-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCMMExamples.nb
15021 lines (14644 loc) · 700 KB
/
CMMExamples.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 701255, 15013]
NotebookOptionsPosition[ 672665, 14578]
NotebookOutlinePosition[ 673072, 14596]
CellTagsIndexPosition[ 673029, 14593]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Compound Matrix Method", "Title",
CellChangeTimes->{{3.71437917187782*^9,
3.714379176498895*^9}},ExpressionUUID->"f088044e-1e1d-4a4a-9586-\
300fbeac4765"],
Cell["\<\
Implementation using the Compound Matrix Method to calculate the Evans \
function, in order to solve boundary value eigenvalue problems.\
\>", "Subsubsection",
CellChangeTimes->{{3.7469478600485888`*^9,
3.7469478620761213`*^9}},ExpressionUUID->"fb4672d0-b5e3-4626-958c-\
1c3bcd29b05d"],
Cell[CellGroupData[{
Cell["Installation", "Chapter",
CellChangeTimes->{{3.73131153331354*^9,
3.731311536142145*^9}},ExpressionUUID->"79c0595c-62c3-499b-9713-\
e05df243f56c"],
Cell["\<\
The following command will install the most recent version from the \
PacletServer:\
\>", "Text",
CellChangeTimes->{{3.7276876542665205`*^9, 3.7276876568016253`*^9}, {
3.731736383675373*^9, 3.731736409434847*^9}, {3.7351015285097103`*^9,
3.73510152868131*^9}, {3.735281541590664*^9, 3.7352815618108206`*^9}, {
3.7469478417774553`*^9, 3.746947847442156*^9}, {3.746950174450857*^9,
3.746950175348768*^9}},ExpressionUUID->"6250ab7b-a45e-47fe-9be2-\
2fd6c776c7df"],
Cell[BoxData[{
RowBox[{"Needs", "[", "\"\<PacletManager`\>\"", "]"}], "\n",
RowBox[{"PacletInstall", "[",
RowBox[{"\"\<CompoundMatrixMethod\>\"", ",",
RowBox[{
"\"\<Site\>\"", "\[Rule]",
"\"\<http://raw.githubusercontent.com/paclets/PacletServer/master\>\""}]}]\
, "]"}]}], "Input",
CellChangeTimes->{{3.731128189868894*^9, 3.731128190041904*^9}, {
3.7313027297251663`*^9, 3.73130273203397*^9}, {3.7351015318325157`*^9,
3.73510153435972*^9}, {3.7352815659560575`*^9, 3.7352816065543795`*^9},
3.739099499292718*^9},ExpressionUUID->"45366525-f94a-4847-845c-\
e1e0ed862433"],
Cell["\<\
We need to load the package each time, so this is set as a initialization \
cell:\
\>", "Text",
CellChangeTimes->{{3.735281650719906*^9, 3.7352816547411356`*^9}, {
3.735281692393289*^9, 3.735281701828829*^9}, {3.746950063564744*^9,
3.7469500790842*^9}},ExpressionUUID->"e215e368-66ad-431d-abb2-dae56c6c44c9"],
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<CompoundMatrixMethod`\>\"", "]"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.735101811768119*^9, 3.735101811924119*^9}, {
3.735277744573326*^9, 3.7352777459374037`*^9}, {3.744335441609663*^9,
3.744335442159672*^9}, {3.7446818886597476`*^9, 3.7446818893157854`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"1ef829d4-5ce2-4ebc-add5-eace84d521ff"]
}, Open ]],
Cell[CellGroupData[{
Cell["Examples", "Chapter",
CellChangeTimes->{{3.7143790811474*^9,
3.714379084257451*^9}},ExpressionUUID->"62d6c353-9bf2-4d05-900a-\
68894507b3af"],
Cell[CellGroupData[{
Cell["Example 1: Second order equation with constant coefficients ", \
"Subchapter",
CellChangeTimes->{{3.7143818912972*^9, 3.7143818999653144`*^9}, {
3.7171308795933895`*^9, 3.7171308952752867`*^9}, 3.722084486294962*^9, {
3.7313110919405375`*^9,
3.7313111315698085`*^9}},ExpressionUUID->"82a46fee-76db-4504-80b2-\
43b15ea879db"],
Cell[TextData[{
"Second order ODE:",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"y", "''"}],
RowBox[{"(", "x", ")"}]}], " ", "+", " ",
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
RowBox[{"y", "(", "x", ")"}]}]}], " ", "=", "0"}]}], TraditionalForm]],
ExpressionUUID->"9fa6b3be-4575-4b42-9e2b-117ec2baf0b6"],
", subject to ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"y",
RowBox[{"(", "0", ")"}]}], "=",
RowBox[{
RowBox[{"y",
RowBox[{"(", "L", ")"}]}], "=", "0"}]}], TraditionalForm]],
ExpressionUUID->"c765dcd2-0fb7-4f98-9241-e9dbe9b015c7"],
". The roots to this can be found analytically to be",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{
FractionBox["n\[Pi]", "L"], ",", " ",
RowBox[{"n", " ", "\[Element]", " ", "\[DoubleStruckCapitalZ]"}]}]}],
TraditionalForm]],ExpressionUUID->"3cfc6735-2386-4597-a825-3a093de79788"],
". \nConverting to a matrix equation, we let ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["y", "1"], "=", "y"}], ",",
RowBox[{
SubscriptBox["y", "2"], "=",
RowBox[{"y", "'"}]}]}], TraditionalForm]],ExpressionUUID->
"0fad7b18-0d5c-4bfc-a70b-2f19d0d08167"],
", then ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["y", "1"], "'"}], "=",
SubscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["y", "2"], "'"}], "=",
RowBox[{
RowBox[{"-",
SuperscriptBox["\[Lambda]", "2"]}],
SubscriptBox["y", "1"]}]}]}], TraditionalForm]],ExpressionUUID->
"80e1dcb0-a796-4598-97a1-ca9bea7ecb6e"],
" and hence ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["y",
FontWeight->"Bold",
FontSlant->"Plain"], "'"}], " ", "=",
StyleBox[
RowBox[{"A", " ", "y"}],
FontWeight->"Bold",
FontSlant->"Plain"]}], TraditionalForm]],ExpressionUUID->
"f273c9fd-0d47-4d67-96f8-b19664a1821b"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{"A", "=",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "1"},
{
RowBox[{"-",
SuperscriptBox["\[Lambda]", "2"]}], "0"}
}], "\[NoBreak]", ")"}]}], TraditionalForm]],ExpressionUUID->
"05d69443-5b2f-44c3-986c-acc793db76f4"],
".\nThese boundary conditions can be written as matrices as ",
Cell[BoxData[
FormBox[
RowBox[{
StyleBox["B",
FontWeight->"Bold"],
StyleBox["=",
FontWeight->"Plain",
FontSlant->"Plain"],
RowBox[{
StyleBox["C",
FontWeight->"Bold"],
StyleBox["=",
FontWeight->"Plain",
FontSlant->"Plain"],
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0"},
{"0", "0"}
}], "\[NoBreak]", ")"}]}]}], TraditionalForm]],ExpressionUUID->
"cb1a390d-2943-46c2-b36c-ff62347c400d"],
". "
}], "Text",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQAWIQvan0B+f8Na8dr2e95gXRxwqyhEB0UvYUVRA95bXT
++9rXztGZHz+CKIPJN1k+AGkNX8LM4LohB2WZzx3v3bsiWo+B6I9u3Vegugt
oTtfgeibc+rfg+hpSh8/gej0fWK/QPSbcGcmLyA9NeI8G4gu4IvkA9FFZep+
IFpEyi8GRCcv3V4Eoq1/2JaBaJMlG6pBdJ5SRgOIFsiuaQHRsumRHSBaL+Dg
ahCdnp+/BkQf0eXL2Hb2tWPt+tBMEH2Lb/MhEL2UKeYIiJ56SucCiL5S9eES
iO6xkLkOovc6QOiea7zSKldeO/Io6yqCaP/1+9x0gPS8yQweIBoARPqsOw==
"],ExpressionUUID->"e8d6a1ef-aaee-4c9d-973f-17e8df999052"],
Cell[TextData[{
"We can then evaluate the Evans function at a given value of ",
Cell[BoxData[
FormBox[
RowBox[{"\[Lambda]", "=",
SubscriptBox["\[Lambda]", "0"]}], TraditionalForm]],ExpressionUUID->
"e24a04aa-c986-40d1-942c-537ec7ce73f3"],
", e.g. for",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{"\[Lambda]", "=", "1", " "}]}], TraditionalForm]],ExpressionUUID->
"e2faf029-886b-4644-b862-37c37b4eb687"],
" (with ",
Cell[BoxData[
FormBox[
RowBox[{"L", "=", "2"}], TraditionalForm]],ExpressionUUID->
"0a5c7ef4-bc61-4529-8428-cd71c0558fa3"],
"):"
}], "Text",
CellChangeTimes->{{3.735101676874877*^9,
3.7351016792017813`*^9}},ExpressionUUID->"5b117f0c-10a8-44eb-8709-\
c30be5b0a4fb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Evans", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "1"}], "}"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "1"},
{
RowBox[{"-",
SuperscriptBox["\[Lambda]", "2"]}], "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0"},
{"0", "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0"},
{"0", "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.735101820965935*^9, 3.7351018593834047`*^9}, {
3.735277692272334*^9, 3.735277697486633*^9}, {3.746861890199791*^9,
3.746861929467606*^9}, {3.7468620869417763`*^9, 3.746862092320079*^9}},
CellLabel->"In[59]:=",ExpressionUUID->"544a01cf-7c40-4163-a2a9-dde289ced45a"],
Cell[BoxData["0.9092971004713211`"], "Output",
CellChangeTimes->{
3.7351018640865126`*^9, {3.735277689909199*^9, 3.735277697908657*^9},
3.7352918819523544`*^9, {3.7352919205745635`*^9, 3.7352919317792044`*^9},
3.735295022123962*^9, 3.7352997744136305`*^9, 3.7407158028578386`*^9,
3.7443352897508106`*^9, {3.746861860726471*^9, 3.746861929858885*^9}, {
3.746861966987782*^9, 3.746862000053278*^9}, 3.746862092620523*^9},
CellLabel->"Out[59]=",ExpressionUUID->"22a59b78-308c-49ae-bf47-bf26659836a5"]
}, Open ]],
Cell["\<\
This function is analytic, and its zeroes correspond to eigenvalues of the \
original system:\
\>", "Text",
CellChangeTimes->{{3.7220731683286114`*^9, 3.722073202599571*^9}, {
3.7220734325517235`*^9, 3.7220734681667604`*^9}, {3.731732124931304*^9,
3.731732140890217*^9}},ExpressionUUID->"6211ca2d-79e9-4588-82b5-\
04abb72ef9a9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"L", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evans", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "\[Lambda]0"}], "}"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "1"},
{
RowBox[{"-",
SuperscriptBox["\[Lambda]", "2"]}], "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0"},
{"0", "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0"},
{"0", "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]0", ",",
RowBox[{"-", "12"}], ",", "12"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[Lambda]\>\"", ",", "\"\<D(\[Lambda])\>\""}], "}"}]}],
",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.714785551046855*^9, 3.7147856233009872`*^9}, {
3.714786054824669*^9, 3.7147860653822727`*^9}, {3.7220716837616987`*^9,
3.7220716927592134`*^9}, {3.7220718625829268`*^9,
3.7220718625849266`*^9}, {3.722071967175909*^9, 3.722072002984957*^9}, {
3.722072945496866*^9, 3.7220729631678762`*^9}, 3.731732143029339*^9, {
3.735101871075325*^9, 3.7351018730771284`*^9}, {3.735299827112645*^9,
3.7352998643107724`*^9}, {3.7468620944633713`*^9, 3.746862096037869*^9}},
CellLabel->"In[60]:=",ExpressionUUID->"97e5be86-542e-4a7c-bc5f-593976a416a2"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwUl3c81f8Xx+29956XKyGhEHp/SmVFUlSyKglZlfAtISOzSDIi2SmSvXm/
7c219wxZIdnz5/fXfZzH+9zzeb3OOfe+P0/h+44GD0mIiIjyyYmI/v/54GfY
ytERHr14zHo1/XoeZNvjEVfZx6O3lRPxGi55sPZKqonLNh61VgZtjcbkQfGx
kqalVTyKqbz6aXY0D/afuEQk8QeP3BYvPrt5mAcDnreffTCPRwE0Ko7Z/Plw
ge5X8uAkHrns7jlK3smHsbfth9jG8CgvPOvepef58GrKFpP+EB718RtcuxSW
D3+o0HnUd+FR7tqZL8vV+dDMPzKfuAOPGP4lxnwcyocM3UKLqi14dJq8OZX3
bz50sj1zO68GjyKUNPsqeQqgcCF8twzxiP4omX5QugB2EWvXnSjHo3+8Zu6t
oAD66PbsWRbjkXFSa0uUfgFUiDGTS8jHoySloBxliwI4Mz1nPZyNR7KJ35ez
HQpgpOyzLxw/8OgVFnpt/2UBvOJ+0Hv9Gx5JZTV+5wkogFsN/nRvU4/1Jz+e
pPlQANNZWdQbE/FIjpV3rCWuAN42j/uPNB6PnHGGESapBZA6Qzz7/Cc8skjw
pC/PLIClm9mz/0XiURbtf5HzuQXw8UUV/oJwPKrxX4qaLiqAfO/qbqy+w6Ns
74A3mWUFsG3wWtDJYDwK6yf7hVUWQA+xIWTlj0dURSeVE2EBPPXEcivRB48O
Z64Kth3HE+XL0qOeeLSrFXGm9jj/PdV/llzueNR1FCr2prwAXrxJGnvDDY+I
npIkspQUwH9f3na+c8YjmuVH923yC2DKIidVsxMeGXBQngzKKoA3FZPOk9vj
kWXi5RrnrwWQ3EfqOWaDR51H13clvhTAwvbCjJcPj+v3nulO+1gArXguTBXe
wyPpeMX45aACyGnVwrVmikfp1VgpkWcBbMwxvCZtjEe4CM6w0ScF8L+DcT9r
IzzSde4L9XtQACW1bMuTDfBo/oHB6Z0bBTBkwuMEj85x/x2ETS+fLoBqUtQW
hhp45COVsS0gUACXXT9EhqnjUWVi3K166gKoz5hOSqmKR6jQodJrNB8S35U7
d1EJj1okWeg/1uXD3LRyp1cKeOQt3U/2IjMfsp7vHP0ndby/BmFdpS75sDbw
LtupE8fzu6omyW2cD517Z7RtxfDo1K09KV3VfNhnt1s0wY9HaTd2n6kc5MFP
saLhbQx4dE732oLRkzz4XTYmsYgGj8639HDpaubB0jqGnEQKPGLx6lv5y58H
h1Z2Op4fiiP9EC9Sg7pcyHOJQC+wLI4SGH2pishyoeTgZX6qBXFEnpNyw74z
B55zKJNamxFHQXxTDHNxOdA4Ok2nflQcOVdFmZ2VzYGxS+6BDm3iqBtV7gVq
ZsPM12vRt5vEUd1pbvZi2mxYzmGdfrFOHHldrnALiP0JR7AbDRwV4sgmq6aT
7nMW5Pt4ghxmiqOluMR3J99kwji1Pi/GEHHUyujgQbb9FWZ26YTt+IujQVun
wVHTr7D8UdWXXz7iyOAZt8JOVRoceZ9ZWfRSHN1MulvJ65cK+We9980fi6Me
aXnEv50E49+dcsvWPs4fzNxiV4iFX8YDHK9Ti6OXiqXnVghO0IKWqsOLXBxp
ElTq7D9YQRFFf5lsYnF09lZuccWREUx75/eHYVcMUf3JlFS1NgRZat6PWxfE
0N0XudvUX16C8tiXjzRaxRBp7UJrInU4GLrlYK4WKoYO1558TBpLBnE+fyrt
gsXQsNX37MtvUoDZTzuBOH8xNEtrd7QtlQqmKB6P7nqKofpl4qc2rmlgvuDR
3WInMWRaqPnR8igdbLPeuyVvIIYiF/bovbt/gFIwUXhfTwxp+jDyFTzKAu6P
zTnCtcXQb07ykvu7WYCoxrR39aIYii7Jp/SjzwaUT41vZMmLobX2X1+0cDmA
g3Dj2gl2MdSqVawdJZ4HuNvx/Y+ZxdBJveiJO/fyAF/rnlkWvRhaDxn3x8Xm
AeHGZAd5CjE0Htn+XwVtPpBC/96qbeEQ+nWtLG4iH5yqbGD3+odD86eUGU6x
FgC58tjP1Ss4lBvT4JB5qQAoFqv/0JjDobnmVA6TlAJwMftD6/VBHEqJOG+g
alQILmc9uhnRi0Pq8h9IezwLgWamykhfJw7hGu2KQHoh0E3/tXi3GYd8dlFp
wEYh0E8rehZfj0M91X7bFjxFwCAleG+iGofo3vCxkZ4vArcT5GmtynColTBg
Gvu6CNyNp/yQXoRDJhK0xG8Ti4BZ3DDPYh4O/QuuswKoCFhG+0g6ZR7ry7EU
G9spAo8ib+XmpuNQPopxqWcrBrYRJ89tpOBQUu+m8yOZYuAY1q314jMO3Tok
a2kxLQZP333tLI/BIdsAmcTgZ8XAOeTlnaOPOHQZ9Qse+BcD16BrkxfCcSjt
gk21QGwxeBEgauP77thPEDfdSmYxePVma7U+CIdcRm/8Z1dRDLx8W9yo/XGo
LkHe+2NrMfDx/kJ01edYj9nYgvVQMXjj9SzgnScOxSiqOc/MFoNADw2mzpc4
JIBj+Uu9VgxC3HmjWd1w6FfxHY3evWLw7sWKoJEzDtmte3lcISsB791qvkY7
4VDpePFnE9oSEOESdWrYDoconW2rOJhLQKTz4yJ+GxzyPanO48xeAmKeAmDx
EIduVn1cfMZVAuKcWBuS7uFQZpRVMDtPCfji8FtvxhSHHGI23W8fx0l2ZX14
YxxSDC5eU+EuASm2oWa2RjjUWdQVDjlKwFfrB7OZBjiEmT4l/cVSAr5bKTqs
6OGQJJonTqMvAZmWtJundXDolXr9AyrKEvDz/vgrZw0cYjnpzkFzVAxyLfLI
i9Rx6PwI4MvYKAYFZv5vd8Bxv2UlfRYXikGxyV12VVUcajhNYdAyVgxKjU99
9lDCoVU5bkvtzmJQcZtUrEoBhz7rENtZVxcDZNSfSXr6eB9NZh6K5xaD6psZ
Clekceii1pkPvgnFoFH/xqUWseN9+Uc5gvuvGEhGs6SWC+PQFusyt+e9436P
d5Jn8ePQpyldk/OaxUDfQb8hjB2HIuUSZ1eYjvUWMEp4M+PQkt9jrum1IsB2
0B7wjB6H3Ct33l/oLgIDwbraRuQ49CwZHqmFFoFz3XQZGsTH8/G23xy3LQJx
PK20ygeiqEcvDPt7qQhYfNNu490QRcavXhfZrBeCuXoN/clpUTQ6/0xkCSsE
2gyUOV0ToijE8/nuBaZCkGlYz1w7IooO7z924xorAE7Tl7rTekRR3I+W39ef
F4Bt4otGdrWiyIHIK/lyeD4w1iIuMkWi6DapH8WKYT4oD0Oc18pFUbTj58+y
XPnASxAMns4XRWkPw0mCovMAlZqqyVayKFKaj+HeDcgFtr575XNfRBFLBeN0
44Vc0NpSyj8UK4rqpEk9dHdyQJix8nj5B1GUdEI1JcAyB3C5nb3v7SOKsjg/
ngRS2UAiT9aa/sHx80RxRvbUGSBod6Xx0EwUcYh+7dw3/A6WLvw8sWosiqgY
9M+EJnwD2QTpxS4DURS+UEw7dyodKC1LOkRfFEWqLT/kviilAs0TYs6iIqKI
4szgmYjtz8CEchlnLCCKitYgzTW3OOA0U9gbxiOKzra8+m9g4xOIStRUPGQR
RVdW/NeyFqLALLfd7gCpKFrtC5D/UfEe+NLkeb2bEUGqxLVX8x2cQdUi9nYn
XQRF2W2WuWdGwJ4m6vOyqSKICLOpDtKMhHNfu5atEkWQkWA6OvoVBZksLfV7
YkTQlDvMr+aKhRYj/qw/g0RQ4W4hV3RZAjxsbY+xtBNBUo+a5PN30uC5LJO0
jlMiaISaeD7eIAf+6GWSLTgpgs7zfFjhzsmBQge1JZ/wIijFPGzrA0MupLgq
3fZQUASlW+auP6nPhV3zB//2GESQ5qZZPeeJfHiZOffVJI0Ion4r+nDKIx8W
K1lRNlCIoAoZ7OeL7nwY79/OE34ojEzkTIj33QqgrdiXCxLLwoiW3ScrNr8Q
jl690UK/IIwS67cvSRMVQX1nSsN/M8KIZ5Nm3FS7CJ6tcbSuHBVGvcshoW+G
iiDJPSz0Zpswuu6SPW0+XwyfB6xznWsSRun0alU3T5TAuZ/pSYJ1wiiSnocP
PiqB7YdMhQvlwoiLw1V9crwEfoqbHPHKFEY6bCr+Q+WlkL72o5VVujC6Rmf5
d2elFHotaq3qpAijDeZrrI+Fy6DVuVxSzjhhNHy+rU7OswwO3rN6ux8ljKg2
1wtfZ5TBq4E8nFMfhJERDBJm7SuDcgPekj+ChZHSEOnZFbFymHp0Nj/cXxg9
VJilktcph1z4RTU3H2Fkeanxa4ZDOQzW+9Jg6imMHJ7N/jYMK4eHz29cV38p
jKYtBoplssvhk8+UwxKuwkj7bBNOvr0cTteWWTI8E0YkllX6FgvlsJkV5zZo
K4wuZvqRSfJXQDWVAWJoJYy2O5rMquQrYPb9kOCU+8Jo9bmjgKtmBRQNwtiD
zISRXaD2mubdChiZsx7vaCyMYgf70xTsKiD1YLqEoZEw8jgtoab0sgK6E5nm
njMQRk+iRH9fD6iAK3hmVSE9YSQhRL3u+aEC3r9WV0euLYxO6ZEQUFwF7HX5
79riZWH06r4SGWtKBdSMlx4kXBBG/WnMis+/VcCyusn7hWrC6IaOvtRsZgWU
+fNxKVb5eD8kteossypgIpu2y+szwigiapVo9UcFZFM9PLI6LYyKX3Hvv8mo
gP4PcgOvSguj0/jAvxJfK+BukBWr3Inj/cGEzvUmVMAsX8c6STFhdOBm5FkY
fazPw81VVFgY2b/W0c97VwE53F6f4OMXRp8oOiXbvStg85OgYTZuYbRvGRVD
9LwCejz+8JaeXRjpzuLHdR9WQLmHcYCC+Xj/gnXkCm9UwFmz1L+HdMIojUVn
VBmrgJ9uZyVvUQkjpjARrUHJCqhnUGS4SiaMCngc1yJYKyDJVUQ5TySMBFwF
d+13y2Hh5aaSyX0hRNCXULMcL4e2oOvx0LYQ0uNh6HetLocCysP83etCSJ/j
qcb35HLYJTfd0bIqhNI2mwr2vcuhsvimfMWcEHJq/Z5NoVoOlwSPZgqmhZCL
vwdLFXs5TOCmis6aEEJChvV8iX/KIBU9z/6XASEks1G0NxBVBsspRLOie4TQ
ukrYSwXbMuhEJGXxniCEJnoFdsvPlcGBf2q13o1C6HbNkr1pXykM+XPF5WWt
EErmeDf1X2IpxH5fk3BGQuhSUMDNVttSmD50L+RhsRCy4a3X598ugW5Vfjc1
04XQl4tD+hUHxVCq7B3FhRQhRPSQmqG/tBhO5EcVKycIIRHX7W/nXYqhZvo3
vpPRQkg2614f+VwR5Axtm6YPEEIUv3QsJooKYXNAXySFrxBy14O9hEeF0MN7
XPPIUwiV9e4wyHAUwtnnfzNXXYWQ2Vyq4IVj3i00YX/e/UgIeQ5rdunS5UNb
IwF86wMhxHP69SY+Ow8K6OMHa82FUMZHKaWPBnnwjbqyWuEtIbRxO8NU7UMu
NJI0JY/ROM6vv9xkRJYDN7ZSPprhhRADqUBpoGEGNA4oiooTFULfhyYrqXy/
Q8TVHDMkKITKX5z+72f2NxiivPLZiEsIBXe3ynwhS4ciL5XT9KiFEF+7gKRy
dApM2I+1f9UniOL3xlSjVz/BW9TLP9XMBJFuZo1C1KY1EJFkzS8xEkRvR3sb
p084g2VtpeIz1wRR7lmVU4zDL4FviDeSxgTRcFAyU3GiH8hl5OzkFxFE4pE8
UCYgHDBwYGsHMwII3tX517eRAGpFwhUq7QUQmxW12vyvn0Cv7+1C1EMBVPok
O/+jQzYYCAxMeGIqgPqqu/WtF7LB0qoXnZiuALKniYa+4zmAFTpOB0sJoCAn
9z9plXng/l3diDuL/Ci/r3HfTKsILDFoacv/4kffPEwLLhcUAZfqS0T0w/yo
7aTy2ohgMQg6oWqHmvnRJx+WC0R/i0HOluQl/Hd+dN73MFrLuxQQRVCtr1vz
o4U9I9F04woQpEH2vd2CH5W9+JV5LqsCsO0dmaff5kfLIzoWDESVQOL+Vstd
TX6Uacj0xjy+ElyTnU2uxvMjkiEGbaI6CAZ+Td6JE+RHDlm9ZDtkCNyPGmV0
4eRHXy8ncB1jHXA57Hl5gpIfoW2Wo1ArBOJba26EzfKh7AXN67lDCEh4QWrb
MT6Ub7i5JrmBQK58GVTv40Nu30IqoxmqQN2n3JNbdXxoSIX7nM75KqCnlzVJ
qOBDpSRvs4JvVoEB4u9R3wv40NfjARbbVIEl60RSs1Q+dO+rAXNnWBVw4ftc
oviZD40G1wgVJ1UBIkK0I/NHPiQXgt/0yasCQT4RYoshfIhLff9ArqYKsCmG
Ddf68iGOuAuFNZ1VIH4h+H28Ox/a/FeeqjBeBSTi/TXcnPnQVljKhN9iFci9
7nNw3Y4P9d74N5u7WQVUyD3zTlryoWV1Ep8yomogMfuWOsyED/3RYL7CTF0N
OBrizNdv8qHf8kPmD5mqAWl6RsFtXT5E2PULLOaoBqsBpbQVl/mQ7LsxMyq+
ajBm03RP+DwfYlQWfmUoVA1atAeK/M7yoc61m7c+i1aD4pO/6Rdk+JCmnUjp
pFg1SKPbfKCH50O409s6AvhqEPGHrDRXkA9ZWRHtGx3Hr9tZmTi5+BCLNOB4
LV4NHH6KWL1k4kNnLTLTM3HVwCTsdPk4FR+iWl0FncLVQPsJxnKJ+LifZ3z0
lvirgaLBNev0HV4UdvaR4T5XNcDJm1XSrfGiA4Pb7KSs1YCFzZ7tyQIv2rUa
DiSiqwZEGy9te6d4US11C1onrQZ/eoOQ8jAvKrto3jy+WwWGCmM44rt50RxX
REnVahVojEq3I2nlRfb3dAs/zVSBAreiaqtaXiQQafTZdrAKJN2p52op50Xf
FU4Fnm6tAq94p2s//OBF4fLOIqlZVcB2f41nO5UXvftLfNkgvgrcHiV+YhLP
i85UlBtthVQBuS+C/GKhvGjmkXGm5KMqIOQl8yzQnxcVVqRVlhhUAfp7ak1/
PI/9bNKbXlSrAnMid58XOvGi4Mkak4uMVaCP1LaFx4YXJTK4SpRtIlAz7Sbs
eY8X1edPmsqOHu93WmSbhgEvSv9zbZn1KwLB/qmimdq8qLTw8h3fIATcrPP/
Y1LnRRmNv3U37BC4IdklNijPi25FFzmMyiCA0U6+VJPiRfkzp8luMSAgs7TS
mYg71nefbCljEAKqLHoPW3ZeFCKc/KJLF4LK01p9e5s8SI27YJ9bsBJkstyW
sljhQSlvqyJz2itAzD8r79rfPIh5c+n5Y/cK4FzgK/N2gAeV3zq9faOrHJxQ
Rm8ESnnQjw3PQCvrMhCBKSpeeMWDGIP9uAwuFAPS+pXRluc8KDftvq1wfxF4
qpPua+TAg8SN4uetHxeB60bcXY/NedAAg1vvs9BCwGC3Zxd5gQc502+EUtTn
g4AomLRIzoMOQ8ok/v3NBu7LGgyR77hRz5CHw/xYAlh8RlQg5M+N9lmsNntf
fQHGO8V3Mzy5ERKl3ek89xkok0l+Q07cyOXu3fOSmdFgk5vu0qIBNwp8zLN4
bvwdcLpM+A/j5EYUNWUk9GaP4YO42zMLX7jQ9qH7jeTZFBiW/1utO4oLHZI/
bNuSS4OVrS6RZaFcqJmSJrnM4yvkOYjQCPHkQmZVjg0qbN8hwbTzm7Q5FzJo
UxyuUfgJzwtqOzgJcCE3mpTA9Lh8aKc4WH+bgws5nGNSuapcAD9dsxa8wMCF
5PoiXQ96CuCG5xsC8yEnkg577GFGXQQzJ6rl8kY5Eb2vIeWWZQnkTlLZ2ojj
RATfnKSPYxXwSmnztbEITiQZ6G2OPaqEzl130utDONFZda5yo+VKSCBxuxPl
zole2IZFfNmC8M2D/DIlE04Uqhd6pnUXwfyX6mzCNzkRHQ12UUepCk596LKj
vsqJ1h2mm4ecq6Ba7Sr/kAon2v9Rp8S9WAXXcdJeL3k5EdHlBNaYlmooolY+
8ICVEzl+M+YQJq6B+oY6p6/ScqJCfm3ZqDM1MMPPZopvjwNZhNRKqsXWwPuz
qZcqhzjQb1x0JMmdWhh2qPA5rYsDTb6Ed0L8amEFR+3Gu2YOpN9bojuTXQu5
NKbSzEs50O7rmsRN0jrY8VWAmvgTBzov5//4bGwdtPiDiJ3DOZCXoc2l8LI6
uCb3YHc2iAPVRqpFtw3VQbbKr4utL4/rlcr1DbDXw1RS7WngzIGe6CoxpJyu
h2e1lkZy7ThQ1fX2i5ev1sPbPbLt0aYcyCM7O4DIox7Oc3fX0xpxoDcqLePs
H+vhC/Pn0EOPA93R8jy//b0e0qVyFv+9woFEg2IkUmE9/LxQkm0JOJAb+PVF
sLseysiafOtX5EBXrO/a3J2ph+j5YaK2LAeyzaf7ar5ZD6+XJXyqkOBAJwGZ
nRRFA5wiUv8gK8yB0k7nMuezNcBnV2aCk7k50FU+hYFD4QZIFuLvy8HCgb4D
WEQl0wAjO0+8CqThQBKKnQoEpQaI52x9vk/CgS7M6BwZXWyAxSYODo577MiE
Jr76o3YD1E5iejT1jx15DWxPBF9vgMO/c80Nl9jRmz2/DNVbDdBO2vB24zQ7
iqxge5d8twEePN3SVxllRxdkqPuhWQN8VxyjldXLjhhxC1fCLBqg0KHKReF2
duRse2ua9V4DzFEfOxdRz47ySOlWtY7PLwZ6yVNCdmSgiys8ffz9nnYRqRdF
7OiFUGNIs3EDfMhWh/vzkx3Ru4v0sBo1wM07j/gt0tmRMO/tTTr9Buj/hZqj
O4EducV4PirQbIBcMxkMV2LYEQtHdCod1gC/S+pRlrxnR9+lXyuxnG2AKk6r
RyeD2NHRlbWcOskG2FoQvh3vzY4UHj79IS7QAM32FP4yv2RHob+vERSYGuAK
1j/v+4wdfbaKblohaoBeb/6b2nrMjsScmAxurdZD5lbeYVtLdsQVm3H58Vg9
TGKu7B41YUdzJyn6TrbUw7o4kroaXXZ04jPReF5CPTSaSqk4e+W4H6SsxO6B
9XAOr1H47Tw78klfY1lzqoc0ecFfQ0+xo003mvl5lXoYuy2dQCLBjlgvF1XY
CdZDqfOE6OdC7KiB90HqF+J6eK2JLegu83E/rJksuarr4ARDkXc7NTv6j5Bf
ZJ5QB5/evPPyAgk72mr9xmn8qg5GjH+2w/9jQ0EmXoGP5eugmBj28NMiG/qP
by3Il64OFtpOmdJPs6EJI6nMm9O1cHBD/Nq/HjbUKSWwJRhWCwXosk/DQjaE
C19XeztQAx2mJUZCs9hQvEvFM9PkGlhZnvjGIo0NqVr4G5Ta1UBT+w/DxJFs
6Gz2SwfRvWoY1+7id+k5G/rajVvapqiGS2krp9jt2VBZDHny0/oqqOJpPTRj
yYaonbe2Qn2r4NAp41P+N9nQwXBHZsU+gtzv1Qab5NnQd6Xv1r6lEFrbFPp8
OsmGwnZERgxxEBZfOCXzWJQNSdi3hCYFV8Lba0I+dKzH9Q1OW7YZHPPxDTLp
a2usyK5IxPVabSlk42jx6slmRSYttuehSgG0XFY/mZrOitoMpab0XufD/Pry
3ucJrIjDNWN6oTYP3nDNkuQMY0V5Wpz6T6/kwvCB9z13HFkRzpm6auRRFmSM
vS0xLs2KEu6des3klwhphGY75r+zIKMTdyxslz+AkTiqlokkFqRudNGk8GEU
+MF9sr7/EwsSCKn2eTP2CeizOpXXBbGg5vd3hZbnE0AkxW56oi0LInChW6W/
vgKRP/TedyRZ0O320smouVywbiP7Sl+EBcnUfRXirM8DdbMGbho8LKh+5pM9
b3I+sJ6IcjhDw4KUr9ZXvrhbCLK6he8yLzCjgsYbYZS1JUCl9IxC0zdmtGSN
M6ZSQIBO8fYplMiMKi92diXFIjCW90KyKIYZrdQdX78kVcD7BxRKDWRGL+t8
Xqu3H79PJWjRv7ZhRpsUt97eMKkBN/1NZ5VOMCPyhuVBXt16IE7mNXlKmBnJ
ANWCxLR6sOWVNCLOzYxS5rS16I/qwacXv7vYqJnRQJ6Lp3tmA5iwfwJX55iQ
Tv9cB/VOI7C76Redns6EqL3fhtjfaAGJh6XykolMyFG1pKf5QwvoS19tz4hh
QiXRwQxjXS0AO7hL/jOICYUqBVOw67YCtjS5pwV2TEj/1ZTU1dNtQEvfml7x
IROSZLqvOGHVBjx2P6cXmzKhzejL/ZSxbWBOj3q8TI8J/ez3/0101AYqtsZ1
qmWZUPCZM1snC9rBWiL7b/UTTIjmPKT+M9YO8Fd1vOuEmdCL+IpNEcoO8D6h
sLiRhQm18lLsjxl0gHrtpRvatMf6AjOXTF06wN668EoLKROaUe19pB7dAVrC
eXTi5xlRKzpzRaG/A5z97fc6cYgRXSxyDlJe7wAJKn+LUloYEQ2e1qqVkgBo
wkyWv5YzooKPvh++shGA83QDLuMHI3rWUjSWKUQAY0ryd7PiGdHm4NfhoZME
oPk2/n1OKCNimhUSlj1LALmT1I35XoyoNCVUMwMQAN/Z54dFTxiR1MOBP9qa
BPAmaEKh7D4jmkyV/kmvTwCrYzqPK28wIi87O4U1IwIwli9KrLrEiJazZY23
TAig1l9koPYMIwrYNGPnu08AMiNvGRrFGZGdW5OZuRUBRMvuXGrhZER1OXty
yIYASPwsX7ZTMaKi1xzhanYEYD/YkdO5w4DYkzI8++wJYEBaZa5ngQGJ/Yoh
CXIggIveaQIDwwzIhXQBd+s4zuxjNhxuZUC4mxn/VI/zOU6+Ch6rYEAihp0e
5x4TgJfnXNVkFgPKDrw8o2dNAAvdN7anvzCgjBFRr/8sCeCmBJSZC2NA9VlY
eYk5AVS6Sz5cfM2AXM1baRiNCUCi82Ps8lMGVEt/dtLtBgGEixF3/X3AgM7u
MpRs6hDA/n92VBs3GdBrkxXGAHUCsGrvP799mQGZ3Ln7SOocARBE1J/vnWVA
6q7fLv06RQDnXLMyDvEMSHZlXjYTRwCMQn5c5DQMqPHOxKuntATwwnlVj2qP
HjW/cige2+0A0413/WiX6BGvQZX77kgHKH4it8bcTo/cM9xTomI7gEj9Zwl2
SI8K9l/McLl1gBAeanOubHpULMY8X3a8bxY14y0C4fToznfRe49IOoCG2vbD
0df0iO3mh5dF3e1ApoiJKO4JPTqzt+fYm9QO9r9fUOC+To/OZQ8FvzrXDn7h
jNv7MXrUUP+jm5q0HTTHP7WOlKVH8to3Oh41tYHo8OQ4Vqbj+k7O/z5fawOe
dOVnu47oEDb3leDG2Aas3vQQwlboUOgyvkWyrRUovCAnZ+igQyJcY+o8F1sB
4d4je6p3dOgxD1+oCUsLKBr2pGx4RYfYw36qilU1g3jD6EQ/ezoU5FDn0mff
DOy0mnpJdOnQRLZM3wFqAlSnT54/oKVDL8uDh/L0GsEFohWGtUBaJO/4/P0g
TR2QeEH5Lfs/WqQYsx2NYmoB07qguqMNLdJfKPFpFa8FY7/1XZc0aRGObPyM
lUoNeNGROz5LSYvopy9Kyl075u14l+xhPxp0tYHypdXVUiCidni97jU1IhTB
kNGjz4DArCYV85QaFQ7Qdpy7HgM8Zl9S2D+gRoG3S6TDYyPAUOhOKdtlanSr
/ZOckNIb8GFqXdSSihr9ErHK6DX2gmQBixskoVQoe9CplHn4K5ztGojB4igR
iQu1hSMfghFfOZ3Z3lKiLpHBcy8gghfdjfTmXlEiD1ltKav7VTBerIckzJwS
QXpW7sqv1fCWW8fjcRFK1MTluOd8qg428tereXyjQPGi7DeFTjbDb9Z5k2WF
5OjTvvxMS1Mn7Ln/RVAnjRylmK2k+nJ0QSLTYNOhj+RosuJssef9Lmh0/cHg
tjM5ag2taxbb7oIk51g7z8iTI7PHPB5h3D1QWuGIoU6EHFFt+CSXmvfA2zKL
V2+ykCOWmjOsOyk9MEukpvHpXzLELt46ECvVC41pn6GfP8mQIafS3aFTfdCP
3Pzw/BcyFJT/XpTKoQ9mH2mrtr8jQx0GLOb8GX2QYl2keMmeDMkspmvMCffD
3JGunyekyFCjjdPTR8QDcLSv8k8xLxkamM/XVTo7AKk6v5/UpCVDJOHW1+ts
BqBZnfdXqwVSpLxUpH7UOgBpsuS+JKeTIuvXdTmWPoPwTLrAqFw0KcoT+OoY
8GMQWiTR8Fb7k6LuJgIZ1jcICyOnIiesSNFI8U3RW6JDcDKsvcfRiBShGNWd
TI0hSBdcynJ0mRQpflgAPrZD8L5n+Dt+MVLkbr+hGZ8xBN/+59GayUaKaKPC
DwabhmDxM1saVTJSVPYdzfjMDsFf9kaaLf9I0JR8y+co4mHIYH3xjfEvEmTA
hG9j4h2Gyvdlaue7SFAqTYr4otwwtDThIfmvmgSpd8dbi2gNw1AjCowqlwTp
msmb5poOw1L9tVdRiSRo8pvjUKTTMJzRHisTf0+C2BbfVLe8HoZMl5t3CrxI
EKUSOZnu+2GoAgoVLzuRoGQv0k8cX4ahlXLS8x5zElQtbBKCyxiG7+Xf5T24
RoJEusZXnhYMw3LpF3/XzpMgkpvdfw4qhuFvvNUpbxkSxK2q+quqdhiyiBjY
MwuQIJedNI2ypmGoxnc+I4GeBMVdXEmYbR2G1hyS86cOiBFfsIMP1j4MPzBx
4OESMbqpJxVe1zYMK2lIHuqNEKOzvxg8n7YMw3my5aTRFmI0EUNHe6lhGLId
DU7YlREjzbumFIpVwxDs1AnsfydGljmZ+polw9D2X45J8Cdi9ELp6qDzz2EY
c/avyqMgYrQsejJrPXkYNv4ny6v+ghiZLHi8j40chpvljrsCtsfPO9ndZOU/
DMWIfg7u3iFGk+N7mTdchuFN9eXiPi1ihEbWU8wfDEPvN9LRucrEKOIZQTdA
bxhO0GUa2XITI9+ruVnigsfz0188c4WaGAX1P6GPJjv2/0GSXWSHCD1gbLPl
nxuCn7i/dQ8OECGCGT3O5NsQbDKZyy1oJELStXcymP2H4PYXfPj7YiJ0V+NR
QPf9IWgonqavFU2E8rfUbz1nG4K+NjOnxAKIkK595OH1hUGYm4ljJHYjQlbT
1F6nKwchk3xyW/EtIhSZ05RKZDEIgctUZoQGEeK5dGNgUXoQOpQIhzgpEiH+
Efml/p0B2AIStCU4iRDbG953WcEDcNd7/AQZJRHqKaJRjLo+AK+HqLGgP0dw
QMNly519ANLFnAs99eMIxhFlNatG9cPXuQqBDFJH0Krwg80r7z44ppSnUU97
BKUeRdKdV+qDqvA0hcfiIbR+zyu7vdgLN1tkfP58P4Tff5Pr3NHthXYzEq9a
TxzCd/K5rr1b3bD58VcVX+pDuNpIo2r9uRvi18R2VeYPYKpos8IW1g2nDkVc
M9IPoK1GWCqddxe8zcX/JAh/ACUzw41klgiwMD721EXKA2jyZu+w9DUBsorx
LO/M7kNwqrBFh50A209zPrZJ24ehr+bHD+3aoboO80NNsX34n9HnhLLqZijj
QX6HQnQP7o/qyz8uqIY8pYSoObI9qKh6+vKNgipIvhnb1zy7C8l4vnUQ5yI4
Yi93M/T7Lhxl+o8sSL0CBpmaX+OS24WEwUObscJ8+Fu15LLkhR1ILb1Af7/K
Bybs2cnpmW/BW9w/yj8I1YAQRaUnshe2IIVB0tvb7rXA9RlpNovoFqwN2Rn1
HqoDeosx0v2zm9CQqfD6zOdGcDBUL2HhsAl7m6/OLYB2YFwqJPj01QachpMc
Lus9gPW/HtrI2H9wyGOS4VLSBNg+2mFeefEPfjpJXKrNNAnG3ghyaRr/g7lT
sp/TPCZBeoQtbpfrH6QZXLO+ZjIFzmcTqZlFrsH9KUPaA55pYPNbykH8/V+Y
rf0txzXpN/DIoEm0p1+B+3uM9mWVy0CrxPCHYOsyvMozWrl/agWwNSSUdAYt
w+IR8xiOxBXwbeps1xmqZSi9qTVw78Iq6OF+QHpI8gfOzbomNAr/BZIBZQ/f
bS9AIpkuy8LhNdBvaSf589csvKVx57Og+CaoHNVXLEybhel9P56wGG6CNKMz
lypsZiG1oTtxhc8mcNY8NG1ZmYHv4/6dlp/YBExSYe9/701DuoIl5v8+bgGt
f3nbgmy/YGEs+YDQ6jaQtYsmx/dPwTEd4uYR7h3ANePOIvNpCgrR6coqq++A
2b7LUqpCU9CWd7m3LWIHeJf2m9+WmoS1pQ/VMPld8Jx0661w4Bj82Rs5Im6y
By5twK+nGMcgm8EQQcdzD7D8DqhS+zgKU0bjm/cT90BWM8/GncQRuL3VQX84
swdm3583CS8ZgnJpqvfNrPdBvg+lSwIYgryJthk1/vvA+zkhNKtuEFo982bL
TNsHgnfu1zR3DsArezlsJL/2wW2hN5KkC33QrXOM76vhARBnuXaJ2akPBjuK
6FA/OQDrpFxmgpu9cOhNYO1s8AF4//vbexWSXmje8WuTER2A5qy27Wc83TCO
14SLVOQQRCdEsngndEHixbsSeOVDYBVuLhUm3gVlQ4mq4LVDQOry1zxTrhMy
Wfj46rw8BK4vJN81fWyHQs1ePCUth0BvebXvZ1obXCtJcmYaOwTi94sEI4ta
4YQ/reXIyiHo1bqUc3+wGZKEaeV0MB+BzAqaXc2FJrgkfmVzQ/gI+J7uvHhq
rxGKD0XGvTt9BOS5zXr2+BqgxAwNLfu1I0DzFsc/JV0P6x96DBObHoEposWH
jefroG/9Cr+57RF4P+e6FWFRA0sMFtVsfI6Atcl57OWTauiVpKnLHnoEMAJZ
4D3vKnhf7LKM7KcjMOYoesZEE8II2ZV/2VlH4O2t7HoJ2wrI07QtxVF8BFSB
2u2N4DII/DrH59ARWBRvnq/6UQKJz2dWSzQdgU8Mt16+6yiCmzJvwnoJR0Br
8xfd3b8F8OabMa6V/iOwPeoUj2fNhwx3Bomejx2Br3UHp9YVcuG5QDmRR9NH
wOhHUBUyyobrUavadfPH/iRPpfH8zYQBP9d0Q5eP9e9oNuUpfIN7j9ZI6taO
QH3j/aWrbqmwCvO7YrV5BESj3RlnyxLhUAb/7tOdI0DSIfXw8DAWoqZzYot7
R6DC3iJD9k0EpCmUsW4/OAJ/uSR+1fEEwWe1IaN8R0eAkCkwftPABQ6V3nve
dxyT3dMRClA3Ayx3kOLecfxNJsmVrtQbxBkQcwcfxzFunze6e8PAYHg17s3h
ERgdtPmZqBcNTCfFbi7tHwERlbM2jg1fgMgwF6rYPZ6f3uv3AgnJ4CbTNa3d
rSPQ6/HIwc/kK/hh222ctH4EXH/q6ixxZYAXxcqLBatHgGdCXuJGbxZ4v+jH
e2bpCJhRvSUZ1cwB2m7RzEK/j8BPIaInTPg8UEYqve0yeQSIlJ+Nq5MXgPya
gUPl4SNw/fqsruuvQmAZQ2Vs03MEkmzulH+vKj7mtpTT5G1H4NInEMPsUQ68
ShOSfcqPwMfcXMrLJpWgYpqx2CrvCDybYVFR5UcgKN7LvujbEag98PvmuFcF
mB0XSJMjjsBSILQIXKgGVxh/fTwfeATYOXY4kwdrQDGzuaTWqyNgJWP3pq+o
DtyaVV7KfHAE3pWmqq2m1YPfVZNLFEZHoOjK+Dp1ZAOItFj51KlxBKjMDR6o
OTeBszvKv0pPHIHvoUpYimwb2Gm4emZx9hCQ1X4pp1RoB2I8nAla3YfAfJtC
+bFiB4jHM9wjg4cgKHuBi/sLAfR/V6cLjzgE57lLmCdSuwDhYvAdMaVD8Dhv
qeM9vhucP5Uc/0rw+PetK/RO/Vs3aLp9hleZ4hCsvfan+ZrZA5xzMj6Odh6A
tAVDUoe8PsDT0ay0c+8AdPsGVgme6QeOVTlh/pcOAJFghWdnYT8Q5Xf3fC1+
AIxv4PYVSgeAlurPqvK5fcBYvra+h4bAg8aMnidW+8DtbehsYPsYsPdiK1jT
2AOp+JoUFf1xoJZML9EhvAe6qjbv/+kcB9dinq+f3NsFHHtZjum2E8Cez/mD
XeYucDrFsUTrMAnqbXHk8tS7QCx6errL+Rcw+uIhLftjG7yzed1n4f0b2EZ8
U0v7vgECWogLpit/AyP5SwxcLzeAt7T3B+u932CT6f5XLZ0N4PrXW9/JeQ4E
zLmCtYV1YPGfb7On1TxQcn3h64NfB6cD/SvjtReB9PkT3ORRa6An/W3aCMsK
UOaKtdAtWAbtNAx+FtdWQFo0laDS1WXQaPfuwXTwCqDVu7BK+esPMIvWYHIh
WQUnVBreP2D6A26YaLa9erkKJqw2yh/YLgLVaS2Nt/Z/wdzRKyt9gTlAv35V
JfP6PxDeqEHRFjsJmIbkHrg+/QeytEPZJqUmARviCr744R9QzryB066cADwh
00MDPf/A4DOW5Ru140AC5/6C/PY6UF8K4qQxHQEXb2aUmJltgJGQ0pOvSnrB
5XPvJ094bgD4kV4xZr4HaAq5Um982QD7+Tindp4ecG3p4p3gyQ2g+cnwRrxX
FzDxHdoustwECmFW9dQF7cAln1qJ+fEWcCIoqtjGVIP/Pq2YjwRvgThWpahA
kSrg7tXr/zVzC2QlWd2UM4XA52piv9ryFogU+G1n9aUEhE0rudo+2QYp5Zcy
a4czQQabdWGN6w6gSjybfGb1E8za1R17F70Dblz80SvulwRzJ+QpjEt2wJXK
mgd8vl9hceaR4eruDnDHXYpOzsiG9ZeiNvg8dsE0jA3MxJfCCed6BRffPfC0
2zY/c7gOjjSS86Sn7AHhhdYHfmP1cIDv8tFg7R7QSWkCH0cbIKG2pkmNfB/8
eF0tr0logoityoz8zT5wCoyy8PVvg+XWRJcUj+/ZCNONmPjH7bC4HJywqd8H
n5sLSjp0OmC2ZeW/VooD0PrfTrWCFwF+yS8LiPA/AJykno2c/F3wE9Weff3X
A4C717R227MLRpqcu7HdcABWf191jR3vgu/ISvhNqA7B+q0PcsKfuqHHzcJc
0cBDEFKQ8YJvqwe+SN+IMvx2CGjvei7c1OqFLvsKr/ybDsHFwCz2oJhe6JCS
p7FIfQQqjTYJ8/J90Gw9eyQ36AjI+rjReej3Q2PN1arp70dAD8yYxob3Q8O4
U185Wo7vuc7brwq7+qG4SL9SBTkRFnHWN3ru6gDEtbqc7GMnwpb0HQ6J/Aeg
iAuHwIoYEVZ4aE/BAwegQLMhqfCV4/OLvqnXTwxCPueNDWUjIiz+jiv29O4g
5BH4OGdgRYSdipvxjQoehBxPe9p83xBhOgIhy5szg5CNzxl9jiTChl/ejpBl
GoIs9ax5hWlEWFJNHoez0hBk4LkRPVdPhHWjUEFBn2N+rl0LIu4nwob0S6mC
UocgjUP4K57fRFiFlOMH8vohSMUl5yS/RYQFNX6P/TA9BCmqO+9fpSTG0qxP
Mpw95mUyuyeGDzmJsfSnV+aWj3mZhINZ0wNPjJ3HVyoihWFIhLLPRSkSYw4V
UTyZOsPw0EZfOluDGLs187cy32IY7rOuCjbdIsYmoofujzwbhrsVoSxTj4ix
Ex1FZmJ+w3D70SnyPVdi7KG81vnwiGNeZO7YYg0gxggMLCliScNwvcxhQSqa
GBsLKL0w9WMYrj1kGL2cToyxPJvoby4ahquMWR1mxcQYV+LcmSk4DJdLdKtd
G4kxIW+C8sn6Y96kbnB+2U+MjQRqdNs0D0OT2xjec5YYK6fME+c95uEPX0sG
vTeIMRPWU98uHPNy86ZcyBsyEkzpjPnQ+PE58ZXM80GsJJgc1bVL28e8rPRR
7O9bERJsSvLGy7eNw9BhOj75/WkSLPDSAn9SzTBMlecy+oiRYFuv4nuUjvl9
xPs9Vcw1EizOYf76zWO+Z+miKYszI8F6eHhNto75X0vY1z7BngSTNR0YxyUO
Qy+nA8EUdxKMwp1zYPy4H0XQpetrMAkWwjGoefKYn5cZVn0zPpFgtbcpAI3b
sT8zG8Wf30iw02nXCJ6Pjv39mJrPLSbBig1peUMNj/3t340rbCDBDLrZrqhc
PPan06tX2keC+axlePlLH/tZaMirWifBnvIW0tATDUNH5QtWdaSkGL2E++TV
30MwLaCUq4mFFPunfLZPuW0IsuJ/vCLIkmKZAe4eEh+HoLaLuGwPIMUOOby3
ZF2HoFfdl6l+PVLMsnyEb/3WEFx+EK4xbkeKvWv60F7MPgSbE1yZl9NJMYfn
PQlJ3oOQeHW15m8RKVatzDs2azwIlYCty0Y9KUZnYXKHVG4Qpo2aDO9Pk2KM
c0OXekYG4Guei6m0wmQYWA/OvyA2AIttym4xypJhZZ3Tvnnr/XC5WIGGFZBh
Grkn8/hq+qHJLbwjjykZ1qDz4P2MST9UiqBTPhFDhrlTX5ms9e2Djr/8FqXS
yTDThU22h1f7YJrc0WfZIjLsvdKHBn7WPsjW+ZdEqZcMK9eRcpr/3AtX6Ptb
rzCTY04H8MD8Ww9M80+0sAwkx5bKwyMiYrugRY79z8wYcuyKf/n73/pdkGdY
+XD9Gzm2QzFz0p38+P9KpivWr5kcM6YWSvKy64QuvST9abQU2FrKoFykHAFe
EbXUnX9Lgf3wUDCe0GiBs5Xi5xzCKTHWtoSmAz8EE+bWAgqTKLEvlstcmz8g
NGaB/Ye5lJgEM6Ng/bVK2P7w1vPQbkrM0tTZSvVDGSykC8jOZqPC5jue/url
LYRvjOfF/0VSYQt/GH1JQtKg2GYGq1ssNdYk+mSkYDkJcNVdF8n4To2FdY3K
sKmlApqILdmxEmpMoZmDzd//K1g9ra53aYAak3EUHAdMmaDcfiiAiZ0G8wr6
F8XsmgtuzlAdpr+jwa7DKvO9qVKgkZ9FN/KZBlNwovOani4D53xu8jL+oMFo
0i71sk+XAyHhBKXnLTQYmfxMuvhQJVg0UXx2gYoW254U5Pl3vQp49zycG3xN
i33pIT1f21ULnifTbtG9p8VkfUQUc1XqgPXTHHIsgRZLy/+ztpt0zPNMByJp
lbSYiYvv/Fu7esB9NcL06R4tFpPgdNdosQHQ8Z6zS6WhwywpthwKrzSCw/nx
FwPcdFiXU9c7w4RGMO1/Mvq8Eh32kffO3ct6TSC7prqL5jkdtmP253JyRDNI
DreeVPOlw2Qf8QbnTDaDyHsMq04f6LCxvlPFC1ItwP3oDn1/Dh12Vs6Dpbei
BTi2H/HSVNFhS3RztN6kreD+51RJNQIdVmlb6nddoxVoqPzVSF6mwyhFL168
3tQKztFEGfUd0GHnvTm6PCjbgNSg6kNqenrsZeI9iSb1NsDiGuDteJIe443v
tPlZ2AbGcgUrVKzpMREh3oNkv3bQpvRUUsSVHqsOsxbIyWsH5ZW1UVRv6DGg
33didrwdxDbbPO1NpsfyN+rIG+Q6QJB++XhZLj22L2L36emdDvCij0E3qYoe
u7Aj+eayRwe4PZWHdxynx3aiv928V90BNKwpPhou02OnUtM1v092gLPLt0lU
D+ixibEnhTxHHUDMOcNRhI4BO9qD5nfoCYBt92CEipcBOyT5pqHMQwCkXvra
KycYsGh+ZlVpcQJYI08u6lViwGJml76cOU0AU8EbuHINBmzdbm/aQIUAOpk1
w5OMGLB92mAvv0sEgKI+HQU8ZMCGX4Uttl0lgGz+P3aOzgxYFA4mSd0kgC/J
YMjQhwETqUsUTzImgHcnwjVUwxmwOpKCPRkLAnj1czpfJJEBu+D9+nu3JQHY
nVEUoc5mwNjfFsMwawK4WxYYulLJgNE33Wi1ekwA2hdG9nvbGLA43IKrkT0B
KDfI2JaPMGCbmFGShQMBSOi+7k9aZMBsO1IU3xzHXN3dlwJ3GTDfwCLxxuN8
yjviuY7UjJhrkdU9vB0BbI65CRpxMWKHL5NHUmwIYNayJUQVz4hl78SEXbAi
gN4F/l2Rs4xYvUSP2+E9Aqh1cnpEfZkRK5UzjRgxIYC8zeqelRuMGM54embE
iACS3Nkv9t1nxKy9154R6RNAOIn1z/InjBjpgpappiYBvA4o5Uv2YsRoTuis
FwACcGKgDwoMZcQEteIitM8SgEWE+ZZjPCN2p1s0jlKKAM4nkHWpljNi4qTJ
lkTsBCAtfguItjBiXLeZl89TEQBf5rdM6iFGDB1MjxttdIC9Ij3/vi1G7JyD
MZ9EaQfYiNd/YUbKhJVLdnCIf+oAfyZ3sjtpmLBvAkV5wW4dYOTRVYFibias
htQ9PVa2A/R837h5UpgJG7p7hkiXpgO0/IkPjpdgwtaDIv8+m2oHpc/+bvsq
MmGrqx9bZd+1g2jPyO7rhsf1FB99ae5uA2HVgKbOhAlzjfiP/W1iG/Ann8eU
LJkwyVLrlCn7NuASrJIl8IwJO7E7VXSLpA0YRk0ELIYxYYkWgyTjPK3gnUYe
PXEME5Z5a1by8UALaNzyC+dIZMIi/82WPYloAedun4y7kMOEKR1Wi5NRtQAB
bpefUZ1MmIKZVubsaBOY+0Tbp87CjG1LLdxa1WoAwjpjxnd4mLFnCRlVa3/r
gfFe9riDCDO2yWtF1xVdD1rvGs3HyDFju2MHk9ivOpDDl7i/YsCMBYl5NMY9
rgUv4s+Kxn1gxjKzPImv6leBPD3q9JxYZsymK/yC5jwCS4fDUg3JzNjnpInL
oa8RMDN/fXYtjxlrJYQ4yFtAoC7UqqXZw4w1H0ryt9CWA7qke07rbCxYqgiH
3qUzBSA+NaTiaiQLJs4w/DCtNw44S1xN6v/MgkmyPWeMCI8BWhm0/vdTWTBX
0QvipfqRYD07SN8tnwVzd2FgqkoKBTrlAb+Su1gwE+IQ0s0rj8B2ly/1HgMr
5vX09O11m0jYbnhp2Y+DFfsklOyl4xcDkwdIu5kEWLFqdY/i2rg4qDfmHScu
zYotrykuVZonwpR5r1MGOqyY8wmRBxOPvsLrRK8Mv/mzYsav1DuSPHKguI/q
OYVQVmzj0XCf3+lcuE++LwAjj/N9B+tHpnJhOu3LuZ5UVsxX0ji8FsuHhxz/
vSSqZcXEs+OlPs4Vwu/SzxNvEbFhYSF8o86TZdArW+HNFCUbdiT+1HrCtRwa
yq/b2jOyYQv3bBKu0FVAIuVnCj4CbJis/q/eOZlKeOvSk4YsVTbMO8Q6ykYa
QbK79n/I/2PDBpY+POLHVUNeHSMh+ddsGF2d8ujb+9VQTgXcsAhkw57aywXG
fKmGFrzMJaUxbJg9u8KeK3sNrBjO93UsZcM8y/liaVdrYE/L56K4ajZMc0Iu
glG0Fi6VvVloambDSox6ImJv1kKeuNv6uGE2TErv7HP1vFroYrLPO7jHhjG3
mhp9NquDb6/O6FGQsWPq7u+kMv3qYIpq+2t5OnbMU/6VxZmMOtjNl/D7LR87
JqPZ/jH3bx1coAvkKcOxY3rqz76ksNRDkoMnunNS7FjktDYnvVw9lB1Vz7uo
xo51v/0pdd6uHmq0Sc06XmbHbK0FH5H710OzCnbuz7rsmKJ4+xUsoR4+/3Go
02zIjknEql1ZLqqHIZ9/e2yZsmPE0vN/GdrrYfJbQg7Oih27I3NpLnGqHpa+
Kpm+7sCOrUqu9qdt1MMu+yROTxd27OCzeiw/ZQOcNw3WzvRgx+j27dwo/lfD
tcVD4X1fIRVSKYOZwYwZM0LuuSVnJ6XoInIphaSIiiIhJSoJSQhFCiUhX5cZ
ZjCOmdwrl1yKpBKSFFIqlX7z8P8/rs8+Z+21z9kPe71s+SYssiPobF+0HDzL
Wt9+QK0JK1jsL5G4Jgf18R+kdfWbsI725vcGaXKgISNZdGJ9E96srEM4cEeI
E3mGTOsmvF9GYWvCAzk4Sb9rvmtnEw6aFwmv/k8O9EbeHZ5ybMJxXz4Wj1XK
QcLALq+Frk04Z/D5O7k64XkH35lEtybMbatetbFZDrZecXub7CH0u7X3rAM6
5ODFM8bCZQea8Fjx1bDbL4V6dRO2ignj/7KCH7W+lYOUXRYlJ/Y3YcI197c/
xuRgg2rIfdc9TVg7YstKtWk5eHpUs0Xg0IQ3+etttv8lB70ry/rztzXhfe7E
0IgFBOC9+gkrrJpw4E6xoqIlBJhd8bJv1rQJx6KJwb4VBEgmbzTw0m7C2To9
KxYRCXA1lhHqTG3CHJVaK0NVAmwPjr36XLYJty97cPqABgEOXWtQ7RNtwqP/
rhUk6BPgHH95n9d0I5Z7e2D5R0sChFjq2hu2NmKtDpuNBFsCTG348jqQ1Yit
6gyCNzoQQP+Pu5rN7UZ88u7CgdsHCSC4g7prfRvxlcQvMk/8CFD20fW+585G
fPf8iw0/Awmw463ewjxhP7V5PHxgf5EAE0blMvLfG3AULcLsexwBMh8OmUf2
NuC1o7ufpSUTYPiSsZmgogFn+onMDOQQ4PjyLrmuwAbsF+xs4c0ngEMfOffM
23qsbLqmc0kLARS0a8M+cOrx89+iXkUdBGgytEaQWI/NIouvTL8hwPkRydD6
dfV4cfzCnjPzBOjfVlF9PPoxrtnxyltZQh7yJ1Wd050eY/8VpXN1S+UhDJsr
NKs9xr2p+ygSSvLA/PF6zJovwPezy/0S18nD7hxuisZnPrasPCB6P0Qedlmb
SeWR6vBsqPEN6/PyIDFW71tXjfFD86Xq45flYWqZ55sKC4yXCzjbddKE2Hb+
jg3U4jdPl93ksuXB/tf3W9P6NTh8iKfT9lUe1ncrbQ9/XYnZS4n7fxxVAAOW
u3f2okd4VHPzncAgBRBPG075+KIQK9icfDd5RgEKzAXXDj0owOHRrYfGYhXg
+ain+XqrfGz1L+x4X74CDFmzZ61P5+LnU68iqocVoDEtO3I+Jxl/6bqdE7FP
Efa+ubdR3i8JUb62DP8+qAhO/Nim2ZoUZL98lhHipwiv8/QuO0mnIfa2HYUB
YYqQpPfEXSk3A4U3zJcfSFeEqkerV/KdcpBkpXvDxm5F+Cjy/fNymUJk3hO3
qO6VIqguHGYqkYvQ8ZnKrebvFeFi/6JnYuqPUKfO8jbDr4rgdXlaUsv0P5Se
X9ertpwIi6/IDdTdKUWMW9SxRduIwLCy2IN92Oim2ukQxm4hdt7902mEjaRL
ny7etI8IEWM64yYeFWim6fTqqKNEaKs3M+TbVaK67898/8QTISFg91J9MhcZ
RtJ+E28QYfpnu/2RWC56IB0aZ3qbCDJjbDPuLBcl0OhFwY+IoC0Svj6+pQq5
7gr7PPWMCANeWuaHnWtQ20D72WW9RCCrG883s2uQpY+ajPYgEU6eFG1XlOUh
9YgObb8vRHi7DQWerOeh2SJGwIgMCUJLyaevLMPoiEm4iLg8CXSStQ6/34fR
wOPORFUVEij/U5aQysfocX94qbsOCXSnz37rJ9WhxMVdX/t2kuDBI8L2FVl1
SCxF/cJPZxK4DRI7mqvrULDKuZXyHiQI6zti4vqyDu03Wm24O4AE6adWdknJ
8FEH/1z9yRASxMuOlDGZfGS1vXv39fNCvlznYUXERxpeEafaEkmQc6jvwjk/
Psqa7F74OZ0E4s9U6icj+GjFGY1UqWwSXC9a+c0wmY8uSpxnaDwkgcGakOzt
9/no5/Weii2lJLiy54aPaQUf+SlpWntzSWDhyvj2o4GPBvPPv7jEJ4Fcj9Xf
mG4+sjfs9b7XQoJ/Ki62E+/4qAFr/hR0kkC7XZRF/cJHJraRMe/6SHCOoG+/
+hcfFfX2KogMkWBezUVSTEyAVDy1HiqPk0CV0YCLpQQo6XOk6fqvJFjiG+mm
tVKAJEJftLjOkUAiqrjnjKIAhYqv2RsmSoaSDbZSt5UFaOJa1Hi6JBkmH31Z
laAqQB6kl2GVsmTg9ooH7FIToK68NVK9RDJsOtxdP8UQoM36FzK+qZIh0m3z
bTemAFXxXmqu1CTDyQ4dSo4wvmardo2eARl0z1+KqaYL0N3uC9vs1pHhlt/+
hAKqAK3y6Bs4vpEMXQ+XlJ9QEqDLn7SPXbUlA32ctG+5ggDNBV/8W+hAhhFv
2diYFcLhtafxM3IlQ7digaO3pAARDZYMdnkK+cQMH28WFSCN67Zt3r5k2OYU
+UVd+D6mk1drf58gw+4Xm0KXTvLRlu0dxddCyVB7zSdj9j0fuRTK3qFFkuHc
NfbU+xd8FOKdFmGbSAbLS3FGvTV8FNPQ5/8mjQy9ddfMBh7xUTqN7BF4hwyL
eW2BE7f5qPLNXcgoJoMX9hXXO8NHjevf6+pUkCG1DF/w8eGj3gw16mMeGepX
vtlVspuPZp0LFnx6Sgbt08dOn9bgI4mKielz3WQgsEkacyv5iLBKZ0h2QFjP
B/mh5D91aG1HucDsExlCHo3YrXxSh4K28C7ELlGClnKLpKD9dehi3r9A5RVK
0P/adOsQqkMp4pZeZQpKkCWz40QwtQ6V1zVa9TOV4G6ORNraeoy+mnQs1Nis
BAlPBj+oltci0TTZWd52JXD5c+/ZW99aJPt99+guRyWwsGUcXEatRXqlfY2h
Xkqw57gmoyuGhwJWv7/cEiXM96r7VPTmGvRFcXbJEawEolqXdqEILpo/bTL3
p1EJwv9N+p+ncJFMb9h4YpsSbJEgPLtax0Frkv61cl4rAZa7m7rybyU6Krkk
fvEfJfC9eOL9RZ8K9GmOJJNvogyrHG8+CZUpR+aNl7cNgjK4fGtTrL9RhhKu
z8Su2qoMdhVT3wnkMqSr/mRR5B5laE3M3f5TrRQFO4Yt2BumDPc+ylWZuxcj
kZKX36RqlKEp3i3kycY8RDh045U/UgEJbhyLIhaNvHUXEPOsVeDl6tFD6s8i
Eef3UZeBnSqQ76M/c0z3DHJNsurZ4qECbqodDSqtXugunmmjRqpAdE360jGR
01iTaC/oEqhAl9yvZWX0VHzX+3I3iUaBib//PvR5F+DFZ3ye0JgUkJcSdLRs
KcQBCVsFmpoU2JNiV5jALMKILVWyzoACCYmP33sOPsKDoolxrhspMMQVtH5K
K8GbCSeiDlpTQDAn/V3iXwkuXm0f6mdLgSu/u41feZXis3arvM84UOC8WMrO
NK0yTM5Kt8w4SAHPlgfn6wrL8cXSUNNcbwq067gKJBaz8ET9Xt1CPwokRe0c
6vdk4epPZOXqQCGm3Z9WWMXGe02zf/VfoECLVyXzkFcFFmyLmhq6TAHDjw96
klgVWMPj4IfxOKH+7e8C1cUq8a9otZ65ZAp8tm5NOJ1RidO7H5YQ71EgJuCm
tD2Hg0XGYh+o5lNAwj/ZyeE3B/v89svSKKLAy2TNm1nmXGysqh1vxqKAQbZh
9sIqLs5au+yCJYcC6R+uzhNnuVhi61SoTQ0FuOsGSo7pVuFe/zLvvfUU8LGw
31F3pwpbXEh282ymQIjSIoXq7iqclxrk6PuUAlpxkzNji6rxKZ7RxrBuCpz+
EcDv9qnGAx3yZlEvKeAe/twrIbUaWw3/1I0doEDsdflzJwXVeJVUtfKtYQr4
6WTeKlslnDeUM+VyxihQ69tNl1pXg4f1zkoXTFDghP6c/mX3Grxtk5tY2RQF
4vYk26pF1eByFzTH/UaBq5WSy4dzajDxKGWa/5MC67W45gJ+DY6KWDDW8ocC
BT7T+bWDNdg+73FPnzgVHscoZS5dycNV3HtP3y2mQlz0N3UPDR5WfXbp8Udp
Kkj/OO7chng49u3hqunlVNh7JKrA2YGHp2esS3+tosLyfXs5v7142GXR6vwF
ilToFKMbVQXxcB1R8s4SJSr05iZMJEXxsLr2pxsrqFSALbI3oxJ4OHHD03hF
NSrQL9wuupbOw5trcw0G1KmwY1Iry+wuD/8xO9OfpUWFrlaNBpTHw2WV9pEH
dKkw4yIfc6eAh30MNdTphlRwiOV57n3Ew8qlC9pHjamgdEJ7NKCYh7vX9J16
uI4KHjdyOO+F8diCEvJRRIVWad8b5YU8DMyYx9obqWDB6Nr27gEPz+a6+05v
pkJ1mWj9sRweLqIYr2DZUOGI5p9vezJ42PO2DCd4BxXMMw98yUviYQXiqJup
PRVqak51OcbwcFsqb+EfRyoQHoy/8g7n4YsrbxTV7qECm/HGYfA4D5slHnWI
3E+FpZLlGVXuPDwlbTW38QAVZPwk9Od38HDeFVK2xCEq+E5T6grMeXifxIx1
iw8V9k05SgjUeVj2QuuXuKNUUJBveblJ+F/N/7Jv7AigwvOvTiomf2rwufBQ
8xVBVFCU39dz630NNvxl977rNBWkjHKXBLTU4Ltf/+nuiRCefzt/OSyxBjv5
v3hBuiCs7zZ9J+tEDZaeKD43GE2F1V9cEo7sqsEhI/ufHkwQ5tNpNbeTrsE7
X1Z7H78t1OtR2+4UUI3FHZNl9LKp4K8xt5W1qRpXdfqyZ+5RIcrgU3aOYjVm
PFEUCy2igqrS5Yn1vCo8zzuddaGaCkE2OlZNM1zMMtu5aTOmQthc9XOxWi72
rWRMLH5MhS2vNpz6FM3FvSU9pgmtVBBZLLO3dRUXF+ca9KT3UcHz6IeFOlQO
9qJIhbu+poLje6a61rtKTLw9pKr8jgoHyo/0fL1TiaNTrwfkjlHB/YTL0IRi
JXa7MilV/IMKD8XP50iJVGAZ/0LLx3KqUHCKRelIL8eHctKWv1BUBVnKLD0G
ynFNz4XBcSVVwMZcuvqHMnzEfF+YLEMV2teNa5nqleH6JUvLDhipAvGDyeQu
bgkOu3ecKuKsCpKbaZKmFoV4tE9PZH26KmRNHrFurc/A65cqt9llqoL36HLj
HKlbOAUkM73uqkJj+Z+w2F3peMODIeP4fFWwwTdm//an4MygZP9XHFWwC7Ry
gvY4bL/s+2Bonyr8NCqW1PnYWVtrxeFVEGmQKMeq/ieegQ6+u7XukjINtrzr
TDh5JRMtPneW66BKg/H3QyvypbKQfaUle2o1DTK2BvfFX7yLRlc/K9IwpUFw
qzH9y8lcJLNsKCPLmQaCnrAAtuRDVF5Yr3jMlQZLR6Y7wyseIpctD9LWudPg
wta+/fEeBSgn8mjyy8M08D0fE+PxXyEy+jYbKxtMg2RL++hPRsXIrU8qLDqF
Bq7K3XS9wFIkFvzlx+50GqR/Oth8gFuK8mU7T9EyadCoIpMYPF+KvtqmnqjL
pYGngkiLxaUyFF1LOTJXRoNOg3+eny+WI01XsQ/NFTRooffpDfHLUcePEa+0
KhpclQ/xy/5bjoh6hR6GAhrkfDt+K/AECxXnrnU53kkDDyW2O9GGjRxAode8
hwZ+k4JwubNs9HNgzkGqjwY/F82NNBSzkSWhbmf+WxoMnzEPWy9TgT6U5TwL
HqZB0OwnKxHzChS/85LtpjEafNuwNsNfOC/0xthYD03S4MfrjwJbXgU6o7am
oWSGBlS6+AnWSAWiCJZtjPhBg2iTbq5AuhL5/u62IP+jgUX4BKvZqRItS6+s
GRelQ/4Vydqa0ErEMrxlxpWgw+k9xYE7MyrR32PuRk4ydMjoGCyx7a9Eniaf
41bI0qHjV9R61R+VqFH0zLuncnTYTDG/fFeWgxLSUuM3KtHBg9UfnLiJg74e
oA/NU+gwlnE4XWQ/BzlplRlX0ekQUtpsIRfIQcr8Z0O6WnS49OHUNWYGB0XF
uZpM6NCF/o9jo/aIg0YdP159YEAH6VLrT/U8DrKhnH7vaUyH24XluhLPOKh4
XNxUeR0dLDcUao31c5AsOymhz4IOEN0z5PuBg4IjKMMplnSQCJ1JSPjKQf1b
i03tNtMh1uCkvsMfDrJYZX5Nykaov/NjLUeci3IGW4Ybt9NB0WDNGizFRRIP
nc2idtHBOK815vAKLvINHLm23pEOKVnHvhXLcVHb+sCRny500Pg8UJCuwEX6
ixesY+2jg7Kq/jyNyEWpzxMS/T3osLHhqvkuIZ7LJI9qeNFB8+ltLaoiF7l5
F6wb9Rbi0CHrFAIXCfRMrmf70WG5rqZeoSwXMf40jO7zp8PM6e7bh5dyUWyj
g7lCIB3kimscmyS46Eviu+tdwXRYP8o0aJvnIHtX/w8JYXS473hGI/w7B1Wo
/TW3OUeHZOuSNc/HOYg4FZu0MIoOXOZO285BDoqoUhiru0SHK0sD88M6OWj4
Yt768Ct0OH5q/ky7gIO27DRMNr5KB/uPRQs6yzioSFEw9jWRDl+PumWdz+ag
5cM7LYpT6PCxp2nwTQIHBRW/Tj6SLrx/iGE+FcZBL0P8PtIz6XBD56dh+SEO
urv0ckpGLh1yOBF6zsYcJP5y1bjTAzoYJL1MWqfMQT45OUi2kA6Ji6o8+8Q4
SNe4djymjA6PtY+s3PpE6Nc9vkMwnw485OujZ1uJ6JoXUvUa6DA76dynqF6J
Yr4vn5hopsOR/0qynopVIrtYrbSDHXSIPj759lZlBXpbfvCz3Rs6+B7b40Jd
UYGszk1bSr+nAz1/jVbuMBvlb4lIbxqlw44nHibilWwU8PrWRosvwn7Na4v0
d2GjBYue39T8S4e+ithCiwQWkogJIpgsUIO8/w6+DN3NQpJL5JOtFqqB1SvK
vvOKLLRKal/8/qVqQMj+2v3rTjlSXzZ67pqSGpQYOTsr3ylDO+TnDs6sV4Oy
8VGb1b4lyCE98+2/DWqglG4tSlQpQS6KaL/0ZjVgRZactsj7D3mSLjqp7VCD
0ZSG8J8BxeiUisxWZzc1+PG330PzayHKZKpqV59Tg+gBs9XER3koO7++oClK
Da6Z2N3Pmr+P8lZ7M7uj1UB26onjnx330X+aRZTPCWrwa1HMlRMTuUigY7RS
5Y4aTK1R5caSstFHY5ufUViIww+XjjxMRUZbTgpsRBjQmjrw/vXj7fiKvtTk
CnEGSGsPcJ/5euIB8j1S3yIGzHcW+PW5H8NR0z1B3ssYcPg7iXgjMxS33TJl
XlRmgM43pyP/7l/G3p9F4nnmDKB3G/51CkjFVS9uci4CA+p6gs5ReWlYRqA/
YmvFAFHSkhvqi29iVqqXRb8tA+IHjXzvp2dgEWiemt3LgBht/akKu7s4Pema
o24oA9of+XxiUe/jT+HqUT/CGbBT4daeX+z72MKbX1x7ngHE6aebe7fk4eF1
M4u2xzDgj0rupXW+D7DuiFPVkTSh3jcBL4ZuPcQX2idHdTMYoL84cTuRVoB7
uTErf2YxYPfN5TL/PSzA4QlVR6PzGODm+dy2p7QQtxgrq+SyGZDCju/c9+gR
JqtW2vpyGXB87YM39cxiHCBtF6LHYwA1lgx77xZjwrvITlwvrHdwHeVt3H/Y
M3bkwkAXA26y0tUm7pdgdtC5ktwXDFAPyco6+aoEL3aXf+37igHj26djZ5eV
4mKDrUa/hhjwM0716OdTpXhuoGhM7isDPqSk7HJaW4atjjYnbp9lQLTUoGWl
dxm++vu9yaU5IZ+1qAhOL8MUIunKN1EmmOiw+itmy7DvQyM9rUVMsMgbkcqm
lWOWiX3fQSkmHF01qc3YWY6tna+s7lrJhKdbIvFsdjlOHL3XKanAhH0L70la
tJTj/lN1oZZkJugmpR6UnyzHx1N+tJTSmZBlqB0XYsTCHNrKkx/VmVCg1HDj
jzMLLyjXJlLXMGGY2EGXCmHhlM5DvolrmVBX/CK7rpyFBz0iZZtNmXAjSnm5
VzsLM6cyq/6tZ8Ky/iLpuI8sHBDB8TS2ZMJkU6CPoSgbV8l0S/pvZkLUolOb
3BXZWDxrsizPhgk7uEbtkjpsvGONlOvgDiYcLogyMdrIxuk1DDGCAxNeG7jy
3jqy8Ttby8LtzkxIo0nnLvFmY41X+x0uuQr5Js1MS4LZOMg39HeNOxOG/vb0
d11k49pfKbnfDjLB/9vCycDrbLz4Somtlg8TWLuOjV/LZGN7haczB48yoSrZ
zp6Zx8YZDz5kZAQwIeBuprhZMRsPG4lZdQUxwX1FKjSz2Fi7UXlCMpQJqhMX
dz/nsnGIo1mK5VkmtFWevenCY2P+sKN5WCQTxt6RglwxG0sGnRguvcSEx+Yj
jq+EeLfY1fiPV5jw7fGJ2pe1bJyVlG9ITWDCYoWD5rtr2HiMWj/gksSE6O7A
4zs4bKxf+uZiYioTlCBJvLmMjc/Ab63mW0zgHN/F5xeycX07oedfFhOC75eF
meeysYy7/lnjXCZs8XyBTG+yscuX7Wr+D5iwNK0rhHuVjXPOHnmWV8gEfeeO
nNrzbDwhfenU4H9MqEgMsrE5ycZrM+8qEVhMaK+7I+XmycbnNGsatnOYkMu5
mPTbjo2bq14cu1TDhNSnyZl0CzaWtZmR49UxQfZC3K/+1Wy8r0+m9ls9E377
q8ZThH598scmGa9nTMgztoMDwyxscvlARUYnE4IC2uI8Wlk4inDWrauHCYMx
3z1/FLMwYS2r2HKQCeO1igu/B7KwR327U9gQE0LKnSY8drPwQ4dP86WjTLDL
TYo7bsDC5idVd1InmTA3/8st7HM5jl5g8cNlRshXIRp8rrkcdyTuuZP4gwl/
1qVK6+aUYyLllHXzbyYQjlVZJoWV4//blw3/vy/7f/aCFXU=
"]]},
Annotation[#, "Charting`Private`Tag$114389#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"\[Lambda]\"", TraditionalForm],
FormBox["\"D(\[Lambda])\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.714785568012825*^9, 3.7147855744711943`*^9}, {
3.7147856120583444`*^9, 3.714785637025772*^9}, 3.7147863192887955`*^9,
3.7147881338455825`*^9, 3.71506375284708*^9, 3.715085778743904*^9,
3.7171487859880075`*^9, 3.7171534708799686`*^9, {3.7220719748723493`*^9,
3.722072008364265*^9}, {3.722072954762396*^9, 3.7220729689202056`*^9},
3.7220813260252047`*^9, 3.731326903351467*^9, 3.7317321611163735`*^9,
3.735101880580142*^9, 3.7352950301514215`*^9, 3.7352997881584167`*^9, {
3.7352998456007023`*^9, 3.7352998717241964`*^9}, 3.74071581073546*^9,
3.746862100767891*^9},
CellLabel->"Out[60]=",ExpressionUUID->"28cc19ae-951a-420b-b631-ce8b9fcc930a"]
}, Open ]],
Cell["FindRoot will converge to a root:", "Text",
CellChangeTimes->{{3.7220732055587406`*^9, 3.7220732173134127`*^9}, {
3.722073473280053*^9,
3.7220734858707733`*^9}},ExpressionUUID->"ef5bde84-f6c6-4f55-b751-\
0bacdbc4e101"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"L", "=", "2"}], "}"}], ",",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{"Evans", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "\[Lambda]0"}], "}"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "1"},
{
RowBox[{"-",
SuperscriptBox["\[Lambda]", "2"]}], "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0"},
{"0", "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0"},
{"0", "0"}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]0", ",", "20"}], "}"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.722073224006796*^9, 3.722073233575343*^9},
3.7351018903701596`*^9, {3.735300075389845*^9,
3.7353000847273793`*^9}},ExpressionUUID->"c93dd419-b76a-4ddf-b2a7-\
d0236be09fd1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\[Lambda]0", "\[Rule]", "20.42035204087763`"}], "}"}]], "Output",
CellChangeTimes->{{3.7220732308691883`*^9, 3.7220732343933897`*^9},
3.735101898096574*^9, 3.735295043712197*^9, {3.7353000732097206`*^9,
3.7353000852294083`*^9}},ExpressionUUID->"9159cb48-af87-4f28-bac5-\
a12baeb55e52"]
}, Open ]],
Cell[TextData[{
"However, the easier way to feed the system to ",
StyleBox["Evans",
FontWeight->"Bold"],
" is to use the function ",
StyleBox["ToMatrixSystem",
FontWeight->"Bold"],
":"
}], "Text",
CellChangeTimes->{{3.7317322016586924`*^9, 3.7317322207707853`*^9}, {
3.7317322686345234`*^9, 3.731732275305905*^9}, {3.735101904076384*^9,
3.7351019045287848`*^9}, {3.746947719870946*^9,
3.746947752931126*^9}},ExpressionUUID->"191a810c-cbcf-45f7-930f-\
e6655c83d794"],
Cell[BoxData[
RowBox[{
RowBox[{"sys", "=",
RowBox[{"ToMatrixSystem", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"y", "''"}], "[", "x", "]"}], "+",
RowBox[{
SuperscriptBox["\[Lambda]", "2"],
RowBox[{"y", "[", "x", "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{"y", "[", "L", "]"}], "\[Equal]", "0"}]}], "}"}], ",", "y",
",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "L"}], "}"}], ",", "\[Lambda]"}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.7317322307663574`*^9, 3.7317322822213*^9}, {
3.731732348499091*^9, 3.731732396918861*^9}, {3.7443353169137278`*^9,
3.7443353175712376`*^9}, {3.7469478137999687`*^9, 3.746947818622767*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"da36d69b-567f-455f-a4be-65dcd6c05ce4"],
Cell[TextData[{
"This returns all the components needed to generate the Evans function at a \
given ",
Cell[BoxData[
FormBox["\[Lambda]", TraditionalForm]],ExpressionUUID->
"97c3a6af-37a7-49fd-a8d3-2be7fe43ab17"],
". Note that the Evans function now does not require specifying which \
variable is the eigenvalue, as it has been specified already."
}], "Text",
CellChangeTimes->{{3.731732278227072*^9, 3.731732307147726*^9}, {
3.7317323988829727`*^9, 3.731732422658333*^9}, {3.731732507875207*^9,
3.731732532963642*^9}, {3.746862116129496*^9,
3.746862166862671*^9}},ExpressionUUID->"075e0e05-aa7f-4063-9a60-\
eacf39670b87"],
Cell[CellGroupData[{
Cell[BoxData[