-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
45 lines (32 loc) · 1.52 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import torch
from torchvision import datasets, transforms
import imagefolder
def cifar10_png_wo_norm(dataroot, batch_size):
path_train = os.path.join(dataroot, 'train')
train_dataset = datasets.ImageFolder(root=path_train, transform=transforms.Compose([
transforms.ToTensor(),
]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
path_test = os.path.join(dataroot, 'test')
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(root=path_test, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=100, shuffle=False,
num_workers=4)
return train_loader, test_loader
def cifar100_png_wo_norm(dataroot, batch_size):
path_train = os.path.join(dataroot, 'train')
train_dataset = imagefolder.ImageFolder(root=path_train, transform=transforms.Compose([
transforms.ToTensor(),
]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
path_test = os.path.join(dataroot, 'test')
test_loader = torch.utils.data.DataLoader(
imagefolder.ImageFolder(root=path_test, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=100, shuffle=False,
num_workers=4)
return train_loader, test_loader