Skip to content

Latest commit

 

History

History
188 lines (155 loc) · 5.72 KB

how-to-build-package.md

File metadata and controls

188 lines (155 loc) · 5.72 KB

How to Build Package

Overview

This document describes how to build a Package to run the model in our runtime onert that consists of model and additional file(s). Users can build a package through command line tools.

Steps of building a Package:

  1. Import model and convert to circle
  2. Optionally, optimize and quantize circle
  3. Create package from circle

NOTE: Examples and options of each command shown below are from the version of writing this document. They may differ from latest version of commands, 1.9.0. Please fire an issue or post a PR to correct them if anything needs update.

Import model

Currently TensorFlow and TensorFlow lite models are supported as of writing this document.

To import a model, use one-import with a model framework key and arguments.

$ one-import FRAMEWORK [arguments]

Execute one-import without any key will show the list of supported frameworks.

Example of one-import command:

$ one-import
Usage: one-import [FRAMEWORK] ...
Available FRAMEWORK drivers:
  bcq
  tf
  tflite

Example for TensorFlow

This is an example to import TensorFlow model:

$ one-import tf --input_path mymodel.pb --output_path mymodel.circle \
--input_arrays input1,input2 --input_shapes "1,224,224,3:1000" \
--output_arrays output

Running with --help will show current required/optional arguments:

$ one-import tf --help
Convert TensorFlow model to circle.
Usage: one-import-tf
    --version Show version information and exit
    --input_path <path/to/tfmodel>
    --output_path <path/to/circle>
    --input_arrays <names of the input arrays, comma-separated>
    --input_shapes <input shapes, colon-separated>
    --output_arrays <names of the output arrays, comma-separated>
    --v2 Use TensorFlow 2.x interface (default is 1.x interface)

Example for TensorFlow lite

This is an example to import TensorFlow lite model:

$ one-import tflite --input_path mymodel.tflite --output_path mymodel.circle

Likewise, running with --help will show current required/optional arguments:

$ one-import tflite --help
Convert TensorFlow lite model to circle.
Usage: one-import-tflite
    --version Show version information and exit
    --input_path <path/to/tflitemodel>
    --output_path <path/to/circle>

Example for TensorFlow Model Including BCQ Information

This is an example to import TensorFlow model which includes BCQ information. As a result of this command, BCQ information nodes will be preserved.

$ one-import bcq --input_path bcqmodel.pb --output_path bcqmodel.circle

Likewise, running with --help will show current required/optional arguments:

$ one-import bcq --help
Convert TensorFlow model with BCQ to circle.
Usage: one-import-bcq
    --version Show version information and exit
    --input_path <path/to/tfmodel/with/BCQ>
    --output_path <path/to/circle>
    --input_arrays <names of the input arrays, comma-separated>
    --input_shapes <input shapes, colon-separated>
    --output_arrays <names of the output arrays, comma-separated>
    --v2 Use TensorFlow 2.x interface (default is 1.x interface)

Optimize circle model

circle model can be optimized for better performance and smaller size. Typical optimization algorithm for this is to fuse some patterns of operators to one fused operator.

This is an example to optimize circle model:

$ one-optimize --all --input_path mymodel.circle --output_path optmodel.circle

Run with --help will show current optimization options:

$ one-optimize --help
Optimize circle model.
Usage: one-optimize
    --version       Show version information and exit
    --all           Enable all optimization algorithms
    --fuse_bcq      Enable FuseBCQ Pass
    --fuse_instnorm Enable FuseInstanceNormalization Pass
    --resolve_customop_add
                    Enable ResolveCustomOpAddPass Pass
    --resolve_customop_batchmatmul
                    Enable ResolveCustomOpBatchMatMulPass Pass
    --resolve_customop_matmul
                    Enable ResolveCustomOpMatMulPass Pass
    --input_path <path/to/input/circle>
    --output_path <path/to/output/circle>

Quantize circle model

Floating-point circle model can be quantized to lower-precision format (e.g., uint8 or int16) for faster inference speed and smaller model size, by reducing the number of bits that represent weights and activations.

This is an example to quantize circle model:

$ one-quantize --input_path mymodel.circle --output_path quantmodel.circle

Like wise, --help will show current quantization options:

$ one-quantize --help
Quantize circle model.
Usage: one-quantize
    --version         Show version information and exit
    --input_dtype     Input data type (supported: float32, default=float32)
    --quantized_dtype Output quantized data type (supported: uint8, default=uint8)
    --granularity     Quantize granularity (supported: layer, channel, default=layer)
    --min_percentile  Minimum percentile (0.0~100.0, default=1.0)
    --max_percentile  Maximum percentile (0.0~100.0, default=99.0)
    --mode            Record mode (supported: percentile/moving_average, default=percentile)
    --input_path <path/to/input/circle>
    --input_data <path/to/input/data>
    --output_path <path/to/output/circle>

Pack circle model

Use one-pack command to create package.

$ one-pack -i mymodel.circle -o nnpackage

nnpackage is a folder containing circle model and addition file(s)

$ tree nnpackage
nnpackage
└── mymodel
    ├── metadata
    │   └── MANIFEST
    └── mymodel.circle

Likewise, --help will show current package options:

$ one-pack --help
Package circle to nnpkg
Usage: one-pack
    -v, --version Show version information and exit
    -i <path/to/circle>
    -o <path/to/nnpackage/folder>