forked from python-windrose/windrose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_windrose.py
179 lines (131 loc) · 5.19 KB
/
test_windrose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Run all unit tests (from project root directory)
# $ nosetests -s -v
# Run a test (from project root directory)
# $ nosetests tests.test_windrose:test_windrose_np_plot_and_pd_plot -s -v
import matplotlib
matplotlib.use('Agg') # noqa
# import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib import cm as cm
from windrose import WindroseAxes
from windrose import WindAxes
from windrose import WindAxesFactory
# from windrose import FIGSIZE_DEFAULT, DPI_DEFAULT
from windrose import wrbar, wrbox, wrcontour, wrcontourf, wrpdf, wrscatter
from windrose import plot_windrose
import numpy as np
import pandas as pd
# Create wind speed and direction variables
N = 500
ws = np.random.random(N) * 6
wd = np.random.random(N) * 360
df = pd.DataFrame({'speed': ws, 'direction': wd})
def test_windrose_np_mpl_oo():
bins = np.arange(0, 8, 1)
# windrose with scatter plot
ax = WindroseAxes.from_ax()
ax.scatter(wd, ws, alpha=0.2)
ax.set_legend()
plt.savefig('tests/output/oo/scatter.png')
# windrose like a stacked histogram with normed (displayed in percent) results
ax = WindroseAxes.from_ax()
ax.bar(wd, ws, normed=True, opening=0.8, edgecolor='white')
ax.set_legend()
plt.savefig('tests/output/oo/bar.png')
# Another stacked histogram representation, not normed, with bins limits
ax = WindroseAxes.from_ax()
ax.box(wd, ws, bins=bins)
ax.set_legend()
plt.savefig('tests/output/oo/box.png')
# A windrose in filled representation, with a controled colormap
ax = WindroseAxes.from_ax()
ax.contourf(wd, ws, bins=bins, cmap=cm.hot)
ax.set_legend()
plt.savefig('tests/output/oo/contourf.png')
# Same as above, but with contours over each filled region...
ax = WindroseAxes.from_ax()
ax.contourf(wd, ws, bins=bins, cmap=cm.hot)
ax.contour(wd, ws, bins=bins, colors='black')
ax.set_legend()
plt.savefig('tests/output/oo/contourf-contour.png')
# ...or without filled regions
ax = WindroseAxes.from_ax()
ax.contour(wd, ws, bins=bins, cmap=cm.hot, lw=3)
ax.set_legend()
plt.savefig('tests/output/oo/contour.png')
# print ax._info
# plt.show()
ax = WindAxes.from_ax()
bins = bins[1:]
ax.pdf(ws, bins=bins)
plt.savefig('tests/output/oo/pdf.png')
def test_windrose_np_mpl_func():
bins = np.arange(0, 8, 1)
wrscatter(wd, ws, alpha=0.2)
plt.savefig('tests/output/func/scatter.png')
wrbar(wd, ws, normed=True, opening=0.8, edgecolor='white')
plt.savefig('tests/output/func/bar.png')
wrbox(wd, ws, bins=bins)
plt.savefig('tests/output/func/box.png')
wrcontourf(wd, ws, bins=bins, cmap=cm.hot)
plt.savefig('tests/output/func/contourf.png')
# ax = wrcontourf(wd, ws, bins=bin, cmap=cm.hot)
# wrcontour(wd, ws, bins=np.arange(0, 8, 1), colors='black')
# plt.savefig('tests/output/func/wrcontourf-contour.png')
wrcontour(wd, ws, bins=bins, cmap=cm.hot, lw=3)
plt.savefig('tests/output/func/contour.png')
wrpdf(ws, bins=bins)
plt.savefig('tests/output/func/pdf.png')
def test_windrose_pandas():
bins = np.arange(0.01, 8, 1)
kind = 'scatter'
plot_windrose(df, kind=kind, alpha=0.2)
plt.savefig('tests/output/df/%s.png' % kind)
kind = 'bar'
plot_windrose(df, kind=kind, normed=True, opening=0.8, edgecolor='white')
plt.savefig('tests/output/df/%s.png' % kind)
kind = 'box'
plot_windrose(df, kind=kind, bins=bins)
plt.savefig('tests/output/df/%s.png' % kind)
kind = 'contourf'
plot_windrose(df, kind=kind, bins=bins, cmap=cm.hot)
plt.savefig('tests/output/df/%s.png' % kind)
kind = 'contour'
plot_windrose(df, kind=kind, bins=bins, cmap=cm.hot, lw=3)
plt.savefig('tests/output/df/%s.png' % kind)
kind = 'pdf'
plot_windrose(df, kind=kind, bins=bins)
plt.savefig('tests/output/df/%s.png' % kind)
def test_windaxesfactory():
ax = WindAxesFactory.create('WindroseAxes')
ax.bar(wd, ws, normed=True, opening=0.8, edgecolor='white')
ax.set_legend()
plt.savefig('tests/output/oo/bar_from_factory.png')
ax = WindAxesFactory.create('WindAxes')
bins = np.arange(0, 8, 1)
bins = bins[1:]
ax.pdf(ws, bins=bins)
plt.savefig('tests/output/oo/pdf_from_factory.png')
def test_windrose_np_plot_and_pd_plot():
# bins = np.arange(0.01, 8, 1)
kind = 'scatter'
plot_windrose(df, kind=kind, alpha=0.2)
plt.savefig('tests/output/df/%s.png' % kind)
plot_windrose(wd, ws, kind=kind, alpha=0.2)
plt.savefig('tests/output/func/%s.png' % kind)
def test_windrose_pd_not_default_names():
# bins = np.arange(0.01, 8, 1)
kind = 'scatter'
df_not_default_names = pd.DataFrame({'wind_speed': ws, 'wind_direction': wd})
plot_windrose(df_not_default_names, kind=kind, alpha=0.2, var_name='wind_speed', direction_name='wind_direction')
# def test_plot_by():
# #df = pd.read_csv("samples/sample_wind_poitiers.csv", parse_dates=['Timestamp'])
# #df['Timestamp'] = pd.to_timestamp()
# #df = df.set_index('Timestamp')
# #by = 'year_month'
# #df[by] = df.index.map(lambda dt: (dt.year, dt.month))
# #df = df.reset_index()
# #df = df.set_index([by, 'Timestamp'])
# #print(df)