From 534d43ac5f1cd0a2e35d5a234e9cb9adb46bb29d Mon Sep 17 00:00:00 2001 From: Vaibhav Dixit Date: Wed, 27 Mar 2024 11:43:24 -0400 Subject: [PATCH] format --- src/lbfgsb.jl | 7 +++---- test/lbfgsb.jl | 4 ++-- 2 files changed, 5 insertions(+), 6 deletions(-) diff --git a/src/lbfgsb.jl b/src/lbfgsb.jl index 5c87a0be8..8433e5a30 100644 --- a/src/lbfgsb.jl +++ b/src/lbfgsb.jl @@ -3,7 +3,7 @@ using Optimization.SciMLBase, LBFGSB """ $(TYPEDEF) -L-BFGS-B Nonlinear Optimization Code from [LBFGSB](https://github.com/Gnimuc/LBFGSB.jl/tree/master). +[L-BFGS-B](https://en.wikipedia.org/wiki/Limited-memory_BFGS#L-BFGS-B) Nonlinear Optimization Code from [LBFGSB](https://github.com/Gnimuc/LBFGSB.jl/tree/master). It is a quasi-Newton optimization algorithm that supports bounds. References @@ -13,7 +13,7 @@ References - J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (2011), to appear in ACM Transactions on Mathematical Software. """ @kwdef struct LBFGS - m::Int=10 + m::Int = 10 end SciMLBase.supports_opt_cache_interface(::LBFGS) = true @@ -85,7 +85,6 @@ function SciMLBase.__solve(cache::OptimizationCache{ t1 = time() stats = Optimization.OptimizationStats(; iterations = maxiters, time = t1 - t0, fevals = maxiters, gevals = maxiters) - + return SciMLBase.build_solution(cache, cache.opt, res[2], res[1], stats = stats) end - diff --git a/test/lbfgsb.jl b/test/lbfgsb.jl index e209cc9c7..e1a471160 100644 --- a/test/lbfgsb.jl +++ b/test/lbfgsb.jl @@ -10,10 +10,10 @@ optf = OptimizationFunction(rosenbrock, AutoForwardDiff()) prob = OptimizationProblem(optf, x0) res = solve(prob, Optimization.LBFGS(), maxiters = 100) -@test res.u ā‰ˆ [1.0, 1.0] atol=1e-3 +@test res.uā‰ˆ[1.0, 1.0] atol=1e-3 optf = OptimizationFunction(rosenbrock, AutoZygote()) prob = OptimizationProblem(optf, x0, lb = [0.0, 0.0], ub = [0.3, 0.3]) res = solve(prob, Optimization.LBFGS(), maxiters = 100) -@test res.u ā‰ˆ [0.3, 0.09] atol=1e-3 +@test res.uā‰ˆ[0.3, 0.09] atol=1e-3