|
| 1 | +use super::{EdwardsPoint, EdwardsScalar}; |
| 2 | +use crate::field::FieldElement; |
| 3 | +use subtle::{Choice, ConditionallyNegatable, ConditionallySelectable, ConstantTimeEq}; |
| 4 | + |
| 5 | +pub(super) fn scalar_mul(point: &EdwardsPoint, scalar: &EdwardsScalar) -> EdwardsPoint { |
| 6 | + let mut result = ExtensiblePoint::IDENTITY; |
| 7 | + |
| 8 | + // Recode Scalar |
| 9 | + let scalar = scalar.to_radix_16(); |
| 10 | + |
| 11 | + let lookup = LookupTable::from(point); |
| 12 | + |
| 13 | + for i in (0..113).rev() { |
| 14 | + result = result.double(); |
| 15 | + result = result.double(); |
| 16 | + result = result.double(); |
| 17 | + result = result.double(); |
| 18 | + |
| 19 | + // The mask is the top bit, will be 1 for negative numbers, 0 for positive numbers |
| 20 | + let mask = scalar[i] >> 7; |
| 21 | + let sign = mask & 0x1; |
| 22 | + // Use the mask to get the absolute value of scalar |
| 23 | + let abs_value = ((scalar[i] + mask) ^ mask) as u32; |
| 24 | + |
| 25 | + let mut neg_P = lookup.select(abs_value); |
| 26 | + neg_P.conditional_negate(Choice::from((sign) as u8)); |
| 27 | + |
| 28 | + result = (EdwardsPoint::from(result) + neg_P).into(); |
| 29 | + } |
| 30 | + |
| 31 | + result.into() |
| 32 | +} |
| 33 | + |
| 34 | +struct ExtensiblePoint { |
| 35 | + X: FieldElement, |
| 36 | + Y: FieldElement, |
| 37 | + Z: FieldElement, |
| 38 | + T1: FieldElement, |
| 39 | + T2: FieldElement, |
| 40 | +} |
| 41 | + |
| 42 | +impl ExtensiblePoint { |
| 43 | + const IDENTITY: ExtensiblePoint = ExtensiblePoint { |
| 44 | + X: FieldElement::ZERO, |
| 45 | + Y: FieldElement::ONE, |
| 46 | + Z: FieldElement::ONE, |
| 47 | + T1: FieldElement::ZERO, |
| 48 | + T2: FieldElement::ONE, |
| 49 | + }; |
| 50 | + |
| 51 | + fn double(&self) -> Self { |
| 52 | + let A = self.X.square(); |
| 53 | + let B = self.Y.square(); |
| 54 | + let C = self.Z.square().double(); |
| 55 | + let D = A; |
| 56 | + let E = (self.X + self.Y).square() - A - B; |
| 57 | + let G = D + B; |
| 58 | + let F = G - C; |
| 59 | + let H = D - B; |
| 60 | + Self { |
| 61 | + X: E * F, |
| 62 | + Y: G * H, |
| 63 | + Z: F * G, |
| 64 | + T1: E, |
| 65 | + T2: H, |
| 66 | + } |
| 67 | + } |
| 68 | +} |
| 69 | + |
| 70 | +impl From<ExtensiblePoint> for EdwardsPoint { |
| 71 | + fn from(value: ExtensiblePoint) -> Self { |
| 72 | + Self { |
| 73 | + X: value.X, |
| 74 | + Y: value.Y, |
| 75 | + Z: value.Z, |
| 76 | + T: value.T1 * value.T2, |
| 77 | + } |
| 78 | + } |
| 79 | +} |
| 80 | + |
| 81 | +impl From<EdwardsPoint> for ExtensiblePoint { |
| 82 | + fn from(value: EdwardsPoint) -> Self { |
| 83 | + Self { |
| 84 | + X: value.X, |
| 85 | + Y: value.Y, |
| 86 | + Z: value.Z, |
| 87 | + T1: value.T, |
| 88 | + T2: FieldElement::ONE, |
| 89 | + } |
| 90 | + } |
| 91 | +} |
| 92 | + |
| 93 | +pub struct LookupTable([EdwardsPoint; 8]); |
| 94 | + |
| 95 | +/// Precomputes odd multiples of the point passed in |
| 96 | +impl From<&EdwardsPoint> for LookupTable { |
| 97 | + fn from(P: &EdwardsPoint) -> LookupTable { |
| 98 | + let mut table = [*P; 8]; |
| 99 | + |
| 100 | + for i in 1..8 { |
| 101 | + table[i] = P + table[i - 1]; |
| 102 | + } |
| 103 | + |
| 104 | + LookupTable(table) |
| 105 | + } |
| 106 | +} |
| 107 | + |
| 108 | +impl LookupTable { |
| 109 | + /// Selects a projective niels point from a lookup table in constant time |
| 110 | + pub fn select(&self, index: u32) -> EdwardsPoint { |
| 111 | + let mut result = EdwardsPoint::IDENTITY; |
| 112 | + |
| 113 | + for i in 1..9 { |
| 114 | + let swap = index.ct_eq(&(i as u32)); |
| 115 | + result.conditional_assign(&self.0[i - 1], swap); |
| 116 | + } |
| 117 | + result |
| 118 | + } |
| 119 | +} |
0 commit comments