Skip to content

Latest commit

 

History

History
41 lines (32 loc) · 1.94 KB

MODELZOO.md

File metadata and controls

41 lines (32 loc) · 1.94 KB

Model Zoo

Evaluation Metrics

We follow the same evaluation protocols and metrics with Scene-Graph-Benchmark.pytorch(Visual Genome dataset) and Graphical Contrastive Losses for Scene Graph Parsing (Openimage V4/V6)

Reported Results

Here we list the SGGen results can be produced by our codebase with X-101-FPN backbone. We reimplement those methods according the official implementation released by author.

∗ denotes the LVIS resampling is applied for this model.

VG

Model(SGGen) mR@50 mR@100 R@50 R@100 head body tail
RelDN 6.0 7.3 31.4 35.9 34.1 6.6 1.1
Motifs 5.5 6.8 32.1 36.9 36.1 7.0 0.0
Motifs∗ 7.7 9.4 31.7 35.8 34.2 8.6 2.1
VCTree 10.9 13.5 29.8 34.6 - - -
G-RCNN 5.8 6.7 29.78 32.8 28.6 6.5 0.1
MSDN 6.1 7.2 31.9 36.6 35.1 5.5 0.0
Unbiased 9.3 11.1 19.4 23.2 24.5 13.9 0.1
GPS-Net 6.79 8.6 31.1 35.9 34.5 7.0 1.0
GPS-Net* 7.4 9.5 27.8 32.1 30.4 8.5 3.8
BGNN 10.9 13.55 29.8 34.6 33.4 13.4 6.4

OIv6

Model(SGGen) mR@50 R@50 wmAP_rel wmAP_phr score_wtd
RelDN 33.98 73.08 32.16 33.39 40.84
RelDN* 37.20 75.34 33.21 34.31 41.97
VCTree 33.91 74.08 34.16 33.11 40.21
G-RCNN 34.04 74.51 33.15 34.21 41.84
Motifs 32.68 71.63 29.91 31.59 38.93
Unbiased 35.47 69.30 30.74 32.80 39.27
GPS-Net 35.26 74.81 32.85 33.98 41.69
GPS-Net* 38.93 74.74 32.77 33.87 41.60
BGNN 41.71 74.96 33.83 34.87 42.47