forked from ultraeric/training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatch.py
155 lines (139 loc) · 5.73 KB
/
Batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""Processes data into batches for training and validation."""
from Parameters import ARGS
from libs.utils2 import z2o
from libs.vis2 import mi
import numpy as np
import torch
import sys
import torch.nn.utils as nnutils
from torch.autograd import Variable
import matplotlib.pyplot as plt
class Batch:
def clear(self):
''' Clears batch variables before forward pass '''
self.camera_data = torch.FloatTensor().cuda()
self.metadata = torch.FloatTensor().cuda()
self.target_data = torch.FloatTensor().cuda()
self.names = []
self.outputs = None
self.loss = None
def __init__(self, net):
self.net = net
self.camera_data = None
self.metadata = None
self.target_data = None
self.names = None
self.outputs = None
self.loss = None
self.data_ids = None
def fill(self, data, data_index):
self.clear()
self.data_ids = []
self.camera_data = torch.FloatTensor(
ARGS.batch_size, ARGS.nframes * 6, 94, 168).cuda()
self.metadata = torch.FloatTensor(
ARGS.batch_size,
6,
self.net.metadata_size[0],
self.net.metadata_size[1]).cuda()
self.target_data = torch.FloatTensor(ARGS.batch_size, 20).cuda()
for data_number in range(ARGS.batch_size):
data_point = None
while data_point is None:
e = data.next(data_index)
run_code = e[3]
seg_num = e[0]
offset = e[1]
data_point = data.get_data(run_code, seg_num, offset)
self.data_ids.append((run_code, seg_num, offset))
self.data_into_batch(data_point, data_number)
def data_into_batch(self, data, data_number):
self.names.insert(0, data['name'])
# Convert Camera Data to PyTorch Ready Tensors
list_camera_input = []
for t in range(ARGS.nframes):
for camera in ('left', 'right'):
list_camera_input.append(torch.from_numpy(data[camera][t]))
camera_data = torch.cat(list_camera_input, 2)
camera_data = camera_data.cuda().float() / 255. - 0.5
camera_data = torch.transpose(camera_data, 0, 2)
camera_data = torch.transpose(camera_data, 1, 2)
self.camera_data[data_number, :, :, :] = camera_data
# Convert Behavioral Modes/Metadata to PyTorch Ready Tensors
metadata = torch.FloatTensor(
6,
self.net.metadata_size[0],
self.net.metadata_size[1]).cuda()
metadata_count = 5
for cur_label in ['racing', 'caffe', 'follow', 'direct', 'play',
'furtive']:
if cur_label == 'caffe':
if data['states'][0]:
metadata[metadata_count, :, :] = 1.
else:
metadata[metadata_count, :, :] = 0.
else:
if data['labels'][cur_label]:
metadata[metadata_count, :, :] = 1.
else:
metadata[metadata_count, :, :] = 0.
metadata_count -= 1
self.metadata[data_number, :, :, :] = metadata
# Figure out which timesteps of labels to get
s = data['steer']
m = data['motor']
r = range(ARGS.stride * ARGS.nsteps - 1, -1, -ARGS.stride)[::-1]
s = np.array(s)[r]
m = np.array(m)[r]
# Convert labels to PyTorch Ready Tensors
steer = torch.from_numpy(s).cuda().float() / 99.
motor = torch.from_numpy(m).cuda().float() / 99.
target_data = torch.FloatTensor(steer.size()[0] + motor.size()[0])
target_data[0:steer.size()[0]] = steer
target_data[steer.size()[0]:steer.size()[0] + motor.size()[0]] = motor
self.target_data[data_number, :] = target_data
def forward(self, optimizer, criterion, data_moment_loss_record):
optimizer.zero_grad()
self.outputs = self.net(Variable(self.camera_data),
Variable(self.metadata)).cuda()
self.loss = criterion(self.outputs, Variable(self.target_data))
for b in range(ARGS.batch_size):
data_id = self.data_ids[b]
t = self.target_data[b].cpu().numpy()
o = self.outputs[b].data.cpu().numpy()
a = (self.target_data[b] - self.outputs[b].data).cpu().numpy()
loss = np.sqrt(a * a).mean()
data_moment_loss_record[(data_id, tuple(t), tuple(o))] = loss
def backward(self, optimizer):
self.loss.backward()
nnutils.clip_grad_norm(self.net.parameters(), 1.0)
optimizer.step()
def display(self):
if ARGS.display:
o = self.outputs[0].data.cpu().numpy()
t = self.target_data[0].cpu().numpy()
print(
'Loss:',
np.round(
self.loss.data.cpu().numpy()[0],
decimals=5))
a = self.camera_data[0][:].cpu().numpy()
b = a.transpose(1, 2, 0)
h = np.shape(a)[1]
w = np.shape(a)[2]
c = np.zeros((10 + h * 2, 10 + 2 * w, 3))
c[:h, :w, :] = z2o(b[:, :, 3:6])
c[:h, -w:, :] = z2o(b[:, :, :3])
c[-h:, :w, :] = z2o(b[:, :, 9:12])
c[-h:, -w:, :] = z2o(b[:, :, 6:9])
mi(c, 'cameras')
print(a.min(), a.max())
plt.figure('steer')
plt.clf()
plt.ylim(-0.05, 1.05)
plt.xlim(0, len(t))
plt.plot([-1, 60], [0.49, 0.49], 'k') # plot in black
plt.plot(o, 'og') # plot using green circle markers
plt.plot(t, 'or') # plot using red circle markers
plt.title(self.names[0])
plt.pause(sys.float_info.epsilon)