-
Notifications
You must be signed in to change notification settings - Fork 171
/
conv_net_train.py
488 lines (433 loc) · 19 KB
/
conv_net_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
"""
Sample code for
Convolutional Neural Networks for Sentence Classification
http://arxiv.org/pdf/1408.5882v2.pdf
Much of the code is modified from
- deeplearning.net (for ConvNet classes)
- https://github.com/mdenil/dropout (for dropout)
- https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
import cPickle
import numpy as np
from collections import defaultdict, OrderedDict
import theano
import theano.tensor as T
from theano.ifelse import ifelse
import os
import warnings
import sys
import time
import getpass
import csv
warnings.filterwarnings("ignore")
#different non-linearities
def ReLU(x):
y = T.maximum(0.0, x)
return(y)
def Sigmoid(x):
y = T.nnet.sigmoid(x)
return(y)
def Tanh(x):
y = T.tanh(x)
return(y)
def Iden(x):
y = x
return(y)
def train_conv_net(datasets,
U,
ofile,
cv=0,
attr=0,
img_w=300,
filter_hs=[3,4,5],
hidden_units=[100,2],
dropout_rate=[0.5],
shuffle_batch=True,
n_epochs=25,
batch_size=50,
lr_decay = 0.95,
conv_non_linear="relu",
activations=[Iden],
sqr_norm_lim=9,
non_static=True):
"""
Train a simple conv net
img_h = sentence length (padded where necessary)
img_w = word vector length (300 for word2vec)
filter_hs = filter window sizes
hidden_units = [x,y] x is the number of feature maps (per filter window), and y is the penultimate layer
sqr_norm_lim = s^2 in the paper
lr_decay = adadelta decay parameter
"""
rng = np.random.RandomState(3435)
img_h = len(datasets[0][0][0])
filter_w = img_w
feature_maps = hidden_units[0]
filter_shapes = []
pool_sizes = []
for filter_h in filter_hs:
filter_shapes.append((feature_maps, 1, filter_h, filter_w))
pool_sizes.append((img_h-filter_h+1, img_w-filter_w+1))
parameters = [("image shape",img_h,img_w),("filter shape",filter_shapes), ("hidden_units",hidden_units),
("dropout", dropout_rate), ("batch_size",batch_size),("non_static", non_static),
("learn_decay",lr_decay), ("conv_non_linear", conv_non_linear), ("non_static", non_static)
,("sqr_norm_lim",sqr_norm_lim),("shuffle_batch",shuffle_batch)]
print parameters
#define model architecture
index = T.lscalar()
x = T.tensor3('x')
y = T.ivector('y')
mair = T.fmatrix('mair')
Words = theano.shared(value = U, name = "Words")
zero_vec_tensor = T.vector()
zero_vec = np.zeros(img_w)
set_zero = theano.function([zero_vec_tensor], updates=[(Words, T.set_subtensor(Words[0,:], zero_vec_tensor))], allow_input_downcast=True)
conv_layers = []
for i in xrange(len(filter_hs)):
filter_shape = filter_shapes[i]
pool_size = pool_sizes[i]
conv_layer = LeNetConvPoolLayer(rng, image_shape=None,
filter_shape=filter_shape, poolsize=pool_size, non_linear=conv_non_linear)
conv_layers.append(conv_layer)
layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((x.shape[0],x.shape[1],x.shape[2],Words.shape[1]))
def convolve_user_statuses(statuses):
layer1_inputs = []
def sum_mat(mat, out):
z=ifelse(T.neq(T.sum(mat),T.constant(0)),T.constant(1),T.constant(0))
return out+z, theano.scan_module.until(T.eq(z,T.constant(0)))
status_count,_ = theano.scan(fn = sum_mat, sequences=statuses, outputs_info=T.constant(0,dtype=theano.config.floatX))
# Slice-out dummy (zeroed) sentences
relv_input=statuses[:T.cast(status_count[-1],dtype='int32')].dimshuffle(0, 'x', 1, 2)
for conv_layer in conv_layers:
layer1_inputs.append(conv_layer.set_input(input=relv_input).flatten(2))
features = T.concatenate(layer1_inputs, axis=1)
avg_feat = T.max(features, axis=0)
return avg_feat
conv_feats, _ = theano.scan(fn= convolve_user_statuses, sequences= layer0_input)
# Add Mairesse features
layer1_input = T.concatenate([conv_feats, mair], axis=1)##mairesse_change
hidden_units[0] = feature_maps*len(filter_hs) + datasets[4].shape[1]##mairesse_change
classifier = MLPDropout(rng, input=layer1_input, layer_sizes=hidden_units, activations=activations, dropout_rates=dropout_rate)
svm_data = T.concatenate([classifier.layers[0].output, y.dimshuffle(0, 'x')], axis = 1)
#define parameters of the model and update functions using adadelta
params = classifier.params
for conv_layer in conv_layers:
params += conv_layer.params
if non_static:
#if word vectors are allowed to change, add them as model parameters
params += [Words]
cost = classifier.negative_log_likelihood(y)
dropout_cost = classifier.dropout_negative_log_likelihood(y)
grad_updates = sgd_updates_adadelta(params, dropout_cost, lr_decay, 1e-6, sqr_norm_lim)
#shuffle dataset and assign to mini batches. if dataset size is not a multiple of mini batches, replicate
#extra data (at random)
np.random.seed(3435)
if datasets[0].shape[0] % batch_size > 0:
extra_data_num = batch_size - datasets[0].shape[0] % batch_size
rand_perm = np.random.permutation(range(len(datasets[0])))
train_set_x = datasets[0][rand_perm]
train_set_y = datasets[1][rand_perm]
train_set_m = datasets[4][rand_perm]
extra_data_x = train_set_x[:extra_data_num]
extra_data_y = train_set_y[:extra_data_num]
extra_data_m = train_set_m[:extra_data_num]
new_data_x = np.append(datasets[0],extra_data_x,axis=0)
new_data_y = np.append(datasets[1],extra_data_y,axis=0)
new_data_m = np.append(datasets[4],extra_data_m,axis=0)
else:
new_data_x = datasets[0]
new_data_y = datasets[1]
new_data_m = datasets[4]
rand_perm = np.random.permutation(range(len(new_data_x)))
new_data_x = new_data_x[rand_perm]
new_data_y = new_data_y[rand_perm]
new_data_m = new_data_m[rand_perm]
n_batches = new_data_x.shape[0]/batch_size
n_train_batches = int(np.round(n_batches*0.9))
#divide train set into train/val sets
test_set_x = datasets[2]
test_set_y = np.asarray(datasets[3],"int32")
test_set_m = datasets[5]
train_set_x, train_set_y, train_set_m = shared_dataset((new_data_x[:n_train_batches*batch_size], new_data_y[:n_train_batches*batch_size], new_data_m[:n_train_batches*batch_size]))
val_set_x, val_set_y, val_set_m = shared_dataset((new_data_x[n_train_batches*batch_size:], new_data_y[n_train_batches*batch_size:], new_data_m[n_train_batches*batch_size:]))
n_val_batches = n_batches - n_train_batches
val_model = theano.function([index], classifier.errors(y),
givens={
x: val_set_x[index * batch_size: (index + 1) * batch_size],
y: val_set_y[index * batch_size: (index + 1) * batch_size],
mair: val_set_m[index * batch_size: (index + 1) * batch_size]},##mairesse_change
allow_input_downcast = True)
#compile theano functions to get train/val/test errors
test_model = theano.function([index], [classifier.errors(y), svm_data],
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size],
mair: train_set_m[index * batch_size: (index + 1) * batch_size]},##mairesse_change
allow_input_downcast=True)
train_model = theano.function([index], cost, updates=grad_updates,
givens={
x: train_set_x[index*batch_size:(index+1)*batch_size],
y: train_set_y[index*batch_size:(index+1)*batch_size],
mair: train_set_m[index * batch_size: (index + 1) * batch_size]},##mairesse_change
allow_input_downcast = True)
test_y_pred = classifier.predict(layer1_input)
test_error = T.sum(T.neq(test_y_pred, y))
true_p = T.sum(test_y_pred*y)
false_p = T.sum(test_y_pred*T.mod(y+T.ones_like(y),T.constant(2,dtype='int32')))
false_n = T.sum(y*T.mod(test_y_pred+T.ones_like(y),T.constant(2,dtype='int32')))
test_model_all = theano.function([x, y,
mair##mairesse_change
]
, [test_error, true_p, false_p, false_n, svm_data], allow_input_downcast = True)
test_batches = test_set_x.shape[0]/batch_size;
#start training over mini-batches
print '... training'
epoch = 0
best_val_perf = 0
val_perf = 0
test_perf = 0
fscore = 0
cost_epoch = 0
while (epoch < n_epochs):
start_time = time.time()
epoch = epoch + 1
if shuffle_batch:
for minibatch_index in np.random.permutation(range(n_train_batches)):
cost_epoch = train_model(minibatch_index)
set_zero(zero_vec)
else:
for minibatch_index in xrange(n_train_batches):
cost_epoch = train_model(minibatch_index)
set_zero(zero_vec)
train_losses = [test_model(i) for i in xrange(n_train_batches)]
train_perf = 1 - np.mean([loss[0] for loss in train_losses])
val_losses = [val_model(i) for i in xrange(n_val_batches)]
val_perf = 1- np.mean(val_losses)
epoch_perf = 'epoch: %i, training time: %.2f secs, train perf: %.2f %%, val perf: %.2f %%' % (epoch, time.time()-start_time, train_perf * 100., val_perf*100.)
print(epoch_perf)
ofile.write(epoch_perf+"\n")
ofile.flush()
if val_perf >= best_val_perf:
best_val_perf = val_perf
test_loss_list = [test_model_all(test_set_x[idx*batch_size:(idx+1)*batch_size], test_set_y[idx*batch_size:(idx+1)*batch_size],
test_set_m[idx*batch_size:(idx+1)*batch_size]##mairesse_change
) for idx in xrange(test_batches)]
if test_set_x.shape[0]>test_batches*batch_size:
test_loss_list.append(test_model_all(test_set_x[test_batches*batch_size:], test_set_y[test_batches*batch_size:],
test_set_m[test_batches*batch_size:]##mairesse_change
))
test_loss_list_temp=test_loss_list
test_loss_list=np.asarray([t[:-1] for t in test_loss_list])
test_loss = np.sum(test_loss_list[:, 0])/float(test_set_x.shape[0])
test_perf = 1- test_loss
tp = np.sum(test_loss_list[:, 1])
fp = np.sum(test_loss_list[:, 2])
fn = np.sum(test_loss_list[:, 3])
tn = test_set_x.shape[0]-(tp+fp+fn)
fscore=np.mean([2*tp/float(2*tp+fp+fn), 2*tn/float(2*tn+fp+fn)])
svm_test=np.concatenate([t[-1] for t in test_loss_list_temp], axis=0)
svm_train=np.concatenate([t[1] for t in train_losses], axis=0)
output="Test result: accu: "+str(test_perf)+", macro_fscore: "+str(fscore)+"\ntp: "+str(tp)+" tn:"+str(tn)+" fp: "+str(fp)+" fn: "+str(fn)
print output
ofile.write(output+"\n")
ofile.flush()
# dump train and test features
cPickle.dump(svm_test, open("cvte"+str(attr)+str(cv)+".p", "wb"))
cPickle.dump(svm_train, open("cvtr"+str(attr)+str(cv)+".p", "wb"))
updated_epochs = refresh_epochs()
if updated_epochs!=None and n_epochs!=updated_epochs:
n_epochs = updated_epochs
print 'Epochs updated to '+str(n_epochs)
return test_perf, fscore
def refresh_epochs():
try:
f=open('n_epochs','r')
except Exception:
return None
try:
n = int(f.readline().strip())
except Exception:
f.close()
return None
f.close()
return n
def shared_dataset(data_xy, borrow=True):
""" Function that loads the dataset into shared variables
The reason we store our dataset in shared variables is to allow
Theano to copy it into the GPU memory (when code is run on GPU).
Since copying data into the GPU is slow, copying a minibatch everytime
is needed (the default behaviour if the data is not in a shared
variable) would lead to a large decrease in performance.
"""
data_x, data_y, data_m = data_xy
shared_x = theano.shared(np.asarray(data_x,
dtype=theano.config.floatX),
borrow=borrow)
shared_y = theano.shared(np.asarray(data_y,
dtype=theano.config.floatX),
borrow=borrow)
shared_m = theano.shared(np.asarray(data_m,
dtype=theano.config.floatX),
borrow=borrow)
return shared_x, T.cast(shared_y, 'int32'), shared_m
def sgd_updates_adadelta(params,cost,rho=0.95,epsilon=1e-6,norm_lim=9,word_vec_name='Words'):
"""
adadelta update rule, mostly from
https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
updates = OrderedDict({})
exp_sqr_grads = OrderedDict({})
exp_sqr_ups = OrderedDict({})
gparams = []
for param in params:
empty = np.zeros_like(param.get_value())
exp_sqr_grads[param] = theano.shared(value=as_floatX(empty),name="exp_grad_%s" % param.name)
gp = T.grad(cost, param)
exp_sqr_ups[param] = theano.shared(value=as_floatX(empty), name="exp_grad_%s" % param.name)
gparams.append(gp)
for param, gp in zip(params, gparams):
exp_sg = exp_sqr_grads[param]
exp_su = exp_sqr_ups[param]
up_exp_sg = rho * exp_sg + (1 - rho) * T.sqr(gp)
updates[exp_sg] = up_exp_sg
step = -(T.sqrt(exp_su + epsilon) / T.sqrt(up_exp_sg + epsilon)) * gp
updates[exp_su] = rho * exp_su + (1 - rho) * T.sqr(step)
stepped_param = param + step
updates[param] = stepped_param
return updates
def as_floatX(variable):
if isinstance(variable, float):
return np.cast[theano.config.floatX](variable)
if isinstance(variable, np.ndarray):
return np.cast[theano.config.floatX](variable)
return theano.tensor.cast(variable, theano.config.floatX)
def safe_update(dict_to, dict_from):
"""
re-make update dictionary for safe updating
"""
for key, val in dict(dict_from).iteritems():
if key in dict_to:
raise KeyError(key)
dict_to[key] = val
return dict_to
def get_idx_from_sent(status, word_idx_map, charged_words, max_l=51, max_s=200, k=300, filter_h=5):
"""
Transforms sentence into a list of indices. Pad with zeroes.
"""
x = []
pad = filter_h - 1
length = len(status)
pass_one=True
while len(x)==0:
for i in range(length):
words = status[i].split()
if pass_one:
words_set = set(words)
if len(charged_words.intersection(words_set))==0:
continue
else:
if np.random.randint(0,2)==0:
continue
y=[]
for i in xrange(pad):
y.append(0)
for word in words:
if word in word_idx_map:
y.append(word_idx_map[word])
while len(y) < max_l+2*pad:
y.append(0)
x.append(y)
pass_one=False
if len(x) < max_s:
x.extend([[0]*(max_l+2*pad)]*(max_s-len(x)))
return x
def make_idx_data_cv(revs, word_idx_map, mairesse, charged_words, cv, per_attr=0, max_l=51, max_s=200, k=300, filter_h=5):
"""
Transforms sentences into a 2-d matrix.
"""
trainX, testX, trainY, testY, mTrain, mTest = [], [], [], [], [], []
for rev in revs:
sent = get_idx_from_sent(rev["text"], word_idx_map,
charged_words,
max_l, max_s, k, filter_h)
if rev["split"]==cv:
testX.append(sent)
testY.append(rev['y'+str(per_attr)])
mTest.append(mairesse[rev["user"]])
else:
trainX.append(sent)
trainY.append(rev['y'+str(per_attr)])
mTrain.append(mairesse[rev["user"]])
trainX = np.array(trainX,dtype="int32")
testX = np.array(testX,dtype="int32")
trainY = np.array(trainY,dtype="int32")
testY = np.array(testY,dtype="int32")
mTrain = np.array(mTrain, dtype=theano.config.floatX)
mTest = np.array(mTest, dtype=theano.config.floatX)
return [trainX, trainY, testX, testY, mTrain, mTest]
if __name__=="__main__":
print "loading data...",
x = cPickle.load(open("essays_mairesse.p","rb"))
revs, W, W2, word_idx_map, vocab, mairesse = x[0], x[1], x[2], x[3], x[4], x[5]
print "data loaded!"
mode= sys.argv[1]
word_vectors = sys.argv[2]
attr = int(sys.argv[3])
if mode=="-nonstatic":
print "model architecture: CNN-non-static"
non_static=True
elif mode=="-static":
print "model architecture: CNN-static"
non_static=False
execfile("conv_net_classes.py")
if word_vectors=="-rand":
print "using: random vectors"
U = W2
elif word_vectors=="-word2vec":
print "using: word2vec vectors"
U = W
r = range(0,10)
ofile=file('perf_output_'+str(attr)+'.txt','w')
charged_words=[]
emof=open("Emotion_Lexicon.csv","rb")
csvf=csv.reader(emof, delimiter=',',quotechar='"')
first_line=True
for line in csvf:
if first_line:
first_line=False
continue
if line[11]=="1":
charged_words.append(line[0])
emof.close()
charged_words=set(charged_words)
results = []
for i in r:
datasets = make_idx_data_cv(revs, word_idx_map, mairesse, charged_words, i, attr, max_l=149, max_s=312, k=300, filter_h=3)
perf, fscore = train_conv_net(datasets,
U,
ofile,
cv=i,
attr=attr,
lr_decay=0.95,
filter_hs=[1,2,3],
conv_non_linear="relu",
hidden_units=[200,200,2],
shuffle_batch=True,
n_epochs=50,
sqr_norm_lim=9,
non_static=non_static,
batch_size=50,
dropout_rate=[0.5, 0.5, 0.5],
activations=[Sigmoid])
output = "cv: " + str(i) + ", perf: " + str(perf)+ ", macro_fscore: " + str(fscore)
print output
ofile.write(output+"\n")
ofile.flush()
results.append([perf, fscore])
results=np.asarray(results)
perf_out = 'Perf : '+str(np.mean(results[:, 0]))
fscore_out = 'Macro_Fscore : '+str(np.mean(results[:, 1]))
print perf_out
print fscore_out
ofile.write(perf_out+"\n"+fscore_out)
ofile.close()