Skip to content

Latest commit

 

History

History

pspnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Introduction

Official Repo

Code Snippet

PSPNet (CVPR'2017)
@inproceedings{zhao2017pyramid,
    title={Pyramid scene parsing network},
    author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
    booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
    pages={2881--2890},
    year={2017}
}

Results

PASCAL VOC

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 77.93% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 76.29% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 79.04% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 77.92% cfg | model | log

ADE20k

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 42.64% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 40.23% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.55% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 43.40% cfg | model | log

CityScapes

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 79.05% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 77.13% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 79.94% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 77.43% cfg | model | log

More

You can also download the model weights from following sources: