-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathisanet.py
113 lines (109 loc) · 5.65 KB
/
isanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
'''
Function:
Implementation of ISANet
Author:
Zhenchao Jin
'''
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..base import BaseSegmentor
from ....utils import SSSegOutputStructure
from ..base import SelfAttentionBlock as _SelfAttentionBlock
from ...backbones import BuildActivation, BuildNormalization
'''SelfAttentionBlock'''
class SelfAttentionBlock(_SelfAttentionBlock):
def __init__(self, in_channels, feats_channels, norm_cfg, act_cfg):
super(SelfAttentionBlock, self).__init__(
key_in_channels=in_channels, query_in_channels=in_channels, transform_channels=feats_channels, out_channels=in_channels, share_key_query=False,
query_downsample=None, key_downsample=None, key_query_num_convs=2, key_query_norm=True, value_out_num_convs=1, value_out_norm=False,
matmul_norm=True, with_out_project=False, norm_cfg=copy.deepcopy(norm_cfg), act_cfg=copy.deepcopy(act_cfg)
)
self.output_project = self.buildproject(
in_channels=in_channels, out_channels=in_channels, num_convs=1, use_norm=True, norm_cfg=copy.deepcopy(norm_cfg), act_cfg=copy.deepcopy(act_cfg),
)
'''forward'''
def forward(self, x):
context = super(SelfAttentionBlock, self).forward(x, x)
return self.output_project(context)
'''ISANet'''
class ISANet(BaseSegmentor):
def __init__(self, cfg, mode):
super(ISANet, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build isa module
self.down_factor = head_cfg['down_factor']
self.in_conv = nn.Sequential(
nn.Conv2d(head_cfg['in_channels'], head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
self.global_relation = SelfAttentionBlock(
in_channels=head_cfg['feats_channels'], feats_channels=head_cfg['isa_channels'], norm_cfg=copy.deepcopy(norm_cfg), act_cfg=copy.deepcopy(act_cfg)
)
self.local_relation = SelfAttentionBlock(
in_channels=head_cfg['feats_channels'], feats_channels=head_cfg['isa_channels'], norm_cfg=copy.deepcopy(norm_cfg), act_cfg=copy.deepcopy(act_cfg)
)
self.out_conv = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'] * 2, head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
# build decoder
self.decoder = nn.Sequential(
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
# build auxiliary decoder
self.setauxiliarydecoder(cfg['auxiliary'])
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to isa module
feats = self.in_conv(backbone_outputs[-1])
residual = feats
n, c, h, w = feats.size()
loc_h, loc_w = self.down_factor
glb_h, glb_w = math.ceil(h / loc_h), math.ceil(w / loc_w)
pad_h, pad_w = glb_h * loc_h - h, glb_w * loc_w - w
if pad_h > 0 or pad_w > 0:
padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)
feats = F.pad(feats, padding)
# --global relation
feats = feats.view(n, c, glb_h, loc_h, glb_w, loc_w)
# ----do permutation to gather global group
feats = feats.permute(0, 3, 5, 1, 2, 4)
feats = feats.reshape(-1, c, glb_h, glb_w)
# ----apply attention within each global group
feats = self.global_relation(feats)
# --local relation
feats = feats.view(n, loc_h, loc_w, c, glb_h, glb_w)
# ----do permutation to gather local group
feats = feats.permute(0, 4, 5, 3, 1, 2)
feats = feats.reshape(-1, c, loc_h, loc_w)
# ----apply attention within each local group
feats = self.local_relation(feats)
# --permute each pixel back to its original position
feats = feats.view(n, glb_h, glb_w, c, loc_h, loc_w)
feats = feats.permute(0, 3, 1, 4, 2, 5)
feats = feats.reshape(n, c, glb_h * loc_h, glb_w * loc_w)
if pad_h > 0 or pad_w > 0:
feats = feats[:, :, pad_h//2: pad_h//2+h, pad_w//2: pad_w//2+w]
feats = self.out_conv(torch.cat([feats, residual], dim=1))
# feed to decoder
seg_logits = self.decoder(feats)
# return according to the mode
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
loss, losses_log_dict = self.customizepredsandlosses(
seg_logits=seg_logits, annotations=data_meta.getannotations(), backbone_outputs=backbone_outputs, losses_cfg=self.cfg['losses'], img_size=img_size,
)
ssseg_outputs = SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict) if self.mode == 'TRAIN' else SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict, seg_logits=seg_logits)
else:
ssseg_outputs = SSSegOutputStructure(mode=self.mode, seg_logits=seg_logits)
return ssseg_outputs