forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathanalogy.cc
365 lines (289 loc) · 9.58 KB
/
analogy.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/* -*- Mode: C++ -*- */
/*
* Copyright 2016 Google Inc. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Computes embedding performance on analogy tasks. Accepts as input one or
* more files containing four words per line (A B C D), and determines if:
*
* vec(C) - vec(A) + vec(B) ~= vec(D)
*
* Cosine distance in the embedding space is used to retrieve neighbors. Any
* missing vocabulary items are scored as losses.
*/
#include <fcntl.h>
#include <math.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
static const char usage[] = R"(
Performs analogy testing of embedding vectors.
Usage:
analogy --embeddings <embeddings> --vocab <vocab> eval1.tab ...
Options:
--embeddings <filename>
The file containing the binary embedding vectors to evaluate.
--vocab <filename>
The vocabulary file corresponding to the embedding vectors.
--nthreads <integer>
The number of evaluation threads to run (default: 8)
)";
// Reads the vocabulary file into a map from token to vector index.
static std::unordered_map<std::string, int> ReadVocab(
const std::string& vocab_filename) {
std::unordered_map<std::string, int> vocab;
std::ifstream fin(vocab_filename);
int index = 0;
for (std::string token; std::getline(fin, token); ++index) {
auto n = token.find('\t');
if (n != std::string::npos) token = token.substr(n);
vocab[token] = index;
}
return vocab;
}
// An analogy query: "A is to B as C is to D".
typedef std::tuple<int, int, int, int> AnalogyQuery;
std::vector<AnalogyQuery> ReadQueries(
const std::string &filename,
const std::unordered_map<std::string, int> &vocab, int *total) {
std::ifstream fin(filename);
std::vector<AnalogyQuery> queries;
int lineno = 0;
while (1) {
// Read the four words.
std::string words[4];
int nread = 0;
for (int i = 0; i < 4; ++i) {
fin >> words[i];
if (!words[i].empty()) ++nread;
}
++lineno;
if (nread == 0) break;
if (nread < 4) {
std::cerr << "expected four words at line " << lineno << std::endl;
break;
}
// Look up each word's index.
int ixs[4], nvalid;
for (nvalid = 0; nvalid < 4; ++nvalid) {
std::unordered_map<std::string, int>::const_iterator it =
vocab.find(words[nvalid]);
if (it == vocab.end()) break;
ixs[nvalid] = it->second;
}
// If we don't have all the words, count it as a loss.
if (nvalid >= 4)
queries.push_back(std::make_tuple(ixs[0], ixs[1], ixs[2], ixs[3]));
}
*total = lineno;
return queries;
}
// A thread that evaluates some fraction of the analogies.
class AnalogyEvaluator {
public:
// Creates a new Analogy evaluator for a range of analogy queries.
AnalogyEvaluator(std::vector<AnalogyQuery>::const_iterator begin,
std::vector<AnalogyQuery>::const_iterator end,
const float *embeddings, const int num_embeddings,
const int dim)
: begin_(begin),
end_(end),
embeddings_(embeddings),
num_embeddings_(num_embeddings),
dim_(dim) {}
// A thunk for pthreads.
static void* Run(void *param) {
AnalogyEvaluator *self = static_cast<AnalogyEvaluator*>(param);
self->Evaluate();
return nullptr;
}
// Evaluates the analogies.
void Evaluate();
// Returns the number of correct analogies after evaluation is complete.
int GetNumCorrect() const { return correct_; }
protected:
// The beginning of the range of queries to consider.
std::vector<AnalogyQuery>::const_iterator begin_;
// The end of the range of queries to consider.
std::vector<AnalogyQuery>::const_iterator end_;
// The raw embedding vectors.
const float *embeddings_;
// The number of embedding vectors.
const int num_embeddings_;
// The embedding vector dimensionality.
const int dim_;
// The number of correct analogies.
int correct_;
};
void AnalogyEvaluator::Evaluate() {
float* sum = new float[dim_];
correct_ = 0;
for (auto query = begin_; query < end_; ++query) {
const float* vec;
int a, b, c, d;
std::tie(a, b, c, d) = *query;
// Compute C - A + B.
vec = embeddings_ + dim_ * c;
for (int i = 0; i < dim_; ++i) sum[i] = vec[i];
vec = embeddings_ + dim_ * a;
for (int i = 0; i < dim_; ++i) sum[i] -= vec[i];
vec = embeddings_ + dim_ * b;
for (int i = 0; i < dim_; ++i) sum[i] += vec[i];
// Find the nearest neighbor that isn't one of the query words.
int best_ix = -1;
float best_dot = -1.0;
for (int i = 0; i < num_embeddings_; ++i) {
if (i == a || i == b || i == c) continue;
vec = embeddings_ + dim_ * i;
float dot = 0;
for (int j = 0; j < dim_; ++j) dot += vec[j] * sum[j];
if (dot > best_dot) {
best_ix = i;
best_dot = dot;
}
}
// The fourth word is the answer; did we get it right?
if (best_ix == d) ++correct_;
}
delete[] sum;
}
int main(int argc, char *argv[]) {
if (argc <= 1) {
printf(usage);
return 2;
}
std::string embeddings_filename, vocab_filename;
int nthreads = 8;
std::vector<std::string> input_filenames;
std::vector<std::tuple<int, int, int, int>> queries;
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (arg == "--embeddings") {
if (++i >= argc) goto argmissing;
embeddings_filename = argv[i];
} else if (arg == "--vocab") {
if (++i >= argc) goto argmissing;
vocab_filename = argv[i];
} else if (arg == "--nthreads") {
if (++i >= argc) goto argmissing;
if ((nthreads = atoi(argv[i])) <= 0) goto badarg;
} else if (arg == "--help") {
std::cout << usage << std::endl;
return 0;
} else if (arg[0] == '-') {
std::cerr << "unknown option: '" << arg << "'" << std::endl;
return 2;
} else {
input_filenames.push_back(arg);
}
continue;
argmissing:
std::cerr << "missing value for '" << argv[i - 1] << "' (--help for help)"
<< std::endl;
return 2;
badarg:
std::cerr << "invalid value '" << argv[i] << "' for '" << argv[i - 1]
<< "' (--help for help)" << std::endl;
return 2;
}
// Read the vocabulary.
std::unordered_map<std::string, int> vocab = ReadVocab(vocab_filename);
if (!vocab.size()) {
std::cerr << "unable to read vocabulary file '" << vocab_filename << "'"
<< std::endl;
return 1;
}
const int n = vocab.size();
// Read the vectors.
int fd;
if ((fd = open(embeddings_filename.c_str(), O_RDONLY)) < 0) {
std::cerr << "unable to open embeddings file '" << embeddings_filename
<< "'" << std::endl;
return 1;
}
off_t nbytes = lseek(fd, 0, SEEK_END);
if (nbytes == -1) {
std::cerr << "unable to determine file size for '" << embeddings_filename
<< "'" << std::endl;
return 1;
}
if (nbytes % (sizeof(float) * n) != 0) {
std::cerr << "'" << embeddings_filename
<< "' has a strange file size; expected it to be "
"a multiple of the vocabulary size"
<< std::endl;
return 1;
}
const int dim = nbytes / (sizeof(float) * n);
float *embeddings = static_cast<float *>(malloc(nbytes));
lseek(fd, 0, SEEK_SET);
if (read(fd, embeddings, nbytes) < nbytes) {
std::cerr << "unable to read embeddings from " << embeddings_filename
<< std::endl;
return 1;
}
close(fd);
/* Normalize the vectors. */
for (int i = 0; i < n; ++i) {
float *vec = embeddings + dim * i;
float norm = 0;
for (int j = 0; j < dim; ++j) norm += vec[j] * vec[j];
norm = sqrt(norm);
for (int j = 0; j < dim; ++j) vec[j] /= norm;
}
pthread_attr_t attr;
if (pthread_attr_init(&attr) != 0) {
std::cerr << "unable to initalize pthreads" << std::endl;
return 1;
}
/* Read each input file. */
for (const auto filename : input_filenames) {
int total = 0;
std::vector<AnalogyQuery> queries =
ReadQueries(filename.c_str(), vocab, &total);
const int queries_per_thread = queries.size() / nthreads;
std::vector<AnalogyEvaluator*> evaluators;
std::vector<pthread_t> threads;
for (int i = 0; i < nthreads; ++i) {
auto begin = queries.begin() + i * queries_per_thread;
auto end = (i + 1 < nthreads)
? queries.begin() + (i + 1) * queries_per_thread
: queries.end();
AnalogyEvaluator *evaluator =
new AnalogyEvaluator(begin, end, embeddings, n, dim);
pthread_t thread;
pthread_create(&thread, &attr, AnalogyEvaluator::Run, evaluator);
evaluators.push_back(evaluator);
threads.push_back(thread);
}
for (auto &thread : threads) pthread_join(thread, 0);
int correct = 0;
for (const AnalogyEvaluator* evaluator : evaluators) {
correct += evaluator->GetNumCorrect();
delete evaluator;
}
printf("%0.3f %s\n", static_cast<float>(correct) / total, filename.c_str());
}
return 0;
}