-
Notifications
You must be signed in to change notification settings - Fork 72
/
inference.py
273 lines (232 loc) · 10 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
Licensed under the NVIDIA Source Code License. See LICENSE at https://github.com/nv-tlabs/GameGAN_code.
Authors: Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, Sanja Fidler
"""
import os
import sys
import torch
sys.path.append('..')
import config
import utils
import random
sys.path.insert(0, './data')
import dataloader
import copy
import cv2
import numpy as np
import keyboard
import time
# Workaround for PyTorch issue on Windows
if os.name == 'nt':
import ctypes
ctypes.cdll.LoadLibrary('caffe2_nvrtc.dll')
def inference(gpu, opts):
# Initialize values
opts = copy.deepcopy(opts)
opts.img_size = (opts.img_size, opts.img_size)
warm_up = opts.warm_up
opts.gpu = gpu
if opts.data is not None:
opts.num_data_types = len(opts.data.split('-'))
log_dir = opts.log_dir
# Multi-part model?
if not os.path.exists(opts.saved_model):
part_list = sorted([file for file in os.listdir(os.path.dirname(opts.saved_model)) if os.path.basename(opts.saved_model) in file])
if len(part_list):
with open(opts.saved_model, 'wb') as sf:
for part in part_list:
with open(os.path.dirname(opts.saved_model) + '/' + part, 'rb') as lf:
sf.write(lf.read())
# Load the model
saved_model = torch.load(opts.saved_model, map_location='cpu')
opts_data = opts.data
opts_img = opts.inference_image_path
base_imgs = opts.show_base_images
upsample_model = opts.upsample_model
playback_fps = opts.playback_fps
opts = saved_model['opts']
if opts_data is not None:
opts.data = opts_data
#if opts_img is not None:
opts.inference_image_path = opts_img
opts.show_base_images = base_imgs
opts.upsample_model = upsample_model
opts.playback_fps = playback_fps
opts.gpu = gpu
if type(opts.img_size) == int:
opts.img_size = [opts.img_size] * 2
opts.log_dir = log_dir
warm_up = opts.warm_up
curdata, datadir = opts.data.split(':')
if curdata == 'cartpole':
resized_image_size = (600, 400)
action_left = [1, 0]
action_right = [0, 1]
no_action = None
elif curdata == 'vroom':
resized_image_size = (256, 256)
action_left = [1, 0, 0]
action_right = [0, 0, 1]
no_action = [0, 1, 0]
elif curdata == 'gtav':
resized_image_size = (320, 192)
action_left = [1, 0, 0]
action_right = [0, 0, 1]
no_action = [0, 1, 0]
else:
raise Exception(f'Not implemented: unknown data type: {curdata}')
# Initialize torch
torch.manual_seed(opts.seed)
torch.cuda.set_device(gpu)
# Create the generator model and load it;s state from the checkpoint
netG, _ = utils.build_models(opts)
utils.load_my_state_dict(netG, saved_model['netG'])
# Initialize the noise generator
zdist = utils.get_zdist('gaussian', opts.z)
# For "playing", we want teh batch size of 1
opts.bs = 1
batch_size = opts.bs
if opts.inference_image_path is None:
# Load the dataset so we can get some initial image
##!! Replace with some examle set-aside images
train_loader = dataloader.get_custom_dataset(opts, set_type=0, getLoader=True)
data_iters, train_len = [], 99999999999
data_iters.append(iter(train_loader))
if len(data_iters[-1]) < train_len:
train_len = len(data_iters[-1])
states, actions, _ = utils.get_data(data_iters, opts)
else:
# Load starting image
img = cv2.imread(opts.inference_image_path)[...,::-1]
img = (np.transpose(img, axes=(2, 0, 1)) / 255.).astype('float32')
img = (img - 0.5) / 0.5
states = [torch.tensor([img], dtype=torch.float32).cuda()]
actions = [torch.tensor(no_action if no_action is not None else action_left, dtype=torch.float32).cuda()]
# Disable gradients, we'll perform just the inference
utils.toggle_grad(netG, False)
netG.eval()
# Disable warmup
warm_up = 0
# Temporary, to save predictions as videos
#fourcc = cv2.VideoWriter_fourcc(*'MP4V')
#v = cv2.VideoWriter('video.mp4', fourcc, 10.0, resized_image_size)
upsample = None
if opts.upsample_model != None:
from upsample import upsample
upsample.load(opts.upsample_model)
action = None
hidden_action = 0
prev_state = None
i = 0
while True:
frame_start_time = time.time()
action_text = ''
if keyboard.is_pressed('e'):
exit()
elif keyboard.is_pressed('r') or prev_state is None:
# Run warmup to get initial values
# warmup is set to 0, so initial image is going to be used as input
prev_state, warm_up_state, M, prev_read_v, prev_alpha, outputs, maps, alphas, alpha_losses, zs, base_imgs_all, _, \
hiddens, init_maps = netG.run_warmup(zdist, states, actions, warm_up, train=False)
h, c = warm_up_state
# Show the image
img = prev_state[0].cpu().numpy()
img = np.rollaxis(img, 0, 3)
img = ((img+1)*127.5).astype(np.uint8)
img = cv2.resize(img, resized_image_size, interpolation=cv2.INTER_NEAREST)
img = img[...,::-1]
cv2.imshow(f'{curdata} - inference', img)
if upsample is not None:
upsampled_img = upsample.inference(np.rollaxis(prev_state[0].cpu().numpy(), 0, 3))
if type(upsampled_img) is np.ndarray:
cv2.imshow(f'{curdata} - upsampled', upsampled_img[0][...,::-1])
else:
cv2.imshow(f'{curdata} - upsampled', upsampled_img[0][0][...,::-1])
if len(upsampled_img) > 1:
cv2.imshow(f'{curdata} - upsampled aux1', upsampled_img[1][0][...,::-1])
if len(upsampled_img) > 2:
cv2.imshow(f'{curdata} - upsampled aux2', upsampled_img[2][0][...,::-1])
cv2.waitKey(1000)
# Uncomment to wite to the video stream
#for _ in range(30):
# v.write(img)
continue
elif keyboard.is_pressed('a'):
action = torch.tensor([action_left], dtype=torch.float32).cuda()
hidden_action = -1
#action_text = 'LEFT'
elif keyboard.is_pressed('d'):
action = torch.tensor([action_right], dtype=torch.float32).cuda()
hidden_action = 1
#action_text = 'RIGHT'
elif no_action is not None:
action = torch.tensor([no_action], dtype=torch.float32).cuda()
hidden_action = 0
else:
action = torch.tensor([np.eye(opts.action_space)[random.randint(0, np.eye(opts.action_space) - 1)]], dtype=torch.float32).cuda()
hidden_action = None
#print(action, action_text)
# Perform inference
prev_state, m, prev_alpha, alpha_loss, z, M, prev_read_v, h, c, init_map, base_imgs, _, cur_hidden = netG.run_step(prev_state, h, c, action, \
batch_size, prev_read_v, prev_alpha, M, zdist, step=i)
# Show the image
img = prev_state[0].cpu().numpy()
img = np.rollaxis(img, 0, 3)
img = ((img+1)*127.5).astype(np.uint8)
img = cv2.resize(img, resized_image_size, interpolation=cv2.INTER_NEAREST)
img = img[...,::-1]
rectangle = img.copy()
cv2.rectangle(rectangle, (0, 0), (150, 30), (0, 0, 0), -1)
img = cv2.addWeighted(rectangle, 0.6, img, 0.4, 0)
cv2.putText(img, "Action:", (8, 18), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
if hidden_action == -1:
color = (55, 155, 255)
text = "LEFT"
elif hidden_action == 1:
text = "RIGHT"
color = (55, 155, 255)
elif hidden_action == 0:
text = "STRAIGHT"
color = (55, 255, 55)
else:
text = "UNKNOWN"
color = (55, 55, 255)
cv2.putText(img, text, (80, 18), cv2.FONT_HERSHEY_SIMPLEX, 0.4, color, 1)
cv2.imshow(f'{curdata} - inference', img)
if opts.show_base_images == 'True' and opts.num_components > 1:
for i in range(opts.num_components * 2):
img = base_imgs[i][0].cpu().numpy()
img = np.rollaxis(img, 0, 3)
img = ((img+1)*127.5).astype(np.uint8)
img = cv2.resize(img, resized_image_size, interpolation=cv2.INTER_NEAREST)
img = img[...,::-1]
cv2.imshow(f'{curdata} - {"un" if i > opts.num_components - 1 else ""}masked {(i % opts.num_components) + 1}', img)
for i in range(opts.num_components):
img = m[i][0].cpu().numpy()
img = np.rollaxis(img, 0, 3)
img = ((img+1)*127.5).astype(np.uint8)
img = np.expand_dims(cv2.resize(img, resized_image_size, interpolation=cv2.INTER_NEAREST), -1)
img = img[...,::-1]
cv2.imshow(f'{curdata} - mask {i + 1}', img)
if upsample is not None:
upsampled_img = upsample.inference(np.rollaxis(prev_state[0].cpu().numpy(), 0, 3))
if type(upsampled_img) is np.ndarray:
cv2.imshow(f'{curdata} - upsampled', upsampled_img[0][...,::-1])
else:
cv2.imshow(f'{curdata} - upsampled', upsampled_img[0][0][...,::-1])
if len(upsampled_img) > 1:
cv2.imshow(f'{curdata} - upsampled aux1', upsampled_img[1][0][...,::-1])
if len(upsampled_img) > 2:
cv2.imshow(f'{curdata} - upsampled aux2', upsampled_img[2][0][...,::-1])
cv2.waitKey(1)
i += 1
# Uncomment to wite to the video stream
#v.write(img)
wait = 1/opts.playback_fps - (time.time() - frame_start_time)
if wait > 0:
time.sleep(wait)
if __name__ == '__main__':
parser = config.init_parser()
opts, args = parser.parse_args(sys.argv)
inference(opts.gpu, opts)