-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface.py
executable file
·41 lines (25 loc) · 1.15 KB
/
face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import cv2
import config
haar_faces = cv2.CascadeClassifier(config.HAAR_FACES)
def detect_single(image):
#Return bounds (x, y, width, height) of detected face in grayscale image. If no face or more than one face are detected, None is returned.
faces = haar_faces.detectMultiScale(image,
scaleFactor=config.HAAR_SCALE_FACTOR,
minNeighbors=config.HAAR_MIN_NEIGHBORS,
minSize=config.HAAR_MIN_SIZE,
flags=cv2.cv.CV_HAAR_SCALE_IMAGE)
if len(faces) == 0:
return None
return faces[0]
def crop(image, x, y, w, h):
# Crop box defined by x, y (upper left corner) and w, h (width and height) to an image with the same aspect ratio as the face training data. Might return a smaller crop if the box is near the edge of the image.
crop_height = int((config.FACE_HEIGHT / float(config.FACE_WIDTH)) * w)
midy = y + h/2
y1 = max(0, midy-crop_height/2)
y2 = min(image.shape[0]-1, midy+crop_height/2)
return image[y1:y2, x:x+w]
def resize(image):
# Resize a face image to the proper size for training and detection.
return cv2.resize(image,
(config.FACE_WIDTH, config.FACE_HEIGHT),
interpolation=cv2.INTER_LANCZOS4)