-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtasks_project_template.py
680 lines (554 loc) · 23.3 KB
/
tasks_project_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
"""Template Methods to use a set of related models to project forward waste, trade, and consumption.
Template Methods to use a set of related models to project forward waste, trade, and consumption.
This will, for example, use all of the machine learning models to make future projections.
License:
BSD, see LICENSE.md
"""
import json
import os
import pickle
import sqlite3
import statistics
import luigi
import const
import tasks_sql
class PreCheckProjectTask(luigi.Task):
"""Template Method to check that models are available for projection."""
task_dir = luigi.Parameter(default=const.DEFAULT_TASK_DIR)
def run(self):
"""Confirm models present and available for projection."""
with self.input()[0].open('r') as f:
job_info = json.load(f)
models_to_check = self.get_models_to_check()
def get_model_filename(model_name):
return os.path.join(
job_info['directories']['workspace'],
model_name + '.pickle'
)
filenames_to_check = map(get_model_filename, models_to_check)
for filename in filenames_to_check:
with open(filename, 'rb') as f:
target = pickle.load(f)
assert 'model' in target
with self.output().open('w') as f:
return json.dump(job_info, f)
def get_models_to_check(self):
"""Get the list of models to check for availability.
Returns:
List of models for which availability should be checked. This is
effectively the model filename without the pickle extension.
"""
raise NotImplementedError('Use implementor.')
class SeedProjectionTask(tasks_sql.SqlExecuteTask):
"""Create the scaffolding table in which projections will be made."""
def get_additional_template_vals(self):
"""Provide additional template values for jinja.
Returns:
Mapping from name to value or None if no additional values.
"""
return {'table_name': self.get_table_name()}
def get_scripts(self):
"""Indicate that the build model table script should be used."""
return ['09_project/build_model_table.sql']
def get_table_name(self):
"""Get in which table the scaffolding should be built.
Returns:
The name of the table where the scaffolding should be built.
"""
raise NotImplementedError('Use implementor.')
class CheckSeedProjectionTask(tasks_sql.SqlCheckTask):
"""Check that the scaffolding for a projection table was built."""
def get_table_name(self):
"""Get the name of the table where the scaffolding was built.
Returns:
The name of the table to check.
"""
raise NotImplementedError('Use implementor.')
class ProjectRawTask(luigi.Task):
"""Use models to make initial projections in a projections table."""
def run(self):
"""Load related set of models and ask them to make projections."""
with self.input().open('r') as f:
job_info = json.load(f)
consumption_model = self.get_model(
self.get_consumption_model_filename(),
job_info
)
waste_model = self.get_model(
self.get_waste_model_filename(),
job_info
)
trade_model = self.get_model(
self.get_trade_model_filename(),
job_info
)
waste_trade_model = self.get_model(
self.get_waste_trade_model_filename(),
job_info
)
database_loc = job_info['database']
connection = sqlite3.connect(database_loc)
projection_years = range(
const.PROJECTION_START_YEAR,
const.PROJECTION_END_YEAR + 1
)
for year in projection_years:
for region in const.REGIONS:
self.project(
connection,
year,
region,
consumption_model,
waste_model,
trade_model,
waste_trade_model
)
connection.close()
with self.output().open('w') as f:
return json.dump(job_info, f)
def project(self, connection, year, region, consumption_model, waste_model, trade_model,
waste_trade_model):
"""Use a set of related models to make projections for a year in a region.
Args:
connection: The connection to the scratch SQLite database where prior data can be found
and where the projections are to be written.
year: The year for which projections are needed.
region: The region for which projections are needed.
consumption_model: DecoratedModel that will predict consumption percent change for this
year / region.
waste_model: DecoratedModel that will predict waste EOL fate propensity for this year /
region.
trade_model: DecoratedModel that will predict ratio of trade (goods and materials) to
consumption for this year / region.
waste_trade_model: DecoratedModel that will predict ratio of trade (waste) to
consumption for this year / region.
"""
updated_output_row = {
'table_name': self.get_table_name(),
'year': year,
'region': region
}
updated_output_row.update(self.get_consumption_projections(
connection,
year,
region,
consumption_model
))
updated_output_row.update(self.get_waste_projections(
connection,
year,
region,
waste_model
))
updated_output_row.update(self.get_trade_projections(
connection,
year,
region,
trade_model
))
updated_output_row.update(self.get_waste_trade_projections(
connection,
year,
region,
waste_trade_model
))
updated_output_row = self.postprocess_row(updated_output_row)
cursor = connection.cursor()
cursor.execute('''
UPDATE
{table_name}
SET
consumptionAgricultureMT = {consumptionAgricultureMT},
consumptionConstructionMT = {consumptionConstructionMT},
consumptionElectronicMT = {consumptionElectronicMT},
consumptionHouseholdLeisureSportsMT = {consumptionHouseholdLeisureSportsMT},
consumptionOtherMT = {consumptionOtherMT},
consumptionPackagingMT = {consumptionPackagingMT},
consumptionTextileMT = {consumptionTextileMT},
consumptionTransportationMT = {consumptionTransportationMT},
eolRecyclingPercent = {eolRecyclingPercent},
eolIncinerationPercent = {eolIncinerationPercent},
eolLandfillPercent = {eolLandfillPercent},
eolMismanagedPercent = {eolMismanagedPercent},
netImportArticlesMT = {netImportArticlesMT},
netImportFibersMT = {netImportFibersMT},
netImportGoodsMT = {netImportGoodsMT},
netImportResinMT = {netImportResinMT},
netWasteTradeMT = {netWasteTradeMT},
netImportArticlesPercent = {netImportArticlesPercent},
netImportFibersPercent = {netImportFibersPercent},
netImportGoodsPercent = {netImportGoodsPercent},
netImportResinPercent = {netImportResinPercent},
netWasteTradePercent = {netWasteTradePercent}
WHERE
year = {year}
AND region = '{region}'
'''.format(**updated_output_row))
connection.commit()
cursor.close()
def get_model(self, filename, job_info):
"""Load a model.
Args:
filename: The path at which the model with its metadata were written.
job_info: Information about the directories of the workspace being used.
Returns:
Loaded DecoratedModel.
"""
model_loc = os.path.join(
job_info['directories']['workspace'],
filename
)
with open(model_loc, 'rb') as f:
return pickle.load(f)['model']
def build_instances(self, connection, sql, cols):
"""Build tasks / input data required to make future predictions.
Args:
connection: The SQLite database at which instances / input data can be found.
sql: The query to use in order to load tasks / input data.
cols: List of strings describing the columns to be returned from the query.
Returns:
List of dictionaries where each is a task for a prediction to be made with its input
data.
"""
cursor = connection.cursor()
cursor.execute(sql)
results_flat = cursor.fetchall()
cursor.close()
if (len(results_flat) == 0):
print('Failure details:')
print(sql)
raise RuntimeError('No results.')
results_keyed = [dict(zip(cols, result)) for result in results_flat]
return results_keyed
def get_consumption_projections(self, connection, year, region, consumption_model):
"""Get projections for consumption percent change for all sectors in a year / region.
Args:
connection: Connection to the SQLite database.
year: The year for which the projections should be made.
region: The region for which the projections should be made.
consumption_model: The DecoratedModel to use to make the predictions.
Returns:
Dictionary mapping sector to prediction after transformation.
"""
return self.get_projections(
connection,
year,
region,
consumption_model,
self.get_consumption_attrs(),
lambda x: self.get_consumption_inputs_sql(year, region, x),
lambda: self.get_consumption_inputs_cols(),
lambda instance, prediction: self.transform_consumption_prediction(
instance,
prediction
)
)
def get_waste_projections(self, connection, year, region, waste_model):
"""Get projections for EOL propensity for all fates in a year / region.
Args:
connection: Connection to the SQLite database.
year: The year for which the projections should be made.
region: The region for which the projections should be made.
consumption_model: The DecoratedModel to use to make the predictions.
Returns:
Dictionary mapping fate to prediction after transformation.
"""
return self.get_projections(
connection,
year,
region,
waste_model,
self.get_waste_attrs(),
lambda x: self.get_waste_inputs_sql(year, region, x),
lambda: self.get_waste_inputs_cols(),
lambda instance, prediction: self.transform_waste_prediction(
instance,
prediction
)
)
def get_trade_projections(self, connection, year, region, trade_model):
"""Get projections for goods / materials trade for all types in a year / region.
Args:
connection: Connection to the SQLite database.
year: The year for which the projections should be made.
region: The region for which the projections should be made.
consumption_model: The DecoratedModel to use to make the predictions.
Returns:
Dictionary mapping type to prediction after transformation.
"""
return self.get_projections(
connection,
year,
region,
trade_model,
self.get_trade_attrs(),
lambda x: self.get_trade_inputs_sql(year, region, x),
lambda: self.get_trade_inputs_cols(),
lambda instance, prediction: self.transform_trade_prediction(
instance,
prediction
)
)
def get_waste_trade_projections(self, connection, year, region, waste_trade_model):
"""Get projections for EOL propensity for all fates in a year / region.
Args:
connection: Connection to the SQLite database.
year: The year for which the projections should be made.
region: The region for which the projections should be made.
consumption_model: The DecoratedModel to use to make the predictions.
Returns:
Dictionary mapping a single key to prediction after transformation.
"""
return self.get_projections(
connection,
year,
region,
waste_trade_model,
self.get_waste_trade_attrs(),
lambda x: self.get_waste_trade_inputs_sql(year, region, x),
lambda: self.get_waste_trade_inputs_cols(),
lambda instance, prediction: self.transform_waste_trade_prediction(
instance,
prediction
)
)
def get_projections(self, connection, year, region, model, keys, sql_getter, cols_getter,
prediction_transformer):
"""Get the projections for a task and return results keyed by type.
Args:
connection: Connection to the SQLite database.
year: The year for which the projections should be made.
region: The region for which the projections should be made.
model: The DecoratedModel to use to make the predictions.
keys: The list of types for which predictions are needed.
sql_getter: Function taking the name of a type to return the string SQL query to be used
to request input data for that type.
cols_getter: Function returning the ordered column names exepcted to be returned by the
executing the query described by sql_getter.
prediction_transformer: Function to, given the raw input value and prediction, transform
predictions from raw values to useful predictions. This may involve calculations
like applying a model's predicted percent change to a "prior" value.
Returns:
Dictionary mapping type to prediction after transformation.
"""
def build_instances(label):
sql = sql_getter(label)
cols = cols_getter()
return self.build_instances(connection, sql, cols)
instances_by_key = dict(map(
lambda x: (x, build_instances(x)),
keys
))
predictions = {}
for key, instances in instances_by_key.items():
raw_predictions = model.predict(instances)
transformed_predictions = map(
lambda x: prediction_transformer(x[0], x[1]),
zip(instances, raw_predictions)
)
prediction = statistics.mean(transformed_predictions)
predictions[key] = prediction
return predictions
def get_table_name(self):
"""Get the name of the table where the predictions should be written.
Returns:
Table name into which this task should write.
"""
raise NotImplementedError('Use implementor.')
def get_consumption_model_filename(self):
"""Get the filename where the DecoratedModel for consumption prediction can be found.
Returns:
Model file path.
"""
raise NotImplementedError('Use implementor.')
def get_waste_model_filename(self):
"""Get the filename where the DecoratedModel for fate propensity prediction can be found.
Returns:
Model file path.
"""
raise NotImplementedError('Use implementor.')
def get_trade_model_filename(self):
"""Get filename where DecoratedModel for goods / materials trade prediction can be found.
Returns:
Model file path.
"""
raise NotImplementedError('Use implementor.')
def get_waste_trade_model_filename(self):
"""Get the filename where the DecoratedModel for waste trade prediction can be found.
Returns:
Model file path.
"""
raise NotImplementedError('Use implementor.')
def get_consumption_inputs_sql(self, year, region, sector):
"""Get the SQL to query for consumption model input data.
Args:
year: The year for which a prediction is being generated.
region: The region for which a prediction is being generated.
sector: The sector for which a prediction is being generated.
Returns:
String SQL query content.
"""
raise NotImplementedError('Use implementor.')
def get_waste_inputs_sql(self, year, region, type_name):
"""Get the SQL to query for EOL fate propensity model input data.
Args:
year: The year for which a prediction is being generated.
region: The region for which a prediction is being generated.
sector: The sector for which a prediction is being generated.
Returns:
String SQL query content.
"""
raise NotImplementedError('Use implementor.')
def get_trade_inputs_sql(self, year, region, type_name):
"""Get the SQL to query for goods / materials trade model input data.
Args:
year: The year for which a prediction is being generated.
region: The region for which a prediction is being generated.
sector: The sector for which a prediction is being generated.
Returns:
String SQL query content.
"""
raise NotImplementedError('Use implementor.')
def get_waste_trade_inputs_sql(self, year, region, type_name):
"""Get the SQL to query for waste trade model input data.
Args:
year: The year for which a prediction is being generated.
region: The region for which a prediction is being generated.
sector: The sector for which a prediction is being generated.
Returns:
String SQL query content.
"""
raise NotImplementedError('Use implementor.')
def get_consumption_inputs_cols(self):
"""Get the list of input columns expected for the consumption model.
Returns:
List of strings ordered as expected by the model.
"""
raise NotImplementedError('Use implementor.')
def get_waste_inputs_cols(self):
"""Get the list of input columns expected for the wate fate propensity model.
Returns:
List of strings ordered as expected by the model.
"""
raise NotImplementedError('Use implementor.')
def get_trade_inputs_cols(self):
"""Get the list of input columns expected for the goods / materials trade model.
Returns:
List of strings ordered as expected by the model.
"""
raise NotImplementedError('Use implementor.')
def get_waste_trade_inputs_cols(self):
"""Get the list of input columns expected for the waste trade model.
Returns:
List of strings ordered as expected by the model.
"""
raise NotImplementedError('Use implementor.')
def transform_consumption_prediction(self, instance, prediction):
"""Optional hook to transform consumption predictions prior to returning.
Args:
instance: The input data used to make the prediction.
prediction: The raw value returned from the model.
Returns:
The value after transformation.
"""
return prediction
def transform_waste_prediction(self, instance, prediction):
"""Optional hook to transform waste fate propensity predictions prior to returning.
Args:
instance: The input data used to make the prediction.
prediction: The raw value returned from the model.
Returns:
The value after transformation.
"""
return prediction
def transform_trade_prediction(self, instance, prediction):
"""Optional hook to transform trade (goods / materials) predictions prior to returning.
Args:
instance: The input data used to make the prediction.
prediction: The raw value returned from the model.
Returns:
The value after transformation.
"""
return prediction
def transform_waste_trade_prediction(self, instance, prediction):
"""Optional hook to transform trade (waste) predictions prior to returning.
Args:
instance: The input data used to make the prediction.
prediction: The raw value returned from the model.
Returns:
The value after transformation.
"""
return prediction
def get_consumption_attrs(self):
"""Get the types of consumption.
Returns:
List of consumption sectors.
"""
return [
'consumptionAgricultureMT',
'consumptionConstructionMT',
'consumptionElectronicMT',
'consumptionHouseholdLeisureSportsMT',
'consumptionOtherMT',
'consumptionPackagingMT',
'consumptionTextileMT',
'consumptionTransportationMT'
]
def get_waste_attrs(self):
"""Get the types of waste.
Returns:
List of waste fates.
"""
return [
'eolRecyclingPercent',
'eolIncinerationPercent',
'eolLandfillPercent',
'eolMismanagedPercent'
]
def get_trade_attrs(self):
"""Get the types of goods / materials trade.
Returns:
List of goods / materials trade types.
"""
return [
'netImportArticlesMT',
'netImportFibersMT',
'netImportGoodsMT',
'netImportResinMT'
]
def get_waste_trade_attrs(self):
"""Get the types of waste trade.
Returns:
List of waste trade types.
"""
return [
'netWasteTradeMT'
]
def postprocess_row(self, target):
"""Final tasks to preprocess an output prediction row before writing to database.
Args:
target: The record produced.
Returns:
The record to be written.
"""
total_consumption = sum(map(
lambda x: target[x],
[
'consumptionAgricultureMT',
'consumptionConstructionMT',
'consumptionElectronicMT',
'consumptionHouseholdLeisureSportsMT',
'consumptionOtherMT',
'consumptionPackagingMT',
'consumptionTextileMT',
'consumptionTransportationMT'
]
))
target.update({
'netImportArticlesPercent': target['netImportArticlesMT'] / total_consumption,
'netImportFibersPercent': target['netImportFibersMT'] / total_consumption,
'netImportGoodsPercent': target['netImportGoodsMT'] / total_consumption,
'netImportResinPercent': target['netImportResinMT'] / total_consumption,
'netWasteTradePercent': target['netWasteTradeMT'] / total_consumption
})
return target