-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans-test.py
45 lines (38 loc) · 1.09 KB
/
kmeans-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import matplotlib.pyplot as plt
from matplotlib import style
style.use('ggplot')
import numpy as np
from sklearn.cluster import KMeans
from sklearn import preprocessing
from scipy.spatial import distance
import pandas as pd
# correct = 0
# for i in range(len(x)):
# predict_me = np.array(x[i].astype(float))
# predict_me = predict_me.reshape(-1, len(predict_me))
# prediction = clf.predict(predict_me)
# if prediction[0] == y[i]:
# correct+=1
def main():
data = pd.read_csv('result/norm_data.csv', header=None)
clf = KMeans(n_clusters=3)
clf.fit_predict(data)
print(clf.cluster_centers_)
print(clf.labels_)
centroids = clf.cluster_centers_
# 10 clusters
labels = clf.labels_
correct_answer = 0
for i in range(0,50):
if labels[i] == 0:
correct_answer+=1
for i in range(50,100):
if labels[i] == 1:
correct_answer+=1
for i in range(100,150):
if labels[i] == 2:
correct_answer+=1
accuracy = (correct_answer/150)*100
print(accuracy)
if __name__ == "__main__":
main()