-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
280 lines (228 loc) · 16.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import sys
import warnings
warnings.filterwarnings('ignore',category=FutureWarning)
from collections import Counter
from src.get_masks.evaluate_quality_masks import Quality_masks
from src.classifiers.classifier_all import All_classifier, evaluate_all
from src.ToT.table_of_truth import ToT
from src.data_classifier.Generator_proba_classifier import Genrator_data_prob_classifier
from src.get_masks.get_masks import Get_masks
from src.nn.nn_model_ref import NN_Model_Ref
from src.data_cipher.create_data import Create_data_binary
from src.utils.initialisation_run import init_all_for_run, init_cipher
from src.utils.config import Config
import argparse
from src.utils.utils import str2bool, two_args_str_int, two_args_str_float, str2list, transform_input_type, str2hexa
import numpy as np
import pandas as pd
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# initiate the parser
print("TODO: MULTITHREADING + ASSERT PATH EXIST DEPEND ON CONDITION + save DDT + deleate some dataset")
config = Config()
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=config.general.seed, type=two_args_str_int, choices=[i for i in range(100)])
parser.add_argument("--device", default=config.general.device, type=two_args_str_int, choices=[i for i in range(100)])
parser.add_argument("--logs_tensorboard", default=config.general.logs_tensorboard)
parser.add_argument("--models_path", default=config.general.models_path)
parser.add_argument("--models_path_load", default=config.general.models_path_load)
parser.add_argument("--cipher", default=config.general.cipher, choices=["speck", "simon", "aes228", "aes224", "simeck", "gimli"])
parser.add_argument("--nombre_round_eval", default=config.general.nombre_round_eval, type=two_args_str_int)
parser.add_argument("--inputs_type", default=config.general.inputs_type, type=transform_input_type)
parser.add_argument("--word_size", default=config.general.word_size, type=two_args_str_int)
parser.add_argument("--alpha", default=config.general.alpha, type=two_args_str_int)
parser.add_argument("--beta", default=config.general.beta, type=two_args_str_int)
parser.add_argument("--type_create_data", default=config.general.type_create_data, choices=["normal", "real_difference"])
parser.add_argument("--diff", default=config.train_nn.diff, type=str2hexa)
parser.add_argument("--retain_model_gohr_ref", default=config.train_nn.retain_model_gohr_ref, type=str2bool)
parser.add_argument("--load_special", default=config.train_nn.load_special, type=str2bool)
parser.add_argument("--finetunning", default=config.train_nn.finetunning, type=str2bool)
parser.add_argument("--model_finetunne", default=config.train_nn.model_finetunne, choices=["baseline", "cnn_attention", "multihead", "deepset", "baseline_bin"])
parser.add_argument("--load_nn_path", default=config.train_nn.load_nn_path)
parser.add_argument("--countinuous_learning", default=config.train_nn.countinuous_learning, type=str2bool)
parser.add_argument("--curriculum_learning", default=config.train_nn.curriculum_learning, type=str2bool)
parser.add_argument("--nbre_epoch_per_stage", default=config.train_nn.nbre_epoch_per_stage, type=two_args_str_int)
parser.add_argument("--a_bit", default=config.train_nn.a_bit, type=two_args_str_int)
parser.add_argument("--type_model", default=config.train_nn.type_model, choices=["baseline", "cnn_attention", "multihead", "deepset", "baseline_bin", "baseline_bin_v2"])
parser.add_argument("--nbre_sample_train", default=config.train_nn.nbre_sample_train, type=two_args_str_int)
parser.add_argument("--nbre_sample_eval", default=config.train_nn.nbre_sample_eval, type=two_args_str_int)
parser.add_argument("--num_epochs", default=config.train_nn.num_epochs, type=two_args_str_int)
parser.add_argument("--batch_size", default=config.train_nn.batch_size, type=two_args_str_int)
parser.add_argument("--loss_type", default=config.train_nn.loss_type, choices=["BCE", "MSE", "SmoothL1Loss", "CrossEntropyLoss", "F1"])
parser.add_argument("--lr_nn", default=config.train_nn.lr_nn, type=two_args_str_float)
parser.add_argument("--weight_decay_nn", default=config.train_nn.weight_decay_nn, type=two_args_str_float)
parser.add_argument("--momentum_nn", default=config.train_nn.momentum_nn, type=two_args_str_float)
parser.add_argument("--base_lr", default=config.train_nn.base_lr, type=two_args_str_float)
parser.add_argument("--max_lr", default=config.train_nn.max_lr, type=two_args_str_float)
parser.add_argument("--demicycle_1", default=config.train_nn.demicycle_1, type=two_args_str_int)
parser.add_argument("--optimizer_type", default=config.train_nn.optimizer_type, choices=["Adam", "AdamW", "SGD"])
parser.add_argument("--scheduler_type", default=config.train_nn.scheduler_type, choices=["CyclicLR", "None"])
parser.add_argument("--numLayers", default=config.train_nn.numLayers, type=two_args_str_int)
parser.add_argument("--limit", default=config.train_nn.limit, type=two_args_str_int)
parser.add_argument("--kstime", default=config.train_nn.kstime, type=two_args_str_int)
parser.add_argument("--out_channel0", default=config.train_nn.out_channel0, type=two_args_str_int)
parser.add_argument("--out_channel1", default=config.train_nn.out_channel1, type=two_args_str_int)
parser.add_argument("--hidden1", default=config.train_nn.hidden1, type=two_args_str_int)
parser.add_argument("--hidden2", default=config.train_nn.hidden2, type=two_args_str_int)
parser.add_argument("--kernel_size0", default=config.train_nn.kernel_size0, type=two_args_str_int)
parser.add_argument("--kernel_size1", default=config.train_nn.kernel_size1, type=two_args_str_int)
parser.add_argument("--num_workers", default=config.train_nn.num_workers, type=two_args_str_int)
parser.add_argument("--clip_grad_norm", default=config.train_nn.clip_grad_norm, type=two_args_str_float)
parser.add_argument("--end_after_training", default=config.train_nn.end_after_training, type=str2bool)
parser.add_argument("--load_masks", default=config.getting_masks.load_masks, type=str2bool)
parser.add_argument("--file_mask", default=config.getting_masks.file_mask)
parser.add_argument("--nbre_max_masks_load", default=config.getting_masks.nbre_max_masks_load, type=two_args_str_int)
parser.add_argument("--nbre_generate_data_train_val", default=config.getting_masks.nbre_generate_data_train_val, type=two_args_str_int)
parser.add_argument("--nbre_necessaire_val_SV", default=config.getting_masks.nbre_necessaire_val_SV, type=two_args_str_int)
parser.add_argument("--nbre_max_batch", default=config.getting_masks.nbre_max_batch, type=two_args_str_int)
parser.add_argument("--liste_segmentation_prediction", default=config.getting_masks.liste_segmentation_prediction)
parser.add_argument("--liste_methode_extraction", default=config.getting_masks.liste_methode_extraction, type=transform_input_type)
parser.add_argument("--liste_methode_selection", default=config.getting_masks.liste_methode_selection, type=transform_input_type)
parser.add_argument("--hamming_weigth", default=config.getting_masks.hamming_weigth, type=str2list)
parser.add_argument("--thr_value", default=config.getting_masks.thr_value, type=str2list)
parser.add_argument("--research_new_masks", default=config.getting_masks.research_new_masks, type=str2bool)
parser.add_argument("--save_fig_plot_feature_before_mask", default=config.getting_masks.save_fig_plot_feature_before_mask, type=str2bool)
parser.add_argument("--end_after_step2", default=config.getting_masks.end_after_step2, type=str2bool)
parser.add_argument("--create_new_data_for_ToT", default=config.make_ToT.create_new_data_for_ToT, type=str2bool)
parser.add_argument("--create_ToT_with_only_sample_from_cipher", default=config.make_ToT.create_ToT_with_only_sample_from_cipher, type=str2bool)
parser.add_argument("--nbre_sample_create_ToT", default=config.make_ToT.nbre_sample_create_ToT, type=two_args_str_int)
parser.add_argument("--create_new_data_for_classifier", default=config.make_data_classifier.create_new_data_for_classifier, type=str2bool)
parser.add_argument("--nbre_sample_train_classifier", default=config.make_data_classifier.nbre_sample_train_classifier, type=two_args_str_int)
parser.add_argument("--nbre_sample_val_classifier", default=config.make_data_classifier.nbre_sample_val_classifier, type=two_args_str_int)
parser.add_argument("--retrain_nn_ref", default=config.compare_classifer.retrain_nn_ref, type=str2bool)
parser.add_argument("--num_epch_2", default=config.compare_classifer.num_epch_2, type=two_args_str_int)
parser.add_argument("--batch_size_2", default=config.compare_classifer.batch_size_2, type=two_args_str_int)
parser.add_argument("--classifiers_ours", default=config.compare_classifer.classifiers_ours, type=str2list)
parser.add_argument("--retrain_with_import_features", default=config.compare_classifer.retrain_with_import_features, type=str2bool)
parser.add_argument("--keep_number_most_impactfull", default=config.compare_classifer.keep_number_most_impactfull, type=two_args_str_int)
parser.add_argument("--num_epch_our", default=config.compare_classifer.num_epch_our, type=two_args_str_int)
parser.add_argument("--batch_size_our", default=config.compare_classifer.batch_size_our, type=two_args_str_int)
parser.add_argument("--alpha_test", default=config.compare_classifer.alpha_test, type=two_args_str_float)
parser.add_argument("--quality_of_masks", default=config.compare_classifer.quality_of_masks, type=str2bool)
parser.add_argument("--end_after_step4", default=config.compare_classifer.end_after_step4, type=str2bool)
parser.add_argument("--eval_nn_ref", default=config.compare_classifer.eval_nn_ref, type=str2bool)
parser.add_argument("--compute_independance_feature", default=config.compare_classifer.compute_independance_feature, type=str2bool)
parser.add_argument("--load_data", default=config.compare_classifer.load_data, type=str2bool)
parser.add_argument("--path_to_test", default=config.compare_classifer.path_to_test)
parser.add_argument("--save_data_proba", default=config.compare_classifer.save_data_proba, type=str2bool)
parser.add_argument("--load_model_lgbm", default=config.make_data_classifier.load_model_lgbm, type=str2bool)
parser.add_argument("--load_model_ToT", default=config.make_ToT.load_model_ToT, type=str2bool)
args = parser.parse_args()
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#
print("---" * 100)
writer, device, rng, path_save_model, path_save_model_train, name_input = init_all_for_run(args)
print("LOAD CIPHER")
print()
cipher = init_cipher(args)
creator_data_binary = Create_data_binary(args, cipher, rng)
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
print("---" * 100)
print("STEP 1 : LOAD/ TRAIN NN REF")
print()
print("COUNTINUOUS LEARNING: "+ str(args.countinuous_learning) + " | CURRICULUM LEARNING: " + str(args.curriculum_learning) + " | MODEL: " + str(args.type_model))
print()
"""nombre_round_eval = args.nombre_round_eval
args.nombre_round_eval = nombre_round_eval - 2
nn_model_ref2 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train)
nn_model_ref2.epochs = 10
nn_model_ref2.train_general(name_input)
args.nombre_round_eval = nombre_round_eval - 1
nn_model_ref3 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train)
nn_model_ref3.epochs = 10
nn_model_ref3.net = nn_model_ref2.net
nn_model_ref3.train_general(name_input)
args.nombre_round_eval = nombre_round_eval
nn_model_ref = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train)
nn_model_ref.net = nn_model_ref3.net"""
nn_model_ref = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train)
if args.retain_model_gohr_ref:
nn_model_ref.train_general(name_input)
else:
#nn_model_ref.load_nn()
try:
if args.finetunning:
nn_model_ref.load_nn()
nn_model_ref.train_from_scractch(name_input + "fine-tune")
#nn_model_ref.eval(["val"])
else:
nn_model_ref.load_nn()
except:
print("ERROR")
print("NO MODEL AVALAIBLE FOR THIS CONFIG")
print("CHANGE ARGUMENT retain_model_gohr_ref")
print()
sys.exit(1)
if args.create_new_data_for_ToT and args.create_new_data_for_classifier:
del nn_model_ref.X_train_nn_binaire, nn_model_ref.X_val_nn_binaire, nn_model_ref.Y_train_nn_binaire, nn_model_ref.Y_val_nn_binaire
del nn_model_ref.c0l_train_nn, nn_model_ref.c0l_val_nn, nn_model_ref.c0r_train_nn, nn_model_ref.c0r_val_nn
del nn_model_ref.c1l_train_nn, nn_model_ref.c1l_val_nn, nn_model_ref.c1r_train_nn, nn_model_ref.c1r_val_nn
print("STEP 1 : DONE")
print("---" * 100)
if args.end_after_training:
sys.exit(1)
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
print("STEP 2 : GET MASKS")
print()
print("LOAD MASKS: "+ str(args.load_masks) + " | RESEARCH NEW: " + str(args.research_new_masks) + " | MODEL: " + str(args.liste_segmentation_prediction) +" " + str(args.liste_methode_extraction)+" " + str(args.liste_methode_selection)+" " + str(args.hamming_weigth)+" " + str(args.thr_value))
print()
get_masks_gen = Get_masks(args, nn_model_ref.net, path_save_model, rng, creator_data_binary, device)
if args.research_new_masks:
get_masks_gen.start_step()
get_masks_gen.save_masks(path_save_model)
del get_masks_gen.X_deltaout_train, get_masks_gen.X_eval, get_masks_gen.Y_tf, get_masks_gen.Y_eval
print("STEP 2 : DONE")
print("---" * 100)
if args.end_after_step2:
sys.exit(1)
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
print("STEP 3 : MAKE M-ODT")
print()
print("NEW DATA: "+ str(args.create_new_data_for_ToT) + " | PURE ToT: " + str(args.create_ToT_with_only_sample_from_cipher) )
print()
table_of_truth = ToT(args, nn_model_ref.net, path_save_model, rng, creator_data_binary, device, get_masks_gen.masks, nn_model_ref)
try:
import cPickle as pickle
except ImportError: # Python 3.x
import pickle
if args.load_model_ToT:
with open('ToT.p', 'rb') as fp:
table_of_truth.ToT = pickle.load(fp)
else:
table_of_truth.create_DDT()
with open('ToT.p', 'wb') as fp:
pickle.dump(table_of_truth.ToT, fp, protocol=pickle.HIGHEST_PROTOCOL)
del table_of_truth.c0l_create_ToT, table_of_truth.c0r_create_ToT
del table_of_truth.c1l_create_ToT, table_of_truth.c1r_create_ToT
print("STEP 3 : DONE")
print("---" * 100)
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
print("STEP 4 : CREATE DATA PROBA AND CLASSIFY")
print()
print("NEW DATA: "+ str(args.create_new_data_for_classifier))
print()
generator_data = Genrator_data_prob_classifier(args, nn_model_ref.net, path_save_model, rng, creator_data_binary, device, get_masks_gen.masks, nn_model_ref)
generator_data.create_data_g(table_of_truth)
#EVALUATE GOHR NN ON NEW DATASET
nn_model_ref.X_train_nn_binaire = generator_data.X_bin_train
nn_model_ref.X_val_nn_binaire = generator_data.X_bin_val
nn_model_ref.Y_train_nn_binaire = generator_data.Y_create_proba_train
nn_model_ref.Y_val_nn_binaire = generator_data.Y_create_proba_val
if args.eval_nn_ref:
nn_model_ref.eval_all(["train", "val"])
all_clfs = All_classifier(args, path_save_model, generator_data, get_masks_gen, nn_model_ref, table_of_truth)
#all_clfs.X_train_proba = np.concatenate((all_clfs.X_train_proba, X_feat_temp), axis = 1)
#all_clfs.X_eval_proba = np.concatenate((all_clfs.X_eval_proba, X_feat_temp_val), axis = 1)
all_clfs.classify_all()
if args.quality_of_masks:
qm = Quality_masks(args, path_save_model, generator_data, get_masks_gen, nn_model_ref, table_of_truth, all_clfs)
qm.start_all()
else:
qm = None
print("STEP 4 : DONE")
print("---" * 100)
if args.end_after_step4:
sys.exit(1)
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
print("STEP 5: START EVALUATE ClASSIFIERS")
print()
evaluate_all(all_clfs, generator_data, nn_model_ref, table_of_truth, qm, path_save_model)