diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs index 66149ac5c0c910..5702ce32ec8e88 100644 --- a/rust/kernel/lib.rs +++ b/rust/kernel/lib.rs @@ -60,6 +60,7 @@ pub mod pid_namespace; pub mod prelude; pub mod print; pub mod rbtree; +pub mod revocable; pub mod security; pub mod seq_file; pub mod sizes; diff --git a/rust/kernel/revocable.rs b/rust/kernel/revocable.rs new file mode 100644 index 00000000000000..1e5a9d25c21b27 --- /dev/null +++ b/rust/kernel/revocable.rs @@ -0,0 +1,219 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Revocable objects. +//! +//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence +//! of a [`RevocableGuard`] ensures that objects remain valid. + +use crate::{bindings, prelude::*, sync::rcu, types::Opaque}; +use core::{ + marker::PhantomData, + ops::Deref, + ptr::drop_in_place, + sync::atomic::{AtomicBool, Ordering}, +}; + +/// An object that can become inaccessible at runtime. +/// +/// Once access is revoked and all concurrent users complete (i.e., all existing instances of +/// [`RevocableGuard`] are dropped), the wrapped object is also dropped. +/// +/// # Examples +/// +/// ``` +/// # use kernel::revocable::Revocable; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// fn add_two(v: &Revocable) -> Option { +/// let guard = v.try_access()?; +/// Some(guard.a + guard.b) +/// } +/// +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap(); +/// assert_eq!(add_two(&v), Some(30)); +/// v.revoke(); +/// assert_eq!(add_two(&v), None); +/// ``` +/// +/// Sample example as above, but explicitly using the rcu read side lock. +/// +/// ``` +/// # use kernel::revocable::Revocable; +/// use kernel::sync::rcu; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// fn add_two(v: &Revocable) -> Option { +/// let guard = rcu::read_lock(); +/// let e = v.try_access_with_guard(&guard)?; +/// Some(e.a + e.b) +/// } +/// +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap(); +/// assert_eq!(add_two(&v), Some(30)); +/// v.revoke(); +/// assert_eq!(add_two(&v), None); +/// ``` +#[pin_data(PinnedDrop)] +pub struct Revocable { + is_available: AtomicBool, + #[pin] + data: Opaque, +} + +// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the +// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that +// this isn't supported by the wrapped object. +unsafe impl Send for Revocable {} + +// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send` +// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop` +// implementation of the wrapped object from an arbitrary thread. +unsafe impl Sync for Revocable {} + +impl Revocable { + /// Creates a new revocable instance of the given data. + pub fn new(data: impl PinInit) -> impl PinInit { + pin_init!(Self { + is_available: AtomicBool::new(true), + data <- Opaque::pin_init(data), + }) + } + + /// Tries to access the revocable wrapped object. + /// + /// Returns `None` if the object has been revoked and is therefore no longer accessible. + /// + /// Returns a guard that gives access to the object otherwise; the object is guaranteed to + /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep + /// because another CPU may be waiting to complete the revocation of this object. + pub fn try_access(&self) -> Option> { + let guard = rcu::read_lock(); + if self.is_available.load(Ordering::Relaxed) { + // Since `self.is_available` is true, data is initialised and has to remain valid + // because the RCU read side lock prevents it from being dropped. + Some(RevocableGuard::new(self.data.get(), guard)) + } else { + None + } + } + + /// Tries to access the revocable wrapped object. + /// + /// Returns `None` if the object has been revoked and is therefore no longer accessible. + /// + /// Returns a shared reference to the object otherwise; the object is guaranteed to + /// remain accessible while the rcu read side guard is alive. In such cases, callers are not + /// allowed to sleep because another CPU may be waiting to complete the revocation of this + /// object. + pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> { + if self.is_available.load(Ordering::Relaxed) { + // SAFETY: Since `self.is_available` is true, data is initialised and has to remain + // valid because the RCU read side lock prevents it from being dropped. + Some(unsafe { &*self.data.get() }) + } else { + None + } + } + + /// # Safety + /// + /// Callers must ensure that there are no more concurrent users of the revocable object. + unsafe fn revoke_internal(&self) { + if self.is_available.swap(false, Ordering::Relaxed) { + if SYNC { + // SAFETY: Just an FFI call, there are no further requirements. + unsafe { bindings::synchronize_rcu() }; + } + + // SAFETY: We know `self.data` is valid because only one CPU can succeed the + // `compare_exchange` above that takes `is_available` from `true` to `false`. + unsafe { drop_in_place(self.data.get()) }; + } + } + + /// Revokes access to and drops the wrapped object. + /// + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`], + /// expecting that there are no concurrent users of the object. + /// + /// # Safety + /// + /// Callers must ensure that there are no more concurrent users of the revocable object. + pub unsafe fn revoke_nosync(&self) { + // SAFETY: By the safety requirement of this function, the caller ensures that nobody is + // accessing the data anymore and hence we don't have to wait for the grace period to + // finish. + unsafe { self.revoke_internal::() } + } + + /// Revokes access to and drops the wrapped object. + /// + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`]. + /// + /// If there are concurrent users of the object (i.e., ones that called + /// [`Revocable::try_access`] beforehand and still haven't dropped the returned guard), this + /// function waits for the concurrent access to complete before dropping the wrapped object. + pub fn revoke(&self) { + // SAFETY: By passing `true` we ask `revoke_internal` to wait for the grace period to + // finish. + unsafe { self.revoke_internal::() } + } +} + +#[pinned_drop] +impl PinnedDrop for Revocable { + fn drop(self: Pin<&mut Self>) { + // Drop only if the data hasn't been revoked yet (in which case it has already been + // dropped). + // SAFETY: We are not moving out of `p`, only dropping in place + let p = unsafe { self.get_unchecked_mut() }; + if *p.is_available.get_mut() { + // SAFETY: We know `self.data` is valid because no other CPU has changed + // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU + // holds the only reference (mutable) to `self` now. + unsafe { drop_in_place(p.data.get()) }; + } + } +} + +/// A guard that allows access to a revocable object and keeps it alive. +/// +/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context +/// holding the RCU read-side lock. +/// +/// # Invariants +/// +/// The RCU read-side lock is held while the guard is alive. +pub struct RevocableGuard<'a, T> { + data_ref: *const T, + _rcu_guard: rcu::Guard, + _p: PhantomData<&'a ()>, +} + +impl RevocableGuard<'_, T> { + fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self { + Self { + data_ref, + _rcu_guard: rcu_guard, + _p: PhantomData, + } + } +} + +impl Deref for RevocableGuard<'_, T> { + type Target = T; + + fn deref(&self) -> &Self::Target { + // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is + // guaranteed to remain valid. + unsafe { &*self.data_ref } + } +}