-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
100 lines (84 loc) · 3.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch.nn as nn
import torch
class PMG(nn.Module):
def __init__(self, model, feature_size, classes_num):
super(PMG, self).__init__()
self.features = model
self.max1 = nn.MaxPool2d(kernel_size=56, stride=56)
self.max2 = nn.MaxPool2d(kernel_size=28, stride=28)
self.max3 = nn.MaxPool2d(kernel_size=14, stride=14)
self.num_ftrs = 2048 * 1 * 1
self.elu = nn.ELU(inplace=True)
self.classifier_concat = nn.Sequential(
nn.BatchNorm1d(1024 * 3),
nn.Linear(1024 * 3, feature_size),
nn.BatchNorm1d(feature_size),
nn.ELU(inplace=True),
nn.Linear(feature_size, classes_num),
)
self.conv_block1 = nn.Sequential(
BasicConv(self.num_ftrs//4, feature_size, kernel_size=1, stride=1, padding=0, relu=True),
BasicConv(feature_size, self.num_ftrs//2, kernel_size=3, stride=1, padding=1, relu=True)
)
self.classifier1 = nn.Sequential(
nn.BatchNorm1d(self.num_ftrs//2),
nn.Linear(self.num_ftrs//2, feature_size),
nn.BatchNorm1d(feature_size),
nn.ELU(inplace=True),
nn.Linear(feature_size, classes_num),
)
self.conv_block2 = nn.Sequential(
BasicConv(self.num_ftrs//2, feature_size, kernel_size=1, stride=1, padding=0, relu=True),
BasicConv(feature_size, self.num_ftrs//2, kernel_size=3, stride=1, padding=1, relu=True)
)
self.classifier2 = nn.Sequential(
nn.BatchNorm1d(self.num_ftrs//2),
nn.Linear(self.num_ftrs//2, feature_size),
nn.BatchNorm1d(feature_size),
nn.ELU(inplace=True),
nn.Linear(feature_size, classes_num),
)
self.conv_block3 = nn.Sequential(
BasicConv(self.num_ftrs, feature_size, kernel_size=1, stride=1, padding=0, relu=True),
BasicConv(feature_size, self.num_ftrs//2, kernel_size=3, stride=1, padding=1, relu=True)
)
self.classifier3 = nn.Sequential(
nn.BatchNorm1d(self.num_ftrs//2),
nn.Linear(self.num_ftrs//2, feature_size),
nn.BatchNorm1d(feature_size),
nn.ELU(inplace=True),
nn.Linear(feature_size, classes_num),
)
def forward(self, x):
xf1, xf2, xf3, xf4, xf5 = self.features(x)
xl1 = self.conv_block1(xf3)
xl2 = self.conv_block2(xf4)
xl3 = self.conv_block3(xf5)
xl1 = self.max1(xl1)
xl1 = xl1.view(xl1.size(0), -1)
xc1 = self.classifier1(xl1)
xl2 = self.max2(xl2)
xl2 = xl2.view(xl2.size(0), -1)
xc2 = self.classifier2(xl2)
xl3 = self.max3(xl3)
xl3 = xl3.view(xl3.size(0), -1)
xc3 = self.classifier3(xl3)
x_concat = torch.cat((xl1, xl2, xl3), -1)
x_concat = self.classifier_concat(x_concat)
return xc1, xc2, xc3, x_concat
class BasicConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes, eps=1e-5,
momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x