forked from jbwang1997/OBBDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
s2anet_r50_fpn_1x_dota10.py
125 lines (121 loc) · 3.97 KB
/
s2anet_r50_fpn_1x_dota10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
_base_ = [
'../_base_/datasets/dota.py',
'../_base_/schedules/schedule_1x.py',
'../../_base_/default_runtime.py'
]
optimizer = dict(type='SGD', lr=0.0025, momentum=0.9, weight_decay=0.0001)
# RetinaNet nms is slow in early stage, disable every epoch evaluation
evaluation = None
model = dict(
type='S2ANet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='S2AHead',
feat_channels=256,
align_type='AlignConv',
heads=[
dict(
type='ODMHead',
num_classes=15,
in_channels=256,
feat_channels=256,
stacked_convs=2,
anchor_generator=dict(
type='Theta0AnchorGenerator',
scales=[4],
ratios=[1.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='OBB2OBBDeltaXYWHTCoder',
target_means=(0., 0., 0., 0., 0.),
target_stds=(1., 1., 1., 1., 1.)),
reg_decoded_bbox=False,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
),
dict(
type='ODMHead',
num_classes=15,
in_channels=256,
feat_channels=256,
stacked_convs=2,
with_orconv=True,
bbox_coder=dict(
type='OBB2OBBDeltaXYWHTCoder',
target_means=(0., 0., 0., 0., 0.),
target_stds=(1., 1., 1., 1., 1.)),
reg_decoded_bbox=False,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
)
]
)
)
# training and testing settings
train_cfg = [
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1,
iou_calculator=dict(type='OBBOverlaps')),
allowed_border=-1,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1,
iou_calculator=dict(type='OBBOverlaps')),
allowed_border=-1,
pos_weight=-1,
debug=False
),
]
test_cfg = dict(
skip_cls=[True, False],
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='obb_nms', iou_thr=0.1),
max_per_img=2000)
# Final Result
# mAP: 0.7404564819386658
# ap of each class: plane:0.8878974204378595, baseball-diamond:0.8071806291320748, bridge:0.5260062844100715,
# ground-track-field:0.733263720865298, small-vehicle:0.7863866711912353, large-vehicle:0.7897973201340522,
# ship:0.8766842782424621, tennis-court:0.9090225563909776, basketball-court:0.8498791032236941,
# storage-tank:0.8440616190813502, soccer-ball-field:0.6071881997157468, roundabout:0.661790586216465,
# harbor:0.6948527168745157, swimming-pool:0.6631525938702733, helicopter:0.4696835292939079