Skip to content

build a pipeline to process real-world, user-supplied images. Given an image of a dog,

Notifications You must be signed in to change notification settings

Seif-Mohamed1/CNN-Project-Dog-Breed-Classifier-Implementation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Dog Breed Classifier in PyTorch

This is a repo for the Dog Breed Classifier Project in Udacity Nanodegree

It is implemented by using PyTorch library.

Project Overview

Welcome to the Convolutional Neural Networks (CNN) project in the Deep learning Nanodegree! In this project, you will learn how to build a pipeline that can be used within a web or mobile app to process real-world, user-supplied images. Given an image of a dog, your algorithm will identify an estimate of the canine’s breed. If supplied an image of a human, the code will identify the resembling dog breed.

Sample Output

Along with exploring state-of-the-art CNN models for classification and localization, you will make important design decisions about the user experience for your app. Our goal is that by completing this lab, you understand the challenges involved in piecing together a series of models designed to perform various tasks in a data processing pipeline. Each model has its strengths and weaknesses, and engineering a real-world application often involves solving many problems without a perfect answer. Your imperfect solution will nonetheless create a fun user experience!

Import Datasets

CNN Structures (Building a model on my own)


    Layer (type)               Output Shape         Param 

        Conv2d-1         [-1, 16, 224, 224]             448
        
        Conv2d-2         [-1, 32, 112, 112]           4,640
        
        Conv2d-3           [-1, 64, 56, 56]          18,496
        
        Conv2d-4          [-1, 128, 28, 28]          73,856
        
        Linear-5                  [-1, 500]      12,544,500
        
        Linear-6                  [-1, 133]          66,633

Transfer Learnings

Used VGG16 for transfer learnings

About

build a pipeline to process real-world, user-supplied images. Given an image of a dog,

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published