Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Zygote gradient fails in v0.15.14 but not on v0.15.13 #268

Open
jarroyoe opened this issue Aug 30, 2024 · 1 comment
Open

Zygote gradient fails in v0.15.14 but not on v0.15.13 #268

jarroyoe opened this issue Aug 30, 2024 · 1 comment

Comments

@jarroyoe
Copy link

jarroyoe commented Aug 30, 2024

We are developing a package that uses ComponentArrays and Lux to train Neural ODEs in a simple to use front end. We found the following bug after one of our devs updated his packages. Upon investigation, it seems to be an issue of ComponentArrays. The following MWE:

using ComponentArrays, Lux, Random, OrdinaryDiffEq, Zygote, SciMLSensitivity

df = rand(2,10)

rng = Random.default_rng()
NN = Lux.Chain(Lux.Dense(2,10,tanh), Lux.Dense(10,2))

rng = Random.default_rng() 
parameters, states = Lux.setup(rng,NN) 
parameters = (NN = parameters, )

function derivs!(du,u,parameters,t)
    du .= NN(u,parameters.NN,states)[1]
    return du
end 

u0 = zeros(2); tspan = (0.0,0.5)
IVP = ODEProblem(derivs!, u0, tspan, parameters)
function predict(u,t,dt,parameters) 
    tspan =  (t,t+dt) 
    sol = solve(IVP, Tsit5(), u0 = u, p=parameters,tspan = tspan, saveat = (t,t+dt))
    X = Array(sol)
    return X[:,end]
end 
function loss(parameters)
    sum(abs2,predict(df[:,1],0.0,0.05,parameters) .- df[:,2])
end
gradient(loss,ComponentArray(parameters))

fails with the following ]status:

⌃ [b0b7db55] ComponentArrays v0.15.14
⌃ [b2108857] Lux v0.5.61
  [9a3f8284] Random

but works with the following ]status:

⌃ [b0b7db55] ComponentArrays v0.15.13
⌃ [b2108857] Lux v0.5.61
  [9a3f8284] Random

I'm testing on Julia 1.10.4. When it fails, it throws the following stacktrace:

ERROR: type Array has no field NN
Stacktrace:
  [1] getproperty
    @ .\Base.jl:37 [inlined]
  [2] derivs!(du::Vector{ForwardDiff.Dual{…}}, u::Vector{ForwardDiff.Dual{…}}, parameters::Vector{ForwardDiff.Dual{…}}, t::Float64)
    @ Main .\REPL[72]:2
  [3] (::ODEFunction{…})(::Vector{…}, ::Vararg{…})
    @ SciMLBase C:\Users\JArroyo-Esquivel\.julia\packages\SciMLBase\YE50s\src\scimlfunctions.jl:2335
  [4] (::ODEFunction{…})(::Vector{…}, ::Vararg{…})
    @ SciMLBase C:\Users\JArroyo-Esquivel\.julia\packages\SciMLBase\YE50s\src\scimlfunctions.jl:2335
  [5] initialize!(integrator::OrdinaryDiffEqCore.ODEIntegrator{…}, cache::OrdinaryDiffEqTsit5.Tsit5Cache{…})
    @ OrdinaryDiffEqTsit5 C:\Users\JArroyo-Esquivel\.julia\packages\OrdinaryDiffEqTsit5\DHYtz\src\tsit_perform_step.jl:175
  [6] __init(prob::ODEProblem{…}, alg::Tsit5{…}, timeseries_init::Tuple{}, ts_init::Tuple{}, ks_init::Tuple{}, recompile::Type{…}; saveat::Vector{…}, tstops::Tuple{}, d_discontinuities::Tuple{}, save_idxs::Nothing, save_everystep::Bool, save_on::Bool, save_start::Bool, save_end::Nothing, callback::Nothing, dense::Bool, calck::Bool, dt::Float64, dtmin::Float64, dtmax::Float64, force_dtmin::Bool, adaptive::Bool, gamma::Rational{…}, abstol::Nothing, reltol::Nothing, qmin::Rational{…}, qmax::Int64, qsteady_min::Int64, qsteady_max::Int64, beta1::Nothing, beta2::Nothing, qoldinit::Rational{…}, controller::Nothing, fullnormalize::Bool, failfactor::Int64, maxiters::Int64, internalnorm::typeof(DiffEqBase.ODE_DEFAULT_NORM), internalopnorm::typeof(LinearAlgebra.opnorm), isoutofdomain::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), unstable_check::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), verbose::Bool, timeseries_errors::Bool, dense_errors::Bool, advance_to_tstop::Bool, stop_at_next_tstop::Bool, initialize_save::Bool, progress::Bool, progress_steps::Int64, progress_name::String, progress_message::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), progress_id::Symbol, userdata::Nothing, allow_extrapolation::Bool, initialize_integrator::Bool, 
alias_u0::Bool, alias_du0::Bool, initializealg::OrdinaryDiffEqCore.DefaultInit, kwargs::@Kwargs{…})
    @ OrdinaryDiffEqCore C:\Users\JArroyo-Esquivel\.julia\packages\OrdinaryDiffEqCore\4A2vD\src\solve.jl:525
  [7] __init (repeats 4 times)
    @ C:\Users\JArroyo-Esquivel\.julia\packages\OrdinaryDiffEqCore\4A2vD\src\solve.jl:11 [inlined]
  [8] #__solve#61
    @ C:\Users\JArroyo-Esquivel\.julia\packages\OrdinaryDiffEqCore\4A2vD\src\solve.jl:6 [inlined]
  [9] __solve
    @ C:\Users\JArroyo-Esquivel\.julia\packages\OrdinaryDiffEqCore\4A2vD\src\solve.jl:1 [inlined]
 [10] solve_call(_prob::ODEProblem{…}, args::Tsit5{…}; merge_callbacks::Bool, kwargshandle::Nothing, kwargs::@Kwargs{…})
    @ DiffEqBase C:\Users\JArroyo-Esquivel\.julia\packages\DiffEqBase\sCsah\src\solve.jl:612
 [11] solve_call
    @ C:\Users\JArroyo-Esquivel\.julia\packages\DiffEqBase\sCsah\src\solve.jl:569 [inlined]
 [12] #solve_up#53
    @ C:\Users\JArroyo-Esquivel\.julia\packages\DiffEqBase\sCsah\src\solve.jl:1080 [inlined]
 [13] solve_up
    @ C:\Users\JArroyo-Esquivel\.julia\packages\DiffEqBase\sCsah\src\solve.jl:1066 [inlined]
 [14] #solve#51
    @ C:\Users\JArroyo-Esquivel\.julia\packages\DiffEqBase\sCsah\src\solve.jl:1003 [inlined]
 [15] (::SciMLSensitivity.var"#327#336"{0, ODESolution{…}, Tuple{…}, @Kwargs{…}, ODEProblem{…}, Tsit5{…}, ForwardDiffSensitivity{…}, Vector{…}, ComponentVector{…}, Tuple{}, Vector{…}})()
    @ SciMLSensitivity C:\Users\JArroyo-Esquivel\.julia\packages\SciMLSensitivity\se3y4\src\concrete_solve.jl:894
 [16] unthunk
    @ C:\Users\JArroyo-Esquivel\.julia\packages\ChainRulesCore\I1EbV\src\tangent_types\thunks.jl:204 [inlined]
 [17] wrap_chainrules_output
    @ C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:110 [inlined]
 [18] map
    @ .\tuple.jl:293 [inlined]
 [19] map (repeats 3 times)
    @ .\tuple.jl:294 [inlined]
 [20] wrap_chainrules_output
    @ C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:111 [inlined]
 [21] ZBack
    @ C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:211 [inlined]
 [22] (::Zygote.var"#kw_zpullback#53"{…})(dy::ODESolution{…})
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:237
 [23] #291
    @ C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\lib\lib.jl:206 [inlined]
 [24] (::Zygote.var"#2169#back#293"{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\ZygoteRules\M4xmc\src\adjoint.jl:72
 [25] #solve#51
    @ C:\Users\JArroyo-Esquivel\.julia\packages\DiffEqBase\sCsah\src\solve.jl:1003 [inlined]
 [26] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [27] #291
    @ C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\lib\lib.jl:206 [inlined]
 [28] (::Zygote.var"#2169#back#293"{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\ZygoteRules\M4xmc\src\adjoint.jl:72
 [29] solve
    @ C:\Users\JArroyo-Esquivel\.julia\packages\DiffEqBase\sCsah\src\solve.jl:993 [inlined]
 [30] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [31] predict
    @ .\REPL[75]:3 [inlined]
 [32] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Vector{Float64})
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [33] loss
    @ .\REPL[76]:2 [inlined]
 [34] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64)
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [35] (::Zygote.var"#75#76"{Zygote.Pullback{Tuple{…}, Tuple{…}}})(Δ::Float64)
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\interface.jl:91
 [36] gradient(f::Function, args::ComponentVector{Float32, Vector{Float32}, Tuple{Axis{…}}})
    @ Zygote C:\Users\JArroyo-Esquivel\.julia\packages\Zygote\nsBv0\src\compiler\interface.jl:148
 [37] top-level scope
    @ REPL[77]:1
@roflmaostc
Copy link

roflmaostc commented Nov 6, 2024

I think I ran into a similar issue

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants