-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
53 lines (40 loc) · 1.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from flask import Flask, render_template, request
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
app = Flask(__name__)
# Load the model and other necessary components
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Flask route to handle the form submission
@app.route('/', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
# Get the uploaded file
file = request.files['file']
# Save the uploaded file to the static folder
file.save(os.path.join('static', file.filename))
# Generate the caption
caption = predict_step([os.path.join('static', file.filename)])[0]
# Render the index.html template with the generated caption
return render_template('index.html', caption=caption)
# Render the index.html template initially
return render_template('index.html')
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
if __name__ == '__main__':
app.run()