-
Notifications
You must be signed in to change notification settings - Fork 0
/
caiman_SourceExtraction.py
328 lines (292 loc) · 13.4 KB
/
caiman_SourceExtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
try:
get_ipython().magic(u'load_ext autoreload')
get_ipython().magic(u'autoreload 2')
get_ipython().magic(u'matplotlib qt')
except:
pass
import matplotlib as mpl
mpl.use('Agg')
import logging
import matplotlib.pyplot as plt
import numpy as np
import glob
logging.basicConfig(format=
"%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s] [%(process)d] %(message)s",
# filename="/tmp/caiman.log",
level=logging.DEBUG)
import caiman as cm
from caiman.source_extraction import cnmf
from caiman.utils.visualization import inspect_correlation_pnr, nb_inspect_correlation_pnr
from caiman.motion_correction import MotionCorrect
from caiman.source_extraction.cnmf import params as params
from caiman.utils.visualization import plot_contours, nb_view_patches, nb_plot_contour
import cv2
try:
cv2.setNumThreads(0)
except:
pass
import bokeh.plotting as bpl
import holoviews as hv
bpl.output_notebook()
import sys,os
import pickle
import pandas as pd
#%% motion correction with concatenated videos
videoconcat = sys.argv[1]
newpath = os.path.dirname(videoconcat)
ms_ts_name = os.path.join(newpath,"ms_ts.pkl")
if os.path.exists(ms_ts_name):
with open(ms_ts_name, "rb") as f:
ms_ts= pickle.load(f)
else:
print("there is no mt_ts.pkl existed")
fnames=[videoconcat]
m_orig = cm.load_movie_chain(fnames)
# start a cluster for parallel processing (if a cluster already exists it will be closed and a new session will be opened)
if 'dview' in locals():
cm.stop_server(dview=dview)
c, dview, n_processes = cm.cluster.setup_cluster(
backend='local', n_processes=None, single_thread=False)
# dataset dependent parameters
fr = 10 # movie frame rate
decay_time = 0.4 # length of a typical transient in seconds
motion_correct = False # flag for motion correction
# motion correction parameters
pw_rigid = False # flag for pw-rigid motion correction
gSig_filt = (8,8) # size of filter, in general gSig (see below),
# change this one if algorithm does not work
max_shifts = (15,15) # maximum allowed rigid shift
strides = (96,96) # start a new patch for pw-rigid motion correction every x pixels
overlaps = (32,32) # overlap between pathes (size of patch strides+overlaps)
# maximum deviation allowed for patch with respect to rigid shifts
max_deviation_rigid = 5
border_nan = 'copy'
mc_dict = {
'fnames': fnames,
'fr': fr,
'decay_time': decay_time,
'pw_rigid': pw_rigid,
'max_shifts': max_shifts,
'gSig_filt': gSig_filt,
'strides': strides,
'overlaps': overlaps,
'max_deviation_rigid': max_deviation_rigid,
'border_nan': border_nan
}
opts = params.CNMFParams(params_dict=mc_dict)
if motion_correct:
# do motion correction rigid
mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
mc.motion_correct(save_movie=True)
fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig
if pw_rigid:
bord_px = np.ceil(np.maximum(np.max(np.abs(mc.x_shifts_els)),
np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
else:
bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(np.int)
#plt.subplot(1, 2, 1); plt.imshow(mc.total_template_rig) # % plot template
#plt.subplot(1, 2, 2); plt.plot(mc.shifts_rig) # % plot rigid shifts
#plt.legend(['x shifts', 'y shifts'])
#plt.xlabel('frames')
#plt.ylabel('pixels')
bord_px = 0 if border_nan is 'copy' else bord_px
fname_new = cm.save_memmap(fname_mc, base_name='memmap_', order='C',
border_to_0=bord_px)
else: # if no motion correction just memory map the file
bord_px = 0
#fname_new = cm.save_memmap(fnames, base_name='memmap_',order='C',border_to_0=bord_px)# there will be slightly different from using memmap* file
fname_new = glob.glob(os.path.join(newpath,"memmap*.mmap"))[0]# it will get the same result with the MotionCorrection_SourceExtraction.py
print('Motion correction has been done!')
m_els = cm.load(fname_mc)
# save motion corrected video as mat/tiff/hdf5 file
mc_name = os.path.join(newpath,"motioncorrected.tif")
m_els.save(mc_name)
#vid=np.array(m_els).astype('uint8')
#try:
# from scipy.io import savemat
# savemat(mc_name,{'vid':vid},format="5",do_compression=True)
#finally:
m_els.save(os.path.join(newpath,'ms_mc.avi'))
del m_els
cm.stop_server(dview=dview)
#%% processing for source extraction
# start a cluster for parallel processing (if a cluster already exists it will be closed and a new session will be opened)
if 'dview' in locals():
cm.stop_server(dview=dview)
c, dview, n_processes = cm.cluster.setup_cluster(
backend='local', n_processes=None, single_thread=False)
# load memory mappable file
Yr, dims, T = cm.load_memmap(fname_new)
images = Yr.T.reshape((T,) + dims, order='F')
# parameters for source extraction and deconvolution
p = 1 # order of the autoregressive system
K = None # upper bound on number of components per patch, in general None
gSig = (3,3) # gaussian width of a 2D gaussian kernel, which approximates a neuron
gSiz = (13,13) # average diameter of a neuron, in general 4*gSig+1
Ain = None # possibility to seed with predetermined binary masks
merge_thr = .65 # merging threshold, max correlation allowed
rf = 40 # half-size of the patches in pixels. e.g., if rf=40, patches are 80x80
stride_cnmf = 20 # amount of overlap between the patches in pixels
# (keep it at least large as gSiz, i.e 4 times the neuron size gSig)
tsub = 1 # downsampling factor in time for initialization,
# increase if you have memory problems
ssub = 1 # downsampling factor in space for initialization,
# increase if you have memory problems
# you can pass them here as boolean vectors
low_rank_background = None # None leaves background of each patch intact,
# True performs global low-rank approximation if gnb>0
gnb = 0 # number of background components (rank) if positive,
# else exact ring model with following settings
# gnb= 0: Return background as b and W
# gnb=-1: Return full rank background B
# gnb<-1: Don't return background
nb_patch = 0 # number of background components (rank) per patch if gnb>0,
# else it is set automatically
min_corr = .85 # min peak value from correlation image
min_pnr = 10 # min peak to noise ration from PNR image
ssub_B = 2 # additional downsampling factor in space for background
ring_size_factor = 1.5 # radius of ring is gSiz*ring_size_factor
opts.change_params(params_dict={'method_init': 'corr_pnr', # use this for 1 photon
'K': K,
'gSig': gSig,
'gSiz': gSiz,
'merge_thr': merge_thr,
'p': p,
'tsub': tsub,
'ssub': ssub,
'rf': rf,
'stride': stride_cnmf,
'only_init': True, # set it to True to run CNMF-E
'nb': gnb,
'nb_patch': nb_patch,
'method_deconvolution': 'oasis', # could use 'cvxpy' alternatively
'low_rank_background': low_rank_background,
'update_background_components': True, # sometimes setting to False improve the results
'min_corr': min_corr,
'min_pnr': min_pnr,
'normalize_init': False, # just leave as is
'center_psf': True, # leave as is for 1 photon
'ssub_B': ssub_B,
'ring_size_factor': ring_size_factor,
'del_duplicates': True, # whether to remove duplicates from initialization
'border_pix': bord_px}) # number of pixels to not consider in the borders)
cn_filter, pnr = cm.summary_images.correlation_pnr(images[::5], gSig=gSig[0], swap_dim=False) # change swap dim if output looks weird, it is a problem with tiffile
# inspect the summary images and set the parameters
#inspect_correlation_pnr(cn_filter, pnr)
print(r">>>>>>>>>>start cnmf.CNMF")
# source extraction
cnm = cnmf.CNMF(n_processes=n_processes, dview=dview, Ain=Ain, params=opts)
cnm.fit(images)
print(r">>>>>>>>>>finish cnm.fit(images)")
old_RawTraces= cnm.estimates.C
# plt.plot(old_C[0,:],'k')
old_DeconvTraces = cnm.estimates.S
# plt.plot(old_S[0,:],'k')
# old_S
#%% COMPONENT EVALUATION ## necessary for generate "idx_accepted = cnm.estimates.idx_components"
# the components are evaluated in three ways:
# a) the shape of each component must be correlated with the data
# b) a minimum peak SNR is required over the length of a transient
# c) each shape passes a CNN based classifier
min_SNR = 10 # adaptive way to set threshold on the transient size
r_values_min = 0.85 # threshold on space consistency (if you lower more components
# will be accepted, potentially with worst quality)
cnm.params.set('quality', {'min_SNR': min_SNR,
'rval_thr': r_values_min,
'use_cnn': False})
cnm.estimates.evaluate_components(images, cnm.params, dview=dview)
print(' ***** ')
print('Number of total components: ', len(cnm.estimates.C))
print('Number of accepted components: ', len(cnm.estimates.idx_components))
# for saving final_result.avi
#try:
# cnm.estimates.play_movie(images, q_max=99.9, magnification=1,include_bck=False,frame_range=slice(0,1000,1), thr=1, gain_res=1,bpx=bord_px,save_movie=True,movie_name=os.path.join(newpath,'final_result.avi'))
#except:
# print("could not play video here!")
# detrend
cnm.estimates.detrend_df_f()
cnm.estimates.deconvolve(cnm.params,dview=dview,dff_flag=True)
cnm.save(os.path.join(newpath,'result.hdf5'))
#%%matplotlib inline
#How many neurons to plot
neuronsToPlot = 10
DeconvTraces = cnm.estimates.S
RawTraces = cnm.estimates.C
SFP = cnm.estimates.A
SFP_dims = list(dims)
SFP_dims.append(SFP.shape[1])
print('Spatial foootprints dimensions (height x width x neurons): ' + str(SFP_dims))
numNeurons = SFP_dims[2]
idx_accepted=cnm.estimates.idx_components
idx_deleted=cnm.estimates.idx_components_bad
dff=cnm.estimates.F_dff[idx_accepted,:]
S_dff=cnm.estimates.S_dff[idx_accepted,:]
SFP = np.reshape(SFP.toarray(), SFP_dims, order='F')
maxRawTraces = np.amax(RawTraces)
plt.figure(figsize=(30,15))
plt.subplot(341);
#plt.subplot(345); plt.plot(mc.shifts_rig); plt.title('Motion corrected shifts')
plt.subplot(3,4,9);
plt.subplot(3,4,2); plt.imshow(cn_filter); plt.colorbar(); plt.title('Correlation projection')
plt.subplot(3,4,6); plt.imshow(pnr); plt.colorbar(); plt.title('PNR')
plt.subplot(3,4,10); plt.imshow(np.amax(SFP,axis=2)); plt.colorbar(); plt.title('Spatial footprints')
plt.subplot(2,2,2); plt.figure; plt.title(f'Example traces (first {neuronsToPlot} cells)')
plot_gain = 10 # To change the value gain of traces
if numNeurons >= neuronsToPlot:
for i in range(neuronsToPlot):
if i == 0:
plt.plot(RawTraces[i,:],'k')
else:
trace = RawTraces[i,:] + maxRawTraces*i/plot_gain
plt.plot(trace,'k')
else:
for i in range(numNeurons):
if i == 0:
plt.plot(RawTraces[i,:],'k')
else:
trace = RawTraces[i,:] + maxRawTraces*i/plot_gain
plt.plot(trace,'k')
plt.subplot(2,2,4); plt.figure; plt.title(f'Deconvolved traces (first {neuronsToPlot} cells)')
plot_gain = 20 # To change the value gain of traces
if numNeurons >= neuronsToPlot:
for i in range(neuronsToPlot):
if i == 0:
plt.plot(DeconvTraces[i,:],'k')
else:
trace = DeconvTraces[i,:] + maxRawTraces*i/plot_gain
plt.plot(trace,'k')
else:
for i in range(numNeurons):
if i == 0:
plt.plot(DeconvTraces[i,:],'k')
else:
trace = DeconvTraces[i,:] + maxRawTraces*i/plot_gain
plt.plot(trace,'k')
# Save summary figure
plt.savefig(newpath + '/' + 'summary_figure.pdf', edgecolor='w', format='pdf', transparent=True)
save_mat=True
if save_mat:
from scipy.io import savemat
results_dict={
'height':dims[0],
'width':dims[1],
'CorrProj':cn_filter,
'PNR':pnr,
'old_sigraw':old_RawTraces.conj().transpose(),
'old_sigdeconvolved':old_DeconvTraces.conj().transpose(),
'sigraw':RawTraces.conj().transpose(),
'sigdeconvolved':DeconvTraces.conj().transpose(),
'SFP':SFP,
'numNeurons':SFP_dims[2],
'ms_ts':ms_ts, # minisope timestamps, here no,
'dff':dff,
'S_dff':S_dff,
'idx_accepted':idx_accepted,
'idx_deleted':idx_deleted
}
SFPperm = np.transpose(SFP,[2,0,1])
savemat(newpath + '/SFP.mat', {'SFP': SFPperm})
savemat(newpath + '/ms.mat', {'ms': results_dict})
print('.mat Files saved!')
cm.stop_server(dview=dview)
print("All done")