-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
187 lines (148 loc) · 7.25 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path
from train import Experiment
from typing import Union
from FGG.dataset.input_data import Accio, BigBangTheory, Buffy
from FGG.config import FaceGroupingConfig
class EvalExperiment(Experiment):
def __init__(self, checkpoint_file: Union[None, str] = ..., header=(), num_runs=1):
"""
Runs evaluation. Assumes that labels are known.
If you dont' have labels, please use "infer.py" instead.
:param checkpoint_file: Checkpoint file to load weights from.
The default is to look for pretrained weights in this repo in the "weights" folder
depending on the selected dataset.
If None evaluation will happen on randomly initialized weights.
Otherwise you can provide a checkpoint file path.
"""
self.checkpoint_file = checkpoint_file
super().__init__(header=header, num_runs=num_runs)
self.load_from = "last"
def modify_config(self, config: FaceGroupingConfig, i):
out = super().modify_config(config, i)
assert config.dataset.episode_index_test is not None
config.dataset.episode_index_train = None
config.dataset.episode_index_val = None
# These are the paths for the pretrained weights.
if isinstance(config.dataset.episode_index_test, int):
if isinstance(config.dataset, BigBangTheory) and self.checkpoint_file is Ellipsis:
config.model_load_file = f"weights/bbt010{config.dataset.episode_index_test + 1}_checkpoint.tar"
elif isinstance(config.dataset, Buffy) and self.checkpoint_file is Ellipsis:
config.model_load_file = f"weights/bf050{config.dataset.episode_index_test + 1}_checkpoint.tar"
elif isinstance(config.dataset, Accio) and self.checkpoint_file is Ellipsis:
config.model_load_file = "weights/accio_checkpoint.tar"
elif config.model_load_file is None:
config.model_load_file = self.checkpoint_file
print("Selected checkpoint", config.model_load_file)
assert config.model_load_file is None or Path(config.model_load_file).is_file(), config.model_load_file
return out
def create_model_name(self, config, i):
prefix = Path(self.file_name).stem
try:
return f"{prefix}_{i}_ep{config.dataset.episode_index_test + 1}"
except TypeError:
return f"{prefix}_{i}_idx{config.dataset.episode_index_test}"
class EvaluateBBTBFExperiment(EvalExperiment):
def __init__(self):
"""
Perform one evaluation step on all episodes of BBT and BF using pretrained weights.
"""
super().__init__(num_runs=12)
def modify_config(self, config: FaceGroupingConfig, i):
if i < 6:
config.dataset = BigBangTheory(episode_index_test=i)
else:
config.dataset = Buffy(episode_index_test=i - 6)
return super().modify_config(config, i)
class EvaluateBBTExperiment(EvalExperiment):
def __init__(self):
"""
Perform one evaluation step on all episodes of BBT using pretrained weights.
"""
super().__init__(num_runs=6)
def modify_config(self, config: FaceGroupingConfig, i):
config.dataset = BigBangTheory(episode_index_test=i)
return super().modify_config(config, i)
class EvaluateBFExperiment(EvalExperiment):
def __init__(self):
"""
Perform one evaluation step on all episodes of BF using pretrained weights.
"""
super().__init__(num_runs=6)
def modify_config(self, config: FaceGroupingConfig, i):
config.dataset = Buffy(episode_index_test=i)
return super().modify_config(config, i)
class EvaluateAccioExperiment(EvalExperiment):
"""
Perform one evaluation step on ACCIO using pretrained weights.
"""
def modify_config(self, config: FaceGroupingConfig, i):
config.dataset = Accio()
config.model_params["sparse_adjacency"] = True
return super().modify_config(config, i)
class MoreFeaturesBBTExperiment(EvalExperiment):
def __init__(self):
"""
Warning: Experimental.
Allows to retrieve more features per track by splitting every x frames.
This creates large graphs that may result in a memory error or very long run times.
"""
super().__init__(header=("split_frames",), num_runs=6,)
def modify_config(self, config: FaceGroupingConfig, i):
from FGG.dataset.split_strategy import SplitEveryXFrames
x = 10
config.graph_builder_params["split_strategy"] = SplitEveryXFrames(x=x)
config.pool_before_clustering = True
config.dataset = BigBangTheory(episode_index_val=None, episode_index_train=None,
episode_index_test=i)
return (str(x), *super().modify_config(config, i))
class MoreFeaturesBFExperiment(EvalExperiment):
def __init__(self):
"""
Warning: Experimental.
Allows to retrieve more features per track by splitting every x frames.
This creates large graphs that may result in a memory error or very long run times.
"""
super().__init__(header=("split_frames",), num_runs=6)
def modify_config(self, config: FaceGroupingConfig, i):
from FGG.dataset.split_strategy import SplitEveryXFrames
x = 10
config.graph_builder_params["split_strategy"] = SplitEveryXFrames(x=x)
config.pool_before_clustering = True
config.dataset = Buffy(episode_index_val=None, episode_index_train=None, episode_index_test=i)
return (str(x), *super().modify_config(config, i))
if __name__ == '__main__':
import datetime
from FGG.config import FaceGroupingConfig
from FGG.runner import Runner
from FGG.persistence.run_configuration import enable_auto_run_save
enable_auto_run_save()
# --- Single dataset evaluation ---
# Evaluate on all episodes of BBT:
experiment_type = EvaluateBBTExperiment()
# Evaluate on all episodes of BF:
# experiment_type = EvaluateBFExperiment()
# Evaluate on all episodes of BBT and BF:
#experiment_type = EvaluateBBTBFExperiment()
# Evaluate on ACCIO:
# experiment_type = EvaluateAccioExperiment()
# --------------Extract more features per track-------------------
# If you want to extract feature maps with a higher number of features per track, run this:
# It will extract a feature for every ten frames.
# Warning: This is computationally more expensive than the default
# experiment_type = MoreFeaturesBBTExperiment()
# or
# experiment_type = MoreFeaturesBFExperiment()
# Accio is too large for our memory, but you can implement it in the same way if you want to try.
meta_experiment = experiment_type.next_experiment()
wcp = None
while True:
try:
config = meta_experiment.send(wcp)
except StopIteration:
break
else:
assert isinstance(experiment_type, EvalExperiment)
print("Running evaluation only!")
experiment = Runner.from_config(config, load_from=experiment_type.load_from)
wcp = experiment.test()
print(f"Finished at {datetime.datetime.now()} at {wcp} wcp")