-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
67 lines (50 loc) · 1.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import random
import torch
import torch.nn.functional as F
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def set_random_seeds(random_seed):
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
def PGD_attack(x, y, model, device):
K = 10
eps = 8.0 / 255.0
step_size = 2.0 / 255.0
model.eval()
x_adv = x + torch.FloatTensor(x.size()).uniform_(-eps, eps).to(device)
for _ in range(K):
x_adv.requires_grad=True
pred = F.cross_entropy(model(x_adv)[-1], y)
pred.backward()
grad = x_adv.grad.clone()
# update x_adv
x_adv = x_adv.detach() + step_size * grad.sign()
x_adv = torch.min(torch.max(x_adv, x - eps), x + eps)
return x_adv
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res