forked from yewzijian/3DFeatNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
327 lines (251 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import argparse
import coloredlogs, logging
import logging.config
import numpy as np
import os
import sys
import tensorflow as tf
from models.net_factory import get_network
from config import *
from data.datagenerator import DataGenerator
from data.augment import get_augmentations_from_list
from utils import get_tensors_in_checkpoint_file
NUM_CLUSTERS = 512
UPRIGHT_AXIS = 2 # Will learn invariance along this axis
VAL_PROPORTION = 1.0
# Arguments
parser = argparse.ArgumentParser(description='Trains pointnet')
parser.add_argument('--gpu', type=int, default=0,
help='GPU to use (default: 0)')
# data
parser.add_argument('--data_dim', type=int, default=6,
help='Input dimension for data. Note: Feat3D-Net will only use the first 3 dimensions (default: 6)')
parser.add_argument('--data_dir', type=str, default='../data/oxford',
help='Path to dataset. Should contain "train" and "clusters" folders')
# Model
parser.add_argument('--model', type=str, default='3DFeatNet', help='Model to load')
parser.add_argument('--noregress', action='store_true',
help='If set, regression of feature orientation will not be performed')
parser.add_argument('--noattention', action='store_true',
help='If set, model will not learn to predict attention')
parser.add_argument('--margin', type=float, default=0.2,
help='Margin for triplet loss. Default=0.2')
parser.add_argument('--feature_dim', type=int, default=32, choices=[16, 32, 64, 128],
help='Feature dimension size')
# Data
parser.add_argument('--num_points', type=int, default=4096,
help='Number of points to downsample model to')
parser.add_argument('--base_scale', type=float, default=2.0,
help='Base scale (radius) for sampling clusters. Set to around 2.0 for oxford dataset')
parser.add_argument('--num_samples', type=int, default=64,
help='Maximum number of points to consider per cluster (default: 64)')
parser.add_argument('--augmentation', type=str, nargs='+', default=['Jitter', 'RotateSmall', 'Shift', 'Rotate1D'],
choices=['Jitter', 'RotateSmall', 'Rotate1D', 'Rotate3D', 'Scale', 'Shift'],
help='Data augmentation settings to use during training')
# Logging
parser.add_argument('--log_dir', type=str, default='./ckpt',
help='Directory to save tf summaries, checkpoints, and log. Default=./ckpt')
parser.add_argument('--ignore_missing_vars', action='store_true',
help='Whether to crash if variables are missing')
parser.add_argument('--summary_every_n_steps', type=int, default=20,
help='Save to tf summary every N steps. Default=20')
parser.add_argument('--validate_every_n_steps', type=int, default=250,
help='Run over validation data every n steps. Default=250')
# Saver
parser.add_argument('--checkpoint', type=str,
help='Checkpoint to restore from (optional)')
parser.add_argument('--checkpoint_every_n_steps', type=int, default=500,
help='Save a checkpoint every n steps. Default=500')
parser.add_argument('--restore_exclude', type=str, nargs='+', default=None,
help='To ignore from checkpoint')
# Training
parser.add_argument('--num_epochs', type=int, default=1000,
help='Number of epochs to train for. Default=1000')
args = parser.parse_args()
# Prepares the folder for saving checkpoints, summary, logs
log_dir = args.log_dir
checkpoint_dir = os.path.join(log_dir, 'ckpt')
os.makedirs(checkpoint_dir, exist_ok=True)
# Create Logging
logging.config.fileConfig('logging.conf')
logger = logging.getLogger(__name__)
coloredlogs.install(level='DEBUG', logger=logger)
fileHandler = logging.FileHandler("{0}/log.txt".format(checkpoint_dir))
logFormatter = logging.Formatter("%(asctime)s [%(levelname)s] %(name)s - %(message)s")
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
def log_arguments():
logger.info('Command: %s', ' '.join(sys.argv))
s = '\n'.join([' {}: {}'.format(arg, getattr(args, arg)) for arg in vars(args)])
s = 'Arguments:\n' + s
logger.info(s)
def train():
log_arguments()
# Training Data
train_file = os.path.join(args.data_dir, 'train/train.txt')
train_data = DataGenerator(train_file, num_cols=args.data_dim)
logger.info('Loaded train data: %s (# instances: %i)',
train_file, train_data.size)
train_augmentations = get_augmentations_from_list(args.augmentation, upright_axis=UPRIGHT_AXIS)
# Validation data validation
val_folder = os.path.join(args.data_dir, 'clusters')
val_groundtruths = load_validation_groundtruths(os.path.join(val_folder, 'filenames.txt'), proportion=VAL_PROPORTION)
# Model
param = {'NoRegress': args.noregress, 'BaseScale': args.base_scale, 'Attention': not args.noattention,
'margin': args.margin, 'num_clusters': NUM_CLUSTERS, 'num_samples': args.num_samples,
'feature_dim': args.feature_dim, 'freeze_scopes': None,
}
model = get_network(args.model)(param)
# placeholders
global_step = tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step')
is_training = tf.placeholder(tf.bool)
anchor_pl, positive_pl, negative_pl = model.get_placeholders(args.data_dim)
# Ops
xyz_op, features_op, anchor_attention_op, end_points = model.get_train_model(anchor_pl, positive_pl, negative_pl, is_training, use_bn=USE_BN)
loss_op, end_points = model.get_loss(xyz_op, features_op, anchor_attention_op, end_points)
train_op = model.get_train_op(loss_op, global_step=global_step)
# Saver and summary writers
saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=0.5)
train_writer, test_writer = get_summary_writers(args.log_dir)
summary_op = tf.summary.merge_all()
logger.info('Training Batch size: %i, validation batch size: %i', BATCH_SIZE, VAL_BATCH_SIZE)
with tf.Session(config=config) as sess:
initialize_model(sess, args.checkpoint,
ignore_missing_vars=args.ignore_missing_vars,
restore_exclude=args.restore_exclude)
train_writer.add_graph(sess.graph)
for iEpoch in range(args.num_epochs):
logger.info('Starting epoch %i', iEpoch)
train_data.shuffle()
# Training data
while True:
anchors, positives, negatives = train_data.next_triplet(k=BATCH_SIZE,
num_points=args.num_points,
augmentation=train_augmentations)
if anchors is None or anchors.shape[0] != BATCH_SIZE:
break
xyz, features, train_loss, step, summary, ep, _ = \
sess.run([xyz_op, features_op, loss_op, global_step, summary_op, end_points, train_op],
feed_dict={anchor_pl: anchors, positive_pl: positives, negative_pl: negatives,
is_training: True})
if step % args.summary_every_n_steps == 0:
train_writer.add_summary(summary, step)
if step % args.checkpoint_every_n_steps == 0:
saver.save(sess, os.path.join(checkpoint_dir, 'checkpoint.ckpt'), global_step=step)
sys.stdout.write('\rStep {}, Loss: {}'.format(step, train_loss))
# # Run through validation data
if step % args.validate_every_n_steps == 0 or step == 1:
print()
# ---------------------------- TEST EVAL -----------------------
fp_rate = validate(sess, end_points, is_training, val_folder, val_groundtruths, args.data_dim)
test_summary = tf.Summary(value=[
tf.Summary.Value(tag="fp_rate", simple_value=fp_rate),
])
test_writer.add_summary(test_summary, step)
logger.info('Step %i. FP Rate: %f', step, fp_rate)
# ---------------------------- TEST EVAL End -----------------------
test_writer.flush()
train_writer.flush()
print()
def initialize_model(sess, checkpoint, ignore_missing_vars=False, restore_exclude=None):
""" Initialize model weights
:param sess: tf.Session
:param checkpoint: Checkpoint to load. Set to none if starting from scratch
:param ignore_missing_vars: If false, will throw exception when variables are not found
in the checkpoint
:param restore_exclude: Scopes to exclude from checkpoint
:return:
"""
logger.info('Initializing weights')
sess.run(tf.global_variables_initializer())
if checkpoint is not None:
if os.path.isdir(checkpoint):
checkpoint = tf.train.latest_checkpoint(checkpoint)
logger.info('Restoring model from {}'.format(checkpoint))
model_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
exclude_list = []
if restore_exclude is not None:
for e in restore_exclude:
exclude_list += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=e)
for e in exclude_list:
logger.info('Excluded from model restore: %s', e.op.name)
if ignore_missing_vars:
checkpoint_var_names = get_tensors_in_checkpoint_file(checkpoint)
missing = [m.op.name for m in model_var_list if m.op.name not in checkpoint_var_names and m not in exclude_list]
for m in missing:
logger.warning('Variable missing from checkpoint: %s', m)
var_list = [m for m in model_var_list if m.op.name in checkpoint_var_names and m not in exclude_list]
else:
var_list = [m for m in model_var_list if m not in exclude_list]
saver = tf.train.Saver(var_list)
saver.restore(sess, checkpoint)
logger.info('Weights initialized')
def get_summary_writers(log_dir):
logger.info('Summaries will be stored in: %s', log_dir)
train_writer = tf.summary.FileWriter(os.path.join(log_dir, 'train'))
test_writer = tf.summary.FileWriter(os.path.join(log_dir, 'test'))
return train_writer, test_writer
def load_validation_groundtruths(fname, proportion=1):
groundtruths = []
iGt = 0
with open(fname) as fid:
fid.readline()
for line in fid:
groundtruths.append((iGt, int(line.split()[-1])))
iGt += 1
if 0 < proportion < 1:
skip = int(1.0/proportion)
groundtruths = groundtruths[0::skip]
return groundtruths
def validate(sess, end_points, is_training, val_folder, val_groundtruths, data_dim):
if val_groundtruths is None or len(val_groundtruths) == 0:
return 1
positive_dist = []
negative_dist = []
for iTest in range(0, len(val_groundtruths), NUM_CLUSTERS):
clouds1, clouds2 = [], []
# We batch the validation by stacking all the validation clusters into a single point cloud,
# while keeping them apart such that they do not overlap each other. This way NUM_CLUSTERS
# clusters can be computed in a single pass
for jTest in range(iTest, min(iTest + NUM_CLUSTERS, len(val_groundtruths))):
offset = (jTest - iTest) * 100
cluster_idx = val_groundtruths[jTest][0]
cloud1 = DataGenerator.load_point_cloud(
os.path.join(val_folder, '{}_0.bin'.format(cluster_idx)), data_dim)
cloud1[:, 0] += offset
clouds1.append(cloud1)
cloud2 = DataGenerator.load_point_cloud(
os.path.join(val_folder, '{}_1.bin'.format(cluster_idx)), data_dim)
cloud2[:, 0] += offset
clouds2.append(cloud2)
offsets = np.arange(0, NUM_CLUSTERS * 100, 100)
num_clusters = min(len(val_groundtruths) - iTest, NUM_CLUSTERS)
offsets[num_clusters:] = 0
offsets = np.pad(offsets[:, None], ((0, 0), (0, 2)), mode='constant', constant_values=0)[None, :, :]
clouds1 = np.concatenate(clouds1, axis=0)[None, :, :]
clouds2 = np.concatenate(clouds2, axis=0)[None, :, :]
xyz1, features1 = \
sess.run([end_points['output_xyz'], end_points['output_features']],
feed_dict={end_points['input_pointclouds']: clouds1, is_training: False,
end_points['keypoints']: offsets})
xyz2, features2 = \
sess.run([end_points['output_xyz'], end_points['output_features']],
feed_dict={end_points['input_pointclouds']: clouds2, is_training: False,
end_points['keypoints']: offsets})
d = np.sqrt(np.sum(np.square(np.squeeze(features1 - features2)), axis=1))
d = d[:num_clusters]
positive_dist += [d[i] for i in range(len(d)) if val_groundtruths[iTest + i][1] == 1]
negative_dist += [d[i] for i in range(len(d)) if val_groundtruths[iTest + i][1] == 0]
d_at_95_recall = np.percentile(positive_dist, 95)
num_FP = np.count_nonzero(np.array(negative_dist) < d_at_95_recall)
num_TN = len(negative_dist) - num_FP
fp_rate = num_FP / (num_FP + num_TN)
return fp_rate
if __name__ == '__main__':
config = tf.ConfigProto()
config.allow_soft_placement = True
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
gpu_string = '/gpu:{}'.format(args.gpu)
config.gpu_options.allow_growth = True
with tf.device(gpu_string):
train()