Skip to content

Latest commit

 

History

History
115 lines (90 loc) · 3.82 KB

README.md

File metadata and controls

115 lines (90 loc) · 3.82 KB

ClickHouse-Schema Guide

In ClickHouse, defining and managing table schemas and their associated types can be done either manually or through the ClickHouse-Schema library. This guide compares these two approaches to illustrate the simplicity and efficiency ClickHouse-Schema brings to your projects.

Traditional Manual Query Approach

Traditionally, creating a table in clickhouse requires manually writing the SQL query and the interface in your code. This method is straightforward but prone to errors and inconsistencies, especially when schema changes occur.

Create Table Query

CREATE TABLE IF NOT EXISTS students
(
    id UInt32,
    name String,
    height float32,
    age UInt8,
    weight Float64,,
    isStudent Boolean
)
# Manually defined
interface StudentsTableTypeManuallyDefined {
  id: number,
  name: string,
  age: number,
  height: number,
  weight: number,
  isStudent: boolean
}

Did you notice any errors with the code below? These would not get caught till runtime

Using ClickHouse-Schema

ClickHouse-Schema automates schema creation and ensures type safety with minimal code, providing a more robust and maintainable solution.

Defining Schema

const studentsTableSchema = new ClickhouseSchema({
  id: { type: CHUInt32() },
  name: { type: CHString() },
  age: { type: CHUInt8() },
  height: { type: CHFloat32() },
  weight: { type: CHFloat64() },
  isStudent: { type: CHBoolean() }
}, {
  table_name: 'students',
  primary_key: 'id'
})

//Automatic type inference. If schema changes type automatically changes too
type StudentsTableType = InferClickhouseSchemaType<typeof studentsTableSchema>

Getting Started

To start using ClickHouse-Schema in your projects, follow these steps:

  1. Installation To install ClickHouse-Schema, run the following command in your terminal:

    npm install clickhouse-schema
  2. Create a Schema

    Define your table schema and provide options such as the table name and primary key. This will enable automatic type inference, making your code more robust and maintainable.

    import {
      ClickhouseSchema, CHUInt32, CHString, CHUInt8, CHFloat32, CHFloat64, CHBoolean, InferClickhouseSchemaType
    } from 'clickhouse-schema'
    
    // Use types directly or import ClickhouseTypes object to get all the types in one place
    const studentsTableSchema = new ClickhouseSchema({
      id: { type: CHUInt32() },
      name: { type: CHString() },
      age: { type: CHUInt8() },
      height: { type: CHFloat32() },
      weight: { type: CHFloat64() },
      isStudent: { type: CHBoolean() }
    }, {
      table_name: 'students',
      primary_key: 'id'
    })
    type MyTableType = InferClickhouseSchemaType<typeof studentsTableSchema>
  3. Utilize Schema Methods ClickHouse-Schema provides several methods to streamline working with your database schema:

    • Use <your_schema>.GetCreateTableQuery() or <your_schema>.toString() to generate the SQL CREATE TABLE query.
    • Use <your_schema>.GetOptions() to access the options passed when creating the table schema.
    • Use <your_schema>.GetCreateTableQueryAsList() to get the CREATE TABLE query as a list of strings, which can be helpful for debugging or logging.

Supported Types

  • Integer (signed and unsigned integers): UInt8, UInt16, UInt32, UInt64, UInt128, UInt256, Int8, Int16, Int32, Int64, Int128, Int256 types
  • Floating-point numbers: Float32 and Float64 types
  • Decimal - Decimal type
  • Boolean: Boolean type
  • Strings: String and FixedString types
  • Dates: Date, Date32, DateTime and DateTime64 types
  • JSON: JSON type
  • UUID: UUID type
  • Arrays: Array type
  • Nullable: Nullable type
  • LowCardinality: LowCardinality and Enum types
  • IP Addresses - IPv4 and IPv6

And support for more types is coming!