQNAgent',
'DuelingDDQNAgent'],
help='choose from the next DQNAgent/DDQNAgent/DuelingDQNAgent/DuelingDDQNAgent')
parser.add_argument('-env_name', type=str, default='PongNoFrameskip-v4',
choices=['PongNoFrameskip-v4',
'BreakoutNoFrameskip-v4',
'SpaceInvadersNoFrameskip-v4',
'EnduroNoFrameskip-v4',
'AtlantisNoFrameskip-v4'],
help='choose from the next Atari environments:\
\nPongNoFrameskip-v4 \
\nBreakoutNoFrameskip-v4 \
\nSpaceInvadersNoFrameskip-v4 \
\nEnduroNoFrameskip-v4 \
\nAtlantisNoFrameskip-v4')
parser.add_argument('-path', type=str, default='models/',
help='Path for loading and saving models')
parser.add_argument('-n_games', type=int, default=1,
help='Number of games for the Agent to play')
parser.add_argument('-skip', type=int, default=4,
help='Number of environment frames to stack')
parser.add_argument('-gpu', type=str, default='0',
help='CPU: 0, GPU: 1')
parser.add_argument('-load_checkpoint', type=bool, default=False,
help='Load a model checkpoint')
parser.add_argument('-render', type=bool, default=False,
help='Render the game to screen ? True/False')
parser.add_argument('-monitor', type=bool, default=False,
help='If True, a video is being saved for each episode')
args = parser.parse_args()
# arrange work between two GPUs
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
env = make_env(env_name=args.env_name)
best_score = -np.inf
agent_ = getattr(Agents, args.algo)
agent = agent_(gamma=args.gamma,
epsilon=args.epsilon,
lr=args.lr,
n_actions=env.action_space.n,
input_dims=env.observation_space.shape,
mem_size=args.mem_size,
batch_size=args.bs,
eps_min=args.eps_min,
eps_dec=args.eps_dec,
replace=args.replace,
algo=args.algo,
env_name=args.env_name,
chkpt_dir=args.path)
if args.monitor:
env = wrappers.Monitor(env, 'videos/', video_callable=lambda episode_id: True, force=True)
# create name strings for saving data
fname = agent.algo + '_' + agent.env_name + '_lr_' + str(agent.lr)
scores_file = 'scores/' + fname + '_scores'
steps_file = 'scores/' + fname + '_steps'
eps_history_file = 'scores/' + fname + '_eps_history'
n_steps = 0
games_played = 0
scores, eps_history, steps_array = [], [], []
if args.load_checkpoint:
# load Q models
agent.load_models()
if args.train:
# load old scores and related data
scores = np.load(scores_file + '.npy')
scores = list(scores)
games_played = len(scores)
for t in range(len(scores)):
t_avg_score = np.mean(scores[np.max([0, t - 100]):(t + 1)])
if t_avg_score > best_score:
best_score = t_avg_score
steps_array = np.load(steps_file + '.npy')
steps_array = list(steps_array)
n_steps = cp.copy(steps_array[-1])
eps_history = np.load(eps_history_file + '.npy')
eps_history = list(eps_history)
agent.epsilon = cp.copy(eps_history[-1])
figure_file = 'plots/' + fname + '_' + str(games_played + args.n_games) + '_games' + '.png'
# training / playing
for i in range(games_played, args.n_games + games_played):
done = False
score = 0
observation = env.reset()
while not done:
action = agent.choose_action(observation)
observation_, reward, done, info = env.step(action)
score += reward
if args.render:
env.render()
if args.train:
agent.store_transition(observation, action, reward, observation_, int(done))
agent.learn()
observation = observation_
n_steps += 1
scores.append(score)
steps_array.append(n_steps)
eps_history.append(agent.epsilon)
avg_score = np.mean(scores[-100:])
print('episode ', i, 'score: ', score, 'average score %.1f best average score %.1f epsilon %.2f' %
(avg_score, best_score, agent.epsilon), 'steps ', n_steps)
if avg_score > best_score:
if args.train:
agent.save_models()
best_score = avg_score
env.close()
# save training data
if args.train:
np.save(scores_file, np.array(scores))
np.save(steps_file, np.array(steps_array))
np.save(eps_history_file, np.array(eps_history))
# plot the learning curve
plot_learning_curve(steps_array, scores, eps_history, figure_file)