-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathorganize_dataset.py
46 lines (39 loc) · 1.46 KB
/
organize_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
split = {}
train_count = {}
test_count = {}
with open('classes.txt') as fp:
line = fp.readline()
while line:
line = line.strip()
class_id , class_name = line.split(' ')
folder_name = class_name.split('.')[0]
train_count[folder_name] = 1
test_count[folder_name] = 1
os.system('mkdir ./dataset/train/{}'.format('class_' + str(folder_name)))
os.system('mkdir ./dataset/test/{}'.format('class_' + str(folder_name)))
line = fp.readline()
with open('train_test_split.txt') as fp:
line = fp.readline()
while line:
line = line.strip()
image_id , image_split = line.split(' ')
split[int(image_id)] = 'train' if int(image_split) else 'test'
line = fp.readline()
with open('images.txt') as fp:
line = fp.readline()
while line:
line = line.strip()
image_id , image_path = line.split(' ')
img_class = image_path.split('.')[0]
image_split = split[int(image_id)]
full_image_path = r'./images/{}'.format(image_path)
if image_split == 'train':
iter = train_count[img_class]
os.system('cp {} ./dataset/train/class_{}/{}.jpg'.format(full_image_path , img_class , str(iter)))
train_count[img_class] += 1
else:
iter = test_count[img_class]
os.system('cp {} ./dataset/test/class_{}/{}.jpg'.format(full_image_path , img_class , str(iter)))
test_count[img_class] += 1
line = fp.readline()